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COMPUTATIONAL COMPLEXITY
On the geometry of polynomials

and a theory of cost-
Part I

BY MIKE SHUB AND STEVE SMALE (*)

The main goal of this paper is to show that the number of iterations required for a
certain fast algorithm to find a zero of a complex polynomial of degree d, is linear in d,
provided that an arbitrarily small set of problems is excluded.

The algorithm which does this is an "incremental" version of that of Newton and
Euler.

This result is part of a broad study of algorithms for polynomial root finding. Our
work could also be considered as an investigation into the geometry of a complex
polynomial /. This geometry is especially concerned with the foliation of the complex
numbers C defined by the lifting of rays by f~1. This curve family branches at the
critical points 9 of / and constitutes solutions to Newton's differential equation

dz ^ /(z)
dt f ( z ) '

Let P,, (1) be the set of polynomials / (z)=z d +a^_lZ d - l + . . . +a iZ+f lo satisfying
| di | ̂ 1. Let SR be the set of complex numbers ZQ with |zo| =R and DR be the set of
complex numbers ZQ with | zo |^R. Impose Lebesque measure on SRXP^( I ) or
Dp x P^(l) normalized to total measure 1. An approximate zero of a polynomial / is a
complex z for which Newton's (and Euler's) method converges in a very strong sense
(see the Corollary to Theorem 1). As a consequence of Proposition 3 of section 2 one
has that the measure of the set of (z,/) in DpXP^( l ) such that z is an approximate
zero of / is greater than c / d 5 where c is about 1/1,000. This gives an answer to Problem
7 Smale.

(*) Both authors received partial support from the N.S.F.
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108 M. SHUB AND S. SMALE

Main Theorem. - Given 0<n<l , r f> l , there is an R=R(n , d)>Q and an iterative
algorithm E=E(^i, d) such that for (ZQ, /) in SRXP^( I ) , with probability l-^i, and

,.L,<,fllo?i>ly<""-^L„
\ 1-t /

t^n Z==(EY(ZQ) fs an approximate zero.
Here L^, L^ are constants, Li less than 20, L^ smaller yet, and E(^i, ^) is a variation

of an algorithm that was used by Euler. It is robust and executed with relatively small
cost.

The s is the number of steps in the iteration. The main feature of this result is the
good estimate for s. It is already difficult to obtain any polynomial bound (in Smale, a
result is obtained using Newton's method with d9; this reference also gives some back-
ground to our paper here).

The algorithm E(^i, d) is incremental Euler E^ where we give the increment h as an
explicit function of p, d. It is noteworthy that the k depends on d and is simply the
smallest integer greater than log d. From the definition of E^, k is the number of
derivatives evaluated at each step and so depends on d simply. The idea perhaps could
be useful in the pratice of equation solving.

One problem the result poses is why choose | ZQ \ = R which grows like d and contributes
the factor d in the estimate of 5? It would seem that choosing [ ZQ \ ̂  1 is more sensible,
but the corresponding analysis becomes especially difficult.

As it stands now the above theorem, besides requiring the long proof below, depends
on mathematics related to the Bieberbach conjecture. The Bieberbach conjecture itself
would only slightly improve the constants in the result.

The main theorem of this paper does not distinguish between the intrinsic difficulty of
finding an approximate zero for a particular /, and the difficulty of finding a good
starting point ZQ for /. In part II of this paper we will separate these problems and
show that the fe-th incremental Euler algorithms may be adapted to produce probabilistic
and deterministic algorithms for finding approximate zeros for /eP^(l) with the average
number of steps and arithmetic operations required 0(d log d) and 0(d2(\ogd)2

log log d) respectively.

Section 1

An incremental algorithm is given by a map

I, ,^: S^S2, z^I^z^Hz),

parameterized by O^h^l and complex polynomials /. Here S2 denotes the Riemann
sphere of complex numbers. We suppose always that

lo,/00=^
46 SERIE - TOME 18 - 1985 - N°



COMPUTATIONAL COMPLEXITY 109

and so 1̂  y is a parameterized family of algorithms starting at the identity. Eventually
continuity conditions will be put on I.

To solve g (z) = 0 by using an incremental algorithm I/, y one lets ZQ be a complex
number, and chooses h appropriately. In a number of situations, the sequence

^=I/,, ,(^-1)=^, ,^o), n=l , 2, 3, . . .,

will converge to a solution of g (z) = 0.
Most of our examples of incremental algorithms are derived from some standard

iterative process or scheme for solving either non-linear systems or ordinary differential
equations. We frequently call the maps 1̂  y iterative or iteration processes or
schemes. We will sometimes assume /(z)^0, and f ' ( z ) ̂ 0 when the context requires
it, for example to be sure we are not dividing by zero below.

Example 1. — Incremental Newton's method (see Smale for background)

i.^)—^.
'••/ f'(z)

The special case N(z) =z—f(z)/f (z) (for /i= 1) is Newton's method.
Example 1^. — Derived from fe-th order Taylor's method, k = 1, 2, . . . (see Atkinson)

J(Z)=2+Z ^f^V h\A dt\ n )l^

where (p, (z) is the solution of the differential equation

d z _ - f ( z ) _ , ,
=F(z),

dt f'(z)

with initial condition <po(z)=z.
The quantities (rf7dt')(p,(z)/,=o are of course computable from F and its

derivatives. Examples 2i and Example 1 coincide. Example 2; is explicitly given by:

I(z)=z+F(z)Nl+ / t-F /(^n; F'= f—f——\.
\ 2 7 (.T)2

Example 1^ is :

I(z)=z+F(z)^/l+^F /(z)+^((F /(^))2+F / /(z)F(^))1.

We continue to write

F for ^.
f

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



110 M. SHUB AND S. SMALE

Example 3. — (derived from simple Runge-Kutta; see Atkinson)

I(Z)= Z+———^F^+ F ( Z + / Z F ( Z ) ) ]•2F(z)

Example 4. - We have taken this algorithm from Durand, p. 25 ff., where it appears
with h=l

hf(z)f(z) ^ (_______h________ \
(z) z (nz))2-^)^)/^) ')\\-(\|lW^^\^l(ff^Y})'

In Durand, p. 69 it is pointed out that this iterative method (with h=l) has order 3
for simple zeros.

The following construction is important for the next example and is also used throu-
ghout our analysis.

Given a polynomial / and a point z such that /'(z)^, denote the map given by a
power series for example, which takes / (z) to z and is a compositional inverse to / by
/71. Note as in Smale that the radius of convergence r = r (/, z) of /71 is | / (z) - / (9*) |
for some 9* such that /'(O^O. Thus f,1 : D,(/(z))-^C is an injective analytic
function sending f(z) to z, where D^(/(z)) is the disk of radius r about f(z). It is a
"branch" of/-1.

If/ /(z)=0,letr(/ ,z)=0.
If / (z) ̂  0 define h, = h, (/, z) = r (/, z)/1/ (z) [ . Thus

t,(/,.)6 min ^f——^.
e |/(z)|

f'm=o

If 9*=e*(/, z) is one of the critical points 6 for which r= | /(z)-/(9*)|, then

__ |/(z)-/(e.)|
h,(f,z)=

\f(^\

Example 5^ — Incremental Euler, k=l , 2, . . ., oo.
This is our most important example and we take some time to develop it carefully. The

evidence of this paper suggests it is the most appropriate for practically computing zeros
of complex polynomials.

If h<h^ (/, z) we may solve the equation

^^i-^
/(z)

by, setting z/=/;l((l-/l)/(z)).

