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HOMOGENEOUS KAHLER MANIFOLDS
ADMITTING A TRANSITIVE SOLVABLE GROUP

OF AUTOMORPHISMS

BY JOSEF DORFMEISTER

ABSTRACT. — In this paper we prove the "fundamental conjecture" due to Gindikin and Vinberg for
homogeneous Kahler manifolds admitting a solvable transitive group of holomorphic isometrics. We genera-
lize a proof of Gindikin, Piatetskii-Shapiro and Vinberg (which worked with split solvable groups) using
"modifications" of solvable Kahler algebras.

RESUME. — Nous eprouvons la «conjecture fondamentale» de Gindikin et Vinberg pour les varietes
kahleriennes homogenes admettant un groupe soluble, transitive des isometrics holomorphes. Nous generalisons
une epreuve de Gindikin, Piatetskii-Shapiro et Vinberg en introduisant des «modifications » des algebres
kahleriennes solubles.

In this paper we consider the manifolds described in the title. We prove that the
"fundamental conjecture" of Gindikin and Vinberg [8] holds in this case.

Our main tool is the "modification" of a solvable Kahler algebra (see 3.1 for a
definition). We use it to remove obstacles which arise when going through [7],
part III, § 3. Thus we prove that a solvable Kahler algebra can be modified to yield a
sum of an abelian Kahler ideal and a normal j-algebra. As an application we describe
Kahlerian NC algebras and prove that they are modifications of the product of an
abelian Kahler algebra and a normal 7-algebra. We would like to point out that our
results improve over the recent results of [10]. We are also able to recapture the results
of [14].

In paragraphs 1, 2 we investigate certain abelian ideals of a solvable Kahler algebra. In
paragraph 3 we introduce the notion of a modification and prove various results about
modifications. Sections 4, 5 and 6 are devoted to the proof of the algebraic main
theorem 3.7. In paragraph 7 we collect geometric consequences of this theorem. In
particular we prove the fundamental conjecture for Kahler manifolds admitting a solvable
transitive group of automorphisms.
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144 J. DORFMEISTER

A large part of this paper was written during a visit to Rutgers University. I would
like to thank Rutgers University for its hospitality.

1.1. A solvable Kdhler algebra is a solvable Lie algebras, together with an inner
product < . , . ) and an orthogonal map j: $ -> s satisfying

(1.1) 7^-id,
(1.2) [/x, jy\ ==j [/x, y] +j [x, jy] + [x, y] for x, y e s,
(1.3) <[^y]Jzy+(\y,z]Jx)+([z,x]Jyy=0 tor x,^,zes.

From [7], Part II, 1, it follows that solvable Kahler algebras correspond to simply
connected homogeneous Kahler manifolds admitting a simply transitive solvable group
of holomorphic isometrics. Kahler algebras in the sense of [7], Part II, 1, will be called
"general Kahler algebras".

1.2. The following lemma is an easy consequence of (1.2).

LEMMA. — Let r be an abelian ideal of s, then j r and r +7 r are subalgebras of s and
r C^jx is an abelian ideal o/r+jr.

We apply [7], Part II, §6, and see that the orthogonal complement of rC^jr in
r+7'r is a solvable Kahler algebra. Let ? denote the orthogonal complement of xC^jx
in r. Then r+7'r==(rn7r)+(?+77) where ? is an abelian ideal in ?+7? satisfying
?n;7=o.

1.3. Let now s be a solvable Kahler algebra and r an abelian ideal satisfying s=r+jr,
rp^r==0. We follow the approach of the proof of [12]; Appendix, Theorem 1, and
represent the manifold corresponding to s as a "tube domain": Fix^er and define, for
hejx, a map C^: r ->r by C^(y)'.==[h, y—yo\—jh. Then the map h\—>C^ is an injective
hoiribmorphism for the Lie algebra jx into the Lie algebra aff(r) of affine transformations
of r. Put 1):={C^; hejx}. Then C^yQ=—jh implies that the map C/,h->C^o ls an

isomorphism of vector spaces. Therefore, the orbit U of the Lie group H generated by
1) is an open subset of r. We put

D(U):={x+^; x, yex, ye\J} c: r0

and get that

(p: r +; r ̂  Lie Aut D (u\ (p (a +jb) (x + iy) = a 4- C^ x + i C^y

is an isomorphism from r +7 r onto a solvable Lie algebra generating a transitive Lie group
on D(U). Moreover, (p is C-linear relative to the natural complex structures. Hence we
may consider the tube domain D(U)=r+fU as the realization of the complex manifold
corresponding to r+jr. The Lie algebra 5=r+/r under consideration is then of type
9-i+9o where g_ i consists of all translations with elements from r and go is an affine
Lie algebra of infinitesimal automorphisms of U.

We denote by (., .) a scalar product on r and extend it as a hermitian form to
r+/r . We denote this hermitian form again by (., .). We represent the Kahler metric
4€ SERIE - TOME 18 - 1985 - N° 1



KAHLER MANIFOLDS 145

on D(U) in the form (Ho(z)M, v). By assumption, j acts as i on the tangent spaces and
is orthogonal relative to the Kahler metric as well as to (., .). Therefore Ho(z) is a
C-linear endomorphism of r^ Moreover, the Kahler metric is invariant under the group
generated by g_ i +go. As a consequence we have

HoOc+uO==H(j) and H(^y)=\dW^-lH(y)(dW)•

for all y e U, We exp go where exp go denotes the Lie group generated by go. Finally,
we evaluate the Kahler condition V^/Y=/V^Y. Here we use vector fields on D(U),
the defining equation for V^ B and the Kahler condition and get

HCy; a)fc=H(^; b)a for all a, ber, ye\J.

Where

HO^a):^ H(.y+ra).
dt o

As H (y) is C-linear we may write

H (y) = A (y) + i B (y) with A 00, B (j) 6 End^ r.

Moreover, H (y) is hermitian whence tA(y)=A (y) and ^ (y) = — B (^). Obviously, the
Kahler condition gives

A(y,d)b=A(y,b)a and B(y,d)b=B(y;b)a.

Clearly

0=(B(^; u)x, x)=(B(y, x)u, x)= -(M, B(y; x)x) for M, xer.

Therefore B (y, x) x = 0. This implies B (y; a) b = — B (^; fc) a; together with the Kahler
condition we get B(y; d)=0 for all ye\J, a ex. But then B(^)=B is constant. From
above we know that B is skew-adjoint and invariant under the action of exp go.

1.4. We keep the notation of 1.3 and introduce the invariant Kahler metric

g, (u, v) = (A (Im z) u, v) on D (U).

From

^A (y) = A (y) and A (y; a) b = A (y; b) a

we get (locally) a function T^ : U -> ^+ satisfying

giy (u, v) = (ffy log TI (u, v) for all u, v er, ye U.

We evaluate the invariance of g under exp go. It is easy to see that the directional
derivatives of d^^log^ (dWu) and d^log^ (u) coincide for all xeU. Hence, there exists
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146 J. DORFMEISTER

a linear map ^(W; — ) : r -> R satisfying

d^ log T| (rfW M) = d, log TI (u) + ?i (W; K).

Now we see that the directional derivatives of log ?j(Wx) and log [rJ (x) e^(w; x)] coincide
for all x e U. This implies T; (W x) = rj (x) e^(w; x) e'(w) where c (W) e R.

THEOREM. — U is convex.

Proof. — The proof consists of several steps. We first replace W by a one-parameter
group W(=exprT and write X(W; u)=</(W), M > :

(1) ^logii(Tx)=<^4T), M>+4i^(T).

We recall that go consists of elements of type C^, hex. We claim that cp^: r -»• r,
h h-^ C^ x is bijective for all x in a neighborhood of YQ. For a proof we note that (p^ is
linear and that (py = id holds. Hence det (p^ 7^ 0 in a neighborhood of ^o- Moreover,
(p^ is affine in x whence (p^1 is rational in x and also Cj^i ̂  is rational in x. Finally,
^ <px 1 (")x = ̂  <Px 1 W = M. Hence, from (1) we get with T = C, ̂ -1 ̂

(2) d, log r| (u) = < d^ I (Cj ̂ -1 (,)), x > + d^c (C, ̂ -1 (,)).

As a consequence of this we see that d^\og!\(u) is rational in x. We put T^^^logri
and ?|^== —^logr|. Then (U, 7\^) is a complete, connected riemannian manifold (as a
connected group acts transitively on it). Let aeU and uex and assume a + T M e U for
all 0 ̂  T ^ TO and a + T o M ^ U . Because T|̂  is rational in x we may apply part (a) of the
proof of [6], Lemma 8.2, and get rj (O+TM) ->- oo if T ->• TQ. Now (c) of the proof of [6],
Theorem 3.9, shows that U is convex.

2.1. Let $ be an arbitrary solvable Kahler algebra and r a commutative ideal
in s. Then ad s is a solvable Lie algebra of endomorphisms of s. Let ad s denote the
algebraic hull of ads (see [3], II, § 14, for a definition). Then ad5 leaves invariant each
ideal of s and we have

[ad $, ad i] = [ad s, ad $] = ad [s, $].

From [3], V, §3.5, we know that adS is solvable and ads=a+n where n is the ideal of
ad 5 consisting of all nilpotent elements of ad 5 and a is an abelian algebraic Lie algebra
consisting of semisimple endomorphisms. Moreover, 0=0^+0^ where a^ (resp. c^)
consists of the elements of a having only real (resp. purely imaginary) eigenvalues [3], II,
§13. From the above it follows that r contains a subspace q so that n.q=0,
T|q=X(T)Id for T|ec^ and T |q=n(T)I for Tea, where 12=-U. In case T |q=0
for all Tea; we may choose n=0 and q one dimensional. In general we only know
dimq^2. Of course, q is an abelian ideal of s. Moreover, qH7'q=0 or
qQ^q==q . in the second case we may write $=q+q1 with a solvable Kahler algebra
q1. We will see in section 4 that this implies the fundamental conjecture of [8]. We
assume therefore in what follows q 07q==0. Clearly, in paragraph 1 we may put r=q.
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KAHLER MANIFOLDS 147

2.2. We assume q n7'q=0. Put q i = U n ( — U ) where U denotes the closure of U
in q. We set ^2=c\i' Hence ^^i+qz ^d V=q^-\-\J^ where
U2==UOq2 . Moreover, \J^ is an open convex domain in q^ not containing a straight
line.

LEMMA. — qi+7'qi is an ideal o/q+./q.
Proof. — Let heq be arbitrary and W(=exp?C^. Then it is easy to see that the

linear part of W, leaves q^ invariant, i.e. \jh, qj c: q^. For all /ieq. We also know
[Cjh, Cjq]=C^,jq]' From the definition of q we get that this commutator is just a
translation with a = —j [jh, jq\. But then ta+xeV for all xeU whence aeq^ This
implies—using (^'2)—[jh,q]-^-[h,jq]eq^ for all h, qec\. We choose qeq^ and get
D^i» ^] c= ^i f01" ̂  ^l e^l• Now it is straightforward to show that qi -h/qi is an ideal
in q-h/q.

COROLLARY. — q^ +7 q2 15 a subalgebra of q +7 q.

2.3. We retain the notation of the last section.

LEMMA. — Assume q07q=0, then qi+7'qi is abelian.
Proof. — We clearly have to consider the cases dimq^=0, 1, 2. It is clear that we

only have to prove [/q^, qi]==0. If dimqi=l, then q i = t R ^ and \jq, q]=^q. By the
definition of q, this implies ad jq \ q=Ud, whence \jg, x^]='kx^ for all x^eq^. But
q^+jq i is an ideal in q-h/q whence A,==0. Therefore qi+7'qi is abelian and commutes
with q^.

Assume now dimq^=2. Thus qi=q. Suppose there exists qeq so that
ad [7/11 q=a!d+PI, a ̂  0, then we can find h^eq, for which a==0. Thus
2idjh^=ftl. We choose h^ and h^ so that

ad|^2q=PI, ad|7/iiq=ld+yl, lh^=h^ lh^= —h^.

Therefore

[ih,Jh^=j[jh,, h^\-j[jh^ h,]=j(h,-yh,)-jfth^= -yA+(l-P)A.

This element acts trivially on q only if y=0 and (1-P) P=0. If P=0, then from (1.3)
we get

0= -< [/ î, 7U 7^2 >- + < [fhi. U JJ^i > + -< ?2, AL JJhi >

=^h^h^>+<-h^ -h^ >-+< -h^ -h^>,

a contradiction.
If P=l, then \jh^jh^]=0 and (1.3) shows

0= < \jh^ jh^ jh^ > + •< \jh^ h^ -h, > + -< [h^ jh^ -h^>
=<h^ Ai >-+-<^2, h^>,

a contradiction.
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148 j. DORFMEISTER

Therefore Sidjh | q=a(7i)I for all fceq. We choose h^eq so that a(fc)=0 and we
choose /ii e q so that I h^ = ̂  I ̂ 2 = - ̂ i holds. Then adjTii | q = a I and

[/^ A] =7 [/^i, ^2] +J [^i, A] = - a^i.

