# Annales scientifiques de l’é.n.S. 

## Michel TALAGRAND <br> On spreading models in $L^{1}(E)$

Annales scientifiques de l'É.N.S. $4^{e}$ série, tome 17, nº 3 (1984), p. 433-438
[http://www.numdam.org/item?id=ASENS_1984_4_17_3_433_0](http://www.numdam.org/item?id=ASENS_1984_4_17_3_433_0)
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1984, tous droits réservés.
L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

Article numérisé dans le cadre du programme

# ON SPREADING MODELS IN L¹ (E) 

Par Michel TALAGRAND (*)


#### Abstract

We construct a Banach space E which has the Schur property (hence $l^{1}$ is its only spreading


 model) but such for each family $\left(a_{n, k}\right)$, with $a_{n, k} \geqq 1, \lim a_{n, k}=+\infty$, there is a sequence $\left(f_{n}\right)$ in $L^{1}(\mathrm{E})$ for which $\left\|\sum_{k \leqq i \leqq n} \pm f_{i}\right\| \leqq a_{n, k} . \quad$ In particular, $\mathrm{L}^{1}(\mathrm{E})$ has a spreading model isomorphic to $c_{0}(\mathbb{N})$.
## 1. Introduction

Let E be a separable Banach space and $(\Omega, \Sigma, \mu)$ a (standard) measure space. We denote by $L^{1}(E)$ the space of integrable functions $\Omega \rightarrow E$. It is known that if $\cdot E$ does not contain $c_{0}=c_{0}(\mathbb{N})$, then $\mathrm{L}^{1}(\mathrm{E})$ does not contain $c_{0}$ [2]. The purpose of this work is to show in an opposite direction that even when E is by no way close to $c_{0}, \mathrm{~L}^{1}(\mathrm{E})$ can contain sequences which somehow behave like the unit basis of $c_{0}$. Recall that a Banach space has the Schur property if weak null sequences go to zero in norm.

We shall show the following.
Theorem A. - There exists a separable Banach space E which has the Schur property, such that for each family $a_{n, k}$ of real $a_{n, k} \geqq 1$, such that:

$$
\begin{equation*}
\forall k, \quad \lim _{n} a_{n, k}=+\infty, \tag{1}
\end{equation*}
$$

there exists a sequence $f_{n} \in L^{1}(\mathrm{E})$, such that:

$$
\begin{equation*}
\forall \omega, \quad\left\|f_{n}(\omega)\right\|=1, \tag{2}
\end{equation*}
$$

(3) $\forall$ finite set I , with card $\mathrm{I}=n$ and $\operatorname{Inf} \mathrm{I} \geqq k$ one has, for $\left(b_{i}\right) \in \mathbb{R}^{\mathrm{I}}$ :

$$
\operatorname{Inf}\left|b_{i}\right| \leqq\left\|\sum_{i \in 1} b_{i} f_{i}\right\| \leqq a_{n, k} \sup \left|b_{i}\right|
$$

[^0]ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPÉRIEURE. - 0012-9593/84/03 433 6/\$2.60
© Gauthier-Villars

Since E has the Schur property it follows from Rosenthal's theorem [3] that each sequence $\left(X_{n}\right)$ of $E$ which does not converge in norm has a subsequence equivalent to the basis of $l^{1}$. However the sequence $\left(f_{n}\right)$ of $\mathrm{L}^{1}(\mathrm{E})$ has a behavior which is close to the basis of $c_{0}$. Since it is possible to choose $\left(a_{n, k}\right)$ such that for each $n \lim _{k}\left(a_{n, k}\right)=1$, in the language of spreading models, $\mathrm{L}^{1}(\mathrm{E})$ has $c_{0}$ as a spreading model, while E has $l^{1}$ as unique spreading model.

The whole difficulty of the construction is that in E there should be "very few" sequences equivalent to the basis of $l^{1}$.

## 2. Setting of the construction

Let us set $\mathrm{T}_{n}=\{0,1\}^{n}, \mathrm{~T}=\bigcup \mathrm{T}_{n}$. For $s \in \mathrm{~T}$ let $|s|$ be the unique $n$ for which $s \in \mathrm{~T}_{n}$. For $s, t \in \mathrm{~T},|s|=n,|t|=m, n \leqq m, s=\left(s_{1}, \ldots, s_{n}\right), t=\left(t_{1}, \ldots, t_{m}\right)$, we write $s<t$ if $\forall i \leqq n, s_{i}=t_{i}$. With this order, T is the usual dyadic tree. For $t \in \mathrm{~T}, n \leqq|t|$, we write $t \mid n$ the unique $s \in \mathrm{U}_{n}$ for which $s<t$.

