
ANNALES SCIENTIFIQUES DE L’É.N.S.

MADHAV V. NORI
Zariski’s conjecture and related problems

Annales scientifiques de l’É.N.S. 4e série, tome 16, no 2 (1983), p. 305-344
<http://www.numdam.org/item?id=ASENS_1983_4_16_2_305_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1983, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASENS_1983_4_16_2_305_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. sclent. EC. Norm. Sup.,
4° serie, t. 16, 1983, p. 305 a 344.

ZARISKFS CONJECTURE AND RELATED PROBLEMS

BY MADHAV V. NORI

The Lefschetz hyperplane section theorem gives an understanding of the topology of a
smooth projective variety X, given the topology of a general hyperplane section Y and the
monodromy in a Lefschetz pencil. When X is a surface and R is a curve in X, Zariski [Z]
showed how to compute 7 r i (X—R) , given Tii(Y-R) and the monodromy, where Y is a
smooth hyperplane section moving in a generic pencil. Ignoring the monodromy, we may
conclude from his results that n^ (Y - R) -> n^ (X - R) is a surjection, for a general hyperplane
section Y of X.

Now let C be any ample curve on X and let U be a neighbourhood of C in the usual
topology. The linear system |mC| gives a projective embedding ofX, for m sufficiently
large. If Ho is the hyperplane whose intersection with X is m C, then for hyperplanes H
sufficiently close to Hg, X n H = Y is contained in U, and because n^ (Y - R) -> n^ (X - R) is
a surjection, so is 7ii(U-R)->7ii(X-R). Thus a corollary of the Lefschetz-Zariski
method (for arbitrary dimension) is:

I. Tii (U—R)-^ Tii ( X — R ) is a surjection for any neighbourhood U of an ample divisor H
on X, and for any Zariski-closed subset RofX.

The above statement easily implies (see 2.5) that the kernel of n^ (X—D) -> n^ (X) is a
central subgroup, where X is a surface, D is a nodal curve on X and each irreducible curve C
contained in D is assumed to be smooth and ample. In particular, if X is simply connected,
Tii (X—D) is abelian.

We generalise the statement I above to the following Weak Lefschetz Theorem (WLT for
short).

WLT. Let H be a connected compact complex-analytic subspace (not necessarily reduced)
of a connected complex manifold U, defined by a locally principal sheaf of ideals. Assume that
(PV (H) | H is ample and dim U ̂  2.

Let q : U->X be a holomorphic, locally invertible, map, with X a smooth projective
variety. Let Rc=X be an arbitrary Zariski-closed subset. Put h=qoi, where i : H -> U
denotes the inclusion. Finally let G be the image ofn^ (V - q~1 (R)) -> n^ (X - R). Then:

A : G is a subgroup of finite index.
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306 MADHAV V. NORI

B : Ifq(H) n R=0, then the image ofn^ (H) -> n^ (X-R) is a subgroup of finite index.
C : / /dimX=dimU=2, then [7^ (X-R) : G] is bounded above by (Div/^/H2.
See paragraph 3.16 for the definition of Div h\ it is the first Chern class of h^ (^).
Applying WLT to the n^ of complements of nodal curves in surfaces, we get (see 3.27).

II. Let D and E be curves on a smooth projective surface X, that intersect
transversally. Assume that D is nodal. Deno te the number of singular points of a curve C by
r(C). Assume that C2>lr(C)for every irreducible curve C contained in D. Then, ;/N
denotes the kernel qfn^ (X - D u E) -> K^ (X - E), N is a finitely generated abelian group and
the centraliser of ̂ \ is a subgroup of finite index.

For any irreducible curve C in P2 of degree d, C2 = d2 > (d-1) (d- 2) ̂  2 r (C). Putting
E = 0 in II above, we get Zariski's Conjecture: n^ (P2 - D) is abelian for any nodal curve D
in P2. This was first proved by Fulton [F] and Deligne [D] by somewhat different
techniques, for the algebraic and topological cases respectively. The proof of WLT relies
heavily on deformations. When X = P2 however, these are supplied by the automorphisms
of P2, and this gives a short proof of Zariski's Conjecture (see § 4).

To prove II for tame fundamental groups (see § 5), by Abhyankar's lemma (see [F]), it has
to be shown that any two curves in (p -1 (D) intersect each other, where (p : Y -> X is a finite
covering, unramified outside D u E, with X, D and E as in II. And this is so because such
curves support effective Cartier divisors of positive self-intersection (see 5.2). This
observation and WLT combine to complete the proof of II.

The deformations required to prove WLT also show (see 3.18).

III. Let A(m) be the maximum number of singular points on any irreducible nodal curve
linearly equivalent to mC, where C is an ample curve on a surface X. Then:

hm A(m)/m2=C2/2.
m —> x

Applying WLT(B) to curves on surfaces, putting R=0, we get (see 3.26 and 6.3).

IV. Let C be the non-singular model of an irreducible nodal curve C on a surface X.

A :}fC2>2r(C), then [n,(X): Image n,(C)]^C2/C2-2r(C).

B :IfC2>max(0,2r(C)—2), then the normal subgroup generated by the image ofn^(C) is a
subgroup of finite index in n^ (X).

The normal bundle of C -> X is a line bundle of degree C2 - 2 r (C), for an irreducible nodal
curve C with r(C) singular points. Thus if U is a "tubular neighbourhood" of C -> X
(^1.11), then the self-intersection ofC in U is C2-2r(C)>0, and so IV A follows
immediately from WLT.

Note that by Lefschetz, if C2>0, then n^ (C) -> n^ (X) is surjective. But
Tii (C)=7ii (C)^-F where F is a free group on r(C) generators. Thus Lefschetz allows the
image of 711 (C) -> 711 (X) to be quite small (see 6.2 where C2 = 2 r (C) > 0 and the image has
infinite index). However we are assuming more than does Lefschetz: C2 > 2 r(C) and not
merely that C2 >0, and this allows us to conclude that 711 (C) -> n^ (X) is almost surjective.
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Question. — Let D be an effective divisor on a surface X with D2 > 0. Let N be the normal
subgroup of n i (X) genera ted by the images of thefundamen tal group of the non singular models
of all the curves in D. I s [711 (X): ̂ finite?

If the answer is yes, then any surface possessing a (possibly singular) rational curve of
positive self-intersection would have finite fundamental group !

IV B. answers the above question in a very special case.
Incidentally, the conclusion of II allows n^ (X — D u E) to be identified to n^ (T) where T is

a certain torus-bundle on X — E , by 1.6 and 1.7. This has a nice corollary (see 2.9):

V. The complement of the theta-divisor in a general principally polarised abelian variety has
the "integer-valued Heisenberg groups/or its fundamental group.

The next section contains a sketch of the Lefschetz method and its adaptation to the proof
of WLT. Section 1 contains the preliminaries, especially the definitions 1.1 and 1.8 and
the Lemma 1.5 which are used throughout. The next section includes many corollaries of
the Lefschetz-Zariski method, some perhaps new. Section 3 is devoted to deformations and
the proof of WLT. Homogeneous spaces are dealt with in paragraph 4, and tame
fundamental groups in paragraph 5. The examples in paragraph 6 illustrate to what extent
the corollaries of WLT are best possible. Curves with other singularities are also dealt with
briefly.

Acknowledgements

The report "Connectivity and its applications in Algebraic Geometry" by Fulton and
Lazarsfeld [FL] shows that some of the results of paragraphs 2 and paragraphs 6 are not
new.

A stronger version of the statement I of the introduction and Proposition 2.1, which even
allows X to be singular, is due to Deligne (see 1.1 of FL). Hansen has results analogous
to 4.3. Abhyankar and Prill have versions of 2.5 and 6.5 for the algebraic and topological
fundamental groups respectively (see § 8, FL). Note, however, that their results imply that
Tii (P2 -C) is abelian for an irreducible curve C whose only singularities are a nodes and b
cusps of C2 > 6 b + 4 a, while an application of 3.27 to the blow-up of P2 at the cusps of C
(see 6.5) gives the same conclusion if C2 > 6 & + 2 a. Thus special statement does not appear
to be deducible from the connectedness theorems of Fulton-Hansen either.

0. Sketch of the main proofs

The first step (see Lemma 1.5 C) is to show:
(A) If/: X -> Y is a dominant morphism with X and Y both smooth and connected,

satisfying some further mild restrictions, then for all;? e U, U some non-empty Zariski-open
subset of Y, there is an exact sequence:

^(/-^-^(X^TI^Y^L
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To apply this to the Lefschetz-Zariski situation, let R be a Zariski-closed subset of a
smooth projective variety X, and let P* be the dual projective space of hyperplanes in IP
where X -> P is the given projective embedding. Let:

Z={(x , H)e (X-R)xP* |xeH} .

Then Z —> X — R is a fibre-bundle with projective spaces as fibres and therefore
Tii (Z) -> Tii (X — R) is surjective. Also Z -> P* satisfies the restrictions of Lemma 1.5 C, and
P* being simply connected, by (A) above, n^ (F) -»n^ (Z) is a surjection for a general fibre F
ofZ->P*. Of course F is simply Y — R, for a general hyperplane section Y of X. Thus the
composite n^ (Y — R) -> n^ (Z) -> n^ (X — R) is surjective, and this proves statement I of the
introduction.