As above we know that this commutator acts trivially on q. Hence a=0 and the lemma
is proven.

2.4. We retain the notation of the previous sections.

LEMMA. — J/qnjq=0, then either dimq=l and there exists req satisfying [/r, r]=r
or q 4-7 q is abelian.

Proof. - From 2.2 we get q=q i+qz and U=qi+U2. Suppose dimq=2. By the
last lemma we may assume dim qi ^ 1.

Assume first dim qi = 1. Let x e q^ x ^ 0; then R x = q^ and \jx, x] = 0. By the defini-
tion of q this implies [pc, q]=0. From Corollary 2.2 we know that q2+jq2 is a subal-
gebra of q+jq. Because dim q2= 1 and [/'q, q] <= q we know [/'r, r]==^r for req2. But
(1.3) now gives

0 = -< [/r, jx ] , j x > + ̂  [ jx , x], j j r > + -< [x, j r ] , j j x >

= <J[jr, x]+j[r, jx], j x > +0+ -< [/r, x], x > =2 ̂  ̂  x, x >-.

This implies ^=0. Hence [/q, q]=0 for all qeq and a straightforward computation
shows that q -h; q is abelian.

It remains to consider the case dimqi=0. From paragraph 1 we know that the Lie
group exp go generated by C^, q e q, has an open convex orbit U in q which contains no
straight line. We therefore may apply the results of [15], Chap. II. Hence

^==^1+^1/2 and U^Xi-hXi/2; x^~ _x^^x^ eK^,

where K is a convex regular cone in q^. By construction, C^eLieAutU for all
qeq. Because qi 9^ 0 and dim q ^ 2 we only have the possibilities dimq^=2, qi/2==0
or dim q 1= dim q 1/2=1. It is easy to see that in both cases the isotropy algebra in Lie
AutU of any point in U is trivial. Therefore {C^; q e q} = Lie Aut U. If qi/2=0 and
dimqi=2 then the action of Te Lie AutU is not of type Ud+^il on q=qi. Hence
qi/2==0 implies dimqi=l. It remains to consider the case dimqi=dimqi/2=l- But
then a comparison with [15], Chap. II, shows that adxq is nilpotent for xeq^- This
contradicts the choice of q.

3.1. In the next sections of this paper we prove that solvable Kahler algebras are
"modifications" of "semi-direct products a © b where a is an abelian ideal and b is a
normal ./-algebra" (*) (see [12], Chap. 2.3, for a definition). Let s be a solvable Kahler
algebra with scalar product -< ., . >- and complex structure;. Let D: s-^Ders be a

(*) in this paper such an expression is exclusively used for split solvable a@ b
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linear map satisfying for all x, y e s

(3.1) D(x) is skew adjoint relative to <., . >,
(3.2) [D(x),7]=0,

(3.3) [D(x),D(>0]=0,

(3.4) D([x,y|)=0,

(3.5) D(D(x)^-D(j)x)=0.

We call such a map a "weak modification map". We would like to mention that
modification maps and modifications have been used before ([2], [5]).

LEMMA. — Let D be a weak modification map of the solvable Kdhler algebra s. Then
the product (x, y):=[x, y]-{-D(x)y—D(y)x defines on s the structure of a solvable Kdhler
algebra.

Proof. — Obviously, (x, x) = 0. A straight forward computation shows that (x, y)
defines the structure of a Lie algebra on the vector space s and that $ remains
solvable. Using (3.1) and (3.2) one easily verifies that (1.2) and (1.3) are satisfied for
(., .). This proves the lemma.

3.2. Let M be a simply connected h.k.m. (-homogeneous Kahler manifold) and S a
connected solvable group of automorphisms of M. Assume moreover that S acts simply
transitive on M. Hence S is simply connected.

Let 5 = Lie S and D a weak modification map of s. We put

f:={D(x);xes}, 9:=I©s.

Then 9 is a Lie algebra with product

[D+x, D'+X^EX, x'J+Dx'-D'x.

We extend j to 9 by putting j | f = 0. Moreover the skew form p (x, y) = -< x, jy >- on s
will be extended trivially to 9. Then it is easy to verify that 9 is a (general) Kahler
algebra of infintesimal automorphism of M [7], Part II, 1. Let G denote the connected
group of automorphisms of M having Lie algebra 9, then M ^ G/K and Lie
K = I. Moreover, K is connected and closed in G and we have S c G.

We consider D: 9-^9, x \—> D (x) + x. Then it is clear that D is an injective homomor-
phism of the "modified" Lie algebra on the vector space $ onto the sub algebra 5=£)(s)
of 9.

Let § denote the connected subgroup of G with Lie § = s. Then § is solvable and it
is easy to see that § acts transitive on M. But dim $=dims, therefore S has discrete
isotropy subgroup. We have assumed that M is simply connected, so S acts simply
transitive on M. Hence, a modification corresponds to a different choice of a simply
transitive group of automorphisms of M. We also note that the complex structure J on
5 is given by7(D(x)+x)=D(/x)+7x where j denotes the complex structure of s.
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150 J. DORFMEISTER

3.3. In this section we investigate weak modifications of particularly simple Kahler
algebras.

LEMMA 1. — Let a be an abelian Kahler algebra and D a weak modification map
fora. Then a is the orthogonal sum of j-invariant subspaces a=ao+a i=ao+&io+&n
where:

(a) &o is spanned by {D(x)y, x, yea}.

&io={^ea ; D(x)=0, D(/x)=0 and D(y)x=0 for all yea}.
a! i c: {xea; D (y) x = 0 for all x, y e a}.

(b) D (D (x)y) = 0 for all x, yea.
(c) In the modified algebra &o is an abelian ideal, 04 is an abelian subalgebra and we

have [&io» a]=0 and [a, a]==&o.
Proof. — We know that {D(x); xea} is abelian and consists of skew-adjoint endomor-

phisms of the complex space a. Hence there exists a basis of a consisting of common
eigenvectors for all D (x). Moreover D (x) acts on such a basis vector by multiplication
with a purely imaginary number. We can therefore identify a with C" so that the
canonical basis e^ . . ., e^ consists of common eigenvectors for all D(x). Then D(x) is
a diagonal matrix with purely imaginary eigenvalues. Hence there exist R-linear maps
^: €"-> R, m = = l , . . ., n, so that D(x)e^=^(x)ie^ for all xea, 1 ̂  m ^ n. The last
condition for a modification map requires D(D(x)^—D(j)x)=0, i.e.
'k^(D(x)y—D(y)x)=0 for all x , y e a , m= l , . . ., n. Choosing x=^e, and y=^ses
this means 0 = ̂  (k, (a, e,) P, ie, - \ (P, e,) a, ie,). Hence

( ̂ ) ^ (̂ r ^r) ̂  (P, ̂ s) = ̂  (P, ̂ ) ̂  (ar ^r).

Choosing s = r = m in (^) we have ̂  (o^ ̂ J ̂  (P^ f^J = ̂  (P^ ej ̂  (a^ f^J. We know
that ^: C^-^tR is IR-linear and has a nontrivial kernel. Let ^(a^^)=0. Then
0=^(P.^)^(a,^J for all P,eC. If ^(P,^)^0 for some ?,, then
^-m (^ ^m) == °- But ^m ̂ m and f a^ ̂  span C ̂ ^ over R. Hence ̂  (y ̂ J = 0 for all y e C,
a contradiction. This implies

(^) ^(a^)=0 for all aeC, 1 ̂  m ^ n.

Next we choose r=m in (^). Then by (^) we have

0 = ̂  (a, ej ̂  (P, f^) for all l ^ s ^ n and all a,, P, e C.

This identity is surely satisfied if, for a certain m, ^(^m)^ f01" au 5- Assume
m = 1, . . ., ( are exactly these m's. At any rate

(^)
^(CeJ=0 or ^n(C^)=0 for all 1 ̂  m, s ̂  n.

Assume now r>l and let s be arbitrary. If ^(C^)=0, then in (^) we have
0=^(P,^) ̂ (a^'^). But r>l and there exists m and a,, so that
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^(a^'^)^O. Therefore ^(C^)=0. The second possibility is anyway
^(C^)=0. Therefore ^(C^)=0 for all r > I, \^s^n. As a consequence,
^i, . . ., ^ depend only on C^+i, . . ., Ce^ and ^+1= . . . =^=0. Some of
^i, . . ., ^j may also be 0. Say ̂  = . . . =^=0 and ̂  7^ 0 for k + 1 ̂  w < /. We put
ciio=C^+ . . . +C^, &o=C^.n+ . . . +C^and & n = = C ^ + i + . . . +C^. Forx, ^ea
we have [D (x)y]^ = ̂  (x)y^ ie^. This is zero if m ̂  {k + 1, . . . , / } . For m e {k + 1, . . . , ? }

/ " \
we have ^ (x) = ̂  ( ^ x,. ̂ . ). By the choice of m there exist r > I and x,. so that

\ r = f + l /

^,(x^) 1=- 0. Hence Ce^ c= {D(x)^; x, ^ea} c: &o. This proves (a). To verify (b) we
choose r and m as above then

E> (^r ^r) ̂ m ^m - ̂  (̂ m ̂ ) ̂ r r̂ = D (x, ̂ ) ̂  ̂ .

Hence D(&o)=0. The last statement of the assertion follows from the definition of the
subspaces and the properties of D.

LEMMA 2. — Let $=a+5D be the semi-direct product of an abelian ideal a ofs and a
normal j-algebra s^- ^e assume that $ is a Kdhler algebra and that a and SD are
orthogonal and j-invariant. Let D: s —> Der $ be a weak modification map. Then:

(a) For all x e $, D (x) leaves a and s^ invariant.
(b) D^: a -> Der a, D^ (x): = D (x) \a is a weak modification map of a.
(c) Do: 5-D -» Der $D? Dp (x) | SD ls a weak modification map of a.
(d) Let a = OQ + 04 w^r^ OQ = {x e a; D (x) | SD = ̂ } an^ fli = a Q do. TTi^n Oo f5 an ideal

of the modification of $ via D anrf a^ is an abelian subalgebra. Moreover, in the
modification Lie algebra (04, Sp) c: ao+($D» ^o)-

(e) We have D (x) y e (s, s) (/br aK x, ^ e s). 7n particular D (D (x) y) = 0.

Proof. — (a) Let W=exprD(x), then W is an automorphism of s which commutes
with 7. Hence, for all aea we get [/Wa, Wa]=W[/a, a]=0. We write WO=M+JC,
K G a, xesp and get O=[/M, x]+[/x, M]+[/X, x]. Here the first two summands are in a
whereas the last is in s^- This implies 0==[/x, x]. From [4], Lemma 3.5. We get x=0.

(b) and (c) are clear.
(d) Let aeciQ and xes, then in the modified algebra we have

(a, x)=[a, x]+D(a)x-D(x)a.
For xea we see (a, x)ea and D((a, x))=0. If xes^ then D(a)x=0 whence
(a, x)ea. Obviously D((a, x))=0. Next we consider the weak modification map D^
and split a=&o+ai as in Lemma 1. Clearly 04 c &i where (a^, Oi)=0. To see that
(^i, So) ^ %+(SD» ^o) ^^s we first note (xi, XD)=[XI, XD]+D(XI)XD-D(XD)XI where
[., .] denotes the Lie product of the unmodified algebra. By definition, D([xi, XE)])=O
and because D(x^)xQe(s^ s^) we also have D(D(x^) x^)=0. Hence, using this and
(3.4) and (3.5) we get D(D(xD)xi)=0. Therefore (x^, x^)eaQ-^-(^, s^). Finally let
x = x^ + x^ + XD and y =y^ 4-^0- ^en

D(x)^=D(x)^+D(x)^=D,(x,)^+D(xi,)^+D(x)^.
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We know that D(x) is a skew symmetric derivation of SD» hence D(x)y^e[^ 6^] by [4],
Lemma 3.5. Therefore we have only to consider D^(x^)^ and D(xo)^. From the
last Lemma we get D^(x^)j^e(a, a) c: So. Hence D(D^(x^)^)=0. Now we consider
^(^0) .>'()• Here we may assume x^-i- [sp, s^]. Then adx^ acts self adjoint on a. We
also know [D(xr>), ad x^] = ad D (x^) x^ = 0, hence D(xo) leaves the eigenspaces of adx^
invariant. If ^ ^ 0 is an eigenvalue of ad x^ on a, then ad x^ -h D (x^) is invertible on
the corresponding eigenspace. Therefore this eigenspace is contained in (s^, a). In
particular D (x^) a e (s^, a) for all a e a which lie in an eigenspace for ad x^ for a nonzero
eigenvalue. If adxo^=0, then (x^, ^)=[^D? ^]+D(xD)a=D(xi))a. Hence the asser-
tion.