4' SERIE - TOME 18 - 1985 - N° 1



COMPUTATIONAL COMPLEXITY 111

Expanding around/(z), (Taylor's Series) we obtain
00 ( f-l\ f(e)(-\

(5J E^z)=z/=z+^ uz ) J ^(-^(z))^
f = i f

Evaluation of (5^) is usually computationally infeasible, so we truncate. Let T<, be
the operation of truncating a power series,

T/y,^=ya^.T/Z^)=Za^.
\^=o / f=o

The fe-th incremental Euler E,, or E^ ̂  y ^ is given by

(5,) E,(z)=T,/,-l((l-/0/(z))=z+ ^ (f^)f(e^(-hf(z))l.
1=1 < '

We end our discussion of this example by a series of remarks:
(1) Suppose h^ > 1. Then one can put h== 1 in (5^) to obtain a power series representa-

tion of a solution to / (z) = 0.
(2) One can easily write down

E4 (z)=z- / (z )-(A-a2^2+(2 aj-a3)/^3-(5 01-50203+04)^),
f(z)

adapting the computations of Durand, p. 5 and using

a.^-ir1^^^1'1.
i\(f\z)Y

Note that by keeping only the first k powers of h, k= 1, 2 or 3, we obtain E^ for those
values. In particular E^ is just incremental Newton of Example 1.

In the literature the algorithms E^ with h=l are sometimes accredited to Euler and
sometimes to Shroeder. According to Durand, the case E^ with ^=1 was reasoned by
Euler. On the other hand both Henrici and Householder refer to Shroeder for algorithms
which seem to amount to E^ with /i=l. Ostrowski says that the power series for the
solution goes back to Newton and Euler. Euler in his Caput IX, De Usu Calculi
Differentialis in Aequationibus Resolvendis writes, p. 428:

"Si igitur / ponatur designare istum ipsius x
valorem que erit radix aequationis y = 0, quoniam
x abit in /, si statuator y = 0, erit per ea,
quae supra [§ 67] sunt demonstrata,

dx y ^ d d x y ^ d ^ x y ^ d ^ xJ ~ x y^ T^^ 9etc"
In qua aequatione statuitor differentiale dy constans."

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



112 M. SHUB AND S. SMALE

which gives the power series solution for the root and is exactly E^ with h=l. Euler
goes on to solve equations iterating Ej^ with h = 1 up to k = 5. We have thus called the
algorithms k-th (incremental) Euler and denoted them E^. Shroeder gives a much more
systematic and modern treatment of these algorithms, dealing with such questions as
convergence and order.

In the thesis of Gregg Sounders, these and related algorithms are studied from a little
different point of view.

Next we generalize examples 5^.

Example 6^. — Generalized Incremental Euler.
First suppose Ci>0, c^ . . . , Cj, are given real parameters. Let

P( / I )=Cl/^+C2^ 2+ . . . +Cfc^. Then if h is small enough so that \P(h)\ <h^ we may
solve

f-(^=l-P(h) byz^/^rtl-PW^z)).
/GO

This motivates

(6,) GEp, ,, ,, f (z) = GE, (z) = T, /;1 ((1 - P(h)) f (z)),

or
00 /^- iyo

GE,(Z)=Z+T, ^ u z ^((-P^Az))1.
1=1 ( '

Clearly (5^) is the special case of (6^) obtained by setting c^ = 1, Cf=0, f > 1. Moreover
example 2^ (derived from k-th order Taylor's method) is obtained by putting
^(—l)1"1/;!, i=l, . . ., k. This may be seen as follows.

Let (p((z) be the solution of the differential equation d z / d t = —f (z)//' (z) with initial
condition (po(^) =z. Then it is easy to see that

f^(z))=e-tf(z)

and thus the fc-th order Taylor expansion of cp^ (z) is given by
00 / r - l \ ( 0 / °° / . y Y

T^-1(^/(^))=^E u-)( z ^-/(z) ,
j = i n \ i = i i! /

where the derivatives of f^ 1 are evaluated at / (z).
Returning to the general case, we may express

k-l

GE,(z)=z+F ^ P.^'^,
j=o

where Pj are polynomials in the c^ and a;, where aj is defined above.

4e SERIE - TOME 18 - 1985 - N° 1



COMPUTATIONAL COMPLEXITY H3

PROPOSITION 1:

PO=^I,

Pl==C2-CTiC^,

P2=C3-2o2CiC2-(a3-2aj)c?

anrf P^=P^(oi, . . ., Ofc+i, Ci, . . ., Cfc+i) /ia5 r/i6? property: in each term the subscripts
ofc^ Oj times the powers to which they are raised sum to k less the number of factors. One
can write down P^ explicitly inductively, in terms of?,, i<k, a^+i and c^i.

The easiest way to prove this proposition is to make a little detour. Introduce thed
polynomial a(w)= ̂  CT,W; where as above

^..^-D^^a^r1

i^rw)1

and / has degree d. This polynomial will be useful later. Note that CT(O)=O and
CT^O) =1. If we write an incremental algorithm

z^I,, f(z) as z'=I^ ^(z)=z+FR(/i,/, z).

Then by Taylor Series
d f(1) ('7^

/(^)=/(^)+E J—w(z/-z)i

1 = 1 n
d f^ (z\

=/(^)+E ^-^PR1

» = i i\
d

=/(z)-/(z)^cr,R1

Thus:

PROPOSITION 2:

^^l-CTcR wW. P^^^2)-2= 1 — cr o R where R = -^
/OO F

We apply this to an example.
For

\ /=^oo(/», /). —— = = l - A = = l - a o R .
f(z)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



114 M. SHUB AND S. SMALE

Thus f c=a°R . Since a(0)=0 and a'(0)==l a is invertible on some disc to a"1 with
a"1 (())=() and (a~lY(0)=l. Thus we have

1 00 r f"1^0

^ - i ( ^ ) = R 1 ^ uz t^(-f(z)Yh1.
F j = l f '

If we expand a"1 around 0

„-,„„. ̂ fr^m.,
f = l t !

it follows that (cy'^^Cl/FK/^1)^ (Z))(-/(^)Y and thus a"1 is defined and injective
on the open disk of radius h^ around 0.

Now we return to Proposition 1.

00 f f - i y O °° f r r 1 ^ 0

GE,(Z)=Z+T,S uz ^^(-/(^(P^^Z+FT.E -————(P(^.
1=1 I ' 1=1 i ' -

Now the proof of the Proposition is easily seen by applying inductive formulas for the
coefficients of the inverse of a power to CT see Durand, p. 4 and formulas for composition,
see Henrici.

Our study of incremental algorithms focuses on / (z')// (z) and its Taylor expansion in
h. This "target space" approach becomes clearer as the paper develops.

The idea is to consider the curve h -> /(I/,, f(z)) in the target space for small positive
h. For an ideal algorithm, for all / and z, as h increases from 0, /(I/,, f(z)) moves
along the ray from f(z) to 0. No practical incremental algorithm accomplishes this,
but one of the main results of this paper is that some algorithms do this infinitesimally
up.to any order of contact at f(z) and with a certain uniformity. This motivates the
following definition which measures the efficiency of an incremental algorithm.

An incremental algorithm 1̂  j- will be said to be of efficiency k provided: there exist
real constants 5>0, K>0, c^ . . ., c^ c^ >0 independent of h, /and z such that

/(Iy(z))^^_^^^^^ +^)+s^(^),

where |Sfc+i( / i ) | ^K^max^, l/^) for 0<^8 (min(l, h^)) and h^h^ (/, z) is defi-
ned as above.

In this case we also simply say that the iteration 1̂  ^ is of efficency k.
In section 2, we will show that E^ is of efficiency k. In section 3 we use this fact to

track the iterates of E^ in the target space. Later we characterize the incremental
algorithms of efficiency k. It will follow that all of the above examples are of efficiency
k, for appropriate fe. Moreover, the set of all (small) incremental algorithms which are
polynomials in h of degree k and of efficiency k are precisely those of Example 6^.