Next we adapt this argument to the proof of WLT. Part C follows from the Hodge Index
Theorem (see Lemma 5.1 and 3.24). Note that WLT(B) is an immediate consequence
of WLT (A). Simply replace U by a neighbourhood V of H such that:

(a) ^ (V)nR=0 and,
(b) H is a strong deformation retract of V.
Next we observe that i.t suffices to prove WLT (A) for dimX=2. Indeed if dimX>2

and Y is a general hyper plane section of X, we have just noted that n^ (Y — R) -> n^ (X — R) is
surjective. Put \J=q~l(Y), H^'^Y), where q, ;', h are as in the statement
of WLT. Then ̂ j (H) | H=^u (H) | H and is therefore ample. By induction, [n^ (Y - R):
Image 7ii(U —q~l(R))} is finite and therefore [7ii(X—R): Image 7Ti(U —q~1 (R))] is itself
finite.

So we only need to prove WLT (A) for surfaces X. To apply (A) above, we need
deformations of the morphism m H -> X, where m H is a m-fold thickening of H in U.

We first need:
(B) Let V be the Douady space (see [D2]) of U. This is the parameter-space of all

compact complex-analytic subspaces of U. The m-fold thickening mH of Hc=U gives a
point p (m H) of V. For m sufficiently large {see 3.10) we have:

(a) V is smooth a,tp(mH),
(b) for z sufficiently close to p (m H), the corresponding complex-analytic subspace A c= U

is a (connected) compact Riemann surface and q\A : A-> q(A)=B is birational with B a
nodal curve (see 3.5).

The proofs of these facts depend on the notion of A-excellence of deformations (see 3.1-
3.10) and the excellence of the Douady space V is checked in Appendix 1. Next we check
that (3.12-3.15):

(C) the deformations of the closed immersion Ao -> U are infmitesmally the same as
deformations of the algebraic morphism A() -> U -> X, for a compact complex-analytic
subspace Ao of U.

This enables one to construct for suitable A()C=U;
(D) a morphism A -> L x X of smooth algebraic varieties such that A -> L is proper and

flat, A —> X is dominant, and also there is a point p of L such that if A p is the fibre over p
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in A -> L, then Ap -> X can be identified with the given Ao -> X. Applying (A) to this
situation, we get {see 3.23):

(E) Tii (A')———^TI^X')

(E) \ [
' 9 ( L ) •

7ii(L)———^ n, (X / ) /G= Image n, (IT)

Here X' = X — R, U' = ̂ ~1 (X — R), and similarly A' is got from A by deleting the inverse
image of R in A -> X.

Proof. — Applying (A) to A' -> L, we get:
7 C i ( F ) - ^ 7 l i ( A ' ) ^ 7 l i ( L ) - ^ l ,

is exact, where F is a general fibre of A' —> L. However there are plenty of such general fibres
"contained in LT', i. e. F -> Xfactors through F -> U -> X, and therefore n^ (A') -> n^ (X')/G
factors via 6 (L): n^ (L) -> n^ (X')/G.

(F) The image of 7ii(A') -> TT^X') is a subgroup of finite index because A' -> X' is
dominant (see 1.5 B).

In view of (F), (G) below implies WLT(A).
(G) 9(L) vanishes on a subgroup of finite index.
Indeed if T is the inverse image of the identity coset in n^ (A') -> n^ (X')/G, then by (G),

[Tii (A'): T] is finite. Let S be the image of T in7^ (X'). By (F), we have [n^ (X'): S] is finite,
and Sc:G, showing that [n^ (X'): G] is finite, thus proving WLT(A).

In the Lefschetz situation, L is the dual projective space P*, so (G) is immediate.
To prove (G), we choose another compact Riemannian surface BQ^U and let

Co = Ao u BQ c U. As in (D) we construct morphisms B -> M x X and C -> N x X which
have as special fibres the morphisms Bo -> X and Co -> X respectively. We take the disjoint
union T of A x M and B x L. There i s T - > L x M x X and the fibres of T -> L x M are the
disjoint unions of the fibres of A -> L and B -> M, which we denote by A; and B^
respectively.

Now Co = Ao u Bo is got from the disjoint union of AQ and Bo by identifying the points of
intersection. We identify the A^ and B^ at some points to get a family of curves (see 3.22)
parameterized by an etale covering Z of L x M, and for a suitable zeZ, the corresponding
curve is simply Co. This gives a morphism Z -> N because N is a "universal" family of
deformations of the morphism Co -> X (see 3.14). As in (E), putting S = n^ (X')/G, we get
functions 9(M): n^ (M) -> S and 9(N): n^ (N) -> S. Now Z parametrises two families of
curves, Zx^A and Z^B, and these give 61 (Z) and 62 (Z) from7ri(Z) to S
respectively. And essentially from the definition of these 6, we have (see 3.23):

^i-) /. .n,(L)
e,(Z)

7^ (N) ^— Tii (Z) ——^ n, (L x M)
e,(Z) |

7Ti(M)
6(M)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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The left side shows that 9i (Z) = 62 (Z) and then the right side shows that 6 (L) x = 6 (M) y
for all (x, y ) in the image ofn^ (Z) -> T^ (L x M). But Z -^ L x M is dominant and therefore
this image contains T ^ x T ^ where [jii(L):TJ and [K^{M):T^] are both finite. In
particular, 6 (L)x=e(M)l= l for all xeT^ and this completes the proof of (G) and that
ofWLT(A).

Remark 1. - The above proof shows that even in the Lefschetz-Zariski method, the fact
that P* is simply connected need not be used; instead one can add linear systems to prove the
result.

Remark 2. - The existence of the Douady space simplifies the writing of the proof
of WLT. As a matter of fact, it can be avoided altogether, and one can work with the formal
scheme of H along U, which is a purely algebraic object.

1. Preliminaries

Let M be a connected complex manifold, N a closed subvariety, and S c N an irreducible
component of codimension one in M.

P u t U = { z e P | | z | < 2 } . Let/:U^Mbeholomorphicwith:
(^/-^N)^};
(b) f(0)=p is a smooth point of N lying on S,
(c) f (0) t TN ( p ) = the tangent-space of N at p.
Then the free-homotopy class of/| S1 : S1 -> M-N does not depend on the choice of/

and thus gives a conjugacy class of elements of n^ (M-N, q} with any base-point q.

DEFINITION 1. - This subset of T^ (M-N, q) will be denoted by y(M, N, S), or more
simply by y(S) when the context is clear. Base points will rarely be mentioned:
Tii (M—N, q) will be abbreviated to n^ (M—N). We have:

Fact1.2. — 7ii(M) is the quotient of 7i;i(M-N) by the subgroup generated by the
subsets y(S) for all S as above.

Fact 1 . 3 . — Let h : M' -> M be holomorphic with M' a complex manifold and M, N, S as
above. If h(p)= q e S and q is a smooth point ofN, and h is transverse-regular to N at/?, let
S' be the unique irreducible component of W=h~1^) such that p e S ' . Then
^(M'-N^Tr^M-N) takes y(S') intoy(S).

Fact 1.4 A. - IfP is a principal G-bundle on a path-connected space X and G is also path-
conected, the n^ (P) is a central extension ofjii (X).

In fact, we will only use G=SS (S1/, and also an oriented punctured-disc bundle as
follows:

Fact 1.4 B. - With M, N, S as above, assume that S is smooth and that N is a divisor
with normal crossings in a neighbourhood of S. Then for a suitable tubular
neighbourhood U of S, y(S)<=7ii(U-N) is central, and is therefore a singleton.

With M, N, S as in1.1, let B = {p e N [ N is not smooth of codimension 1 sitp }. Then B is
closed and 7i;i(M)^7ii(M-B). Replacing M by M-B, we may assume that N is the
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disjoint union of closed submanifolds of codimension one. Applying Van Kampen's
theorem, taking tubular neighbourhoods of the components of N one at a time, we get 1.2.

The following lemma is used frequently:

LEMMA 1.5. — Let X andX be smooth connected varieties over C and:
f: X —> Y an arbitrary morphism. Then:

A : there is a non-empty Zariski-open Uc=Y such thatf~1 (U) —> U is a fibre-bundle in the
usual topology.

B : iffis dominant, the image ofn^(X) has finite index inn^{\).
C : if the general fibre F offis connected and there is a codimension two subset S ofX outside

which all the fibres of f have at least one smooth point (i. e.f~1 {?) is generically reduced on at
least one irreducible component off~l(p), V/?^S), then:

7ii(F)-^(X)^7ii(Y)^l

is exact.
Proof of A. — By Hironaka's resolution of singularities, we may assume that there is a

proper/ : X -> Y with X smooth, an open immersion i : X -> X such that/=/ oi and
D = X — ; (X) is a divisor with normal crossings. Let D^ be the irreucible components of D
for l^i^r and for each Sc:{ 1, 2, . . . , r ] letD(S) be the intersection of the D, for
all i e S. Then each D (S) is smooth by assumption and by Sard's theorem there is a Zariski-
open U -> Y such that/ | / -1 (U) n D (S) induces a surjection on all tangent-spaces, and this
is enough to give local triviality in the usual topology.