3.4. The results of 3.3 indicate that condition (3.5) can be sharpened.
A map D: s-^Ders satisfying (3.1), . . ., (3.4) as in 3.1 is called a modification map

if D satisfies

(3.5*) D{D(x)y)=0 forallx^es.

Remarks. — (a) (3.5*) is automatically satisfied if D(x)s c: [s, s] for all xes.
(b) By 3.3 we have: let s be the semi-direct product of an abelian ideal and the Lie

algebra of a simply transitive group of a bounded homogeneous domain. Assume D is
a weak modification map of s. Then D is a modification map.

LEMMA 1. — Let Q be a solvable Kdhler algebra mth product [., .] and
D: s-^Der(s[., .]) a modification map. Denote by (., .) the product in the modified
algebra. Then:

(a) D(x)eDer(s, ( . , .)) for all xes.
(b) — D : s - > Der(s, ( . , .)) is a modification map.
(c) The composition of the modifications corresponding to D and —D reproduces

(^ [ . , . ] ) .
Proof. — Straightforward computation.
The above results show that modifications are reversible. The following result proves

that modifications subtract parts of the adjoint representation.

LEMMA 2. — Let s be a solvable Kdhler algebra and D a modification map ofs. Let
M i = { x 6 S ; D(x)=0} andu^^Qvi^. Then:

(a) D (x) s c= Ui for all x e s.
(b) D(x)u2=0, xee.
(c) In the modified algebra the adjoint representation is given by ad u + D (u) for u e u^.

Proof. — (a) Follows from (3.5*).
(fo) As D(x) leaves u^ invariant and is skew-adjoint, it also leaves u^ invariant. Hence

D (x) u^ = 0 because of (a).
(c) From (u, x)=[u, x]+D(u)x—D(x)M the assertion follows.
Occasionaly we will use the following Lemma 3.
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LEMMA 3. — Let s be solvable Kdhler algebra. Assume $ is the modification of the
semidirect product of an abelian ideal a and a normal j-algebra s .̂ Denote by D the
modification map ofs which leads back to the original semidirect product. Then the maps
D^(a+x)=D(a) and Do(a+x)==D(x) are modification maps ofs.

Proof. - We have to verify only (3.4) and (3.5*). We denote the Lie product of the
semidirect product by (., .). Then

[a + x, b +^] = [a, b] + [a, y] + [x, b] + [x, y}.

It is clear that both maps vanish on [a, b} and [x, y]. Hence it suffices to show
D^([a,^])=0 for all aeo, ye^. But [a, y\=(a, y)-D(a)y+D(y)a whence the
a-component of [a, y] is (^ y)+D(y)a=[a, y]+D(a)y. We know D(a)$D c [̂  ]̂;
therefore the a-component of [a, yj is in [s, $]. Hence DJ[a, y])=0. Next we consider
D^+x)(fc+jO=D(a)fc+D(a).y. From Lemma 3.3.1 we know D(a)^e[o, a] hence
U, (U, (^ + x) (b +^)) == D (D (a) b) = 0. Analogously we have

^D(a+x)(b+y)=D(x)b+D(x)y and D(x)^e[$D, Sn]-

Hence (3.5*) for D^

LEMMA 4. — [/n^fer r^ assumptions of Lemma 3 w^ /iaue [/x, x]=0 on/^ ifxea.
Proof. - Split X=O+XD, then 0=[/(a+XD), a+Xp] implies

0 = [/XD, Xo] - D (/a) XD + D (a)jx^.

In the normals-algebra underlying Sp we have o) as in [4], Lemma 3.5. But then it is
easy to see x^ = 0.

LEMMA 5. — Let $=a+5D be the semidirect product of an abelian ideal and a normal
j-algebra. Assume that s is a Kdhler algebra relative to [ . , . ] , p and,]. Let D be a
modification map for 5; then $ 15 a Kdhler algebra relative to ( . , . ) , p and j where
(u, v)=[u, v]+D(u)v-D(v)u.

Assume s is also a Kdhler algebra relative to ( . , .), p and]. Then p(a, s^) =0-
Proof. - We follow the proof of [7], Part III, Lemma 3. Let 5 be the principal

idempotent of (sp, [., .]), then a =00+01/3+0.1/2 and ^==^-^^^^ relative to
[/s, . ]. We have

P(5, ^-l/2)=P(/5, ^-l/2)=P(/5, [S, 0_i/2])

=p0's, (s, a_i/2)-D(s)a_i/2+D(a_i/2)5)=p(/s, (s, 0.1/2))

because 5, a_i/2e[s, s]. We apply (1.3) and get

P(^ ^-i^)-?^, (^-i/2»75))-p(a-i/2, (js, s))
=P(S, [/5, a_i/2]+D(/5)fl_i/2-D(a_i/2)75)-p(fl_i/2, s)

1-
=-^p(s, a_i/2)+p(5, D(/5)a_i/2)+p(s, 0.1/2).
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Hence

-^p(s, a_i/2)=p(5, D(/s)a_i/2).

Therefore

p(s, exptDO^a.i^W^pCs, 0.1/2)

whence p(5, o-i/2)=0? because exprD(/5) is bounded and ^/^ unbounded. This
implies

W p(/5,ai/2)=0.

Let u e c^ and 0 e s^ where ^ < CT. Hence

- ^ + a = = , 7uea_^ and [/M, v]ea_^^=a^.

By (^) we have

0=p(/s, \ju, v])=p(js, (ju, v)-D(ju)v-{-D(v)ju).

If CT =1/2, 1, then D (u) = 0 because <^ c [s, s] and D (/u) u e <^. If o = 1, then D (ju) v = 0
and if o=l/2 then p(/s, D(/u)^)=0 by [4], Lemma 3.5. Hence p(/s, (ju, v))=0 if
a ==1/2, 1. Assume now a=0. Then ^== —1/2 and \ju, v]ea^/^ whence

(ju, v)=\ju, v]-{-D(ju)v-D(v)ju=\ju, v}-D(v)juea^

because D(ju)=Q. Thus we get from (^) again p(/s, (ju, u))=0. Therefore from [7],
Part III, Lemma 9, we get

^(e^^ju, ̂ ^i^pOs, e^^au, y))=0
dt

where Adjs x = (js, x). Hence
p(^Ad^ ^Adjs^^p^ ^

But Ad^s has on; c^ real part —^ Id and on s^ real part CT Id. Therefore the left handside
grows as ^(-c+(T)t, but the right hand side is constant, whence

(^) p(/u, u)=0 for uea^, ues^ and ^ < o.

Assume now CT = ^. Then — ^ + o r = 0 < 1 whence — ^ < l—o. Therefore
pO'M, u) = p (jju, jv) = 0 for all uea^ and ve^y by (^^). This proves the Lemma.

LEMMA 6. — Let s=a+SD fc^ t^ semidirect product of the abelian ideal a and the
normal j-algebra s^- ^ei ̂  be a modification map of e>. Then there exists an abelian
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subalgebra uofsso that D(x), xeu, is the purely imaginary part of the adjoint representa-
tion ofx in the modified algebra. Moreover, D(x)==0 in the complement of u in s and
D(x)u=0for all xes.

Proof. — We put u^=^0[s^ s^l a^ u^=aeSo where do = {a e a; D(a)=0}. It is
clear that D vanishes on the orthogonal complement of U=U^+UD. It is clear that Up
is abelian and u^ is abelian by Lemma 3.3.1. Let OGU^ and heu^ then

[a, h]-}-D(a)h-D(h)a=[a, h] - D (/;) a e a.

Now ad ^ | a is self adjoint; therefore the eigenspaces for nonzero eigenvalue are contained
in do. This implies [a, h]=0 for hevi^ and ^eu^. Finally, D(/i) | a acts on the complex
vector space a by C-linear skew-adjoint endomorphisms. This shows that u^ is orthogo-
nal to all eigenvectors for non zero eigenvalue of D(h). Moreover, we have shown
D(u)u=0. Hence [u, x]+D(u)x-D(x)u=[u, x]-^-D(u)x because D(x)u=D(u/)u=0
for some u'eu. We see that D(u) commutes with [u, .], M G U , and [u, .] has only real
eigenvalues. Hence the assertion.

3.5. Let M be a flat h. k. m. and $ a solvable Kahler algebra for M. It is well-known
that the universal cover space for M is the affine space C". The action of s on M can
be lifted to C". Therefore s acts on C" by affine transformations with skew-adjoint
linear parts. Because s is solvable, the linear parts of any two elements of $ commute.

We denote the elements of s by X (a) where a e C" and X (a) z = a + A (a) z, z e C".
The homogeneity implies that all a e C" occur. We also note j X (a) = X (id). Hence

C" and e are isomorphic as complex vector spaces.

LEMMA 1. — There exists a base z^ . . ., ^ ofC" so that

[X(z,),;X(z,)]=0 for l^k^n.

Proof. — As mentioned above, {A (a); aeC"} is a commuting family of skew-adjoint
endomorphisms of C". Let w^, . . ., ̂  be a base of C" consisting of common
eigenvectors. Let \: C" -> R be R-linear so that A (a) w^ = ̂  (a) fw^ for all a e C". Then

[X (w,), j X (w,)] = [w, + A (w,) z, iw, + A (w,) z]

= A (w,) fw, - A (iw,) w, = - (^ (w,) + i \ (iw,)) w,.

If this is non-zero then put

z,=-(Vw,)+iVf<))w,,

otherwise set Zy = \Vy. In the first case we have A (Zy) = 0. Hence

[X (z,), j X (z,)] = [z,, iz, + A (fz,) z] = - A (fz,) z, = - ̂  (iz,) iz,.

If X,0z,)^0, then A(fz,)=0 whence [X (z,), 7 X (z,)] = 0, a contradiction. Therefore
^ (fz,.) = 0 and the Lemma is proven.

We give C" the Lie algebra structure of s via a ̂  X (a).
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LEMMA 2. — The map y \-> A (y) is a modification map of the abelian Lie algebra on
C". The given structure on s is the corresponding modification of C".

Proof. — From the remarks preceding Lemma 1 we get that only (3.5*) has to be
verified. By Lemma 3.3.1 it suffices to prove (3.5). But

[a+A(a)x, fc+A(b)x]=A(a)fc-A(b)a

implies (3.5) because s has a trivial isotropy subalgebra. The last statement of the
assertion is just the equation above.

We apply Lemma 3.3.1 and get:

LEMMA 3. — (a) If ad x acts nilpotent on s, then x corresponds to a translation.
(b) A (x) is the semisimple part o/adx in s.

Proof. — Let s=So+5i as in Lemma 3.3.1. Then adx^=adx^o=A(x)^o by the
last Lemma. Hence the assertion.

3.6. In this section we prove that a sequence of modifications can be represented by
one modification.

LEMMA. — Let 5 be a solvable Kdhler algebra and D^, . . . , Dy a sequence of successive
modifications resulting in the semidirect product of an abelian ideal and a normal
j-algebra. Then D^ + . . . +D^ is a modification map.

Proof. — By Lemma 3.4.1 each of the modifications D^ is reversible. It therefore
suffices to prove that for two successive modifications D^, D2 starting from the semidirect
product 5=a+$D of an abelian ideal a and a normal 7-algebra $0 also D^+D^ is a
modification map. The Lie product in the semidirect product will be denoted by
[., . ]. The product after modification by Di will be (., .).

First we note that D^ (x) leaves invariant a. The modified algebra is still associated
to a flat h. k. m. by 3.2. Hence we can apply 3.5. From Lemma 3. 5.1 we get a basis
of a satisfying (pc, x) = 0. Let W, = exp t D^ (y\ then (j W, x, W, x) = 0. We decompose
W^x = a -t- ZD and g61 in particular, (jz^ Zo) + D 10^) ̂  - D i (^J^D- From [4],
Lemma 3.5, we get ZD=° hence W,a=a. Therefore D^(y) leaves a invariant. This
implies that a and s^ are subalgebras of s after carrying out both modifications. By
Lemma 3.5.2 we know that the algebra structure on a is given via a modification map
D^: a\-> End a from the abelian Lie algebra a. The "D-component" of ad a, aea, is
given by Di)(a)=Di (a) +D^ (a) \ ̂ . It is clear that D^ (a) is a skew-adjoint derivation
of the normal j-algebra SD which commutes with j. The same holds for D^ (a) by
[4], Lemma 3.5. We claim that D (a) = D^ (a) + Dp (a) is a modification map of the
original O+SD- Here (^^ (12) are clear- To P^ve (3.3) for D we have to show
[Do(a), DD(&)]=O on Sp ̂  a11 a, be a. It suffices to show [Di(a), D^(b)}=0 on $0
for all a, b e a. We know that D^ (b) is a derivation of the intermediate Lie
algebra. Comparing the s^ component of (a, x) gives

D^ (fc) DI (a) x = DI (a) D^ (b) x + D, (D^ (fc) a) x.

