Annales scientifiques de l'É.N.S.

MICHEL TALAGRAND On spreading models in $L^1(E)$

Annales scientifiques de l'É.N.S. 4^e série, tome 17, nº 3 (1984), p. 433-438 http://www.numdam.org/item?id=ASENS_1984_4_17_3_433_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1984, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scient. Éc. Norm. Sup., 4^e série, t. 17, 1984, p. 433-438.

ON SPREADING MODELS IN L¹(E)

PAR MICHEL TALAGRAND (*)

ABSTRACT. – We construct a Banach space E which has the Schur property (hence l^1 is its only spreading model) but such for each family $(a_{n,k})$, with $a_{n,k} \ge 1$, $\lim_{n \to \infty} a_{n,k} = +\infty$, there is a sequence (f_n) in $L^1(E)$ for which

 $\left\|\sum_{k \leq i \leq n} \pm f_i\right\| \leq a_{n,k}$. In particular, L¹(E) has a spreading model isomorphic to $c_0(\mathbb{N})$.

1. Introduction

Let E be a separable Banach space and (Ω, Σ, μ) a (standard) measure space. We denote by $L^{1}(E)$ the space of integrable functions $\Omega \to E$. It is known that if E does not contain $c_0 = c_0(\mathbb{N})$, then $L^{1}(E)$ does not contain $c_0[2]$. The purpose of this work is to show in an opposite direction that even when E is by no way close to c_0 , $L^{1}(E)$ can contain sequences which somehow behave like the unit basis of c_0 . Recall that a Banach space has the Schur property if weak null sequences go to zero in norm.

We shall show the following.

THEOREM A. – There exists a separable Banach space E which has the Schur property, such that for each family $a_{n,k}$ of real $a_{n,k} \ge 1$, such that:

(1)
$$\forall k, \qquad \lim_{n \to \infty} a_{n,k} = +\infty,$$

there exists a sequence $f_n \in L^1(E)$, such that:

(2)
$$\forall \omega, \qquad \| f_n(\omega) \| = 1,$$

(3) \forall finite set I, with card I = n and Inf I $\geq k$ one has, for $(b_i) \in \mathbb{R}^{I}$:

$$\operatorname{Inf} \left| b_i \right| \leq \left\| \sum_{i \in I} b_i f_i \right\| \leq a_{n, k} \sup \left| b_i \right|.$$

^(*) This paper was written while the author was visiting the Ohio State University.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. -0012-9593/84/034336/\$2.60 © Gauthier-Villars

M. TALAGRAND

Since E has the Schur property it follows from Rosenthal's theorem [3] that each sequence (X_n) of E which does not converge in norm has a subsequence equivalent to the basis of l^1 . However the sequence (f_n) of $L^1(E)$ has a behavior which is close to the basis of c_0 . Since it is possible to choose $(a_{n,k})$ such that for each $n \lim_{k \to \infty} (a_{n,k}) = 1$, in

the language of spreading models, $L^{1}(E)$ has c_{0} as a spreading model, while E has l^{1} as unique spreading model.

The whole difficulty of the construction is that in E there should be "very few" sequences equivalent to the basis of l^1 .

2. Setting of the construction

Let us set $T_n = \{0, 1\}^n$, $T = \bigcup T_n$. For $s \in T$ let |s| be the unique *n* for which $s \in T_n$. For $s, t \in T$, |s| = n, |t| = m, $n \le m$, $s = (s_1, \ldots, s_n)$, $t = (t_1, \ldots, t_m)$, we write s < t if $\forall i \le n$, $s_i = t_i$. With this order, T is the usual dyadic tree. For $t \in T$, $n \le |t|$, we write $t \mid n$ the unique $s \in U_n$ for which s < t.

Let us denote by $(e_t)_{t \in T}$ the canonical basis of $\mathbb{R}^{(T)}$. In the next paragraph, we shall construct a family H of $\mathbb{R}^{(T)}$, and we shall define for $x \in \mathbb{R}^{(T)}$:

(4)
$$||x|| = \sup\{|\langle g, x \rangle|, g \in H\}.$$

Let E be the completion of $(\mathbb{R}^{(T)}, \|.\|)$. It will be true that $\|e_t\| = 1$. We denote by e_t^* the element of E* given by $e_t^*(e_{t'}) = 1$ if t = t' and zero otherwise.