4s SERIE - TOME 18 - 1985 - N° 1



COMPUTATIONAL COMPLEXITY 115

Section 2

The goal of this section is to prove:

THEOREM 1. — For any k, 0<fe^oo, the incremental k-th Euler algorithm (example 5^
of section 1) is of efficiency k. More precisely, there is a universal constant l^B^l.07,
and for any polynomial f, complex number z with f (z) 7^ 0, / (z) =^0, z' = Ej^ (z) = Ej^, j- ^

where

f / /\ ^1^'^^
J^=^h+Q(h,f,z)-^, |Q|^(Y),

B(^+l)(l-y)2

P.(Y)= [(l-Y)2-4y][(l-Y)2-4Y(l+B(fe+l)Y f c)]

Here y=h/h^ is assumed to satisfy 0<y<Yfc where y^ is the first positive number for which
the denominator of Pfc(y) vanishes. Otherwise said, 0<h<y^h^. Here h^=h^(f, z) fs
the function defined in section 1.

We first give a proof of Theorem 1. At the end of the section is some discussion and
the first implication of the theorem.

We recall some results form the theory of Schlicht functions, related to the Bieberbach
conjecture, Duren. One relation to our work comes from the fact that if/is a polynomial,
then f^1 is defined and injective on the disc of radius r (/, z) about / (z).

An analytic function /: D^ -> C defined on the unit disc, given by the power series
00

/(z)= ^ a^z1 is called Schlicht if it converges, Oi=l , and is one to one for
f = i

| z [ < 1. Under these conditions there is the classic:

Bieberbach Conjecture: |aj| ^/, /=2, 3, . . .
In fact \a^\ ̂ 2 (Bieberbach), l ^ a ] ^ (Loewner), [aj ̂ i for f ^6 (see Duren for the

references).

Bieberbach-Koebe Theorem. — See Hille. The image of a schlicht function contains a
disc of radius 1/4 around 0.

Theorem of Littlewood. — See Hille.

[aj ^ne (e=2.71. . .).

Improved Theorem of Littlewood. — See Duren.

|aJ^1.07n.

Loewner Theorem. — See Hayman. If ^(w)=w+fc2 w 2 +^3 w 3 + . . . is the inverse of
a schlicht function expressed as a power series near zero, then

1.3...(2.-1)^._,
' ''- 1 . 2 . . . 0 - + 1 ) -

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



116 M. SHUB AND S. SMALE

Finally we state:
Distortion Theorem of Koebe and Gronwall. — See Hayman, Hille. If / is schlicht

then

- ^ 1 / 0 0 1 - ^ for M^,
(1+r)2-" -'-(l-r)2

.L^^I^^I^-LtL., M <,,
(\ _>^3 — \ J v 7 ! - /l _,.\3' I I - 9(1+,)3-- -'-(1-r)3

these are sharp bounds.
We use B to indicate the best number between 1 and 1.07 (Improved Littlewood

Theorem) such that | ̂  | ̂  i B for all i. Thus B = 1 if the Bieberbach conjecture is
true. Recall that T^ is truncation. Our main tool in proving Theorem 1 is the following
Proposition.

PROPOSITION 1. — Suppose that f is schlicht and g is its inverse. Then
k+i n_y \2g/^_ j_ ^\

|.(/(.))-.(V(.))|^^_^_4^^_^_4^^^^^^

where y= [z|,/or y less than the first positive root of the denominator.
We use a sequence of lemmas.

LEMMA 1. — For | x | < 1, IQ ̂  1
00 / x10"1
v^ , /-/. ^ ' o ^T Ix1-1^

i=io ~(1-^)2

Proof:

y^-. y^-. V1^-! ( 1 V /l-^Y,^-1^-^-!)^).^0-1

L -ZJ ô "Vl-J V l - x y (1-x)2 '(1-x)2 'z=Jo ^1

Q.E.D.

LEMMA 2. — Let g(x)=^biZ1 be a convergent power series with ^o^ an(^
|fcJ=l. Let a=m^ix\bl\(lfl~~l). Then

i>i

yd) / i \ ^ + i , 1
^-(x) ^a^-1 ————) /^ x <-
P. \ l - a |x | / a

Proof. — Note

^ )M=D•o•-l)..•o•-^+l)^ - f
3=1

4e SERIE - TOME 18 - 1985 - N° 1



COMPUTATIONAL COMPLEXITY 117

and

l^(x)|^ ^70-1). • .a-^i)^'-1^..1=1
So if i ' = c / 1 .\ [ < 1, then

|^(x)| ̂ a1-1 S70'-l). . .O'-^+l)^'"'
j^

^ <-1 ^ V , Z- l dl ( 1 \< a — > V'7 = a — I —— I= dy1^ dy\\-y)

, H<a1-,i-i (\-yr1'
Divide by I !

Q.E.D.

LEMMA 3. — Let g(yv)=^biW1 be a convergent power series with bo==0, \b^\ =1 and
let a=max|^| l / ( l - l ). Let x, weC, and b, c be positive numbers. Suppose

i>i
( l+c)afc<l , \x\ ̂ b, \w-x\ ̂ bc.
Then

be
\g(w)-g(x)\^

~ (l-afc)(l-(l+c)afc)

Proof. — Consider the Taylor expansion of g at x
00 e^0 (x}

g(w)-g(x)==^ ^-^(w-xy.
1=1 ( '

Apply Lemma 2 to obtain
00 / i \ f+ i

w)-^(x)|^i:^"1 7——— l^-^l^k(
f = l \ l — f l | x | /

00 / 1 V^ / 1 \2 00 / abc V~1

^S^^T——) (^=(T-—)(^)S(r-h-)^i \\-a\x\/ \ l - a [x | / ( = i \ l - a | x | /
1 V ' 1 / be \/ 1=bc

^ l - a | x | / (l-(abc/(l-a]x|))) \ l-a |x| AI-^|^|-^^/
Q.E.D.

00

Now we can give the proof of Proposition 1. Let f(z)= ̂  a^z1. By the Koebe-
1=1

Gronwall Distortion Theorem,

| /(z)|^———— where y=|z|.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



118 M. SHUB AND S. SMALE

Then
00 00

|/(z)-tj-(z)|^ ^ |fl,|r^B ^ M
j = k + l J = k + l

by the extended Littlewood Theorem where l^B^l.07. In turn this is less than
(B(fe+l)y f c + l)/(l-y)2 by Lemma 1.

Now we apply Lemma 3, where we may take a =4 by the Loewner estimate. Let
c=By f c(7c+l) and ^=y/(l—y)2 so that our above argument shows that
| /(z)—Tfc/(z) | ^bc. Moreover ( l+c)afr<l . Therefore Lemma 3 applies and yields
the proposition.

We generalize the proposition slightly to the case of ] z | <r rather than ] z | < 1.

COROLLARY. — Let /(z)=^OfZ1 be a one to one analytic function for \z\ <r mth Oo=0,
a^ = 1 and let g be its inverse. Then

i^/(z))-^/(z))i< . ^.T10^23^0; 1^1'[(l-y)2_4^[(l_y)2_4^+B(fc^^)]

for y = | z [ /r less than the first positive root of the denominator.
Proof. — The map z ->• l/r/(rz) is schlicht with inverse w-> (l/r)g(rw). Apply the

Proposition to estimate

^(/(rz))-^^/^)) .
r r

Q.E.D.
Now we use the polynomial a associated to / and z from section 1 together with the

last Corollary to obtain Theorem 1. From Proposition 2 of section 1 and the discussion
after it, one has

^ -^1-aoR, R^T.a-1^).
/OO

Thus

/^ )=l-aT,a- lW=l-fc-(aT,(a- l/^)-a(a- lft)).
f(z)

Since a"1 is an analytic function, one to one on a disc of radius h^=h^ (/, z) about 0,
we can apply the preceding Corollary to obtain Theorem 1.