46 SERIE - TOME 18 - 1985 - N° 1



KAHLER MANIFOLDS 157

We know that the family {D^ (a); aea} commutes and consists of skew-adjoint ./-linear
endomorphisms of Sp. We choose a basis of common eigenvectors and get easily that
they are also eigenvectors for D^ (b). Hence [D^ (b\ Di (a)]=0 on s .̂ To verify (3.4)
we have to show D ([a, s,,]) = 0. But D, (a) = D, (a) + D^ (^) and D, ([a, 5^) = 0. Using
the intermediate modification we get ^([a, x^+Di (o^-Di (x^)a)=0 for all aea,
XDGSD. We know D^a)x^e[^ ^] whence D^Di (a)xo)=0. If x^e^, $0], then
Di (xo) = 0 hence D^ ([a, Xp]) = 0. So let x^ e ̂  Q [s ,̂ s ]̂. But ad x^ | a is self-adjoint
on a and D^ (x^) leaves the eigenspaces invariant. For eigenvalues ^ 0
adxrj a-Di(xD)|a is invertible, whence D2(a)=0 for all eigenvectors of adx^ for
non-zero eigenvalues. In particular D^ ([a, x^) = 0 for all a e a, x^ e ̂ . To prove (3.5*)
it suffices to prove (3.5). Splitting x=x^+Xp and y=y^y^ we get

D(X)^-D(J)X=D(X,)^-D(^)X,+D(X,)^-D(^)XD.

Because D is a modification of a and has ̂  in its kernel we get (3.5). Finally we note
that D(a)=Di(a)+D2(a). By definition, D^ (a) is a derivation of the original s. So
we only have to prove that D^ (a) is also a derivation. This is clear on a and on s^. So
we only have to show

E>2 (a) [u, x^\ = [D^ (a) u, x^\ + [u, D^ (a) x^].

For L = D2 (a) we know

L(k ^]-{-D^u)x^-D^(x^)u)

=[Lu, XD]+DI(LM)XD-DI(XD)LM+[M, LXD]+DI(M)LXD-DI(LXD)M.

We are only interested in the a-component and we know L x^ e [s^ So]' Hence

L([u, x^] - DI (xp) M) = [L M, Xp] - DI (xo) L M + [u, L Xo].

For XDG^^SD] we have Di(xo)=0 hence L satisfies the required identity. If
•^D^DOIs^ ^o], then Lx=0 and we have [adx^ | a-{-D^(x^), L]=0. But adx^ | a is
self-adjoint and D^ (x^) is skew-adjoint on a, therefore [ad Xp a, L] =0 on a. This finishes
the proof that D^ (a) is a derivation of the original algebra s.

Now we consider the action of ^ after the second modification. We know that s^ is
a subalgebra. Hence, by [4], Theorem 3.3.2, s^ is a modification of the underlying
normal j-algebra. It is easy to see that the modification map is
DD(x)=Di(x)+D2(x)|$D. We know that D^ is non zero only on ^Q[^, s^]. We
put D, (x) = DI (x) + D^ (x) | a and D (x) = D, (x) + D^ (x). It is clear that D (x) is skew-
adjoint, commutes with j and we have D([$D, SDJ) =0. To see that D(x) is a derivation
of the orginal s it suffices to prove that it acts as a derivation on [a, s^]. This is clear
for DI (x) and for L=D^ (x) we know

L([^]+Di(^-DiCy)fl)

=[La,y]+D^(La)y-D,(y)La+[a, Ly]+D, (a)Ly-D,(Ly)a.
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Arguing as above shows the assertion. It remains to verify (3.3) and (3.5). As above
one shows [adx^ | a+Di(xi)), D^(y^)]=0. Hence D^Xp) commutes with D^(y^) on
a. On s^we use the intermediate Lie algebra and the fact that D2 (y) is a derivation of
the normals-algebra s^ by [4]? Lemma 3.5. Hence

D2(>0(D,(x)z-D,(z)x)
=Di(D2(j)x)z-Di(z)D2(y)x+Di(x)D2(y)z-Di(D2(j)z)x.

But D2 (y) SD c [^D. So] and

[D2 (y), DI (x)] z = [D2 (j), DI (z)]x for all x, .y, z e s^

follows. Hence

0 = ̂  [D2 00, DI (z)] x, x > = < ̂  (v), DI (x)] z,x> and [D^ <j), D^ (x)] x = 0

follows for all x, ye s^. Linearizing in x and comparing with the original identity shows
[D^O), DI (x)]z=0 for all y, x, zes^. Hence D^ (x) and D^O) commute on s .̂ This
implies (3.3). Next we consider

D(^+^D)(^+^D)-D(^+^D)(^+^D)=D(^D)^-D(^D)^+D(XD)^D-D(^

As a is in the kernel of D and D | s^ is a modification map, (3.5) follows.
Finally, we consider the map Q(x)=Di(x)+D2(x). It is clear that

[x, y]+Q(x)y—Q(y)x is the Lie product after the second modification. Clearly
Q(;c)=Q(xJ-hQ(xD). Both maps are modifications of the original Lie algebra $. So
we only have to verify (3.3) and (3.5) for Q. We have

Q(x)y-Q(y)x=Q(x)y,-Q(y)x^Q(x)y^-Q(y)x^.

The last two summands lie in [sp, s^], hence are annihilated by Q. Because Q [ a is a
modification map as shown above it remains to prove that Q annihilates Q(xo)^. We
have shown above rhat Q | s^ is a modification map. Therefore we may assume
^D^DOI^D, sj. Using the fact that D^ and D2 are modification maps we only have
to show

Di (D2 (xo) Ya) = 0 and D2 (D, (x^) ̂ ) = 0.

By definition

D2 ([XD, Ya} + E>1 (^D) Ya - DI (^) ̂ ) = 0.

By the choice of x^ we have D^ (J^)XD=O and because D2 annihilates the eigenspaces of
ad XD | a for non-zero eigenvalue we have D2 (D^ (xj y^ = 0. Next we use that L = D2 (h)
is a derivation of the intermediate Lie algebra. We note here that the product in a is
just DI (a) b — DI (b) a. Therefore

L(Di(a)fc-Di(fc)a)=Di(La)fc-Di(fc)La+Di(a)Lfc-Di(Lfc)a.

4s SERIE - TOME 18 - 1985 - N° 1



KAHLER MANIFOLDS 159

This implies

{[L, D,(a)]-D,(La)}b={[L, D, (b)]-D,(Lb)}a.

We abbreviate this by U (a) b == V (b) a where U (b) is skew-adjoint. Then

Q=<\3(a)b,b>=<\J(V)a,b>=-<a, \J(b)b> for all aea.

Therefore U (b) b == 0 for all b e a. Replacing b by a + b gives

0=V(a)b-}-\J(b)a=2\J(a)b.

Hence U(a)=0. This means [D^(h\ D^ (a)]=D^{D^(h)d) on a. We know that the
family {D^ (a); aea} is abelian. On the common eigenvectors we have

i ̂  (a) D^ (A) ft - DI (a) D^ (b) b = ̂  (D^ (h) a) ib.

Decomposing D^(h)b too shows D^(h)b=[ib. Hence \D^(h\ Di(a)]==0 on a and
DI (D^ (/i) a) = 0 on a. Applying D^ (^) to the product of x e s^ and a e a in the interme-
diate Lie algebra gives for the s^ component

D,(h)D,(a)x=D,(a)D,(h)x+D,(D,(h)a).

A argument as above shows [D^(h), D^(a)]=0 on s^ an(i I^i(D2(^)a)=0 on e^. This
finishes the proof of (3.5*) and gives half of (3.3). The second half of (3.3) is
[Di(jc), D^(a)]=0. On a this has been shown above. On s^ we use gain the $0-
components from the product of x, yes^. We note that D^(d) is a derivation of the
normals-algebra s^, hence, in the modification via D^, we get

D^(a)(D,(x)y-D,(y)x)

=D,(D^(a)x)y-D,(y)D^a)x-^D,(x)D^a)y-D,(D^(a)y)x.

Because D^ (a) ̂  <= [$0, SE)] this implies

[D^ )̂, D,(x)]y=[D,(a\ D,(y)]x.

This gives, as above, \D^(a\ D^ (x)]=0 on 5 .̂ This finishes the proof of the Lemma.

3.7. In this section we state the algebraic main result of this paper.

THEOREM. — Each solvable Kdhler algebra is a modification of the semidirect product
of an abelian ideal and a normal j-algebra.

The proof of this Theorem will be carried out by induction on the dimension of the
Kahler algebra in sections 4, 5 and 6. In case the dimension is 2, the Theorem is trivially
verified.

We also note that, by Lemma 3.4.1 and Lemma 3.6, for the proof of the Theorem it
suffices to find a (finite) sequence of modifications starting at the given Kahler algebra
and leading to the semidirect product of an abelian ideal and a normal 7-algebra.
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We point out that we will frequently use the results on modifications which are listed
in this section 3.

4.1. In the following sections we prove (by induction) that to each solvable Kahler
algebra there exists a (finite) sequence of modifications leading to the semidirect product
of an abelian ideal and a normal 7-algebra.

4.2. We construct q as in 2.1. There are three cases that we have to consider. The
first is q 07q=q. The other two cases are listed in Lemma 2.4.

Case 1. — qn7q=c|. Here q is a Kahler ideal in s. Therefore the orthogonal
complement s' of q in $ is a Kahler algebra, s^q-hs'. As q ^ 0 we may apply the
induction hypothesis to s'. Hence s' = $o + $1 + SD 2in(^ Lemma 3.3.2 applies. We consi-
der the action of ^ on q. Put A(x)=adx | q, xes'. We write A(x)=Ai(x)+A2(x)
where A^ (x) commutes with j and A 2 (x) anticommutes with j. Then it is straightforward
to see that (1.2) implies A 3 (jx) =7 A^ (x) for all x e s'. Next we choose y, z e q and x e s',
then (1.3) means that^'A (x) is self-adjoint on q. We note that by the definition of q we
have A([x, y])=0 for all x, y e ^ . Therefore the family {A(x); xes'} is abelian and as
in [7], Part II, Lemma 3, one shows that A(x)=Ai(x) is skew-adjoint and commutes
with 7.'

Let D be the modification map of ^ as in Lemma 3.3.2. We extend D by putting
D(x) | q=A(x). Then D(x) is a commuting family of skew-adjoint endomorphisms
of s. Each D(x) commutes with;. This shows (3.1), (3.2) and (3.3). We compute

tei+^i. ̂ ^l^i^ ^J+b^ ^J+h^ ̂
here the first two summands are in q, the last is in s'. Therefore D([M, v])=0 for all
M, ues. By Lemma 3.3.2 we have D(x)ye[^, <| for all x , y e ^ . This implies
(3.5*). It remains to show that D(a) is a derivation of s. We only have to verify

A (a) [q, x] = [A (a) g, x] + [g, D (a) x] for x e s', <? e q.

But A (a) | q = ad a | q whence

A(a)[q, x]=[a, [q, x]]=[[a, ^], x]+[^, [a, x]]=[A(a)<?, x]+[<?, [a, x]].

If suffices to show 0 = [[a, x] - D (a) x, q]. But [a, x] - D (a) x e [s', s'] by Lemma 3.3.2
and the assertion follows.

This implies that D is a modification map of s. The modified algebra is the sum of
the abelian ideal q + So + s! ̂ d tne normal j-algebra s^- Tnls finishes the first case.

5.1. We consider the case where q +j q is not abelian. Then, by Lemma 2.4, dim q = 1
and we can choose r e q so that [/r, r]=r.

Put p :={xes ; [x, r]=0, [/x, r]=0}. Then as in [7], Part III, Lemma 8, one proves
that p is invariant under j and ad^r and that the operator sidjr \ p commutes
with 7. Moreover, [7], Part III, Lemma 9, shows:

(1) d- p (^ad jr u, e1 ad jr v) = p (jr, e1 ad Jr [M, v]) for all M, u e s,
A
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where p(x, y): = < x, jy >. The following proposition together with its proof is almost
identical with [7], Part III, Proposition 2.

PROPOSITION. — (a) The operator sidjr | p is semisimple and has eigenvalues ^ with
Re?ie{0, 1/2}.

(b) 5==[Rr+[R./r+u+5 / where the eigenvalues ofadjr | u (resp. Sidjr | s') /lau^ real part
1/2 (r^sp. 0). Moreover, p: = IR r + [R '̂r + u fs aj-invariant subalgebra ofs, s/ is aj-invariant
subalgebra o/s and r, ^r, u and s' ar^ pairwise orthogonal.

Proof. - We modify the proof of [7], Chap. Ill, Proposition 2. Let xes, then we
determine a, beR so that x—ajr—brep by

0=[x, r]-a[/r, r]=ar-ar and 0==[/x, r]-^[/r, r]=pr-frr.

Hence

(2) 5=Rr+!R7r+p.

As in [7] we get from (1)

(3) p(r,et&djrv)=a(v)e~t for all vep.

As j commutes with ad '̂r on p we also get

(4) p(/r, et^jrv)= -a^e^ for all vep.