Proof of B. - Let F = /"1 ( p ) for any p e U. Then:

n, (F) ̂  n, (/-1 (U)) -> n, (U) ̂  n^ (F),

is exact and KQ (F) is finite because F is an algebraic variety. Furthermore, n^ (U) -> n^ (Y) is
surjective, and this proves B.

Proof of C. - In view of the above exact sequence, we have to show that a (ker h) = ker c in:

TCiC/'^OJ))——^^)

•\ \
71, ( U ) — — — — ^ T C i ( Y )

T = {q e Y | dim/"1 (q) > dim F} has codimension ^ 2 in Y, and we put L = S u T with S as
in the statement of the lemma.

Let R be any irreducible component of Y - U of codimension one in Y and let r be a
smooth point of R lying outside L. By assumption/"1^) has a smooth point m and
because dim/^O^dimF, it follows that/induces a surjection on tangent-spaces at m.
Let M be the unique irreducible component of/'^R) to which m belongs. By 1.3, the
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image of y(X, X-y-^U), M)=Y(M)<=7^l(/~ l(U)) undera is contained in
y(Y, Y-U, R)=y(R)c7ii(U). The surjectivity of a shows that oc(y(M))=y(R).

The y(R) generate ker c by 1.2, thus showing that oc(kerZ?)==kerc.

Remark 1. — Hironaka's resolution and Sard's theorem also give the conclusion of 1.5 A
without the smoothness assumptions on X and Y.

Remark 2. - In quite a few applications, the / : X -> X,/ : X -> Y as in the proof of 1.5 A
are already given, so an appeal to the resolution of singularities is unnecessary here.

Next, with M a connected complex manifold and N a closed complex-analytic subset, put
r=7Ti(M), G=7ii(M-N), H=ker(G-^F) and:

^'(M, N)=G/[H, H] and ^(M, N)=G/[G, H].

In the lemmas below we identify n' (M, N) and K" (M, N) with the fundamental groups of
certain torus-bundles on M. Since the main results of this paper provide sufficient
conditions for H to be central (resp. abelian), when these conditions are satisfied n^ (M - N)
can be identified with n' (M, N) [resp. ^'(M, N)].

Let p : M -> M be the universal cover and put N =p~1 (N). Then H = 711 (M - N) and
H/[H,H]=Hi(M-N).

1:0^ H/[H, H] -. G/[H, H] -> G/H -> 1 and:

II : 7i2(M)=H2(M)-^H2 (M, M-N)-^Hi (M-N)->0 combine to give the exact
sequence.

Ill : K^ (M) ̂  H^ (M, M - N) -> TT" (M, N) ̂  F -^ 1.
Note that II is an exact sequence of F-modules. By definition practically,

Ho(F, H/[H, H])=H/[G, H], and by Hochschild-Serre (or directly by the Thom-Gysin
sequence) we see that Ho (F, H^ (M, M - N)) = H^ (M, M - N). Thus II yields.

IV : Ho (F, 712) -^ H^ (M, M - N) -^ H/[G, H] -^ 0 is exact, from which we get the exact
sequence:

V : Ho(r,7i2(M))-^H2(M, M-N)-^7i ' (M,N)^r-^ l .
For each irreducible codimension one subset S c: N, let L (S) ->• M be the holomorphic line
bundle whose sheaf of sections is ^(S). Put E=© L(S). Let p(S) : E -> L(S) be the

s
projection and let C (S) be the kernel ofp (S) and finally let F be the complement of the union
ofal l theC(S) inE.

The above F could equally well have been described as the fibre-product of the principal
C*-bundles on M associated to the divisors S. We have:

LEMMA 1.6. — n^M, N)^7Ci(F).

Proof. - Put T = u C (S). Then F = E - T and n' (E, T) makes sense. By 1.4 however,
s

the kernel of n^ (F) -> K^ (E)^7ii (M) is central, and therefore K^ ( ¥ } ^ n ' ( E , T).
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The canonical sections e (S) of L (S) induced by 1 e ̂  (S) give a section e = © e (S) of E, and
e : M -> E clearly takes M - N into F. This induces e^ : n' (M, N) -^ 71' (E, T), and in fact,
e induces a commutative diagram of the exact sequences in V for the pairs (M, N) and (E, T).

The homomorphism H^ (M, M — N) —> H^ (E, F) is easily seen to an isomorphism because
e is transverse-regular to each C (S) c= E, once the bad subset BofNis deleted as in the proof
of 1.2. By the 5-lemma it follows that TC^M, N) -> TI'(E, T)=7ii (F) is an isomorphism.

In the above, it has tacitly been assumed that the irreducible components of N of
codimension one in M are finite. To deal with n" (M, N) it will be assumed that the
irreducible components of N of codimension one in M are finite in number.

Now let E be the holomorphic vector bundle on M whose sheaf of sections is © ̂ M(S),
^ . s

S c: N, codim S = 1. The covering transformations r act on E and the quotient is a vector-
bundle on M. Let F c E be the set of vectors all of whose projections are non-zero, and let F
be the quotient of F by F. Then:

LEMMA 1.7. - 7i"(M,N)^(F).
The proof is similar to that of 1.6; the exact sequence III is used instead.
What follows is a formal method of separating neighbourhoods of the different branches of

subvarieties that are not analytically irreducible.

DEFINITION 1 . 8 . — Let h : H -> X be a holomorphic map of compact complex spaces (not
necessarily reduced) inducing injections on Zariski-tangent-spaces everywhere. A
neighbourhood of h is a triple (U, /, q) with U a Hausdorff topological space, q : U -> X a
local homeomorphism, i : H -> U is injective and qoi=h.

Note that:
1.9. For any neighbourhood (U, /, q) of h, U acquires the structure of a complex-space

such that q : U -> X is a local isomorphism of complex-spaces. Furthermore, / : H -> U is a
closed immersion of complex-spaces.

1.10. If (U', f, q ' ) and (U", i", q " ) are neighbourhoods of/?, so is (U, i, q} with
L^U'XxU", w'xr.

In particular, the formal scheme of U along H does not depend on the choice of (U, /, q).
1.11. If H and X are smooth, we have tubular neighbourhoods: Choose a Riemannian

metric on X and let U be the set of vectors in the normal bundle of h of length <e. Define
; : H -> U by the zero section and q : U -> X by the exponential map. For sufficiently
small e, q is a local diffeomorphism.

1.12. Neighbourhood of h do exist. The hypothesis on Zariski tangent-spaces implies
that F = {(a, b) \ h (a) = h (b\ a ̂  b} is closed inH x H. Choose metrics d and 8 on H and X
respectively. Put3A==inf {d(a, b)\(a, b)e¥}. Then there is a positive B such that if
a, beH and b(h(a), h(b))<2B, then d(a, b)<A or d(a, ^)>2A.

Le tR(B)={(a ,^ )eHxX|5( /? (a ) ,x )<B}. Note that if (^, x)eR(B)for ;=l , 2, 3 and
d(a^, ^)<Aand^(fl2, a^)<A,thend(a^ a^)<2A and S(h(a^),h (a^)) < 2 B, implying that
d(a^a^)<A.
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Identifying {a^ x) and (a^ x)eR(B) if d(a^,a^)<A, we get a topological
space U (A, B). Denote the equivalence class of (a, x) by [a, x] and define ; : H -> U (A, B)
and q : U(A, B)-^X by i(a)=[a, h(a)] and q([a, x])=x.

That (U(A, B)), ;', q} has the required properties in straightforward.

2. General hyperplane sections

X always denotes a smooth complete variety over C and R is an arbitrary Zariski closed
subset of X throughout this section.

PROPOSITION 2.1. — F o r any morphism cp : X -> P1'4;
{a) (p~1 (L) is smooth and connected;
(b) n^ ((p ~1 (L) — R) -> TCi (X — R) is a surjectionfor the general linear sub space LofP^ with

codim L<dim (p(X).
We shall prove this later and deduce first the following consequences :

DEFINITION 2.2. — An effective divisor D on X is not composed of a pencil if for some m, the
rational morphism (p : X -> P1^ induced by the complete linear system | m D | satisfies: dim
(P(X)^2.

COROLLARY 2 . 3 . — For any neighbourhood U (in the usual topology) of the support of an
effective divisor D not composed of a pencil, n^ (U—R)-^ n^ ( X — R ) is surjective.

Proof. — Let (p : X -> P1^ be the rational map induced by | m D | with dim
(p(X)^2. Desingularising the closure of the graph of (p, we get a commutative diagram:

X
v\V
x —^ ̂ N

with:
(a) \|/ and (p are morphisms;
(b) X is smooth and \|/ is birational.
In addition, there is a hyperplane Ho <= P^ with (p~1 (Ho) contained in the support of D,

and consequently, (p'^Ho^cv)/"1^). The set V of hyperplanes H for which
(p - x (H) <= \|/~1 (U) is a neighbourhood (in the usual topology) of Ho in the dual projective
space P*.