Remark 1. — If the Bieberbach conjecture is true, B==l, see above and Duren. In
any case, using results of Bieberbach, Loewner, Shiffer and others B can be replaced by
something less than 1.07 and the 4's can be replaced by a smaller number.

Remark 2. — The case of Theorem 1 for f e= l , incremental Newton's method, was
also studied in Smale. Unfortunately the theorem here doesn't imply that one.

4® SERIE - TOME 18 - 19«5 - N° 1



COMPUTATIONAL COMPLEXITY 119

The main applications of Theorem 1 are in sections 3 and 4. In the meantime we
give a Corollary which for the classical case of h= 1, gives new convergence criteria.

LEMMA 4. - Pfc(y)>0/or0<y<y^.

Proof. - Use the quotient rule to differentiate Pfc(y). Write the numerator as

2B(fc+l)( l -Y)[(2+2Y)(( l -Y) 2 -4Y(l+B(fe+l)Y f c )+( l -Y)(( l -y)2_4Y)[( l_^

+2(l+(k+l)By f c )+2By^+l)y f c - l ) ]

and all the terms are positive since 0<y<y^.
Note that y^ increases with k and tends to the first root of ( l -Y) 2 -4Y==0 which is

3-^/8 =.171572.

Here we tabulate some values of y^ calculated to six decimal places by Gerry Roskes,
who also did the other calculations in this paper with B= 1.07.

k=l 2 3 4 5 6 7 8 9 10

y, .141454 .161948 .169095 .171019 .171457 .171549 .171568 .171571 .171572 .171572

We will see that Theorem 1 is interesting even for the case h= 1.
In this case z7 = E^ ̂  ̂  ^ (z), and

/(O
/oo ^(7)7^ where y = — ,

h!

y<Vfc, where y^ is described as follows.
For ye(0, y^) let o^ (y) = p^y) y^. Then from Lemma 4 it follows that ^(y) is an

increasing function of y. Let y^ be the unique solution of o^ (y) = 1. Clearly y^ increases
with k and tends to 3- /8. One calculates to six decimals.

^ = 1 2 3 4 5

Yk .093870 .132654 .152367 .162345 .167258

k= 6 7 8 9 10

Yjk .169602 .170689 .171182 .171401 .171498

Define p^.= mm ^/(9)|.
e

/ ' (e )=o

COROLLARY 1. - Let k>0, and wite for brevity y==jk. Suppose a polynomial f and
a complex number z satisfy \ f (z)\ =^(y/(l +y))p^. for some b<\. Then with h=l,
(^00==^ is defined for all I and z^ z* as I->OQ with /(z*)=0. , Moreover
I / (^) [ ^ C | / (Zt _ i) |k +1 all I > 0 (fe +1 order convergence) with C=(b/\f (zo) | )k Finally
\f^)\^k+^(y/(l+y))p„alll>0. '
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Proof. - Let y= |/(2)|/|/(z)-/(9*)| where ^=\f(^)\,f'(Q^=Q. Then y<y
since

|/(z)-f(e*)|>^—p/

and

1^)1 ^P-r,|/(z)-f(9*)| V+Y 'AO/O+y))?^

We may take h= 1 in Theorem 1. Thus

\m\<h(7)f<^W=^

using Lemma 4 and the definition 7 above. An obvious induction then yields the first
part of Corollary 1.

Also

/oo ^My)i/(O l/^l* ^C|/(z)|'',
/(z)-/(9»)| -

where c-M^Y-f—y.\ pr / \ /(z) /'—V p/ 7 \ |/(.)|
Next let yo=by and define inductively >', = (j, _ i/ +1 ̂  (y). Consider

(1,)

(2,)

where

I/M^,-^, / = 0 , 1 , 2 , . . .

Yi^^, <=0, 1, 2, . . .

1/^)1
7i=——:min |/(z,)-/(y)|'

e
/ ' (e)=o

Then (lo) is true by definition. We proceed inductively showing (Ij) implies (2j) and
then (^_0 anrf (2^_0 imply (1^).

Thus

,̂—^ .̂,.Y^ Yr J^V((l+yVmin|/(z,)-/(9)|- ^l+Y)^ p^
9
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Finally

|/^)|^fc(y)Y^i|/(^-i)|^P.(Y)y^i(^)^,^-.

This proves (Ij) and (2,) all I.
One now checks induct! vely that y^=b(k+l) y and thus the statement of the Corollary.

Q.E.D.
Note the very rapid decrease of |/(zj)[ a function of I. This justifies the following

definition.
We will call z an approximate zero for / relative to k if and only if

|/(z)| <[Yk/(l+Yfc)]P/- An approximate zero for/relative to all fe>0 will be called
simply an approximate zero so z is an approximate zero of / if and only if
| f(z) \ <[Yi/(l +Yi)l pf. Note by the computations below, if | /(z) | <(1/12) py then z is
an an approximate zero.

We tabulate some values of Yfc/O+Yk)- Note that Yk/(l+Yk) is increasing and tends
to (3 - /8)/( 1 + 3 - ̂ /8) =. 146446 to six decimals.

k 1 2 3 4 5

-yl— .085815 .117117 .132221 .139670 .143291
1+Yk

k 6 7 8 9 10

7k .145008 .145802 .146161 .146321 .146392
1+Yk

So in particular l/6>Yk/(l +Yk)> 1/12 and for fc^5, l/6>Yk/(l +Yk)> 1/7.
We have applied Proposition 1 and its Corollary to a and a~1 to conclude Theorem

1. We could as well apply this reasoning to a general analytic function g defined on a
domain Q and its inverse g~1. The resulting general statement is:

THEOREM 1 a. — Let z e Q c: C and let g : Q. —> C be analytic. Suppose g^ 1 is defined on
a disc D of radius R (g, z). There are constants c,, and K^ depending on k (c,, w. 1 and
Kj^ % k) such that if \ w —g (z) [ < c^ R (g, z) and gg^ 1 (w) = w then

Ig^-1)^)-^^^1;^^"1.
If we suppose that p^>0, then for any root ^ of /, /'(^^O and/^"1 may be uniquely

analytically continued along any ray starting from 0 as long as the inverse image of this
ray doesn't run into a critical ppint of/ Thus/^"1 may be analytically continued to
the entire complex plane minus k radial slits from /(Q^), . . .,/(0^) to oo for some
minimal collection 9^, . . ., 9^ of critical points of / We shall denote this domain by
S^ f. For d > 1, 1 ̂  k ̂  d -1. We use f(1: S^ y -^ C to denote the analytic
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continuation. It is quite clear that the images of the/^1 are disjoint over the roots ^
of/since the inverse image of a ray by/^1 is a solution curve of the Newton differential
equation dz/dt= — f ( z ) l f ' ( z ) in R^C which terminates at ^. Consider now a general
zeC. If /71 can be analytically continued along the ray from /(z) to 0 then
f^l=f^l in a neighborhood of this ray for some root ^ of/. We analytically continue
/^-1 : S^j- -> C by setting it equal to /^-1 and S^ y=S^ y.

We let p^ ^ be the radius of convergence of/^~1 : S^ -> C around 0. Then p^=min
p^ ,. We note that if z' e Image /;"1 : S^ -^ C then /^1 = A"1 and S^ y = S^ y .

The discussion above allows an improvement of the Corollary to Theorem 1, with the
help of Proposition 4 below.

COROLLARY 2. — Corollary 1 to Theorem 1 remains true \vith py replaced by p^ ^ an^
z^f^W^heref^'.S^^C.