Let $\Omega = \prod_{n} T_{n}$, and let μ be the canonical measure on Ω (i.e. the product measure

when each T_n is given the measure which puts weight 2^{-n} at each point).

Let $p_n: \Omega \to T_n$ be the projection of rank *n*. Let $h_n(\omega) = e_{p_n(\omega)}$. The reader has noticed that the setting of this construction is very similar to the setting of the construction [4] of a space E with the Dunford-Pettis property such that $\mathscr{C}([0, 1], E)$ fails the Dunford-Pettis property. However the idea of the construction of the norm is rather different.

3. Construction of the norming functionals

We start with $H_0 = \{e_t^*; t \in T\}$. We shall construct inductively subsets H_n of $\mathbb{R}^{(T)}$. Let Xⁿ be the set of subsets $A = \{t_1, \ldots, t_p\}$ of T with the following property:

- (5) $\forall 1 \leq i \leq p, \quad |t_i| \geq n.$
- (6) $\exists s \in \mathbf{T}_n, \quad s < t_i, \quad \forall i \leq p.$
- (7) If $|t_i| = c_i$, for $1 \le i < j \le p$ one has $t_i | c_i = t_{i+1} | c_i$.

4° série — tome 17 — 1984 — nº 3

The element s will be called the stem of A and be denoted by s(A). Let $\mathbf{H}_{1}^{n} = \{ 1/4 \sum_{t \in A} e_{t}^{*}; A \in \mathbf{X}^{n} \}.$ For $g \in \mathbf{H}_{1}^{n}$, we call s(A) the stem of g, also denoted by s(g). We set $H_1 = \bigcup H_1^n$.

For $g \in \mathbb{R}^{(T)}$, let $V(g) = \sup\{|t|; \langle g, e_t \rangle \neq 0\}$. Let n > 0. Consider a sequence $k(1) = n < k(2) < \ldots < k(p)$ and a sequence $g(i) \in H_1^{k(i)}$ such that:

(8)
$$\forall 1 \leq i \leq p, \quad V(g(i)) < k(i+1).$$

(9)
$$\exists s \in T_n, \quad \forall i, s < s(g(i)).$$

(10)
$$\forall i < j \le p, \quad s(g(i+1)) | V(g(i)) = s(g(j)) | V(g(i)).$$

[The reader should make a picture of the supports of the g(i).] We define H_2^n as the set of sums $1/4 \sum_{i \leq p} g(i)$ of the above type, and H_2 as $\bigcup_{n \geq 1} H_2^n$.

The construction continues in the same way. Notice that each $g \in H_n$ is of the type $4^{-n}\sum_{t \in A} e_t^*$. Moreover, as is seen by induction, if $B \subset A$, $g' = 4^{-n}\sum_{t \in B} e_t^*$ still belongs to H_n .

Let H' be the set of finite sums $\sum_{i \ge 2} g_i$, where $g_i \in H_i$. Let $H = H_0 \cup H_1 \cup H'$.

4. E has the Schur property

By standard arguments of approximation, it is enough to show that if a sequence $(f_n) \in E$ such that $f_n = \sum_{t \in A_n} x_t^n e_t$ for A_n disjoint sets, $||f_n|| = 1$ it cannot go to zero weakly.

1st case. - The following holds:

(11)
$$\forall m, \qquad \lim_{n} \sup \{ |\langle g, f_n \rangle|; g \in \mathbf{H}_m \} = 0.$$

For each *n*, there is $g_n \in H$ with $|\langle g_n, f_n \rangle| \ge 1/2$. From (11) it follows that $g_n \in H'$ for *n* large enough. Then we can write $g_n = \sum_{2 \le i \le k \ (n)} g_n^i$ where $g_n^i \in H_i$. By taking a subse-

quence one can assume from (11) that:

$$\Big|\sum_{\substack{i\leq k\ (n-1)}}g_n^i(f_n)\Big|\leq 1/4.$$

If:

$$g'_n = \sum_{k (n-1) < i \leq k (n)} g^i_n,$$

one has $|g'_n(f_n)| \ge 1/4$. Let \overline{g}_n^i obtained from g_n^i by restricting its support to A_n . Then $\vec{g_n^i} \in \mathbf{H_n}$. Let:

$$g''_{n} = \sum_{k (n-1) < i \leq k (n)} \overline{g}_{n}^{i}.$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

M. TALAGRAND

Then $|g''_n(f_n)| \ge 1/4$. Moreover, $g''_n(f_p) = 0$ for $p \ne n$. Let $h_n = \sum_{p \le n} g''_p$. Then $h_n \in \mathbf{H}'$. Indeed, $h_n = \sum_{i < k \ (n)} h^i$ where $h^i = \overline{g}_p^i$ for the unique p such that $k \ (p-1) < i \le k \ (p)$. We have $|h_n(f_p)| > 1/4$ for p < n. Hence if h is a weak* cluster point of (h_n) , we have $|h(f_p)| \ge 1/4 \forall p$, which finishes the proof in this case.