The collection of H satisfying 2.1 (a) and 2.1 (b) is a Zariski-open subset W of P* and
therefore its intersection with V is non-empty. Taking H e V n W, we get a commutative
diagram:

7Cl((p- l(H)-v|/- l(R))^7l,(^- l(U-R))^^(X-v|/- l(R))\ . i-
TCi(U-R)———^Tii(X-R)
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with P o a a surjection, y a surjection by Hopfs theorem, and therefore we conclude that 8 is a
surjection.

A special case of 2.3 is:

COROLLARY. — 2.4. — IfC is an irreducible curve on a surfaced with C2>0,for any
neighbourhood U of C, n^ (U - R) -> n^ (X - R) is surjective.

COROLLARY 2.4 B. — With CandX as in 2.4, ifC intersects R transver sally (in particular, if
R = 0), then n, (C - C n R) -> n, (X - R) is surjective.

Proof. - 3 suitable neighbourhoods U of C such that C - C n R - ^ U - R i s a homotopy
equivalence.

COROLLARY 2.5. — IfD and E are curves intersecting transver sally on a surface X, and:
(a) D is nodal;
(b) every irreducible C contained in D is smooth with C2>0, then the kernel of

7Ci(X-DuE)->7Ti(X-E) is central.
Proof. — By taking a tubular neighbourhood U of an irreducible curve C contained in

D,Y(C)c:7ii(U-DuE) is central by 1.4B, and because 7Ti(U-Du E) -> n^(X-Du E)
is surjective by 2.4 y (C) is central in n^ (X — D u E). The kernel in question is generated
by such y(C), by 1.2, and this finishes the proof.

Remark. — 2.4 for algebraic fundamental groups is equivalent to the assertion: (p ~1(C) is
connected for every finite covering (p : Y -> X unramified outside R, which follows from
Zariski's connectedness theorem. It follows that 2.5 for algebraic n i is immediately
deducible from this fact, Abhyankar [A] proved this in the special case E = 0 and n^ (X) = 0,
though the proof in the general case is no different. That the right condition is "D not
composed of a pencil" is suggested by Abhyankar [A].

COROLLARY 2.6. — With X, D as in 2.5, if cp : Y -> X is a desingularisation of a finite
morphism unramified outside D, then cp^ : n^ (Y) -> n^ (X) has finite kernel and cokernel, and
the kernel is central.

COROLLARY 2.7. — IfL is an ample line bundle on X and s e H° (X, L") is a section whose
vanishing defines a smooth subscheme, and (p : Y -> X is the variety got from adjoining the n-th
root of s, then (p^ : n^ (Y) -> n^ (X) is an isomorphism, if dim X^2.

We omit the proofs of 2.6 and 2.7 which are easy consequences of 2.5. However 2.7
admits a generalisation to : 7i,(Y)^7i,(X) for i^n—1 when dim X=n (see [N2]).

The following is due to Le Trang and Saito.

COROLLARY 2.8. — Let D be a divisor in PN whose only singularities outside a codimension 3
subset ofP^ are normal crossings. Then n^ (PN—D) is abelian.

Proof. — For a general linear subspace LcP^^ with dim L=2;
(a) Tii (L-D^TT^P^D) is surjective by 2.1;
(b) L n D is a nodal curve in L,

so the result follows from Zariski's conjecture.
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COROLLARY 2.9. — For a principally polarized abelian variety X such that the singular
support S of the theta divisor D is of co dimension ^3 in X, n^ (X—D) is the "integer-valued
Heisenberg group".

Proof. — Embed X in P^ and let Y be the intersection ofX and a general linear subspace L
with 2 + codim L = dim X. Then C = D n Y is smooth in Y and its normal bundle in Y is
precisely (9^ (D) | C and is therefore ample. Thus 2.1,2.5 and Lefshetz hyperplane section
theorem together show that n^ (X—D) is a central extension of n^ (X). Also D is clearly
irreducible, and the result follows from 1.6, because the fundamental group of the principal
C*-bundle on X associated to the principal polarisation is the integer-valued Heisenberg
group.

The above is a special case of:

COROLLARY 2.10. - IfX isprojective andZ = U ^i with each Z, irreducible of co dimension 1

and not composed of a pencil, and outside a codimension three subset S of X each Z^ is smooth
and Z is itself a divisor with normal crossings, then n^ (X — Z) is a central extension ofn^ (X),
and is in fact isomorphic to 7ii(F), F -> X as in 1.6.

Proof. - Embed X in projective space and let Y = X n L with L a genral linear subspace, so
that dim Y = 2. Then Y n Z, = C, is smooth, Y n Z is a divisor with normal crossings on Y,
and (Py (Ci) =^x (^i) I Y and therefore C^ is not composed of a pencil, i. e. C? > 0. As above,
the result follows from 2.1, 2.5 and the Lefschetz theorem.

We finally prove Proposition 2.1. The methods are the conventional ones: applying
Lemma 1.5 C after showing that the bad sets have codimension ^2.

Let / :X->Z, ^ :Z- ) -P N with (p=go/ be the Stein factorisation of the given
(p : X -» P^. Let dim Z =k ̂  2, and let G be the Grassmanian of all linear subspaces of P1^
of codimension /, where 1 ̂  l<k. By Zariski's connectedness theorem, g~ 1 (L) is connected
for any LeG, and because the fibres of/ are connected, it follows that (p'^L) is also
connected.

Let U be a Zariski-open subset of Z such that:
(a) f \f~1 (U) is a smooth morphism;
{b) g\\J induces an injection on Zariski tangent spaces everywhere;
(c) U is itself smooth, and:
(d) lorallxeU,/-1^)^;
(e} Z — U is of pure codimension one in Z.
By the remark following the lemma below, F = { L e G | U n g ~ l ( L ) = 0 } has

codimension ^2.
Let S and S' be the subvarieties of X x G and U x G defined by:

S = { ( x , L ) | ( p ( x ) e L }

and:
S '={(x , L)\g(x)eL and g\\J is not transverse regular to Lc=PN at xeU}. Then the
projections S -> X and S' -> U are Zariski-locally-trivial fibre bundles with irreducible fibres

4" SERIE - TOME 16 - 1983 - ?2



ZARISKI'S CONJECTURE AND RELATED PROBLEMS 317

A and A' respectively where A is the Grassmanian of codimension / subspaces of P^1 and
dim A'=dim G—(fe+l) . It follows that S smooth and connected of codimension/in X xG
and S' is irreducible with 1 + dim S' = dim G. In particular, S' -> G has finite fibres outside a
codimension two subset H of G.

Putting T = F u H, for all L e G - T, U n g ~ 1 (L) is non-empty of dimension ^k -1 and
has only finitely many singular points, and by assumptions (a) and (d) on U, it follows that
(p ~1 (L) n / ~1 (U) — R has plenty of smooth points.

Summing up, S — ( R x G ) - ^ G satisfies all the conditions of 1.5C, and because G is
simply connected, we conclude that there is a Zariski-openW c: G such that for all LeW,
^((p'^I^-R^Tr^S^RxG)) is surjective. The projection S- (RxG)-^X-R is
smooth and proper with connected fibres and therefore n^ (S -(R x G)) -> n^ (X - R) is itself
surjective. Thus n^ (cp~1 (L)-R) -> n^ (X-R) is surjective for all LeW. The proof is
complete modulo:

LEMMA. - IfM is irreducible, dim M^{1-1), and^ : M -> P^ is a finite morphism, define
A(M)by:

A(M)={LeG|d im\ | /~ l (L)>d imM-/} if dimM>(/- l) ,

A(M)={LeG|\ | / - l(L)^0} it dimM<(/-l).

Then codim A(M)^2. (If dim M=/-l , codim A(M)=1 and A(M) is the Chow point.)
Remark. — Denoting by M^, M^, . . . , M^ the irreducible components of Z-U, dim

M,=^-l^/, and v|/,=g|M,, for l^j^h, clearly F= {LeGIUn^-^L)^} is
contained in the union of the A(M^.) and therefore codim F^2.

Proof of Lemma. - J= {(x, L)eM xG|\ |/(x)eL} is irreducible of codimension / in
MxG. Assume the lemma is false. Let B(M) be the inverse image of A(M) in
J->G. Then:

dimB(M)^dim(MxG)- / if dimM>(/-l);

dim B(M)^dim G-l if dimM<(/-l).

In the second case, dim B(M)>dim J, which is impossible.
In the first case, dim B (M) ̂  dim J and therefore J = B (M) because J is irreducible. But

this contradicts the surjectivity of J -> G. Therefore the lemma is true.

3. Deformations of morphisms

All spaces considered here are complex analytic spaces (not necessarily reduced) and all
morphisms are assumed to be holomorphic.

3.1. We are given fo : ?o -> Q with /o inducing injections on all Zariski-spaces, Q
smooth, PQ compact, and 1+dim P()=Q.

3.2. A deformation offo with parameter-space (S, s^) is:
I. A morphism /: P -> S x Q such that p^ of is flat and proper;
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II. A point SQ e S, an isomorphism j : PQ -. (p^ of)-1 SQ such that p^ of oj=fo.
For seS, we put P,=(p, o/)-1 s and define / : P,^ Q by /=p, o/| P,. Clearly the

given / defines a deformation of/, with parameter-space (S, s).