Let now u, yes be arbitrary, then [u, i;]=ar+P7r+7? and the right-hand side of (1)
equals

p0r, ^^[M, r])=ap0r, ^ r) + pp (/r, jr) + p Qr, etadjrp)=bet-a(jp)e-t

where we have used p(/r, jr)= - <jr, r >- =0. An integration gives for all u, res

(5) p^^M, ̂ ^aa^^+P^+y.

Clearly, the coefficients depend on u and v. If Mep, then also^uep and (5) yields—be-
cause adjr and j commute on p—for uep, ues.

(6) <etadjru,et!idjrv>=a(jp)e~t+^et-^r

We consider the endomorphism A: = sidjr | p more closely. Let ^ 4- [i i be an eigenvalue
of A. Then there exists a subspace u of p such that A |u==Ud+ |L i I where
I2 = — Id. For u e u we get

e1 ad jr u = exp A u = e^ (cos [i tu + sin [i 11 u).

Hence

(7) <et!idjru,etadjru>=e2^\(cos[lt)u-{-(sm[it)lu\2=a(ip)e~t+^et^y.
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As a consequence we have

(8) ^e{0, ±1/2},
(9) \(cos[Jit)u-^(sm[it)lu\2=\u\2 for all teU.

Expanding (9) gives

(9Q <IM, \u>=<u, u>, -<Iu, u>=0.

We next prove that A is semisimple (whence adj'r is semisimple on s). Let A=A^+A^
where A^ (resp. A^) is the semisimple (resp. nilpotent) part of A. We may choose a
vector u so that

AM=^M+HIM+A^M where 12=—ld, A^M^O

and

exp (A u = ̂ x ((cos t |i) Id + (sin r p,) I) exp t A^ u.

But now (7) shows that

[ ((cos t n)Id + (sin t \i) I) exp t A^ M |2 = | u \2 for all t e R.

This implies that |exprA^u| 2 is bounded. Therefore A^u=0, a contradiction. To
prove (a) it suffices to show that in (8) 'k= —1/2 does not occur. Here we proceed as
in (c) of the proof of [7], Chap. Ill, Prop. 2. We derive from (3) and (8) that a(r)=0
for all vep. Therefore the right-hand side of (7) is P^+y. This implies that in (8)
only ^e{0, 1/2} is possible. This proves (a) and the first part of (b). As sidjr \ p
commutes with j we see that u and s' are ^-invariant, hence o and s' are
7-in variant. Writing 2idjrv=^v+[ilv one derives from (3) and (4) that u and s' are
orthogonal to r andjr. Moreover, ueu and ues' in (5) imply p(u, v)=0 whence u and
s" are orthogonal. As in [7] one notes now s7 c p whence [r, ^]=0. As a consequence,
(1.3) shows [s/, ^]±jr.

Finally, considering the real parts of the eigenvalues of adj'r, one shows that o and s'
are subalgebras of s. This finishes the proof.

5.2. We are now prepared to finish the case dimq=l. Using 5.1 we write s^o+s'
where D = R r + Rjr + u. We consider the map

D(ar-+-P./r+M+x/):=[/r, M]-l/2M+[/r, x'].

It is easy to see that D is a derivation of s. From the definition of p^^+s' we get that
adjr commutes with j on u and on s". Therefore D commutes with 7. We choose
x\ y e s" and get from (1.3) the equation

0 = < [x\ /], j j r >=<\y\ jr ] , jx' > = < [/r, x'], j / >.

This implies that j D is self-adjoint. Therefore D is skew-adjoint on s". From (9)' of
the proof of Proposition 5.1 we see that D is skew-adjoint on u. Altogether D is a
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skew-adjoint derivation of s commuting with j. It is now straightforward to show that
the map a r+Pj r+M+x 'h-^pD is a modification map of s. We therefore may and will
assume from now on that sidjr is self-adjoint and that o is an ideal of s. We apply the
induction hypothesis to s' and split s" = $0 + Si + SD according to Lemma 3.3.2. Then
$D is the Lie algebra of a simply transitive solvable group on a homogeneous bounded
domain. Let D' denote the modification of s'. We consider the map D^(a)=ada [ o,
aea^So+Si. From Lemma 3. 5.1 we get a basis z^, . . ., z,, of the complex vector
space a' so that [/'z,., zj = 0 for 1 ̂  r ^ n. Hence by [7], Part III, Lemma 3, we get
that adjz^ [ o and adz^ | D are skew-adjoint and commute with 7. Therefore Dy(a)
is skew-adjoint for all aea'. We have [Dy(a), Dy(b)]=ad[a, b] \ o; but this implies
[D,(a), D,(fc)]=0. We define D^+a'+x^D^+D'^). We claim that D is a
modification map of s. By Lemma 3.4.3 we know that D | s' is a modification map of
s". So (3.1), (3.2) and (3.3) are satisfied. We know that o is an ideal of s, orthogonal
to a'. Hence it suffices to prove D([x, y])=0 for x, y e ^ . But

[O+XD, b-{-y^]=[a, b]+[a, y^]^[x^ b]+[xo, y^]

and it suffices to prove D([a, x])=0 for all aea\ xes^. But
[a, x]=(a, ^O+D^fl^—D'OOa. Therefore the a-component / of [a, x] is
/=[a, xl—D'^xe^', s7]. Hence ad/[ o is nilpotent; but we have seen above that it is
skew-adjoint. Therefore D([a, x])==0. Next we consider

D (v + x ' ) (?+ x ' ) = D (x ' ) ?+ D (x') ?.

To verify (3.5*) we may assume u=?=0. Now

D(a+XD)(b+yD)=D'(a)fc+D(a)^.

Hence it suffices to prove ad D' (a) b o = 0. But from Lemma 3.3.1 we know
[a', a'l^D^a)^; a, fee a'}. Hence the assertion. It remains to show that D(x)eDers
for all x e s. It is easy to see that we only have to show

D(a)[v, x']=[D(a)v, <|+[i;, D'^x'].

But this is equivalent to showing [v, [a, x'] — D' (a) x'] = 0. But

[a, x'] - D' (a) x' = (a, x') - D' (x) a e a U [s', s/]

whence the assertion.
Carrying out the modification D gives 5=a / +D+5D where a' commutes with o and is

an abelian Kahler ideal of a" + $0. Hence a" is an abelian Kahler ideal of s. Hence
D + SD is a Kahler subalgebra of s. From the induction hypothesis we get that o and s^
are "simpler-algebras" in the sense of [II], §1. Moreover, the restriction of the adjoint
representation of s^ to o is a symplectic representation in the sense of [II], §2, p. 313. We
apply the remark at the end of [II], §2, with 0=0 and ^=0 and see that D+SD ls a

simple j-algebra, hence it is associated with a bounded homogeneous domain by
[II], §3. But then, by [4], Theorem 3.3.2, there exists a modification map D of
o + $D- Now we consider a" + Sp. Again by induction we get a modification map D. It
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is easy to verify that these two modifications are consistent, i.e. define a modification
of s. After carrying out this modification $ is the semidirect product of an abelian ideal
and a normal j-algebra. This finishes the case where q +7 q is not abelian.

6.0. In this section we consider the last remaining case: q+7'q abelian. Here we
modify [7], Part III, §3, and prove that—after several modifications of s—the ideal q is
contained in a j-invariant ideal of s.

6.1. Pick O ^ r e q .

(1) [/r, s] c p={xes ; [x, q]=0, [pc, q]=0}.

The proof of (1) is as in [7]. We next prove

(2) ad7*r=D+N where D is skew-adjoint, N nilpotent and [D, N]=0 holds.

We may copy (a) and (fc) from the proof of loc. cit. Lemma 11. Hence

(^) ^^u, et!idjrv>=at2-^bt+c

for all uep, yes. We split adjr into its semisimple part D and its nilpotent
part N. From (^) we get that the eigenvalues of D are purely imaginary. Then s
splits into a direct sum of subspaces <^, ^ <= p if k ^ 0, invariant under D and N, so
that on each of these spaces ^ we have D y = a I u + N y where ̂ = —Id. Then

etDv=((cos^t)-{-(smdt)l)etNv.

From (^) we now derive that the spaces s^ are pairwise orthogonal and that I is
orthogonal on s^. This proves that D is skew-adjoint on s. As j commutes with adjr
on p so j and D commute.

Now we construct a modification map F: $ -> Der $ so that sidjr acts nilpotent on $
in the new algebra. We choose r ^ r ^ e q so that trace ad;^ ad;^ = - 5^ and put
o^ (x): = trace adjr^ ad x. Let Di and D^ denote the semisimple parts of ad;^ and ad;^
respectively. Then F(x):=ai ^D^+OC^MD^ maps $ into Ders. It is easy to check
that F is a modification map. Hence after carrying this modification:

(3) We may assume that ad7'r is nilpotent for all req.

But now the proof of loc. cit Lemma 11 goes through without any change and we get

(4) (adjr)2^ f o r a l l r e q .

6.2. We define

c^-1):^, ^^{xes; [/q, x]eq+7q}, -^^[/ri, ^\+\jr^ s]+q+7'q, s^^q+./q.

The subspaces G(i} form a j-invariant filtration of the Lie algebra s. Furthermore

(5) [s^s^^O.
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Proof. - We modify the proof of toe. cit. Lemma 12. First it is clear that
g(-D ^ g(0) ^ ^(D ^ g(2) j^^g ^ ^ ̂  ^gy ^ ̂  ̂  ̂  ^k) ̂  y-invariant. By
the definition of 5^ we get [s^-^, ^2)] c s<1) and [s ,̂ s^] c s .̂ One proves next
[s ,̂ s^cs^ as in toe. eft. Therefore 5° is a Kahler algebra. If s^^s then we
continue with 6.6. Otherwise we decompose 5 =$0+$1+50 as in 3.3 by induction
hypotheses. Clearly [/q, q]=0 for all qeq+;q. Hence q+7'q <= SQ+SI by
Lemma 3.4.4. We claim [pc, x]=0 if x=[/^, ^] with some qeq, ye^. We first show
as in toe. eft. that [[jq, u], \jq, v]]=0 holds for all qeq, u, res. But then

[/x, x] = [/ [/ ,̂ ^], [/ ,̂ y}} = [[/̂ , 7^] -7 [q, jy] - [q, y], \jq, y}} = - \j [q, jy} + [^ y], [̂  y^

Now we note that j [q, jy] + [g, y] e q +7 q and [/• q, ^] c= p by (1). Therefore
\jx, x] == [/M, [/^, ^]] with u == - [q, jy] e q. But we know

0 = [ad (ju +jq)}2 = (adju) (adjq) + (ndjq) (sidju)

from (4) and

[sidju, adjq] = ad [ju, jq] = 0,

therefore (ad7M)(ad7^)=0 and [/x, x]=0 follows. But this implies [jq, 5] c: SQ+SI for all
q e q. Hence

(6) s^cso+^c^0).

We know that [jr, s] acts on $ by nilpotent endomorphisms, therefore [/r, s]e5o+5i is a
translation (thus an affine transformation without linear part). By definition, q acts by
nilpotent endomorphisms and ad;qis nilpotent by (4), hence also q and^'q are translations
in $o + s i. Therefore

(7) s^ is abelian and acts nilpotent on s.

We finish the proof of (5) by showing [^°\ s^] c ̂  and [^-^ s^] c: s<°) as in toe.
cit.

Next we show

(8) let x e $o + &i, ad x = S + N, where S is the semisimple part of ad x and N its nilpotent
part. Then N s c ̂ °\

Proof. - Let req then [/r, Nx]=N[/r, x]-[N;r, x] for all xes. Because
[/r, x^jre^ it suffices to show N | s^^O. But ae^ is represented by a translation,
xeSo+Si by an affine transformation x+A(x)z hence

[x, a]=[x+A(x)z, a]=—A(x)a.

Therefore adx | s^^ —A (x) whence semisimple. Thus N [ s^^.
Let a=5o+£4 and I)=SD. Let s denote the principal idempotent of the normal

7-algebra underlying 1) [4], Theorem 3. 3.2. We split ad7's=H+N into semisimple and
nilpotent part and denote by Ho the real part of H. Then Ho e Der s. We denote by
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s^ the eigenspace of Ho for the (real) eigenvalue ,̂. Then $==©<^ and
[s^ ^J c ̂ H- Moreover, defining s^, a^ and ^ analogously, we get ^ n s^ = ̂ 0), s^
=^+^

Now we go over [7], Chap. Ill, §3, Sect. 5. We define s^s^c^i), 50')= o for
2

7=3. On s= C i^ we put [x^, P0] = [x^, x^} mods0'^-^.
j = - i

Then $ is a graded Lie algebra. We define on ^"^ (for a fixed req)

(9) {aM=[[[/^4H4

Note that {abc}^^'^, hence, it is determined modulo s .̂
As in loc. cit. one proves that {abc} is invariant under permutation of a, b and c. Also

(10) [̂ , {ahc}]=[[[/r, a], b], [/̂ , c]] for all qeq.