Thus the notion of approximate zero may also be extended to z satisfying
| / (z) |<y(l+y)p^,

PROPOSITION 2. — Let .̂, f = l , . . . , k be distinct simple roots of
f(z)=zd-\-a^_^zd~l-\-. . . + OQ. Then the discs of radius

1 Y P/, ^i
4 1+y l /^l5

centered at ^ are disjoint and consist of approximate zeros.
For the proof of the Proposition we require a slight extension of the Bieberbach-Koebe

Theorem.
LEMMA 5. — Let f be a one to one analytic function defined on a disc of radius r, then

the image of f contains a disc of radius | /'(O) | r/4 around /(O).
Proof. - ^(w)=(l//'(0)r)/(rw)-/(0), |w| <1, is schlicht. So image g contains a

disc of radius 1/4 around 0 and it follows that the image of/contains a disc of radius
l/^lr^around^O).

Proof of Proposition 2. — By Lemma 5 the image by /^1 of the disk of radius
[y/(l +y)] p^ ^ centered at o contains a disc of radius

1 Y ^ I / / - - ly/n^l — ^ ^ P^ ^4^P^.KA.)(0)|-4^^y-

And these discs consist of approximate zeros.
It has already been noted that the images of the/^1 : S^ f -> C are disjoint for distinct

^
PROBLEM. - Let P r f ( l )={ / | / ( z )=z d +^_ lZ d - l +. . . + 0 o with |a,| ^1}. What is

the distribution of

? te)2 •-rsw
^

/ (^)=0
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We now give a simple estimate of the area of the set of approximate zeros of feP^(l)
which are contained in the unit disc.

LEMMA 6. — Suppose that p is a point in the unit disc on R2 and 0<r< 1. Then the
area of the intersection of the disk of radius r around p and the unit-disk is greater than

Proof. — The worst case occurs for p on the boundary of the unit disk. Thus we
may assume that/?=((), 1).

The x-coordinates of the points of intersections are ±( r /4—r 2 ) /2 . Thus the area of
the two triangles contained in the intersections is

/, r^PNr2^?

. 2 2 7 2

Q.E.D.

PROPOSITION 3. — Suppose that feP^(l) and p/>0. Then the area of the set of points
z in the unit disc such that /(z)<(y/(l +y)) py is at least

.003f^V.\d(d+l))
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Proof. — There is a root ^ of / in the closed unit disk since the product of the root is
^1.

ln^+(,-i)+...+i=^.

Thus

1 I,. 2
\r^)\~d(d+l)

Now apply Lemma 5 to produce a disc centered at ^, consisting of approximate zeros of
/ and of radius

1 Y _ 1
^•^P/.^. ^2 1+y ^(d+1)

Use Lemma 6 to estimate the area, with the help of a hand held calculator. Since there
is a critical point 9 of/in the unit disc p^d+1 which simplifies the expression in the
radical.

It is convenient here to prove a Proposition which will be used in the proof of Theorem
2 and which can be used in the proof of Corollary 2. First we need a slight alteration
of some estimates we have already used.

LEMMA 7. — L^/(z)=z+fl2z 2+ • • - be a 1 — 1 analytic function defined in the disc of
radius h*. For \ z \ < h*, let y = | z \ /h^. Then

(fl) }f(z)^^
, h^B(k+l)•Yk+l

(b) | / (z)-Tt/(z) |^——^-,——.

Let CT be the polynomial defined in section I and let D(/i») be the disc of radius /i*
around 0.

LEMMA 8. — Suppose that 0<h^^h^(f, z) and that h=y/i*/or some 0<y<y^. Then
TkCT-^/OeCT-^D^,,)).

Proof. — By Lemma 7 applied to o"1 on the disc of radius h*

h ^(k+OY'^1

\^(h)\^-^ and la-1^)-^-1^——^^——.

Thus

Ti.CT
h h^(k+\)yk+l

-i (/,)!<__+
v 7 ' — /i ,.\2(1-7)2 (1-y)2
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By Lemma 5, CT-^D^)) contains a disc of radius h^/4 around 0. Thus
^ CT -1 (h) e CT -1 (D (/^)) as long as

h h^B(k-^l)yk+l ^
+———T.———7-.———<(1-Y)2 (1-Y)2 4 9

or (1 -Y)2>4Y(1 +B(fe+ l)Y f c+ l). The first point of equality is the definition of y^.

PROPOSITION 4. - Suppose that 0<h^^h, (/, z) and that h=yh^ for some
°<Y<Yfc- Let z'=Ek^, f)(z). Then there is a complex number h' mth \h'\ <h^ such
that

z'=/;l((l-/z/)/(z)),

where f;1 : D(h^)-^C.

Proof. - We use the definition of Ej, and its relation to or"1 as discussed in section 1.
z^z-FT^a-1^)). By Lemma 8, ̂ ~1 (h))=a-1 (h') with | h'\ <h^. Thus

z^z+Fa-^^/^O-r^z)),

by the discussion after the statement of Proposition 2 of section 1.

Section 3

Let / be a polynomial z a complex number. Then recall from section 1 that f;1 is a
function taking f(z) to z, given by a power series on a disk of radius r(f, z)2 about
/ (z). Let us call that disk D^ ^ sof;1: D^ , -> C is analytic.

On the other hand one can consider other domains for f,1. In particular define
W^ ^ to be such a domain which is a wedge shaped circular sector as follows For
0<a^7r/21et

W^,,={weC [ 0<[w[<2| / (z) | , arg-^-
(- f(z)

<0^.

Then define W^ , to be the largest of the W^ ^ , on which/;1 is analytic and let 9 .̂ ,
be the corresponding ex. Note that if 9^ ,<n/2 then a critical value / (9) lies on a side
of W^ ^. It is clear that W^ ^cS^ ^ which was defined in section 2, and that W. , is
the largest Wy^ ^ , contained in S^^ ^.
Our algorithms attempt to make this analytic continuation a computationally feasible
process. What we do in this section is to show that the Euler algorithms yield a sequence
of iterates z^ whose values /(z^) remain in an appropriate wedge-shaped region W. ^.
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/, z

Let

(fc+l)^^
K(fe)=.tY. I /V I —— __ _ < /i »

Ky^l-y,)1^

where 7^ is the constant given in section 2.

THEOREM 2. — Suppose given a polynomial f and complex number Zy and a real number
L > 0 such that \ f (zo) | > L and © = 6^ ^ > 0. Let c = 1 /© log | f (zo) | /L. Then there is

sin ©
ha^ K(k)(c+})l"t

with this property: For each h, 0 < h ̂  ho, there is some

^Iflogi^^
-h[_ L f c + l j

such that | / (z^) | < L where z^ = E^ (/., ^ ) (zo).
Remark. - We actually prove a stronger statement. If a=^/(fe+l)sin 0, one can

take

^ n iog |/(^o) i f i Y|
n 1 ^ L \l-^Wd)}\

in the theorem where fyl denotes the smallest integer greater than or equal to x. See
Lemma 1 below. We also are using the functions ^(y) introduced in section 2, which
are defined and increasing in the range 0<y<Yfc.

Note that n, the number of steps depends crucially on the constant (function of k only)
K(fe).
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Here we tabulate some values of K (k) to six decimal places.
K(fe) decreases to 1/(3-/8)=5.82842.

^ 1 2 3 4 5

K(k) 47.0262 21.0297 14.6779 12.0350 10.6492

k 6 7 8 9 10

127

K(k) 9.81331 9.25572 8.85456 8.54935 8.30772

Note that for k=l or Newton's method the value of K(l) shows that Theorem 2 in
that case is significantly worse than the results achieved in Smale.