Let us denote by $\left(e_{t}\right)_{t \in T}$ the canonical basis of $\mathbb{R}^{(T)}$. In the next paragraph, we shall construct a family $H$ of $\mathbb{R}^{(T)}$, and we shall define for $x \in \mathbb{R}^{(T)}$ :

$$
\begin{equation*}
\|x\|=\sup \{|\langle g, x\rangle|, g \in \mathrm{H}\} \tag{4}
\end{equation*}
$$

Let E be the completion of $\left(\mathbb{R}^{(\mathrm{T})},\|\|.\right)$. It will be true that $\left\|e_{t}\right\|=1$. We denote by $e_{t}^{*}$ the element of $\mathrm{E}^{*}$ given by $e_{t}^{*}\left(e_{t^{\prime}}\right)=1$ if $t=t^{\prime}$ and zero otherwise.

Let $\Omega=\prod_{n} \mathrm{~T}_{n}$, and let $\mu$ be the canonical measure on $\Omega$ (i. e. the product measure when each $\mathrm{T}_{n}$ is given the measure which puts weight $2^{-n}$ at each point).
 noticed that the setting of this construction is very similar to the setting of the construction [4] of a space E with the Dunford-Pettis property such that $\mathscr{C}([0,1], \mathrm{E})$ fails the Dunford-Pettis property. However the idea of the construction of the norm is rather different.

## 3. Construction of the norming functionals

We start with $\mathrm{H}_{0}=\left\{e_{t}^{*} ; t \in \mathrm{~T}\right\}$. We shall construct inductively subsets $\mathrm{H}_{n}$ of $\mathbb{R}^{(\mathrm{T})}$. Let $\mathrm{X}^{n}$ be the set of subsets $\mathrm{A}=\left\{t_{1}, \ldots, t_{p}\right\}$ of T with the following property:

$$
\begin{gather*}
\forall 1 \leqq i \leqq p, \quad\left|t_{i}\right| \leqq n .  \tag{5}\\
\exists s \in \mathrm{~T}_{n}, \quad s<t_{i}, \quad \forall i \leqq p . \tag{6}
\end{gather*}
$$

(7) If $\left|t_{i}\right|=c_{i}$, for $1 \leqq i<j \leqq p$ one has $t_{j}\left|c_{i}=t_{i+1}\right| c_{i}$.

$$
4^{e} \text { SÉRIE - TOME } 17-1984-\mathrm{N}^{\circ} 3
$$

The element $s$ will be called the stem of A and be denoted by $s(\mathrm{~A})$. Let $\mathrm{H}_{1}^{n}=\left\{1 / 4 \sum_{t \in \mathrm{~A}} e_{t}^{*} ; \mathrm{A} \in \mathrm{X}^{n}\right\}$. For $g \in \mathrm{H}_{1}^{n}$, we call $s(\mathrm{~A})$ the stem of $g$, also denoted by $s(g) . \quad$ We set $H_{1}=\bigcup H_{1}^{n}$.

For $g \in \mathbb{R}^{(\mathrm{T})}$, let $\mathrm{V}(g)=\sup \left\{|t| ;\left\langle g, e_{t}\right\rangle \neq 0\right\}$. Let $n>0$. Consider a sequence $k(1)=n<k(2)<\ldots<k(p)$ and a sequence $g(i) \in \mathrm{H}_{1}^{k(i)}$ such that:

$$
\begin{equation*}
\forall 1 \leqq i \leqq p, \quad \mathrm{~V}(g(i))<k(i+1) \tag{8}
\end{equation*}
$$

$\exists s \in \mathrm{~T}_{n}, \quad \forall i, \quad s<s(g(i))$.

$$
\begin{equation*}
\forall i<j \leqq p, \quad s(g(i+1))|\vee(g(i))=s(g(j))| \vee(g(i)) \tag{9}
\end{equation*}
$$

[The reader should make a picture of the supports of the $g(i)$.] We define $\mathrm{H}_{2}^{n}$ as the set of sums $1 / 4 \sum_{i \leqq p} g(i)$ of the above type, and $H_{2}$ as $\bigcup_{n \geqq 1} \mathrm{H}_{2}^{n}$.

The construction continues in the same way. Notice that each $g \in H_{n}$ is of the type $4^{-n} \sum_{t \in \mathrm{~A}} e_{t}^{*}$. Moreover, as is seen by induction, if $\mathrm{B} \subset \mathrm{A}, g^{\prime}=4^{-n} \sum_{t \in \mathrm{~B}} e_{t}^{*}$ still belongs to $\mathrm{H}_{n}$.