Our next goal is to prove {abc}=0 for all a, fc, ces^^. We know q c= s^ c: a. By
the construction of q we also have Ho | q=ald. From the classification of "symplectic
representations" [12], p. 234, we know ae{0, ±1/2}. If a =—1/2, then [5, r]=jr, but
jr^q whence a 7^ —1/2. Moreover, rea^, therefore^'rea-^. This implies in s

(11) Ho./r=-a/r where ae{0, 1/2}.

We show

(12) [/^r1^^,
Proof. — For x^es^"^ we have

HO^ XJ=[Ho7r» ^J+D^ :HoxJ= -a[/r, xj+^[/r, xj.

We know from the description of "symplectic representations" [12], p. 234, that Ho
has only the eigenvalues 0, ±1/2 on s .̂ Hence

(13) X=a, a±l/2 where ae{0, 1/2}, if sF^O.

Choose aes^, be^'^, ce^"^ so that {abc} ̂  0. Then \Jq, {abc}} ̂  0 for some
q e q. If \jq, {abc}} = 0 for all q e q, then all representatives of {abc} are in s .̂ Therefore
{abc}=Q.

From the above we know

(13') \ a, ve{a, a±l/2} where ae{0, 1/2}.

Furthermore

[\jr, a], fc]e5^^-,n5(o)=d^^_,+^+^_,.

If ^ + n — a + 0, 1 or 1/2 then t^+^_,=0 because Ho has on t) only the eigenvalues 0, 1,
1/2 whence y=[[jr, a}, b}ea and 3idy acts nilpotent. Therefore (8) implies that each
representative of [y, c} is in s^ whence [y, c]=0. But [y, c}={abc}, a
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contradiction. This implies (using the symmetry of {abc})

O4) ^+H, H+v, v+?ie{a, 1+a, 1/2+a}, ae{0, 1/2}.

Now we show

[^^cz^n^si+^Dn^s]).
Proo/. - We know [s, s^] c: ̂ °\ therefore each element of [s, s^] is of type

X = X ( ) + X I + X D with XoGSo, x^esi and x^e^. Moreover, adx acts nilpotent on
s. From the properties of S^^^+SI+SD we see that the s^-part of adx [ ̂  is
(adxi +adxp) [ SD modulo $o- This endomorphism acts nilpotent on s^ In particular,
^D^D^ ^o]. But then adx^ acts nilpotent on s^ This implies that ad^i | $0 is nilpo-
tent, therefore adxi | 5^=0. From the above we derive that x-x^ acts nilpotent
on a. Hence x^ =0 and (15) is verified.

As a consequence of (15) we note that the a-components of [s, s^] consist of
translations.

Next we prove

ri6) Let gvec9v9 ^Ti65^ v^es^ and assume T|+^ > 0 or r|=^=0,
then[^, MJ, ^]=0.

Proof. - Put ^=;[^, MJ, ^], then ^esL1;^^^ and we have

- < y . y > = p ([^ MJ, ]̂, y) = - p ([̂ , y\ ̂  MJ) - p (|j, ̂ , uj], ̂ ).

Here the first summand on the right-hand side vanishes because v^ ye^ and (7). It
therefore suffices to prove [̂ , MJ, y] =0. By the Jacobi identity and (7) this is equivalent
to[^],Mj=0.

If T I + ^ > O , then [̂ , y]e^°^+^r}a because Ho has only non-negative eigenvalues
on So- Obviously, ^, y] acts nilpotent on s^; therefore it is represented in a by a
translation. Consequently [[̂ , y], uj = 0 because u^ e 5(l).

Now we assume r|=^=0. Then ^es^^ and ^, y]^^. We know from (15) that
the a-component of \g^ y] is a translation; it therefore commutes with u^e^. It
therefore suffices to prove

(*) no = [SD» So] Pi s^ ^ts trivial on So .̂

Proo/ - Let neno and put A=adn | ̂ \ We have

[/n, 7x] =j [/n, x] +j [n, j x ] + [n, x] for x e So .̂

Because

K°>, 5<o1)] c: s^^ = 0 and j ̂  = ̂

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



168 J. DORFMEISTER

we get 0 = 0 +j [n, jx] + [n, x], i. e. [A, 7] = 0. Next we consider

p(Ax, z)=p([n, x], z)== -p([x, z], n)-p([z, n], x)

=p([n, z], x)=-p(x, [n, z])=-p(x, Az)

because x, zes^ and s^ is abelian. Using that A commutes with j we conclude that A
is skew-adjoint. On the other hand A acts nilpotent on s whence A=0.

As a consequence of (16) we get

(17) [[^"^^L^^O if T I + ^ > O or TI=^=O.

We resume the assumptions on a, b, c made after (13) and note [jr, ajes^,, \jq, c}^^!^
by (12). Using the remark preceding (13') and (10) we get that [abc}^0 is possible
only in the case where

(18) ^ - h v — 2 a ^ 0 , and ^-—a and v — a are not simultaneously zero.

Using the symmetry of {abc} we obtain

(19) ?I+H, H-t-v, ^+v^2oc , and at most one of the numbers ^, H, v is equal to a.

It is easy to check that for both cases, a=0 and a =1/2, it is impossible to satisfy
simultaneously the conditions (13)', (14) and (19). Therefore {abc}=0.

This implies [[^\ s], s] c= s .̂ Hence

[W [^(1), s], s]] c [;r, s^] c= s(2) for all qeq.

Using the Jacobi identity and the commutativity of s^ we see that the left-hand side of
this inclusion equals [[s ,̂ s], [/q, $]]. Hence [[s ,̂ s], [/q, $]] <= s^. Replacing [/q, s]
by q-h/q we get [[s(l), s], q-h/q] <= s^^ Therefore altogether [[s ,̂ s], ^^l c: s^^ It is
easy to show P^IS^, s], ^(1)], ^2))=0. As s^ is 7-invariant we may replace p by the
inner product on s. Therefore

(20) [[s^s], s^^O.

Now we define

Z(^)={xey, [x, s^^O}.

Because 7 q c: s^ this implies Z(s(l)) c: s^. We can take over the first part of the proof
of [7], Part III, Lemma 18, without change and get

(21) Z^^) c: s^ is an ideal of s.

Eventually we want to show that Z^^) is a Kahler ideal.
We pick zeZ^^) arbitrary. Because Z^^) c= s^ we know jze^°\ Therefore

[/z, ^1)] c: s<1). We put A =ad;z | 5(l). Then

p(Ax,^)=p([/z, x],y)=-p([x,y]jz)-p(\yjz], x)=p(Ay, x)=-p(x. Ay)
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where we used that s^ is commutative.
From the integrability condition we get

[/'z, jx\ =7 [/z, x] +7 [z, 7;c] + [z, x] =7 [/z, x]

for z e Z (s^) and x e s^. This implies [A, 7] = 0. Therefore

<Ax,^>-=p(Ax,^)=-p(x , A7»=--<x, Ay>.

Hence A is skew-adjoint.

(22) ad7'z [ s^ is skew-adjoint for all zeZ^^) and commutes with 7.

Hence, to be able to show that Z^^) is a Kahler ideal we have to modify the algebra s.

6. 3. For xes^ we denote by Xp the component of x in s^ c= s .̂ Let t)o denote the
orthogonal complement of HD=[SD, s^] in s^ and ̂  the weight spaces of t)o in n^. It is
known that the projections onto t) are polynomials with no constant coefficient in
elements of t)o.

We put SD-^D; ^e3}, S^s^).

(23) 3o=(3D n bo) e ® (so n v.
a^O

Let xes and /iet)o; we know [$4, /i] c= Oo hence the So-component of [x, ^i] is
[XD, A]. This implies that the n^ component of x^ splits into the weight spaces. Hence
(23).

(24) Let xe3 and x^e^l^^ a^O. Then X=X^+XD, x^ x^e^.
Proof. - Because s^ is an ideal of s^ we know that x^ acts nilpotent on s^. But

adx | s^^O, therefore adx^ | ̂ 1) has no semisimple part. This implies adx^ [ s^^O,
i. e. x^ e 3. Consequently x^ e 3.

6.4. In this subsection we assume 3o^0.
We consider ze3o P^bo- Choosing z from a weight space we may assume in addition

[/z,z]=z. Let ^,ye(R, be the weight spaces (of the real part) of ad7'z ins. We
know [yS, ps] c: (p+y)5- Moreover, because ad7'z leaves invariant s^ we may find a
complementary subspace u of s^ in s that splits into weight spaces relative to (the real
part of) ad7'z, u = © (u 0 ̂ s). We note that 7'z commutes with all jr, r e q: We have

D'̂  M =J \J^ r] +7 [z, jr] + [z, r];

here the last two summands vanish because ze3 and jr, res^. Finally, 7'z acts skew-
adjoint and C-linear on s^ and leaves the ideal q invariant. Therefore
D^ de7'q0q=0. This implies that ad7'z has on u and [jr, u] c: s^ the same
weights. But we know that ad7'z is skew-adjoint on s^ whence ad7'z has only real
weight 0 on u. Therefore, ad7'z has non-zero weight only in s .̂ We know that it has
possibly the weights 0, ± 1/2 in a = s^ Q s^ and 0, 1/2, 1 in s^. It is clear that w = oS + ̂
is a subalgebra of s. We claim that w is 7-invariant. It suffices to show that oS is
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orthogonal to o$+1$ for all P ̂  0, 1. But we know

-^p^^xp, e^^pO^ ̂ '̂ p, ̂ o]).
at

Here the last term vanishes because ^tadjz [xp, Xo] e p5 0 s^ and p5 n ̂ 0) is orthogonal to
^(0)+^(0) This implies

p(^adJZXp,^adJZXo)=p(xp,Xo).

But the left-hand side behaves like e^ whence p(xp, Xo)=0. Replacing Xo^o5 ^Y x! e i5

in the argument above shows p(xp, x^)=0 as well. It now suffices to note that
© ^=•l/2^0)~{'-i/i^ ls invariant under j. This shows that © p5 is orthogonal

p^o , i p ^ o , i
to ID and w is ̂ '-invariant. Hence w is a Kahler algebra.

If o)==s, then i5 is a commutative ideal of s and it is easy to see that paragraph 5
applies to this case. Hence s can be modified to become a semidirect product of an
abelian ideal and a normals-algebra. Assume now w ̂  s; then we can apply the induction
hypothesis and get ID = a^ + w^ as well as a modification map D for ED. We put
^ = n)p Q [10̂  n)^]. By a^ we denote the set of elements of c^ which are annihilated by
the real parts of all he^. We know that D vanishes on the orthogonal complement
of aS'+I)^. Moreover, by Lemma 3.5.1 we get a basis a^ . . ., Oj of c^ satisfying
[jay, aj==0 for 1 ̂  r ^ 1. Now we use that w leaves invariant D. Hence, by [7], Part III,
Lemma 3, we know that a^ acts on o by skew-adjoint endomorphisms which commute
with j. Now we consider t)^. It is easy to see that t)o is contained in .̂ Because
I)o + o <= s° and [t)o, o] c: o we know that the purely imaginary parts of ad I)o | o are
skew-adjoint and commute with j. Let he^ 0 t)o- Then [h, jz]=0 and ad/i leaves 1/2$
and -1/28 invariant. We claim that h is orthogonal to [1/2$, -1/25]- From above we
know that all these spaces are contained in s^. Moreover, a =00+01/2+0.1/2 and
^D'^Do'^Dd^+^Di relative to the real part of ad^'z. Hence '

[l/2^ -l^^l^+^Dd^ ^l^] c: OG

because the modification map of s° vanishes on all occurring spaces. We know from
the description of sympletic representations that OQ is ^-invariant. Hence, by
Lemma 3.5.1 we have a basis b^ . . ., b^ of o so that \jb^ fcj=0 holds. But this
implies OQ c: o^ In particular

^Rh+Rjh, [1/28, -i/25]>-=0.

Therefore

^(^^1/2, ̂ ad^-l/2)=P(^ e^U^ ^-i/2])=0.at

This shows

PO^I^, ^^-1/2)=? (^1/2, ^-1/2)
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whence adh \ D and adjh | o are symplectic transformations of o. Hence, by [12], p. 234,
o decomposes into eigenspaces x>\^, n71.^ and o^ for the real part of ad/i [ o. The fact
that Sidh is symplectic and satisfies (12) implies that the purely imaginary part of adfc | o
is skew-adjoint and commutes with 7. For wen) we denote by D(w) the skew-adjoint
part of ad w on s. From the remarks above we see that the family {D (w); w e w} consists
of skew-adjoint derivations of s which commute with j. By the definition of D (w) it is
clear that these endomorphisms are contained in the algebraic hull of ad(aw+%'). But
0^+1)^ is a solvable Lie algebra whence the purely imaginary parts of ad(aw+t)^)
commute. This proves (3.3).

From the definition of D(w) we get D([iDio])=0 and D([IDD])==O. We know
o = 1/2$+-i/2S; hence

[l>, l>]==[i/2<5, -i^Ctt).