COROLLARY TO THEOREM 2. — In addition to the hypotheses of Theorem 2, suppose that
L < (WO + Yfe)) pf. Then for all 0 < h ̂  ho in Theorem 2 and all

^^^ ^<-
This is simply a consequence of Theorem 2 and the proof of Corollary 1, of

Theorem 1.
The proof of Theorem 2 uses heavily Theorem 1 and partially generalizes Theorem 3

of Smale (the case k = 1, Or Newton's method).

LEMMA 1. — For any c>0, 0<a< 1, and 0^(7) as above, there is a unique solution

1-hh==ho 'of ( ^ + l ) c + l =
^Wd)

in the range 0 < ho < a y^.
This ho satisfies

ho^
a(k+l)

kK(k)(c+l}l/k9

Furthermore for

1 . 10<h<ho, ——————<l+
— - 1 «. /7- /-\ —\-^Wa) c(k+\)

Proof. — The right hand of the equation for ho decreases monotonically from oo to
below 1 as h goes from 0 to ay,, (Lemma 4 of section 2). Since ( A ; + l ) c + l > l , this
yields the unique solution ho.

Since ^(^/^^^(/lo/a) for h<ho, using the defining equation for ho we have

J _ _ 1 _ ( f c+ l ) c+ l ^, . 1
.. / i / x ^ i ^ / ^ ~ ^, . ,.——~T~ = l''" ~~.—l-^(h/a) \-^(ho/a) ( f e + l ) c + / i o ~ c ( f e + l ) '
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This gives the last statement of Lemma 1. It remains to show

^ ^ ^(fc+1)
"-kKCfeKc+l)1^'

Note /lo^Yi^Vt since a< 1. Then use the defining equation for hy to obtain

hp\^ 1-fop ^ 1-Yt
^ - =\a; k(c+l)+l ~"k(c+l )+ l

From the definition a^ (y) = Pk (y) y^ of section 2, we have

/ ^ o Y o ^ o \ ^ o V i-y.0 I D I y I ~ I u I ̂  "̂

^J^^r^^rfeCcTTHT'
SO

(hoV 1-Y 1 ^ 1-Y. 1 _ 1-Y. ^
Y a y - ( fe (c+l )+l ) Pfc(Va)^(fe(c+!)+!) P^) (fe(c+l)+l) k'

By taking fe-th roots,

hp^ Y.d-y^ ^ Y.O-Y^ ^ 1 k+1 1
^ =( fe (c+l )+ l ) l / k - ( fe+ l ) l / k (c+ l ) l / k -K(fc ) k (c+l)^

and thus our desired inequality.
Q.E.D.

The last part of Lemma 1 explains the remark after PROPOSITION 2 since by it,

i iog ̂ Mf__i_)< ifiogi^M ̂  ̂ _y
fc ° L \l-afc(fe/a)/- 'h\ 0 L fe+1/

In fact we proceed to prove Theorem 2 in the form of the n in this remark.

LEMMA 2. — ^i (y, ^sin 9y^ y
Proof. — If 9y ^ = 7C/2 then the wedge is a semi-circle of
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radius 21 / (z) | and the circle of radius [ / (z) [ about / (z) is contained in the wedge. Thus

^^^-l-sin71.l(f-z)-\f(z)\ 2

If Qf ^<7i/2, fix a critical point 9 which maps to the boundary of the wedge.

Then h, (/, z)= | /(z)-/(6) [ / 1 /(z) | ̂ sin 9^ „.
Q.E.D.

From trigonometry, one has:

LEMMA 3. - For 0^x<n/2, O^a^l,
(a) [ arc tan (x)\^x and
(b) sin a x ̂  a sin x.
The next step is to use Theorem 1, section 2. We write

Y==^-; 0<y^, P^y^a^Y^a^Y^l.
^i

Then Theorem 1 asserts

^=1-^+Q(^/^)Y^/oo
=1-0-0(^/^)7')^

where|Q(/i,/,z)[^P,(y).
Already this yields the first part of the following lemma.

LEMMA 4. — Let z"=Efc^ y)(z) where E^ is the fe-th onfcr Ewfcr incremental
algorithm. Then with the above notation for 0 < y < y^

(a) w ^l-(l-a»(Y))/»,
/(^)

W jarg^ <. ^)h

' f ( z ) \ l-(l+a»(y))/i
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The proof of (b) goes by the consequence of Theorem 1 above and is aided by the
diagram.

. f ( z ' ) / f ( z )

imQ(M,z)-
,k+1h?

arg /(O
/(2)

limQ^/.z)^1)/^!
l-^i+ReQ^/.z)^1)/^

=arc tan

MY) 7^ _ ^(7)h
l-h-^)^h l-/i-a,(y)/i

We have used Lemma 3; this proves Lemma 4.
Let

a=
k .

k+l
sin 07, zo and § = -.

a

LEMMA 5. — Let 0 < 8 < 7k and z,, = E^ ̂  y , (zo). Then for

o^(i-(i+o^))e
7, zo'- ~ (fe+l)ak(8)/i

'we /iai»e

"/, zn- 9^,^ a^ \f(z^,)\^l-(l-^(S))h•)''+l\f(zo)\.
f c+1 '•

The proof goes by induction on n, the case n = 0 given by Lemma 4 a.
First note that if 9 .̂, ^[fe/(fe+l)]ey, ^ then by Lemmas 2 and 3fc,

î
/ii (/, zj ̂  sin —— Q^ ^ > —— sin Q^ ^ so y =

hi (f, Zn)

and
ak(8)/i__/(^+i) a,(Y)/i

<arg
l-(l+a»(Y))/i l-(l+a»(8))/i/(^)
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and
/(^i) ^l-(l-a,(y))/i<l-(l-a,(8))^.
f^n)

Using Lemma 4 applied to z^ instead of z. If 9f ^^k/(k+l)9f ^ then it is also true
that

,/( l̂)
^.n.^f^n- \^S

f^n)

for: By Proposition 4 of section 2 with h^=kj(k +1) sin 9y ^ there is a complex number
/i" with h' | < /!* such that

^^/^((i-^/oo)).
Thus (1 - h') f (z) e W^ ^ and z^ +1 e Image f^1 where /^1 : S^ .̂ -^ C. It follows from
the discussion of S^ j- in section 2 and following the definition of 9y ^ in section 3, that
S^ =S^^^ . It is then immediate from the definition of 9^ ^ that

/(^.i)
9/, ^+l>e/, ^n' arg

/(^n)

Thus we may proceed by induction as long as we are sure that

A ^ Q
^"^fe+T^20

or as long as

n a^ (8) h
f-zo-^l-(l+a,(5))A = fe7T /-z0'

that is: as long as

^,^1-(1+^(8))^Usn<—————————\j f -..- - (^+l)a,(5)/i J > °

With these lemmas done, we are now prepared to give the proof of Theorem 2, n as
in the remark following that theorem.

Use Lemma 1 with

a=-k-smQ and c=-^log l^^l,
f e + 1 © 5 L
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to obtain ho of Theorem 2. This ho will thus satisfy the inequality of Theorem 2. Now
we have to show that for 0 < h ̂  ho and

.-r^^lf———'ll .r-lA^KL.,.r'^^i(—————)1 then I/MI
|_/i L \l-an(/i/a)/J

We need to apply Lemma 5 [with (n-1) replacing n] to obtain

"(z,)| ^(l-(l-^(5))/i)"|/(zo)| ^LI/O
For this it is required that

L
nlog(l-(l-a,(8))/0^1og

17 (̂ (v

or

^ log|/M/L
- |log(l-(l-at(§))/i|

logl/M/L

and

(A) ^ (l-a.(8))/.
suffices.