Let $H^{\prime}$ be the set of finite sums $\sum_{i \geqq 2} g_{i}$, where $g_{i} \in H_{i}$. Let $\mathbf{H}=\mathbf{H}_{0} \cup \mathbf{H}_{1} \cup \mathbf{H}^{\prime}$.

## 4. E has the Schur property

By standard arguments of approximation, it is enough to show that if a sequence $\left(f_{n}\right) \in \mathrm{E}$ such that $f_{n}=\sum_{t \in \mathbf{A}_{n}} x_{t}^{n} e_{t}$ for $\mathrm{A}_{n}$ disjoint sets, $\left\|f_{n}\right\|=1$ it cannot go to zero weakly.

1st case. - The following holds:

$$
\begin{equation*}
\forall m, \quad \lim _{n} \sup \left\{\left|\left\langle g, f_{n}\right\rangle\right| ; g \in \mathbf{H}_{m}\right\}=0 . \tag{11}
\end{equation*}
$$

For each $n$, there is $g_{n} \in \mathrm{H}$ with $\left|\left\langle g_{n}, f_{n}\right\rangle\right| \geqq 1 / 2$. From (11) it follows that $g_{n} \in \mathrm{H}^{\prime}$ for $n$ large enough. Then we can write $g_{n}=\sum_{2 \leqq i \leqq k(n)} g_{n}^{i}$ where $g_{n}^{i} \in \mathrm{H}_{i}$. By taking a subsequence one can assume from (11) that:

$$
\left|\sum_{i \leqq k(n-1)} g_{n}^{i}\left(f_{n}\right)\right| \leqq 1 / 4
$$

If:

$$
g_{n}^{\prime}=\sum_{k(n-1)<i \leqq k(n)} g_{n}^{i}
$$

one has $\left|g_{n}^{\prime}\left(f_{n}\right)\right| \geqq 1 / 4$. Let $\bar{g}_{n}^{i}$ obtained from $g_{n}^{i}$ by restricting its support to $\mathrm{A}_{n}$. Then $\bar{g}_{n}^{i} \in \mathrm{H}_{n}$. Let:

$$
g_{n}^{\prime \prime}=\sum_{k(n-1)<i \leqq k(n)} \bar{g}_{n}^{i}
$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Then $\left|g_{n}^{\prime \prime}\left(f_{n}\right)\right| \geqq 1 / 4$. Moreover, $g_{n}^{\prime \prime}\left(f_{p}\right)=0 \quad$ for $\quad p \neq n$. Let $h_{n}=\sum_{p \leqq n} g^{\prime \prime}{ }_{p}$. Then $h_{n} \in \mathrm{H}^{\prime}$. Indeed, $h_{n}=\sum_{i<k(n)} h^{i}$ where $h^{i}=\bar{g}_{p}^{i}$ for the unique $p$ such that $k(p-1)<i \leqq k(p)$. We have $\left|h_{n}\left(f_{p}\right)\right|>1 / 4$ for $p<n$. Hence if $h$ is a weak* cluster point of $\left(h_{n}\right)$, we have $\left|h\left(f_{p}\right)\right| \geqq 1 / 4 \forall p$, which finishes the proof in this case.

2nd case. - There is $m, \alpha>0$ and a sequence $k_{n}$ such that $\sup \left\{\left|\left\langle g, f_{k_{n}}\right\rangle\right| ; g \in \mathrm{H}_{m}\right\}>\alpha \forall n$. One can suppose $k_{n}=n$. One can also suppose that $m$ is the smallest integer for which the above is true, i. e.:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \left\{\left|\left\langle g, f_{n}\right\rangle\right| ; g \in \mathbf{H}_{m-1}\right\}=0 \tag{12}
\end{equation*}
$$

For convenience of notation suppose now on that $m \geqq 1$. (The same argument works for $m=0$.)

Let $g_{n} \in \mathrm{H}_{m}$ with $\left|\left\langle g_{n}, f_{n}\right\rangle\right|>\alpha$. One can suppose that $g_{n}$ is supported by $\mathrm{A}_{n}$. It follows from the definition of $\mathrm{H}_{m}$ that for each $k$ one can write $g_{n}=g_{n}^{1}+\ldots+g_{n}^{k}+g_{n}^{\prime}$ where $g_{n}^{i} \in \mathrm{H}_{m-1}$ for $i \leqq n$, and $g_{n}^{\prime} \in \mathrm{H}_{m}^{k}$. It follows, by taking a subsequence, that one can assume $g_{n} \in \mathrm{H}_{m}^{n}$ and $\left|\left\langle g_{n}, f_{n}\right\rangle\right| \geqq \alpha / 2$. Another extraction of subsequence will give $g_{n} \in \mathrm{H}_{m}^{k(n)}$ where $k(n)>\mathrm{V}\left(g_{n-1}\right)$. Let $s_{n}=s\left(g_{n}\right) \in \mathrm{T}_{k(n)}$. By taking a subsequence, one can assume that for each $p$, the sequence $s_{n} \mid p$ is eventually constant. A further subsequence will satisfy $s_{n}\left|\vee\left(g_{p}\right)=s_{p+1}\right| \vee\left(g_{p}\right)$ for $n \geqq p+1$.