3.3. With P -> S as above denote the ^-fold fibre-product of P over S by P^, and let
^ •• ̂  -> S be the projection. Let T(/c) = { (x,, x^..., x,) e ̂ -1 (^) with all the ̂  distinct}.

For any Z^O, the given deformation is said be b-excellent at SQ, if :
(a) S is smooth at SQ;
(b) if 1 ̂ k ̂  b, then P^ is smooth at every point of its subset T (k) with dimension = (dim S

at ^o)+A;(dim PJ.

(c) P^ -> Q^ is a smooth morphism at every point of T(^) for all ^ such that l^k^b.
This rather technical definition is justified by 3.5 below.
In what follows, Remmert's Theorem:
'The image of a proper holomorphic mapping is a complex-analytic subvariety"
is used freely without explicit mention.

LEMMA 3.4. - If f: P -> S x Q is a b-excellent deformation offo : PQ -> Q and as before P,
denotes the fibre of? over s e S, B,(k) denotes the k-fold fibre-product ofP, over Q with allk co-
ordinates distinct, then for all s in the complement of a proper analytic subset F ofS, B^k) is
smooth and proper of dimension = (dim Q)—k, for k^b.

Moreover if the structure-sheaf of PQ has no non-constant global sections, then P, is smooth
and connected.

Proof. - So as not to make the notation too cumbersome, the complement of an analytic
subvariety of S not containing the base-point SQ e S will be denoted by S itself. In particular we
shall assume that S is smooth and connected.

Because/o : P() -> Q induces an injection on Zariski tangent-spaces, we may assume that
/: P -> S x Q has the same property. This implies that if G (k) is the ̂ -fold fibre-product of
P over S x Q, the open subset F (k) of G (k) consisting of points with all distinct entries is also
closed.

Now G (k) is the "scheme-theoretic" inverse image of the diagonal of Q in the projection
Pf -> Q^ which is smooth for all k ̂  b at all points of F (k) lying over SQ e S, by the assumption
of ^-excellence. Consequently we may assume that ¥(k) is itself smooth and has
dimension= (dim Q)+(dim S)-k, and noting that the fibres of ¥ ( k ) -> S are precisely the
B,(A-), the result follows from Sard's theorem. The second assertion follows from semi-
continuity of r(P,, (9).

Denoting P, -> Q by /„ V s e S - F, we have:
(a) by 1-excellence, P, is smooth and/, : P, -> Q induces injections on all tangent-spaces;
(b) 2-excellence guarantees that dim P,=l+dim B,(2), where B,(2)=P, XQP.-AP,,

and therefore / is generically injective;
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(c) ^-excellence for b =1 + (dim Q) implies that B^ (b) = 0 and therefore, for any t e Q, the
number r of points in P^ lying over Q is ̂  dim Q. Denote these points by x^ 1 ̂ ; ̂  r. The
/^-images of neighbourhoods ofx, in P^ give smooth branches /^==0 in a neighbourhood of
^eQ, and the smoothness of B,(r) at (jq, x^ . . . , x,) is equivalent to the transversal
intersection of these branches. Thus we have:

COROLLARY 3.5.- Ifb = 1 + dim Q, thenf^ (PJ is a divisor with normal crossings and P^ is
its normalisation, V ^ e S — F .

We record for later use:

LEMMA 3.6. - Letfo : Po^Q,/o : PO-^Q be as in 3 < 1 and l e t f ' . P - ^ S x Q ^ f " :
P'-^S'xQ be 1-excellent deformations of /o, fo respectively. Let f, : P^ -> Q and
/; : P; -> Q denote the general members of these deformations. LetRbe any proper analytic
subset ofQ. Then:

A : For general seSJ,(P^R.
B : For general (5,^)eSxS' , P^pP; is smooth of dimension = (dim Q)- 2, and if

h^ : Ps x Q P,' -> Q ^ ?A^ given morphism, then dim /z^1 (R) ̂  (dim Q) - 3.

C : Iff and f are ^-excellent and dim Q = 2, ̂  projections of P, x Q P; ^ P, and P; ^r^
injective.for general (s, s ' ) e S x S'.

The proofs are straightforward. As a sample, we do B: denote indiscriminately by D the
set of points in any space lying over (^o, ^o)E ̂  x ̂  Then/ x // : P x P' -> Q x Q is
smooth at D and therefore h: P x p P' -> Q is smooth at D with
dimension = dim S + dim S'+dim Q-2. Therefore /T^R) is a proper analytic
subvariety. The result follows from Sard's theorem and dimension counting.

The following are also obvious:

LEMMA 3.7. - Letf: P -^SxQ be a deformation offo : ?o -^ Q and let g : Q -> R be a
local isomorphism of complex manifolds. Then fis b-excellen t if and only ifg o fis a b-excellen t
deformation ofg o fo.

LEMMA 3.8. - Iff: P -> S x Q is a b-excellent deformation offo with base-point SQ e S and
K : S ' -^SisasmoothmorphismatSoCS' with^(so)=So, then S' X g P -> S' xQ is b-excellent
at So eS'.

Remark. - The definition of ^-excellence has been chosen to accommodate both 3.5 and
3.7; to conclude 3.5 for/: P - ^ S x Q one needs the assumption 3.3 not on all ofT (/r) but
on its subset:

D(k)={(x^ x^ . . . , x,)6PSl/o(^i)=/o(^2)= • • • =/o(^).

and all the x, are distinct}.

For instance, if/o : PQ -> Q is a closed immersion, 1-excellence of/guarantees that P^ is
smooth and/5 : P^ -> Q is an embedding, for all ^eS-F.

Remark. — The definition offt-excellence and all the lemmas proved are valid for algebraic
deformations too and the proofs are the same.
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3.9. From now on U is a Hausdorff complex manifold of dimension /. By Douady [D 2]
there is the structure of a complex analytic space on the setV of all compact complex-
subspaces ofU. For every such HcU, the corresponding point ofV will be denoted
by /?(H). The compact analytic subschemes defined by a shaaf of locally principal ideals
corresponds to an open subset V of V. Let W <= V x U be the universal family; the sheaf of
ideals J defining W in V x U is locally principal.

Denoting by p(i, 3)for;=l, 2, the projections from V xV xU to V xU, the product of the
ideals^(l, 3)*Jand/?(2, 3)* J defines a closed immersion Y-^ V xV x U which is proper and
flat over V x V and by the universal property of V, this defines a : V x V -> V which is
commutative and associative.

Let I be the locally principal sheaf of ideals defining ; : H -> U. The closed immersion
defined by V1 for m^ 1 will be denoted by i^ : mH -> U. Appendix 1 contains a proof of:

PROPOSITION 3.10. — With the above notation, ̂ (I/I2)* is ample on H, thenforallb, thereis
a niQ (b) such that m > m^ (b) => W -> V x U is a b-excellent deformation of i^ : m H -> U, with
base-po in t p (m H).

Thus, by 3.4, for m sufficiently large, m H deforms into compact submanifolds of U. To
know that these submanifolds are connected, we would need.

LEMMA 3.11. - Assume that H is connected and thati: H -» U satisfies the requirements of
3.10. Then F(mH, (P^)=Cfor all sufficiently large m.

Proof. - Choose a sequence of effective divisors H=Do>Di> . . . >D(=O so that
D—D,+i=B, is irreducible. Then F^^-D.+i)/^-1^) is an invertible sheaf
on Bi. Thus there is a filtration on (9^/1, where I=^u(-H), whose associated graded

•v

equals® F,, and by tensoring withi^ there is a filtration on ^/I^1 whose associated
i

graded equals © F,®!^ ButF(Bp F,®IW)=Oforallm>mo, and for all ;, because I-1 |B^.

is ample. It follows that F(U, lm/lm+l)==0 for allm>mo.
Putting r^=r(mH, (9^) we see therefore thatF^+i -> F^ is injective for allm>mo.

But F = lim r^ embeds in ]~[ 6\j,p, which is a ring with no non-zero nilpotents. Also F has
w peti

no non-trivial idempotents by the connectedness of H. By the previous paragraph, F is a
finite-dimensional vector-space overC. Thus F=C, and F^=C for allm>mo.

Question. - With H as in 3.11, is F,=C for all m^l?
This is so if H is further assumed to be reduced.