On the other hand Lemma 5 demands an upper bound on n— 1, namely

(l-(l+^(§))/i)9^.
——————————-—— ^ n— l.(B) (k+l)a,(6)/i

Thus if 8, h (8=/i/a) satisfy

(l-(l+a,(5))fe)9^^1og|/(zo)|/L
(c) (k+l)a^§)/i = (l-ak(5))/i '

then there is an integer n which satisfies both (A) and (B). We now find 5's which
make (C) hold, or

(l-(l+q,(5))/»)^ log|/(zo)|/L ___c_
(k +1) ̂  (S) - 9^, ,„ (1 - ̂  (§)) 1 - a, (§)

Now multiplying by 1-0^(5) and k+1 it suffices to have

(l-«,(§))(l-(l+a,(8))fe ,
a»(8)

(l-^-ak/t-a^(§)+a^/l+a^(8)2/l)
a , ( § ) -
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So it suffices to have

- - l^ ( fe+l )c or -L^.^(fe+i)c+l.
afc(8) ^(5)-

But this last exactly corresponds to our defining equation (Lemma 1) for h^ so that
h^ho guarantees the inequality is satisfied. This finishes the proof of Theorem 2.

Section 4

The Corollary of Theorem 2 shows that the crucial ingredients for producing an
approximate zero for /, starting at ZQ and iterating E^ ̂  ^ ̂  are

Qf,^\og\f(zo)\ and | log pf |.

In this section we tend to increase 9^ ^ at the expense of increasing | f(zo) |. Doing so
we gain considerably. In particular, we prove in this section:

THEOREM 3. - There exist universal (small) positive constants K^ K^ with the following
true. Given integers k>0, and d>\, and a real number \>[i>0 : There are R, h such
that:

If(^f)eS^xP,(l) then z,=(E^ ,, ̂ (zo)

will be an approximate zero off, with probability 1 — ̂  for any

^K,f<ill^«i•iy"^K„
\ H /

Here SR= { z 6 C | | z | =R}, P^(l) is the space of all complex polynomials
d

/(z)=^fl,z1 with ^=1 and |^|^1 for f= l , 2, . . ., d-\
i=

and H is normalized Lebesque measure on the product SR x Pd(l).

COROLLARY. — Given d> 1, 1 >n>0 there are R, h such that:
V^o. /)^SR x P^(l) then z,=E^g ̂  ^(z^) is an approximate zero of f with probability

1 — H for any

( lloe u l V-^/^fl ^
s^eK.di1-^-} +K,.^(l10^!)"""-^^

Proof. — Let k the smallest integer greater than log d in Theorem 4, then d^^^^ed.
If the constants Ki, K^ in Theorem 3 and its corrollary were allowed to depend on k,

KI would be approximately K(k) of section 3 and K;2 even smaller. Recall that K(fe)
decreases rapidly with k to about 7. One obviously can construct an appropriate
algorithm for Theorem 3 and its Corollary.
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To prove Theorem 3 we want to estimate the normalized Lebesgue measure of the set
in SR x P^(l) where py is small or 6f ^ is small.

Y^R={(zo, / )eSRxP,( l ) |p^<aor9^<a}.

PROPOSITION 1. — For R>2, CT<7i/2,

^l(Y,, , ,J^(rf-l)a2+2f^- lya+2arcsin ! ^
A d A R-^

First we prove Theorem 3 from the Proposition.
Besides fe, and d we are given ^i, 0<n<l . The following equations are easily solved

for a, R, and a.

y-i).'-^,

4fd-\\ . 1 [i- —— arc sin ——— = —,
n\ d ) R-l 10

2\d-\ _4[i
K\ d \ 5

In fact a-(^)^•
R4sm^f^V)r+l,

L ^\d-\))\

^2W^
5 \d-\j

From Proposition 1 it follows that ^i(Y^ ^ R)<^I i.e. the measure of Y, y ^ is less
than the given 1.1 using the probability measure on SRXP^(I) . Thus (zo, /) in
SR x P^(l) is not in Y^ „ R with probability 1 —[i. For such ZQ, /, py>a and 9y zo>cr.

We apply the Corollary of Theorem 2 to obtain an approximate zero of /.
To find the K^, K^ and estimates of Theorem 3, one calculates those quantities from

that Corollary. We don't carry out the straightforward calculation here, but indicate
how it goes. In the Corollary (Theorem 2) the number of steps s (denoted by n in the
corollary) is given as a function of |/(^o)|» 9» ^d P/ (instead of L); keep k fixed
throughout.

But s in Theorem 3 is given as a function of d and n. Thus it is required to see how
d and [i depend on | f(zo) |, and py. This goes as follows.
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From the construction of Y^ ^ ^ we may replace 9 by CT and py by a. Moreover
since

d d p ^ + i — 1
I/M^E^I^ZR^——,

i=0 1=0 K — 1

we may replace |/(zo)| by (R^1—!)/^—!). These remarks yield the number of steps
given by the Corollary as a function now of a, a, and R. By substituting the values of
a, a, and R given by the above equations, yields 5 in terms of p, and d. This function 5
of |Li and d simplifies to give Theorem 3.

It remains to prove Proposition 1. We have
PROPOSITION 2. — (Smale)

Vol{/eP,(l) |p^<a}^-l)a2

Where Vol means normalized Lebesgue measure in Pd(l). [Actually Smale writes da2 but
the proof gives (d— 1) a2.]

Thus the remaining work of this section is to prove:

PROPOSITION 3. — For a<7c/2,/eP^(l), R>2,

Vol{zoeSR|e^„<a}^ 2 f^— l ya+2arcs in——y
n\ d / \ R — l /

In fact { z o e S R | 9 f ^<a} is contained in at most l(d—\) arcs of SR of angle
lid [a +2 arc sin 1/(R-1)].

Here Vol again is normalized Lebesgue measure so that V(SR) = 1. Note that Proposi-
tion 1 follows at once from Propositions 2 and 3.

The following lemma is essentially the Gauss-Lucas Theorem, see Henrici. Recall
that for two complex numbers z, w, Re(zw) is the usual inner product of z and w as
vectors in R2.

LEMMA 1. — Let /= zd + a^ _ i z4"14-. . . +OQ be a complex polynomial and let SR contain
all the roots off in its interior. Then for any z e SR

Refz-^X).
\ f'(z)}

Moreover the Newton differential equation d z / d t = —/ (z)//' (z) is transversal to SR and
points inward.

Proof. — Let w^, . . ., w^ be the roots of / Then the w^ are in the half plane defined
by the tangent space to the circle at z, i. e. Re(zn\-)<zz.

It follows that
Re(z(z-w,))>0,

Ref-^-)>0,
\Z-WJ x

^Re/^^,70 5
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Refz^X)
V /W

and

Rel^lX).F^X).
, /(^/\ /(^

For the last part if zeS^, then the inner product

f.,^))=Refr^))<o.
\ /'(^) / V /'(^) /

LEMMA 2. — Suppose fePd (1), R^2. Let z^ z^^S^ such that
n

arg-^- <P<-.

Then

d6 -h 2 arc sin ——— ^ arg
• D 1 "~R-l

./(^i)
/(^)

^dp—2 arc sin
R-l

Proof.
f(z)^ f l ,_lZd- l+...4-ao

z^ z^

and for z e SR
d-1 d-l

E ^^ £ R^ R4-1-! 1<. j=0

[z^ ~ R^ (R-IVR^ R-l

Thus /(z)^ is inside the circle of radius 1/(R—1) centered by 1, and

arg/(^)
z^

< arc sin
R-l

Now

/(zi) ̂  ̂ i(/(^i)M) ̂  /^Y^^1^
f(Z2) W(z,)/zi) \zJ f(z,)/zi
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and the lemma follows from the fact that the argument of a product is additive and the
triangle inequality.