It follows from the definition of $\mathrm{H}_{m+1}$ that for each $n, h_{n}=1 / 4 \sum_{p \leqq n} g_{p} \in \mathrm{H}_{m+1}$ . Moreover, for $p \leqq n$ we have $\left|h_{n}\left(f_{p}\right)\right|>\alpha / 8$. Let $h$ be a weak* cluster point of $\left(h_{n}\right)$. Then $\left|h\left(f_{p}\right)\right| \geqq \alpha / 8$ for each $p$, which finishes the proof.

## 5. Construction of $\left(f_{n}\right)$

In fact, $\left(f_{n}\right)$ will be a subsequence of $h_{\boldsymbol{n}}$.
Lemma. - Let $\left(u_{i}\right)$ be a sequence of independent random variables uniformly distributed in $\{1, \ldots, g\}$. Let $\quad \mathbf{P}(q, n)=\operatorname{Prob}\left(\exists i, j \leqq n, u_{i}=u_{j}\right)$. Then $\quad \lim _{q \rightarrow \infty} \mathrm{P}(q, n)=0$.
Moreover, $\mathrm{P}(q, n)$ is increasing in $n$ and decreasing in $q$.
Proof. $-\mathrm{P}(q, n) \leqq q^{-2}(n(n-1)) / 2$.
Let $\left(a_{n, k}\right)$ be the sequence of theorem A. One can suppose that $a_{n, k} \leqq a_{n+1, k}$ and $a_{n, k} \geqq a_{n, k+1}$ for each $n, k$. Let $n(k)$ be the smallest integer such that $a_{n(k), k} \geqq k+1$. From the lemma, there exists an increasing sequence $q(k)$ such that for each $k \geqq 1$ one has the following conditions :

$$
\begin{equation*}
n(k) P\left(2^{-q(k)}, n(k)\right) \leqq \frac{1}{2} \tag{13}
\end{equation*}
$$

(14) For each integer $n$ such that $a_{n, k} \leqq 2, n \mathrm{P}\left(2^{-q(k)}, n\right) \leqq a_{n, k}-1$.

$$
4^{e} \text { SÉRIE - TOME } 17-1984-\mathrm{N}^{\circ} 3
$$

We shall prove that the sequence $f_{n}=h_{q(n)}$ satisfies the theorem. Let I be a finite set of integers, with $k=\operatorname{Inf} I$ and $\operatorname{card} I=n$. Let $l$ the greatest integer such that $l+1 \leqq a_{n, k} . \quad$ (It is possible that $l=0$.) Let $m=k+l+1$.

We have:

$$
a_{n, m} \leqq a_{n, k}<l+2 \leqq m \leqq a_{n(m), m} \quad \text { so } \quad n \leqq n(m)
$$

Hence:

$$
\begin{equation*}
n \mathrm{P}\left(2^{-q(m)}, n\right) \leqq \frac{1}{2} \tag{15}
\end{equation*}
$$

Let us define $a_{i}(\omega)$ by $f_{i}(\omega)=e_{a_{i}(\omega)}$. Let:

$$
\mathrm{Z}=\left\{\omega \in \Omega ; \exists i, j \in \mathrm{I}, i, j \geqq m, i \neq j, a_{i}(\omega)\left|q(m)=a_{j}(\omega)\right| q(m)\right\}
$$

Since the maps $\omega \rightarrow a_{i}(\omega)$ are independent and $a_{i}(\omega) \mid q(m)$ takes for value each element of $\mathrm{T}_{q(m)}$ with equal probability, one has $\mu(Z) \leqq P\left(2^{-q(m)}, n\right)$. For $\omega \in Z$, we have the trivial estimate $\left\|\sum_{i \in \mathrm{I}} f_{i}(\omega)\right\| \leqq n$.