The elements of [DO] act nilpotent on s, therefore D([oo])=0. This proves
(3.4). Finally, (3.5*) follows by Lemma 3. 3.2. This shows that D is a modification
map. Carrying out this modification we get a solvable Kahler algebra for which each
adx, xes, has only real eigenvalues. Hence, by [7], s is the semidirect product of an
abelian ideal and a normal j-algebra.

6.5. In this section we assume 3o=0- Hence 3 c: a. We apply Lemma 3. 3.1 to a
and get a=ao+&io+&i i where &o=[a, a], A(ao+&io)=0 and A(a)(aio+&ii)=0, where
A (a) denotes as usual the linear part of the affine transformation associated with
aea. Because s^ and OO+OK) consist of translations we have &o+dio c: 3. Because 3
is an ideal $ we see that adz has the same eigenvalues as adz | a. Hence adz has only
purely imaginary eigenvalues. The eigenspaces for non-zero eigenvalue are contained in
do and are invariant under j. Let ^ be the eigenspaces for adz. Then [o5, ^$] c: OQ if
a 7^0 because H^ —a2 Id on [o$, y^\ where H denotes the semisimple part of adz.

Let now ze&io+&o» then z and [z, x], xes, are translations whence (adz)2^. If
ze&n then^ze&ii and p(z, [gS, a5])=0 follows. Hence from [7], Part III, Lemma 9, we
get

^pO^oX, ̂ .̂ ^(z, ̂ [ox, ,x])=0.
at

We know ad z [ &o = A (z) [ &o and ad z commutes with j on fio. Replacing ^x by j^ x
above shows that we can replace p by the inner product. Hence

-< e^ox, e^\x >=<QX, ,x >.

This implies ^oX,aX>^=0 . Therefore o^-l-a5 ^or a^ a 7^0 and o$ is invariant
under j. As a consequence we get that the semisimple part of adz is skew-adjoint and
commutes with j.

If o5 = s tor all z e 3, then ad 3 consists of nilpotent endomorphisms. Otherwise we fix
an orthonormal basis D^, . . . . D^ relative to trace AB* in the vectorspace of semisimple

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



172 J. DORFMEISTER

m

parts of {adz; ze^}. We define D(x)= ^ (trace ad x D,) D,. It is clear that these
r=l

maps are skew-adjoint derivations of s which commute withj. Because a^ is abelian
we have (3.3) satisfied. Finally, (3.4) and (3.5*) are verified using the fact that the
algebraic hull (ads)* of ads is solvable whence trace [A, B]C=0 for
A, B, Ce(ads)*. Therefore D is a modification map of 5. We note that D does not
change the adjoint action of &o+aio.

Carrying out this modification we can assume that ad z is nilpotent for all z e 3.
We put t = 3 Q (3 C\jz). Then t c= &i i, t C}j i = 0 and A (a) t = 0. Because ad t consists

of nilpotent endomorphisms we also have A (t) =0. Hence in particular [a, t]=0.
We have

[pc, jr] = 0 for all x e t, re q,
(25) [/x, jy\ = 0 for all x, y e t,

y;c, y]=0 for all x, yei.
Proof:

[W M =J [^ M +7 [/^ r] + [x. r] = °

because x e i c= 3 implies [x, q +7 q] = 0 and [/x, r] = A (ix) r e q P| j q = 0. Similarly,
[pc, ;y| = 0 because x, ^ act as translations, [/x, ^] = A (ix) y = 0 and
[̂  x]=A (^)x=0. This also proves the last assertion.

Let H^, xet, denote the real part of the semisimple part of ad./x. Then (25) implies
[H^, ad^'r] = 0. Therefore

P \Jr, Xp] = [/r, H^ Xp] = H^ [/r, Xp].

But we know that adx has no real eigenvalue in ^(1). This implies P=0 or [/r, Xp]=0
for all req. But the latter case implies Xpes°. Hence

(26) ad^jc, xet, has only purely imaginary eigenvalues in s.

Next we note

(27) (ad x)2 = 0 for all x e 3.

Proo/. — For any ues we get adx(u)e3. Hence (adx)2M=adx(adxM)=0 because
3 c: a consists of translations.

We consider xei and denote thej'-linear part of adx by q^ and the 7-anti-linear part
by q^ Similarly we define p^ and p^ for ad;x. We copy the proof of [7], Lemma 3, so
far as to get

Pi=J^ J[Pi^i\=^^i and hi,^2]+[P2^i]=0-

Clearly, [/, ad x] = Ijq^ and a computation shows

\j, ad x\ u = — [x, ju] +7 [x, M] for all u e s.

4e SERIE - TOME 18 - 1985 - N 1



KAHLER MANIFOLDS 173

Hence

4 qi =j [x, j [x, u] - [x, ju]] - [x, -j [x, ju] - [x, u]] =7 [x, j [x, u]] + [x, 7 [x, 7^]]

by (27). We note [x, 7^] e z c a whence j [x, 7^] e a. This implies

[x, 7 [x, ju]] = A (7 [x, 7'M]) x = 0

by the definition of t. Therefore q^ =0. In particular we get [p^, q^] =0. An argument
as above shows even q^q^=q^q^=0. Hence the remaining equation gives

0 = - [Pi. JPi\ + E/<?2. ^i] = -JPiPi -^-JPlPi +7^2 <?i -7^1 <?2 = -7 bi. ̂ 2]-

Therefore [p^ p^\ = 0. Because ^j=0we also have ;?j = 0. This implies that the semisim-
ple part of ad7x is just the semisimple part of p^\ hence it commutes with 7. Moreover,
by (26) it has only imaginary eigenvalues.

By (25) we know that the family ^ of semisimple parts of ad7'x, xet, is abelian and
commutes with 7. Moreover, each element of Q) has only imaginary eigenvalues.

Let K denote the closed Lie group generated by expD, De^. Then K is compact,
K c= Auts and K7=7K.

We define

(28) P(^i0= p(Wu,Wi^W,
JK

where dW denotes the normalized (right- and left-invariant) Haar measure on K.
We easily get

p (x, y) is skew-symmetric,

p(x,7'x) >0 for all x ^ 0,

(29) p ([x, y], z) + p (Lv, z], x) + p ([z, x], y) = 0,

p (U x, Vy) = p (x, y) for all U e K,
p (x, y) = p (x, y) for all x, y e s^.

As a result we see that Q) consists of skew-adjoint endomorphisms relative to p ( x , j y )
and ($, p) is a solvable Kahler algebra. We define D: s-^Ders by D(x)=^ (trace

n

adxD^)D^ where D^ is an orthonormal base of Q) relative to trace AB*. As above we
verify that D is a modification map for (s, p).

We would like to point out that D (x) = 0 if ad x is nilpotent.
W denote the new algebra by S and its product by (x, y). After this modification we

define s^ as before. We have

s(0) = {x e 5; \jq, x] + D (jq) x - D (x)jq e q +7 q for all a e q}.
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But sidjq is nilpotent whence D(jq)=0. Moreover, by definition of D(x\ D(x) | s^ is
skew-adjoint, therefore

D(x)7q=7D(x)qc7(qn7'cO=0.

Hence xe^ iff xe^°\
Next we consider \jr, x]-{-D(jr)x-D(x)jr. As above we have D(jr)=0 and

D (x)7'r = 0. Therefore S^ = s .̂
Of course, s^-1^?^ and s^?^.
Now we consider 3={xe5; (x, s^^O}. It is easy to see 3+73 <= 3. Moreover,

0=(x, s^) is equivalent to

0=[x, y]+D(x)y-D(y)x for all ye^\

We know that ad^ acts nilpotent on s whence D(y)=0. It is clear that there exists
ze3 so that D(x) | s>(l)=ad7z | s^. Hence [x-jz, y]=0 and x-jze^. This implies
xe3+73 and therefore 3=3+73. It follows that 3+73 is as-invariant ideal of s. As a
consequence 5=3+10 where w is the orthogonal complement of 3 in s relative to p. We
know that D(x) leaves invariant 3=3+73 and is skew-adjoint relative to p. It therefore
also leaves invariant w. Moreover, it is clear from Lemma 3.4.1 that D(x) is a
derivation of s and of s.

We define a map D: s -> DerS by D | 3=0, D | &= -D [ 5). It is easy to see that D
is a modification map of 5. Asa matter of fact one can carry out the two modifications
D and D in one step by Lemma 3.6. Hence we can assume 3=3+73 is a Kahler ideal
and D(w)=0. This implies in particular that 5) is a subalgebra of s. As a result
D(x) | w is skew-symmetric relative to p. We split £=W^+WD according to our induc-
tion hypothesis. By Lemma 3. 5.1 we have a basis w^, . . ., Wj of n\, so that [/w^, wj =0
for allr. Let U=exp^D(x) then [U,7']=0 and [/Uw,, Uw,]=0. Hence, by
Lemma 3.4.4, we get Uu)^=u),, whence UH)D=U)D- Therefore 5=0+100 where
d=3+w^. Because D(x) leaves 3, &„ and w^ invariant we see that a and w^ are
subalgebras of s. Moreover, a is a modification of an abelian Lie algebra and 0)0 is a
modification of a normals-algebra. Altogether (s, p) is the modification of the semidirect
product of an abelian ideal and a normal 7-algebra. But (s, p) is also a Kahler
algebra. Therefore, by Lemma 3.4. 5, we get p(a, w^) =0. But because a and w^ are
subalgebras of (s, p) we know that D(x) | a and D (x) \ w^ are skew-adjoint. Therefore
D(x) is skew-adjoint relative to p whence p=p. Hence, after a modification, 3 is a
Kahler ideal of $ (which is a modification of an abelian Kahler algebra).

6.6. It is now very easy to finish the proof of the algebraic main theorem. In
sections 4, 5 and 6 we have shown that — after carrying out a modification — the given
Kahler algebra is the semidirect product of an abelian ideal and a normal 7-algebra or it
has a non-trivial Kahler ideal. In the last case we have 9=3+0) where 3 is a Kahler
ideal which is a modification of an abelian Kahler algebra and w a Kahler subalgebra,
3 In). We write w =10^+0)0 as usual. Then s=(3+u.)J+tt>D ^d [t is ^Y to see now

that s is the modification of an abelian Kahler ideal on 3 + o^ and a normal 7-algebra on
WD. This finishes the proof of the main theorem.
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7.1. In this section we collect some facts on solvable general Kahler algebras. For
the notion of an effective Kahler algebra we refer to [7], Part II, 1.

LEMMA 1. — Let s be an effective solvable general Kahler algebra with isotropy
subalgebra I.

Then s=t-}-^ where fOs^O, f is abelian and $' is an ideal of $. Moreover, $' is
naturally a Kahler algebra.

Proof. — First note to == 10 [$, $] = 0. We know that f acts by semisimple endorphisms
and [s, s] by nilpotent endomorphisms on s. Hence u) is contained in the center
of s. But then w is an ideal of $ which is contained in i. By assumption, $ is effective
whence w = 0. It is clear that I + [$, $] is f invariant. Therefore there exists a f invariant
complementary subspace a of $. Clearly [I t] c f H [5, $] = 0 and also
P, a] c: a0 [s, s]==0. We put s^a+ls, s]. Then s" satisfies the first part of the
lemma. We define a complex structure/ on ^ by projecting jx, x e s", to s' along f. Thus
/x=/x+A; for some fcef . We use (KA1) to (KA7) of [7], Part II, 1, to verify (1.1),
(1.2) and (1.3). We put -< x, y > =p(/'x, y\ then - < . , . > - is an inner product on
s'. We note p (/x, y) = p (// x, y) for x, ye^ by (KA4). To verify (1.1) we compute
/x=/'x+fe and

// ̂  =/ 0^ + k) =j (jx + k) + ̂ / = - x -^-jk + A/ + k".

By definition j ' x e s / whence 7'fc+^+^'^O and (/ /)2=—id. Next we consider
(1.2). Here we have

[// ̂  / ̂ ] = [/^ + ̂  7^ + ̂ } = [/x, 7 ]̂ + [k, j y ] + [/x, fe']

=7 [/ ,̂ ̂  +J 1̂ , J y ] + [̂  ̂  +7 [k, y] + fei +7 [̂  ^'] + ̂ 2
=7[/x+fe,^]+J[x,^+fe /]+[x,^]+^l+^2
=7 [// ̂ , J7] +7 [̂  / ̂ ] + [̂  y] + ̂  i + ̂ 2

=7 /l7 /^ ^]+7/[^7/^]+[^ ^1 +^1+^2+^3 +k4•

Comparing terms in ^ and f we see ^1+^2+^3+^4=0. Finally, we note that (1.3) is
trivially verified by (KA4) of [7].

In case s acts on a homogeneous bounded domain we can sharpen the above result.

LEMMA 2. — Let 5 be a solvable general Kahler algebra with isotropy algebra t and
complex structure]. Assume that (1.1) and (1.2) hold and $ is the Lie algebra of a
transitive group on a homogeneous bounded domain. Then in Lemma 1 we can choose $'
to be j-invariant.