Let 0 be a critical point of / Let L be the ray through / (9), L = { ^ / (9) | X > 0} and
£9 the component of/'^L) which contains 0. Let ^= U ^9.

9
ftw=o

LEMMA 3. - // R ̂  2, / e P,, (1) then ̂  H SR is a set of at most 2 (d -1) points.
Proof. — Recall from section one that the inverse images of rays by / are solution

curves of the differential equation dz/dt^^—f^z))/^ (z) which by Lemma 1 are transversal
to SR for any R ̂  2. It follows that for any fixed 9, such that // (9,) = 0, ̂ . H Sp consists
of at most fe(+1 points where k, is the multiplicity of 9, as a root off. Thus

^ ki=d-\ and ^ (fe;+l)^2(d--l).
e» Of

/ ' (e»)=o / ' ( e f ) = = o

Equality is only obtained here if each critical point 9, is a simple zero of // i. e. if each
/c,=l.

Consider now the map /^-1 : S^ f -^ C for ^ a root of /(see section 2). Recall that
S^ y. = C — Q where Q consists of parts of certain rays. Now given an angle a, let U^ ,
be the set of all numbers w in S^ , such that arg \v/q < a, some q e Q. It follows that:

LEMMA 4. — Let a<7c/2. Ifz is not in any /^(U^ J for any ^ wfth/(^)=0, then
9^,>a.

Moreover:

LEMMA 5. — Let a < 7i/2, an^

N(a)=Spn U A"1^)-^
/ (^)=0

Then

Vol N(a)< ̂ ^^^fo^ arc sin —!—V
Tirf V R-l /

H^r^ Vol refers to normalized Lebesgue measure in SR.
Proof. — Keep in mind that the f^1 have disjoint images. Using Lemma 3 it follows

that N(a) is contained in the set of at most 2 ( d — l ) intervals N(a, Zo), Zoe^HSp,
about the 2(^—1) points of SHSp. The problem is to estimate the measure of these
intervals. This is accomplished as follows. If z e N (a, Zo), then | arg / (z)jf (zo) | < a. By
Lemma 2,

z , „ . . 1 z , \( . . 1 \arg — a — a < 2 arc sin ——— so arg — < -( a+2 arc sin ——— .
°zo ^ R- l °zo ~A R-l7
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Since there are two sides of ZQ in N(a, Zo) the total angle of N(a) is is bounded by
4(d-l)/^[a+2 arc sin 1/(R-1)]. Dividing by 2n yields Lemma 5. With Lemma 4
that gives us Proposition 3.

Section 5

The goal of this section is to extend Theorem 2 to any incremental algorithm of
efficiency k. Since the proof is similar to the proof of Theorem 2, we are brief.

Let

. - min|arg /(zo)AJ ' ° I ° /YQ\e, y"(9)=o Jw
I / (9)| <2 | / (ZQ)I

THEOREM 4. — Suppose that an incremental algorithm I has efficiency k. Then there is
a constant K depending only on I such that.

If A^ ^ > 0 and | / (zo) | > L > 0, then there is an h given explicitly such that | / (z,,) | < L
for

n=K Hogl/M/L ..T^
— — — — — A ?

I ^,.0 I

where z,=(I^^(zo).
\f ^ coincides with 9f ^ in Smale but not with the 9y ^ we have used above. For

our 9^ ^ , Af ^ ^ 9^ ^Q [x1 means the smallest integer greater than or equal to x. We
take less care about the constants here than in the proof of Theorem 2, although some
estimate is given at the end of the proof of the theorem. Recall that I;, j- is of efficiency
k provided that there exist real constants 8>0, K>0, c^ . . ., c^ c^>0 independent of
h, f and z such that

/ ( Ih )/ ( z ) )=l-(Clfe+ . . . +c^)+S^(/z)/oo
where

|Sfc+i (h ) | ^Khk+l max[l, -^) for 0</i<8 min (1, hi).
\ hi 1

LEMMA 1. — There is a constant a, 1 ̂ a^O, depending only on I such that:
If0<h<a min (1, h^) then

f(z)
<1- c,h and argf(^) f^) <2Khk+l max 1,-^

\ n! /f^)
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Proof. - Let

/ 1 p / <- V/^„„,„(,, ,,̂ , __, (^)).
4E N

Then/«)//(z)=l-Cih- ̂  c,/i'+Sk+i(/i) where for /i<a min (1. hi)
i = 2

t t t

^c.-A' ^^^|c,|<^S|c,|^/i^,
1 = 2 t=2 i=2 4

| S» +1 (h) | ̂  /i K max (h,, ( h- Y^ h K a" < /icl-.
\ V / t i / / 4

Thus

—^^—Ci/ i+a where |a |<— 1 and [im a| ^ |St+i(/i)
f(z) 2

So

/(^) ^i.^
/(^

Since

j^<|^4 o<i-j^<^.
Now

f ( z )
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and by Lemma 3 of section 3

arg^ < \^-\ ^^^^^^Kh^^l1}
°/(z) ^(/(zO/Az))- l-(3/2)Cih \ h\)(z^re^zO/Az))- l-(3/2)cj

LEMMA 2. - For 0<9^ Ti/2, 1< 9/sin 9^7i/2.
Proq/:

71 7C/2 =1lim
2 sin 7C/2 e ̂  o sin 9

and there are no critical points of 9/sin 9 in the open interval since
(9/sin 9)/=(l/sin 9) (1-9 cotan 9) and 9 cotan 9<1 for 0<9<7i/2 since arc tan x<x in
this range.

Let h* = a/2 sin A .̂ ^.

LEMMA 3. - Let 0<h<h*. - Let z»=I^ ^.(zo). Then for all

^.o 1 h^ , AV̂, zoA0<n- l< /. Zn-l-~ 2 2K ^+1

and

i/(^)i ^f i ^v
|/(^o)| V 2 ;

Proo/. - First note that if Ay, ̂  1/2 A^ ^ then

^i (y , ̂ sin 1/2 A^ ,o> 1/2 sin A^ ^

by Lemmas 2 and 3 of section 3 so

.u. ^ .h*= - sin A^ ^<a min (1, ^i (y, ^)

and
/ . / > . / 1 \ /i^'^'1

,,,^><2K»..>n,.x(l,^)-2K^.

We may proceed by induction as long as

A
/, 20" -("-!)

IKh^1 ^f.^
h*" > 2

i.^.zo 1 ^or n — 1 < ——
- 2 2K ^+1

Proof of Theorem 2.

/i*= j sin A^ ̂  ̂  ^A^, ,„= ^A^., ,„.
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Let 0</i</i*. Then for all

^J-W^ wehave^^l-.^.-^J-W^o ,ehave^<fl-^Y.
-4KW A"1 /(zo) \ 2 /

integer n such that

|/M<(.-^)'|/M.L w..,n.(.-^)-.^

So to have an integer n such that
i ,. .1 /- c,h\", ,. , , ., . /, c,/i\" . L

or

n iogf l -^^log 1—!.
°^ 2 }- °|/(zo)'

Thus it suffices to have
^log|/M/L
- ci/i/2

To take n this large it suffices to have

^)'̂ >"-.
so it suffices to have

J-^Y^ s ̂ gl-^o)!/1-
4K\i t / h^1 ~ Cth/2

or

^(Ci/SKKa/^A^1,,
= log|/(zo)|/L

So we have proven. If

o<^(-£i-Y^f A^, )"
-^K^ nVlog|/(zo)|/L/

then |/(z,,)| <Lfor

^_r(2/Ci)|log|/(z)|/Ll

Take
^_(c,Ya( A^o Y

\&K) n\log\f(z^)\/L)
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which gives | / (z^) | < L for

^ r/sKY^iTT/iogi/czo)!^^1^^
|AcJ ac\ A^, / J

Q.E.D.
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