We show by induction over $p$ that for $\omega \notin \mathrm{Z}$ and $g \in \mathrm{H}_{p}$, we have:

$$
\begin{equation*}
\left|\left\langle g, \sum_{i \in \mathrm{I}} f_{i}(\omega)\right\rangle\right| \leqq 2^{-p}(l+1) \tag{16}
\end{equation*}
$$

The result is obvious for $p=0$. Assume it has been proved for $p$. Let $g \in \mathrm{H}_{p+1}$. Then we have a decomposition $g=1 / 4 \sum_{i \leqq r \leqq n} g(r)$ which satisfy (8) to (10). Let $j$ be the largest integer $j \leqq n$ for which $\mathrm{V}(g(j))<m$.

Let $g^{\prime}=1 / 4 \sum_{i \leqq r \leq j} g(r)$. Then $g^{\prime}=4^{-p-1} \sum_{t \in \mathrm{~A}} e_{t}^{*}$ where $\sup \{|t| ; t \in \mathrm{~A}\}<m$. Since there are at most $l$ indexes $i$ for which $\left|a_{i}(\omega)\right|<m$ we have $\left|\left\langle g^{\prime}, \sum_{i \in \mathrm{I}} f_{i}(\omega)\right\rangle\right| \leqq 4^{-p-1} l$.

If $j=p$, the proof is finished. Otherwise $\left|\left\langle g(j+1), \sum_{i \in \mathrm{I}} f_{i}(\omega)\right\rangle\right| \leqq 2^{-p}(l+1)$ by induction hypothesis. If $j+1=p$, the proof is finished. Otherwise let $g^{\prime \prime}=\sum_{r>j+1} g(r)$. It follows from condition (10) that there is $s \in \mathrm{~T}_{m}$ such that for each $t \in \mathrm{~T}$ one has $s<t$. But since there is at most one $i \in \mathrm{I}$ for which $s<a_{i}(\omega)$, we have $\left|\left\langle g^{\prime \prime}, \sum_{i \in \mathrm{I}} f_{i}\right\rangle\right| \leqq 4^{-p-1}$. Adding these three estimates gives (16). It follows that for $g \in \mathrm{H}$ one has:

$$
\left|\left\langle g, \sum_{i \in \mathrm{I}} f_{i}(\omega)\right\rangle\right| \leqq \sup \left(1, \frac{l+1}{2}\right)
$$

and hence $\left\|\sum_{i \in \mathrm{I}} f_{i}(\omega)\right\| \leqq \sup (1,(l+1) / 2)$. So we have:

$$
\begin{gathered}
\left\|\sum_{i \in \mathrm{I}} f_{i}\right\|_{1} \leqq \int_{\mathrm{Z}}\left\|\sum_{i \in \mathrm{I}} f_{i}(\omega)\right\| d \mu(\omega)+\int_{\Omega}\left\|\sum_{\mathrm{Z} \in \mathrm{I}} f_{i}(\omega)\right\| d \mu(\omega) \\
\leqq n \mu(\mathrm{Z})+\sup \left(1, \frac{l+1}{2}\right) \\
\leqq n \mathrm{P}\left(2^{-q(m)}, n\right)+\sup \left(1, \frac{l+1}{2}\right)
\end{gathered}
$$

If $l=0$, we have $a_{n, k} \leqq 2$, so $n \mathrm{P}\left(2^{-q(m)}, n\right) \leqq a_{n, k}-1$ from (14) and since $q(m) \geqq q(k)$, so the right hand side is $\leqq a_{n, k}$. If $l \geqq 1$, we have $n \mathrm{P}\left(2^{-q(m)}, n\right) \leqq(1 / 2)$ from (14), so the right hand side is less than $l / 2+1 \leqq l+1 \leqq a_{n, k}$ which concludes the proof of the theorem.

## REFERENCES

[1] J. Hagler, A Counterexample to Several Questions About Banach Spaces (Studia Math., Vol. 60, 1977, pp. 289-308).
[2] S. Kwapien, On Banach Spaces Containing $c_{0}$ (Studia Math., Vol. 22, 1974, pp. 188-189).
[3] H. P. Rosenthal, A Characterization of Banach Spaces Containing l ${ }^{1}$ (Proc. Nat. Acad. Sc. U.S.A., Vol. 71, 1974, pp. 2411-2413).
[4] M. Talagrand, Sur la propriété de Dunford-Pettis dans $\mathscr{C}([0,1], \mathrm{E})$ et $\mathrm{L}^{1}(\mathrm{E})$, Israel, J. of Math. 44, 1983, pp. 317-321.
(Manuscrit reçu le 18 février 1983.)
Michel Talagrand,
Équipe d'Analyse, Tour 46, Université Paris-VI, 4 place Jussieu,
75230 Paris Cedex 05.


[^0]:    ${ }^{(*)}$ This paper was written while the author was visiting the Ohio State University.