LEMMA 3.12. — Let q : \J^-> X be a local isomorphism of complex manifolds. With
i : H -> U as in 3.9, put h = q o i. The composite W-^V x U - ^ V x X defines a deformation
of h parameterised by (V,T?(H)). Conversely, given a deformation of h parameterised by
(S, So), then there is a neighbourhood G ofsQ and a holomorphic g : (G, So) -> (V, p (H)) such
that the deformation of h : H —>• X induced by g coincides with the restriction of the given
deformation to (G, So). The germ of g is uniquely defined.
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Proof. — Let/: P - ^ S x X be the given deformation. Then P x ^ U - ^ P is a local
isomorphism of complex-analytic spaces, equipped with a section on the closed subspace
(Pi °/)~1 so °fP- I1 ls a property of local homeomorphisms that this section extends to a
continuous section on a neighbourhood B of(;?i o/)~1 SQ in P; by the properness of/, we may
assume B=(/?i o/)~1 G for a neighbourhood G of SQ in S. In other words, we have:

H——^U\/\-
B——^X

/WIB

with t continuous and j : H -> (p^ o/)~1 SQ as in 3.2.
Because q is a local isomorphism and ^2 °/ ls holomorphic, so is ^. And because

; : H -> U is a closed immersion whose ideal sheaf is inyertible, the same holds for B -> G x U
ifGis replaced by a smaller neighbourhood ofso. The universal property ofV now gives the
required g : G -> V.

Given two commutative diagrams as above with ^ and ^ m pla06 °f ^ tne set B where
they coincide is an open-closed subset of B and therefore B' contains (p^ o/)~1 G' for a
smaller neighbourhood G' O?SQ. Again, ^ and ^ coincide onB' as holomorphic maps,
because q is a local isomorphism. This proves the uniqueness-statement.

In the above situation, if X is a projective variety, then H is a projective scheme and
h : H ->X is a morphism of schemes: in fact, for any ample L on X,/z*L is seen to ample on H,
from GAGA and the vanishing theorems of Serre's FAC. The same argument shows that
any holomorphic deformation of/z : H -> X with parameter-space = Spec A, A an Artin-local
C-algebra, is also algebraic. Using 3.12 we conclude:

COROLLARY 3.13. - In 3.12, if X is a projective variety, then the set of holomorphic
deformations of i : H -> U is in bijective correspondence with algebraic deformations of
h : H -^ X, ;/ the parameter-space=SpecA, A an Artin-local C-algebra.

In general, if/o : Po -> Q is a finite morphism of schemes with Po complete, the set of
algebraic deformations of/o : Po -^ Q parameterised by(S, So) being denoted by F(S, SQ),
F defines a functor from the category of schemes (over some fixed field k) with base-points to
the category of sets. This functor IF is not representable always, even locally in the Zariski
topology. However the following will suffice for our needs.

PROPOSITION 3.14. - Assume that Po and Q are projective and that the only global sections
of the structure-sheaf of PQ are scalars. Then there is a scheme T with base-point IQ and
9eF(T, to) with the following property: given ^o^i and l '• s! ̂  s a closed immersion and
\|/eF(S, s^andg : (S^, ^-^(T, to) such that F(0\|/=F(g)6, there exists an open subscheme
S^ ofS containing SQ and g : (S^, So) -> (T, to) such that:

g\S^S,=g\S^nS, and F(g)9=F(y)^,

where j : S^->S is the inclusion morphism.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



322 MADHAV V. NORI

COROLLARY 3.15. - With i : H -> U, q : U -> X, h = q. i as in 3.12 W 3.13, ̂ ^m^ ̂
r (H' ^n) = C, aW fc^ 9 be an algebraic deformation ofh parameterized by (T, to) as in 3.14
aA^. Let g :{G, to)-> (V, /? (H)) be the holomorphic map of 3.12, with G a neighbourhood
of to^T in the usual topology. Then g is smooth at to.

Proof. — This follows immediately from Grothendieck's criterion for formal smoothness
in view of 3.13 and 3.14 {see EGA, Chapter IV).

3.14. Is proved in Appendix 2 and it follows from the construction that both T and the
total-space of 9 are quasi-projectives schemes.

3.16. FIRST CHERN CLASSES. — For any proper holomorphic j : S -> T with finite fibres
such that/'(S) contains no irreducible component of T and j^ (9^ has finite homological
dimension at all points of T, following Mumford {see Chapter 5, § 3, [M 1]), one may define
an effective Cartier divisor Div/onT. With this definition, we have:

3.16 A : If 7, S and T are algebraic and T is smooth, then:

Div7=I>(S;F)J(F)L/(F)L
F

where the F range through all irreducible components of S with !+dimF=dimT, and
e(S, F) is the length of^s at the generic point ofF, and d(¥) is the degree of F ->j(¥).

A base-change lemma proved by Mumford also shows:

3.16 B : If/: P -> S x Q is such that p^ of : P -> S is proper and flat, and for each s e S,
Div/5 is defined for the morphism/^ : P^ -> Q, then Div/is defined and its restriction to s x Q
isDiv/,

LEMMA 3.17. — Let q : U -> X be as in 3.12 with X a smooth projective surface.
A : Let Abe a smooth compact complex submanif old of dimension one in U and assume that

q | A : A -> q{A)=B is birational, with B a nodal curve. Then:

B^A^^B),

where rift) is, as usual, the number of singular points ofB.
B : Let i : H-^U, q : \] ->Xbe asin WLT with dimX=2 and let h=qoi. Then, for m

large, there are plenty of irreducible nodal curves B^ in X, algebraically equivalent to m (Div h),
with:

m2(Div/^)2-m2(H2)=2^(BJ.

Proof. - Note that q~l (B) =A + R is a divisor on U with R intersecting A transversally in
precisely the 2r(B) points of A lying over the nodes of B. Note next that
q~1 (B). A = B. q (A) = B. B because A -> B is birational. Therefore:

B^A^A.I^A^^B).

Proof of 3.17 B. - With W -> V x U as in3.9, for z e V, let W^ <= U be the corresponding
closed immersion.
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By 3.7 and 3.10, the composite W - ^ V x X is 3-excellent at ;?(mH)eV for all m
large. For z in a neighbourhood of^(mH), put W^=A^ and ^(^)==B^. By 3.5, for
general z, A^ is smooth and is in fact the normalisation of the nodal curve B^. By 3.11, A^
is also connected. In addition, A2, = (m H)2 = m2 H2, and by 3.16 B, Div (q o ij = m Div /i is
algebraically equivalent to Div q \ A^, which by 3.16 A, is equal to B^. The formula for
r(B^) now follows from 3.17 A.

We apply the above remarks to the construction of nodal curves on surfaces.

PROPOSITION 3.18. - Let C be an irreducible curve of positive self-intersection on a smooth
projective surface X. Let A (m) be the maximum number of singular points on any irreducible
nodal curve in the linear system \ m C |. Then:

Hm AW/m^C2/!.
m—^ oo

proof. - The formula for the genus of a clirve shows that:

2(A(m)-l)^m2C2+mC.^,

and therefore the upper limit is ^C2/!.
To prove the other inequality, C can be replaced by any curve in the linear system of any

multiple ofC, and therefore we may assume that C is smooth and not rational.
Let H -> C be any unramified ^-fold covering and let h be the composite H -> C -> X. Let

(U, ;, q) be a tubular neighbourhood of h :H -^ Xas in l . l l . Clearly H^WC2, so we may
apply 3.17B to get irreducible nodal curves B^ algebraically equivalent
to m (Div h)=mdC with:

2r(B,)=m2^-l)C2.

Thus 2 r (B^)/(B2.) =1 - (1 I d ) and taking larger and larger d, we get the result, provided we
assume that algebraic equivalence = linear equivalence; in other words that Pic °X = 0. This
restriction will be removed in the examples below.

Remark 3.18. - It can be shown that K^ (B^) -> n^ (X) and n^ (H) -> n^ (X) have the same
(conjugate) image.

Example 3.19 A. - Let (p : Y -> X be a af-fold etale covering, with X as in 3.18. With C
also as in 3.18, consider the linear system \m^~l(C)\ for m large. Denoting by A^ its
general member, (p(AJ=B^ is an irreducible nodal curve with normalisation A^; and
B^e|mrfC|. Applying 3.17 A to (p : Y-^X in place of ^ : U - > X , we see that
2r(B,)/(B^=l-(l/^again

Thus, if the algebraic fundamental group ofX is infinite [in particular, if Alb (X) ̂  O], 3.18 is
trivially proved.

3.19 B. - Assume further that (p : Y -> X is Galois with Galois group G.
Then, for general Delmcp'^C)!, (p"1 (p(D) is the union of the aD (which intersect

transversally) for a e G, and by 2.5, N = ker n, (Y - (p -' (p (D)) -> K, (Y)) is central. Thus
6 : Z[G] -> N given by 9([a])=y(aD) for aeG is surjective and well-defined.
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Let I be the augmentation ideal of Z[G]. Then the composite Z[G]-^N-^
Hi (Y—(p~ 1 (p(D)) is injective when restricted to Ic=Z[G], as is seen from the homology-

-exact-sequence of the pair (Y, Y-cp^q^D)) noting that all the oD are linearly, and
therefore homologically, equivalent.

Now N is also ker (7^ (X - (p (D)) -^ n^ (X)) and the conjugation-action of 7^ (X - (p (D) on
N factors through an action p of G such that p (a) y (r D) = y (err D) for all a, T e G.

Thus, i f^=deg(p=0(G)>l ,Nis not a central subgroup of 71:1 (X-(p(D)).
Putting d=2, C=(p(D), C^^C) and the kernel of n^X-C) -> ̂ (X) is not

central. In fact the subset y (C) of n^ (X - C) consists of two distinct elements.
See also 6.5 and 6.6. -
The following lemma will be used for the proof of WLT.