2nd case. — There is $m, \alpha > 0$ and a sequence k_n such that $\sup\{|\langle g, f_{k_n} \rangle|; g \in H_m\} > \alpha \forall n$. One can suppose $k_n = n$. One can also suppose that m is the smallest integer for which the above is true, i. e.:

(12)
$$\lim_{n \to \infty} \sup \{ |\langle g, f_n \rangle|; g \in \mathbf{H}_{m-1} \} = 0.$$

For convenience of notation suppose now on that $m \ge 1$. (The same argument works for m=0.)

Let $g_n \in H_m$ with $|\langle g_n, f_n \rangle| > \alpha$. One can suppose that g_n is supported by A_n . It follows from the definition of H_m that for each k one can write $g_n = g_n^1 + \ldots + g_n^k + g_n'$ where $g_n^i \in H_{m-1}$ for $i \le n$, and $g_n' \in H_m^k$. It follows, by taking a subsequence, that one can assume $g_n \in H_m^n$ and $|\langle g_n, f_n \rangle| \ge \alpha/2$. Another extraction of subsequence will give $g_n \in H_m^{k(n)}$ where $k(n) > V(g_{n-1})$. Let $s_n = s(g_n) \in T_{k(n)}$. By taking a subsequence, one can assume that for each p, the sequence $s_n | p$ is eventually constant. A further subsequence will satisfy $s_n | V(g_p) = s_{p+1} | V(g_p)$ for $n \ge p+1$.

It follows from the definition of H_{m+1} that for each n, $h_n = 1/4 \sum_{p \le n} g_p \in H_{m+1}$

. Moreover, for $p \le n$ we have $|h_n(f_p)| > \alpha/8$. Let h be a weak* cluster point of (h_n) . Then $|h(f_p)| \ge \alpha/8$ for each p, which finishes the proof.

5. Construction of (f_n)

In fact, (f_n) will be a subsequence of h_n .

LEMMA. – Let (u_i) be a sequence of independent random variables uniformly distributed in $\{1, \ldots, g\}$. Let $P(q, n) = Prob(\exists i, j \leq n, u_i = u_j)$. Then $\lim_{q \to \infty} P(q, n) = 0$.

Moreover, P(q, n) is increasing in n and decreasing in q.

Proof. - $P(q, n) \leq q^{-2} (n(n-1))/2.$

Let $(a_{n,k})$ be the sequence of theorem A. One can suppose that $a_{n,k} \leq a_{n+1,k}$ and $a_{n,k} \geq a_{n,k+1}$ for each n, k. Let n(k) be the smallest integer such that $a_{n(k),k} \geq k+1$. From the lemma, there exists an increasing sequence q(k) such that for each $k \geq 1$ one has the following conditions :

(13)
$$n(k) P(2^{-q(k)}, n(k)) \leq \frac{1}{2}.$$

(14) For each integer n such that $a_{n,k} \leq 2$, $n \operatorname{P}(2^{-q(k)}, n) \leq a_{n,k} - 1$.

4° série — tome 17 — 1984 — N° 3

We shall prove that the sequence $f_n = h_{q(n)}$ satisfies the theorem. Let I be a finite set of integers, with k = Inf I and card I = n. Let l the greatest integer such that $l+1 \leq a_{n,k}$. (It is possible that l=0.) Let m=k+l+1.

We have:

$$a_{n,m} \leq a_{n,k} < l+2 \leq m \leq a_{n(m),m} \qquad \text{so} \quad n \leq n(m).$$

Hence:

(15)
$$n \operatorname{P}(2^{-q(m)}, n) \leq \frac{1}{2}.$$

Let us define $a_i(\omega)$ by $f_i(\omega) = e_{a_i(\omega)}$. Let:

$$\mathbf{Z} = \{ \boldsymbol{\omega} \in \boldsymbol{\Omega}; \exists i, j \in \mathbf{I}, i, j \ge m, i \ne j, a_i(\boldsymbol{\omega}) \mid q(m) = a_i(\boldsymbol{\omega}) \mid q(m) \}.$$

Since the maps $\omega \to a_i(\omega)$ are independent and $a_i(\omega) | q(m)$ takes for value each element of $T_{q(m)}$ with equal probability, one has $\mu(Z) \leq P(2^{-q(m)}, n)$. For $\omega \in Z$, we have the trivial estimate $\|\sum_{i \in I} f_i(\omega)\| \leq n$.