Proof. — First choose s7 as in Lemma 1. By construction we have / x ==jx + k (x) for
all x e s' where k (x) e f. From (1.2) we get

[// ̂  / y] = U^ + k (x\ jy + k (y)} = [/x, j y ] + [/x, fe (j)] + [fe (x), j y ]

=7 [/^ ̂  +7 [̂  7 ]̂ + [̂  y] +7 [̂  ^ 00] +7 [^ 00, ̂ ]

=7 [// -^ ^] +7 [̂  / y] + [̂  ^]

=/ [// ^, ^] +/ [̂  / ̂ ] + [ ,̂ y] - k W x, y]) - k ([x, / y]).
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Hence k^x, y| + [x, / j/|) = 0 for all x,y^. From [4] we know that
S'=50+^-1/2+^-1 and the subspaces 5'_,, r=0, 1/2, 1, split into root spaces like a
"normals-algebra" relative to an algebra aczS'-i (note, however, that/a, aea, does
not necessarily have only real eigenvalues). Moreover, for .y^s'-i,^, y^ci, we have
fe^^O, anrf a/50 ̂  ,J=0 if ^^ja=Q and /c(c/_^)==0. Let n' be the sum of
all root spaces of s' that are not contained in a +/ a. Put s' = n' + a +j a; then s' is an ideal
in 5 because [s', 5'] = n' + a and/ a +1 is abelian and leaves [s', 5'] invariant. Moreover, n'
and a +j a are /invariant, hence s" is a /invariant ideal of s.

7.2. We apply the results of 7.1 to Kahler manifolds.

LEMMA. — Let M be a connected Kahler manifold and S a solvable transitive Lie group
of holomorphic isometrics. Then there exists a subgroup S' of S so that M ^ S'/K where
K is discrete in S'.

proof. — Put s=LieS; then s^f+s' with f and $' as in Lemma 7.1. Let S' be the
connected subgroup of S with Lie S ' = ^ ' , then S' and its isotropy subgroup K of some
point of M have the desired properties.

COROLLARY. — Let M be a connected, simply connected Kahler manifold admitting a
transitive solvable group S of holomorphic isometrics. Then S contains a simply transitive,
simply connected, connected subgroup S\

7.3. We prove the geometric main result of this paper, the "fundamental conjecture"
of [8] for manifolds admitting a solvable transitive group.

THEOREM. — Let M be a connected Kahler manifold admitting a solvable transitive
group of holomorphic isometrics. Then M admits a holomorphic fibering the base of which
is analytically isomorphic with a bounded homogeneous domain and each fiber is, with the
induced Kahler structure, a locally flat Kahler manifold and it is homogeneous relative to
the subgroup of Aut M leaving the fiber invariant.

proof. — By Lemma 7.2 we may assume that the isotropy subgroup of S is
discrete. By S* we denote the connected, simply connected Lie group with Lie algebra
s=LieS. Then S* is a h.k.m. (which we will denote by M*) and also the universal
cover of M. From 3.2 and Theorem 3.7 we get that M* admits a split solvable transitive
Lie group §. Hence by [7] we know that M* admits an equivariant holomorphic fibering
onto a bounded homogeneous domain B, n: M* -> B satisfying the assertions of the
theorem. We know further that s is the modification of s == Lie S via a modification
map D.

By the choice of S and S* we know M=S*/Ag where Ag is discrete in S*. The
natural projection of S* onto M will be denoted by (p. We consider the isotropy
representation ^(a*) of a* eAg in the tangent space T<p^ M where e is the neutral element
of S*. By definition

^(a^u='k(a*)d^x=d,a*d^x

= — a*. (p (exp tx) == — (p(a*exp^xa*~ l)=^(pAda*x.
dt o dt o
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Hence only such a*eS* are admissible, for which Ada* acts orthogonal on s and
commutes with j. It is clear that Ada* is an automorphism of s. We decompose
$ = a + SD as usual. Then 0 = [/ Ad a* Z^, Ad a* Zj for Z^ as in Lemma 3.5.1. We write
Ada*Z,.=a+XD and get [/x^, x^] + D (ja) x^ — D (a)jx^ == 0. From [4], Lemma 3. 5, we
derive x^=0 whence Ada* leaves invariant a and SD- Next we prove that for each
^eS* we have g=ahn where a is a product of expo', a'ea, h is a product of exph\
^ /e SD Q [$D, Sp] and n=expn / , n'e^, s^]. We note that S* is generated by
{exp x, x e a U t) U n}. We know exp A exp a exp (— fe) = exp (exp (ad /Q a) and
exp (ad /i) a e a because D (a) h = 0. Hence exp h exp a = exp a' exp /i. Next, we consider

exp ( — a) exp n exp a = exp (exp ( — ad a) n) = exp (a" + n')

where a' e a, n' e [s ,̂ e^] and D (a") = 0, D (n7) = 0. Hence the Lie products of n' and a' 4- n'
in s are the same as in the unmodified Lie algebra. But there a is an ideal
whence exp(a /+n /)exp(—n /)=expa / / , a^ea. Althogether we have shown
exp n exp a = exp a exp a" exp n\ Therefore we are able to bring all expo, a 6 a, in the
position as is claimed above. Finally, because [s^ ^ol ls an ideal of Sp we can move all
expn across exph. Hence we can represent each g as stated above. We apply this
result to Ada*. Hence Ad a* = Ad a Ad/i Ad n. But Ada [ s^ is orthogonal whence
Ad^=Id. Now Ad a Ad n is orthogonal; but Ada gives only orthogonal contributions
over SD and Ad n is unipotent. This implies Ad n = Id. Hence Ad a* = Ad a. We know
Adh | 5D=Id implies /i=Id and also Adn [ ^=Id implies n=Id. Therefore
a* = exp a, aea.

Now we consider A* more closely. As in 3.2 we consider g = f + 5 = = l + 5 and split
5=a+5D and s=a+SD- The Lie product in g will be denoted by [., .]. We know
s == {D (x) + x; x es} and [g, g] c= s. In the Lie transformation group G on M* correspon-
ding to g we have a*=ak where a = exp ad a, aea, and keexpt Then
Ada* | $=AdaAdfc | s. We know that Adfe leaves a and s^ invariant. Hence
Ad a SD c $Q. But

Ad (exp ad a) (D (x^) + x^) = D (xp) + Xp - D (x^) a + [a, x^]

whence [a, x^] = D (x^) a. This implies [a, x^] = 0 for Xp e [s ,̂ So] ̂ d t01* -^D e ̂ D © D^ ^DJ
we split a into the eigenspaces relative to adx^ | a. We get adaxo=0 and
D (x^) a=0. This shows a e center $.

We identify S* with M* via the base point e*. Then the action of § on M* is given
on S* by x.y=xyK=xKK~1 yK where Keexpl is such that xKeS. Hence for a*eA*
we have x.ya*=xyakK=xyKaK=xyKa* where we have used that a is in the center of §
and exp I is commutative. This shows that § leaves the right cosets of S* modulo A*
invariant. Hence the group action of § can be pushed down to M. The isotropy group
AQ of this action is given by

Ao={^e§;J?.A* c=A§}={;?e§; ^eA*}.

Finally, we consider the semidirect product Sp x A where §o and A correspond to s^
and a. It is easy to see that the natural map into the semidirect product §0 x A/A() is a
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homomorphism which induces the identity map on 5. The kernel is clearly
{id} x AQ. Therefore M=S/AO^SD x A/Ao. But the last group is split solvable and we
can apply [7], Part II, Theorem 2. Hence M satisfies the fundamental conjecture.

7.4. In this section we apply our results to Kahlerian NC-algebras. Let
(s, j, -< ., . >- be a solvable Kahler algebra. We decompose s as usual s = a* + s$. The
Lie product in $ will be denoted by [., .] and the Lie product in the unmodified Lie
algebra will be denoted by (., .). Hence [x, y|=(x, y)-\-D(x)y—D(y)x where D is a
modification map in the sense of section 3.

We want to determine when s is an NC-algebra. For a definition we refer to
[2], 3.4. We will use the notation of [2]. We point out that now a denotes the orthogo-
nal complement of [s, s] in $ and a* corresponds to the abelian part of the Kahler
algebra $.

LEMMA. — The solvable Kahler algebra ($, 7, < . , . > - ) is an I^C-algebra and < < . , . > -
is an admissible inner product if and only (/'(a*, s) =0. Its flat part is a*. The correspon-
ding simply connected, connected h.k.m. is a product of C" with a homogeneous bounded
domain.

Proof. — First we consider a = s Q n. It is clear that we have a c= t) + a* where
^ = $^ Q [5^ $^]. The weight spaces of I) on a for weights with non-zero real part are
contained in [s, $]. Hence a c: t) + a$ where

ag={aea*; (h, a)=0 for all he^}.

For a e ag we have [h, a] = D (h) a. Hence a c= t) + ago where

a§o=^ea*;(^,a),DWa=0}.

In particular, we have [I), a$o]=0. We define So and a? as in Lemma 3. 3.1. We get
a = 1) + ooo 0 S? 0 [s, s]1. This proves that a is abelian. Now we consider the generali-
zed root space decomposition defined in [2], 3. 3. For a e a we have

[a, fc+n]=[a, n]=(a, n)+D(a)n.

Hence a (a) -^ 0 only if a=b+^i, fee a*, het) and /i ^ 0. In particular a(a)=0 for all
a e a Pi a*. Hence (ii) of [2], 3.4, is satisfied if and only if (a, s^) = 0. This implies that
a 01) is contained in the center of the unmodified Lie algebra. We consider (iii). It is
clear that we may assume Ho el). Moreover, the condition a (Ho) > 0 for all a ̂  0 for

i
which a + f p is a root implies Ho= ^ a^H^ where Hi, . . ., Hi is a complete set of

r = l

"minimal orthogonal idempotents", i.e. [H^,7'HJ=8^H^ and H^+ . . . +Hf=/5 where
s is the principal idempotent of s^- Let a e a* be a common eigenvector for I) relative
to ( . , .). Assume (H^, ^) = —1/2 a. We apply the classification of symplectic represen-
tations [7], p. 234, to H^, H, and H^+H,, r + m. Hence (H^, a)='ka and
?ie{0, 1/2}. If ?i=l/2 then (H^+^,, a)=0 whence (/H^, a)=/a, (/H,, a)=0 and
(/(H^+H^), a)=0, a contradiction. Hence (H^, a) = = — 1 / 2 a implies (H^, a)==0 for all
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r+m. Therefore (Ho, a)= -l/2a,. But a,=(Ho,;HJ>0 by assumption. This
shows that (iii) is satisfied only if each H^ has only non-negative eigenvalues on a*. But
j interchanges the eigenspaces for the eigenvalues 1/2 and -1/2 and (H^, a*)=0 for all
1 ̂  m ̂  I follows. From [7], Part III, Lemma 3, we now derive (a*, s^) =0. Hence a*
is the center of the unmodified Lie algebra. Let us now assume (a*, s)=0. Then (iii)
is clearly satisfied. From the above it is also clear that (iii) implies (ii). Next we
consider (iv). But from the definition of UQ it is clear HO c= a*. Because D(no) =0 and
D(n) =0 we have [no, n]=(no, n) c (a*, n) =0. To verify (v) it suffices to note that n^ p
is a-invariant and that ado, aea, is the sum of a self-adjoint and a skew-adjoint
endomorphism. This proves incidentally that - < . , . > - is admissible [2], 3.7. Now it
is easy to see that no+0o=a* holds where HO and do are defined as in [2], 4. 3. Finally,
let M be the connected, simply connected Kahler manifold associated with s. From 3.2
and Theorem 3.7 we know that the Lie group S which is generated by the unmodified
Lie algebra acts simply transitive on M. But the unmodified Lie algebra is the direct
product of a* with the normals-algebra s^. This finishes the proof.

COROLLARY 1. - Each Kdhlerian I^C-algebra without flat part is a modification of a
normal j-algebra.

COROLLARY 2. — Let M be a connected homogeneous Kahler manifold. Assume that
M has non-positive sectional curvature. Then M ̂  C7L x D where L is a discrete Z-module
in C" and D is a bounded homogeneous domain.

Proof. - Let M* be the universal cover of M. Then M* is a homogeneous riemannian
manifold with non-positive curvature. Then by [I], Proposition 2.5, we get a solvable
simply transitive group S of holomorphic isometrics for M*. Hence s=Lie S is a
solvable Kahler algebra; but [I], 6.3, shows that it is also an NC-algebra. Hence
M^d^xJ^ by the lemma above. From the proof of Theorem 7.3 we get
M^SpxA/Ao where the right handside is under our assumptions here a product of
groups which correspond to unmodified Lie algebras and the assertion follows.
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Added in proof: 1. Theorem 1.4 is also contained in K. Nakajima, J-algebras and homogeneous Kahler
manifolds (to appear).

2. Professor Xu Yichao Kindly sent me a different (and somewhat more direct) proof for the results of
section 2.
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