LEMMA 3.20. — Iff : P -> S x Q is algebraic (resp. holomorphic} andp^ o f ' . P -> S is proper
and flat, then S^={seS\f is 1-excellent ats} is the complement of a Zariski-closed {resp.
complex-analytic) subset ofS. Here Q is assumed to be smooth, and dimP^+1 =dimQ.

Proof. — Recall that seS^ if and only if:
(a) S is smooth at s;
(b) P is smooth at each point of Ps=(Pl °/)~1 S;
(c) Pi °f : P -> Q induces a surjection on tengent-spaces at each point of P^.
From this, it follows that S^ is Zariski-open (resp. the complement of a complex-analytic

subvariety).

3.21. We now come to the proof of WLT. The notation R, H, U, X, /, q, h will be as in the
statement o/WLT.

I t will be assumed henceforth that dim X=2.
For anyj : A ̂  X, we put A^A-y-^R). In particular, X'=X-R, U^-^X').
With W ̂  V x U as in 3.9, let:

Vi = { z e V | W-> V x U is 1-excellent at zeV}.

By 3.20, Vi is open. Furthermore p (m H) e V^ and F (m H, (9^) = C for all m > mo. With
a : V x V .-> V as in 3.9, note that a is continuous (in fact holomorphic). Thus for general z^
and z^ in suitable neighbourhoods of/?(mH)eV, for some fixed m>mo, we may assume:

1. z^, z^, and a(z^, z^) all belong to V\, and ifz^ and z^ represent A()C:U and BgC:U
respectively, i. e. p (Ao) = z^ and p (Bo) = z^ with p as in 3.9, then:

2. Ao and Bo are smooth, irreudible and compact, by 3.5.
3. Ao x x Bo is finite and reduced, and its image in X does not intersect R, by 3.6 B and 3.7.

I I f C o = A o u B o , thena(zi, z^=p{Co).
Let A - > - L x X , B - ^ M x X , C - ^ N x X be algebraic deformations of the morphisms

Ao -> X, Bo -> X, Co -> X given by the restrictions of q, with base-points /o e L, m^ e M and
HQ e N, satisfying the requirements of 3.14.
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In view of 3.15,3.7 and 3.8, (1) above is equivalent to:
V. The three given algebraic deformations are 1-excellent at the base-points /o, m^ n^.
Because Ao, Bo and Co are connected and reduced and their images in X are not contained

in R, replacing L, M and N by Zariski-neighbourhoods of/o, m^ and n^ and denoting the
fibres of A -> L, B -> M and C -^ N by Aj, B^ and C^, we may assume:

I : All the Aj, B^ and C^ are reduced and connected, and none of their images in X is
contained in R.

II : A, B, C, L, M, N are smooth and connected. The morphisms A - ^ X , B - ^ X , C - > X
induce surjections on all tangent-spaces.

II is an application of Lemma 3.20: replace L by the connected component of/o in
{leL\A->LxX is 1-excellent at /}. That /o belongs to this subset is assured by 1'.

Because Co=AouBo is got from the disjoint union ofAo and Bo by making certain
identifications, we identify the Aj and B^ along certain points to get reduced curves which
are deformations of Co. In 3.22 below, we work this out precisely.

3.22. First note that (Ao.Bo)=m2(H2)>0 and that Ao intersects Bo transversally
in U. ' Indeed Ao x^BocAo X ^ B Q which is finite and reduced by assumption (2)
in 3.21. Let p, and ^ be the cordinalities of Ao n Bo and Ao-XxBo respectively. Then
I^X-.

Let E (/, m) = A^ x x B^ for (/, m) e L x M. This is just the fibre of A x^ B -> L x M over
(/, m) e L x M. By II, A -> X and B -> X are smooth morphisms, from which it follows that
A x x B is smooth with dimension = dim (A x B) — dim X = dim L + dim M.

Consequently Q = {(/ , m) | E (/, m) is finite and reduced} is the largest Zariski-open subset
o f L x M such that ifE denotes its inverse image in A x ^ B — ^ L x M , then E -> Q is
etale. By the properness of A -> L, B -> M, it follows that E -> Q is a finite etale morphism
of degree [i.

Let F be the open-closed subscheme of the p-fold fibre-product of E —> Q having all |A co-
ordinates distinct and denote the quotient of F by the natural action of the permutation
group S^ by 0. Then 0 -> Q is a finite etale morphism; in fact the fibre of 0 -> Q over
(/, m) e Q is canonically identified with the collection of all subsets of E (/, m) of cardinality n.

Denote by p,• : F -> E the ;-th projection and let:

G,={(x,y)eEx^¥\x=pi(y}}

and let G be the (disjoint) union of the G; in E XpF. Denote the quotient of G by S^
by T. Then T is a closed subscheme of E x Q 0 and the projection T -> 0 is a finite etale
morphism of degree \i. In fact with the above identification of 0, a point (a, ^)eE X p O
belongs to T if and only if a e ̂ .

For ^eO lying over (/, m)eQ, let:

^={(^1, &i), (a^ b^\ .. ., (a^ ^)}c:E(/, m ) = A x x B ^ .

Then the set of^eO for which all the a^ and the b^ are distinct points of Aj and B^ respectively
form a Zariski-open subset 0^ of 0.
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Note that E (/o, m^) ̂  AQ x x B() canonically. 77^ ̂ ^ Ao n BQ = Ao Xy B() c: A() x x Bg o/
cardinality [i gives a point zeO^.

ForS;={(^,fcJ, .. .,(a^, &^)}c:E(/, m), ^eO^, take the disjoint union of A ^ and B^and
identify a^ with b^ for 1^'^H to get a curve D^ and a morphism D^ -» X. We shall see
below that the D^ fit together to give a flat family D -> O^.

With T c E x Q O as before, let T = T n E x Q O i . The inclusion E c A x x B gives
morphisms:

(pi : T -^AX^O^DI ,

( p 2 : T-^Bx^O^D^

such that/?2 0 ̂ i =^2 0 ̂ 2 ls tne given finite etale morphism T -> 0^. It follows that both (pi
and (p2 are proper and induce injections on tangent-spaces; because they are also set-
theoretically injective, they are closed immersions. Let T^ and T^ be their images and let
\|/; : T\ -> T be the inverse of (p^ for ;= 1, 2. We want to take the disjoint union of D^
and D^ and identify T^ with T^ via (p^ o\|/i.

We appeal to the following lemma (^ [N3] for a proof) where all objects are schemes of
finite type over an algebraically closed field k.

LEMMA. — Leti: P -> Q be a closed immersion and letj : P -> R be a finite morphism so that
(9^ ->j^ ((9p} is injective. Assume that any finite set of points of Q is contained in an affine open
subset.

Then there is a commutative diagram of schemes:

P — — — Q- \ ; \-
R——^S

with F a closed immersion, 7 a finite morphism, ^-^(^p) a monomorphism, and
^ U ^ ^ p / ^ p ) -^7*(^Q)/^s an isomorphism of sheaves on S.

Furthermore, given a commutative diagram:

P—^Q- i , . i-
R——^S'

of schemes, there is a unique morphism a : S -> S ' such that/=a 07, f = a o f .
In the reference cited, this universal property is not proved, but it is in any case an

immediate consequence of the first statement.
In our situation, T^ 1 1 T^ is a closed subscheme ofD^ 1 1 D^ (which is quasi-projective) and

^i \\_^2 '' TI JJ_T2 -> T is a finite morphism inducing the exact sequence of ^-modules:
O^^T->(^1^^2)A.I|T.=(^l)*^©(^2)^T^^f^O.
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Applying the lemma, we get:

T,liT,^D,llD,

^^ _ ^7=7,117.
T——'.——^D

and there are morphisms D -> X and D -> 0^ by the universal property. Equivalently, there
is a diagram:

T———D,
<p2 I - I h
I J l '

D ^ — — ^ D — ^ O ^ x X

and 0 -^ ̂  (7i)^D,C(72)^D, ̂  r^T ̂  0 is exact.
BecauseD^ -^Oi.D^ -^andT ->0^ are flat morphisms, it follows that D ̂ Oi is flat and

the above exact sequence remains exact after base-change.
For z e Oi as before, z = Ao n Bo c Ao ^x Bo, let D^ be the fibre of D -^ 0^ over z. Then:

AQ n Bo -> AQ

\ i
B o — — D ,

is commutative, and:

0 ̂  ̂  ̂  ̂ ©^Bo -^ ̂ nB^ 0 is exact.

From this D^ is canonically identified with Ao u Bo=Co as C-schemes.
By the assumption on C -> N x X (see 3.14), there is a Zariski-neighbourhood Z of z in 0^,

D = Z x o D, and a commutative diagram:

D—————C

Z x X /^SNxX

with/(z)=^o.
Putting Ei=Z X Q DI, E^=Z X Q D^ and using the inclusions E^ -^ D, we get:

EI——^—^C E^——gl—^C
I. 1 1 and I I

V . / x i x t r / x i x '
Z x X — — > - N x X Z x X — — ^ N x X

and by the very construction, we have:

EI————^A E^—————^B-1 ———————^^ ^-2

II. and ^ ^
» U X l v ' ' f x l yZ x X — — ^ L x X Z x X — — ^ M x X
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Choosing any point SQ e A() n B^, we get a consistent system of base-points e^ e^ a^ b^ CQ
of Hi, E;, A', B', C, lying over the base-points z, /o, m^ n^ of Z, L, M, N.