We show by induction over p that for $\omega \notin \mathbb{Z}$ and $g \in H_p$, we have:

(16)
$$\left|\langle g, \sum_{i \in I} f_i(\omega) \rangle\right| \leq 2^{-p} (l+1).$$

The result is obvious for p=0. Assume it has been proved for p. Let $g \in H_{p+1}$. Then we have a decomposition $g=1/4 \sum_{\substack{i \le r \le n}} g(r)$ which satisfy (8) to (10). Let j be the largest integer $j \le n$ for which V(g(j)) < m.

Let $g' = 1/4 \sum_{i \le r \le j} g(r)$. Then $g' = 4^{-p-1} \sum_{t \in A} e_t^*$ where $\sup\{|t|; t \in A\} < m$. Since there are at most l indexes i for which $|a_i(\omega)| < m$ we have $|\langle g', \sum_{i \in I} f_i(\omega) \rangle| \le 4^{-p-1} l$.

If j=p, the proof is finished. Otherwise $|\langle g(j+1), \sum_{i \in I} f_i(\omega) \rangle| \leq 2^{-p} (l+1)$ by induction hypothesis. If j+1=p, the proof is finished. Otherwise let $g'' = \sum_{r>j+1} g(r)$. It follows from condition (10) that there is $s \in T_m$ such that for each $t \in T$ one has s < t. But since there is at most one $i \in I$ for which $s < a_i(\omega)$, we have $|\langle g'', \sum_{i \in I} f_i \rangle| \leq 4^{-p-1}$. Adding these three estimates gives (16). It follows that for $g \in H$ one has:

$$\left|\langle g, \sum_{i \in I} f_i(\omega) \rangle\right| \leq \sup\left(1, \frac{l+1}{2}\right)$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

and hence $\left\|\sum_{i \in I} f_i(\omega)\right\| \leq \sup(1, (l+1)/2)$. So we have:

$$\begin{split} \|\sum_{i \in I} f_i\|_1 &\leq \int_{\mathbb{Z}} \|\sum_{i \in I} f_i(\omega) \| d\mu(\omega) + \int_{\Omega} \sum_{z} \|\sum_{i \in I} f_i(\omega) \| d\mu(\omega). \\ &\leq n \, \mu(\mathbb{Z}) + \sup\left(1, \frac{l+1}{2}\right), \\ &\leq n \, \mathbb{P}(2^{-q(m)}, n) + \sup\left(1, \frac{l+1}{2}\right). \end{split}$$

If l=0, we have $a_{n,k} \leq 2$, so $n \operatorname{P}(2^{-q(m)}, n) \leq a_{n,k}-1$ from (14) and since $q(m) \geq q(k)$, so the right hand side is $\leq a_{n,k}$. If $l \geq 1$, we have $n \operatorname{P}(2^{-q(m)}, n) \leq (1/2)$ from (14), so the right hand side is less than $l/2 + 1 \leq l+1 \leq a_{n,k}$ which concludes the proof of the theorem.

REFERENCES

- [1] J. HAGLER, A Counterexample to Several Questions About Banach Spaces (Studia Math., Vol. 60, 1977, pp. 289-308).
- [2] S. KWAPIEN, On Banach Spaces Containing c₀ (Studia Math., Vol. 22, 1974, pp. 188-189).
- [3] H. P. ROSENTHAL, A Characterization of Banach Spaces Containing l¹ (Proc. Nat. Acad. Sc. U.S.A., Vol. 71, 1974, pp. 2411-2413).
- [4] M. TALAGRAND, Sur la propriété de Dunford-Pettis dans & ([0, 1], E) et L¹(E), Israel, J. of Math. 44, 1983, pp. 317-321.

(Manuscrit reçu le 18 février 1983.)

Michel TALAGRAND, Équipe d'Analyse, Tour 46, Université Paris-VI, 4 place Jussieu, 75230 Paris Cedex 05.