Put^o)=Xo6X.

3.23. We now apply this to n^.
The general fibre ofA-^Lis smooth by Sard's theorem, and is connected by 3.211. Also

A; ̂  0 for all /e L (recall that A; is the complement of the set of points of A^ whose images
in X lie in R). Thus the hypothesis of lemma 1.5 C holds for A' -> L. The same is true
for B' -> M, C' -> N, E[ -. Z, E; -^ Z.

LEMMA 3.23 A. - There is a unique function 6(L): n^ (L, /o) ̂  TCI (X', Xo)/G, where G is
the image ofn^(\3\ ^o), such that the diagram below is commutative:

Tii (A\ ao) ———^Tti (X', xo)

K,(L,l,)-^^K,{X\X^/G

Proof. - The uniqueness is clear because TI^A', a^) -> n^(L, /o) is surjective by
lemma 1.5 C.

Denote by t : A -> L x X the given morphism. Let I be any connected neighbourhood of
(Pi ° 0~1 lo m A. For any /eL such that A; is a general fibre of A' -> L in the sense
of 1.5 A, and A^ <= I, choose any a e A;. By 1.5 C:

ker(7ti(A', a) -> TiJL,/^ ^))<= Image (^(P, ^^TI^A', a}).

The truth of the above statement remains unaffected if a is replaced by any other point of
r=I n A' because I' is path-connected. In particular, a=ao will do.

By lemma 3.12, there is a s : I -> U for I small enough such that qos=p^ o t \ I and the
restriction of s to (p^ o t) ~1 /o ̂ Ao agrees with the given immersion of AQ in U. From this,
it follows that n, (A', a^) -. n, (X', ^o) takes ker(7ii (A', ^o) ̂  ̂ i (L, /o)) into G, and thus
defines 6(L): 7ii(L, /o) -^ 7ii(X, Xo)/G with the above commutative diagram.

Remark. — The very same proof works for the remaining four situations: B' -> M, C' -> N,
E'i -^Z, E; -^Z, thus defining functions 9(M), 9(N), 9i(Z) and O^Z) from 7ii(M, mo),
7ti(N,^o), 7ii(Z,z) and 71:1 (Z,z) respectively to 7ti(X', Xo)/G with the corresponding
commutative diagrams.

From the diagrams I and II of 3.22, we get:

LEMMA 3.23B:

6 (N) o^ = Q, (Z) W 9 (N) o/^ = 62 (Z);

9 (L) o ̂  == 9i (Z) ^^ 6 (M) ov^ = 62 (Z).
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Proof. - For example, to prove 9(N)o/^=9i(Z), put 9(N)o/^=9i(Z). The first
commutative diagram of I in 3.22 and the defining property of 9(N) gives a commutative
diagram:

7li(Ei, ̂ )-^(C', Co)———^ 7Ti(X', Xo)

7r,(Z,z)±^(N,^)^ni(X\;Co)/G

which shows that Q[ (Z) satisfies the required commutative diagram. By the uniqueness part
of 3.23 A, it follows that 9^ (Z) = Q[ (Z).

The same proof works for all the four cases.
As a consequence, note that 9i(Z)=92(Z) from the first row, and 9(L)7=9(M)5 for

all (7, 8) in the image of n^ (Z, z) -> n^ (L x M, (/o, mo)) from the second row of 3.23 B.
But Z->LxM is dominant (in fact etale by very construction) and by 1.5 B the

above (7, 5) form a subgroup of finite index Sin7ii(L, /o) x7ii(M, mo). Intersecting Swith
the first factor, we get a subgroup T of finite index in 7ii(L,/o) such that
9 (LV= 9 (M)l= identity coset of^X, Xo)/G for all^'eT.

Let V be the inverse image ofT inn^ (A', a^} -> n^ (L, /o). Then;? == [711 (A', ao): V] is finite
and p(V)c:G where P : 71:1 (A\ ao) -> n^ (X', Xo) is the given homomorphism.

Because A' -> X is dominant (see 3.21, II), by 1.5 B again:

^[TI^X',.^ PTT^A',^)]
is finite. It follows that:

[K,(X\Xo):G]^p.q

and this completes the proof of WLT(A) for surfaces.
As remarked in paragraph 0, this also proves WLT(A) and (B) in general.
3.24. The Upper Bound of WLT (C).

LEMMA. - With the hypothesis of WLT, there is a commutative diagram:

(Y,^o)^ i-
(U,^o)———(X,^o)

with:

(a) Y is a normal projective variety and (p : Y -> X is a finite morphism unramified outside
R<=X;

(b) s is holomorphic and locally invertible;
(c) (p is etale at every point of s{\3)\

(d) TtiOJ', So)->n^(\\ y^) is surjective where \f =^~1^X') and U'^'^X') and
X'=X-R as before.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



330 MADHAV V. NORI

Proof. G=Image (jii (LT, So) -> n^ (X', Xo)) is a subgroup of finite index and thus gives a
connected finite-sheeted covering space (p':(Y', yo) -> (X', Xo) such that (p^ 7^ (Y', yo) =G,
and by the lifting theorem, there is s ' : (U', So) -> (Y', yo) such that q/ o s ' is the restriction of q
to U'. 5^SGA1.

It is well-known that q/ : Y' -> X' extends to (p : Y -> X satisfying (a) above.
Let Z be the connected component of U x x Y containing the graph of s\ and \etp : Z->\J

denote the projection. Note that:
(a) 7.' =p~l(\3') is connected because Z is connected and normal.
(b) p | Z': Z' —> U' is a covering space because (p7: Y' —> X' is a covering space.
(c) This covering space has a section, and therefore Z' —>• U' is an isomorphism.
(d) In addition, p : Z -^ U is proper and has finite fibres. Therefore p : Z -> U itself an

isomorphism by the analytic version of Zariski's Main Theorem.
This gives the required s : U -> Y extending s ' : U' -> Y'.
(b) and (c) in the lemma follow from the analytic irreducibility of Y, and part (d) follows

from the very construction of (p' : Y' -»X'.

Proof'of^WLT(C). - By lemma 3.17, there are smooth compact connected curves A c: U
very close to mHc=U such that:

(a) ^(A)=B is nodal,
(b) A -> q(A) is birational,
(c) (Div/O2/^2)^2)^2).
By the above lemma, we get a commutative diagram:

U — — > X

and put ^(A)=A. By the lemma, cp is etale at every point of A and by 3.17 (a),
B2-2r(B)=(A2)>0. So lemma 5.1 can be applied to conclude that:

deg^^B^B^^^Div/O2/^2),

and because deg((p) is precisely the index in question, WLT(C) follows.
Some applications of WLT follow. We still assume dim X = 2.

DEFINITION 3.25. - If the curve C on X is defined in a neighbourhood of P e C by/= 0, let
/=/i/2/3 • • 'fr be its prime factorisation in A =(9^ p and let A (C; P) = 2 (^ /(A/(/,,/,)) and
B^^-^A^P).

p
PROPOSITION 3.26. — IfC is an irreducible curve with B(C)>0 and Cn R=0, then the

image ofn^ (C) -> n^ (X-R) has m^x^C^B^), where C -> C is the normalisation ofC.
Remark. - For a nodal curve C, B^)^2-^^).
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Proof. — There is a unique diagram C -> H -> C such that C -> H is set-theoretically
injective and H -> C induces an injection of Zariski tangent-spaces. In fact, if P e C, with
the notation of 3.25, there are exactly r points of H lying above P and the complete local
rings of H at these points are A/(/^), 1 ̂ i^r.

Let (U,;', q) be a neighbourhood of h: H -> X, where h is the composite H -> C -> X and
consider the divisor ^(C^H+F. We see that (F.H)^2-^^), and also
}^.q~l(C}=C2 because H -> C is birational. It follows that H^B^^O and the
proposition is proved by appealing to WLT and noting that C -> H is a homeomorphism.

PROPOSITION 3.27. — Let D and E be curves in X that intersect transver sally. Assume
that D is nodal and'C2>2r(C)for every irreducible curve Clyingin D. Then thekernel ̂ \of
7i i (X—(D u E)) —> 7i i (X—E) is abelian and its centraliser is a subgroup of finite index.

Proof. — Fix an irreducible curve C contained in D. Let H = C the normalisation of C
and let h be the composite H -> C -> X. For a sufficiently small tubular neighbourhood
(U, ;, q) of h, let U' = q~1 (X'), X' == X - R, R = D u E, and then y (H) is central in 7^ (V)
by 1.4 because H is smooth and intersects the closure of^r^R^—H transversally.

The image of y(H) in n^ (U') -> n^ (X') is 8ey(C)c=7ii (X') and the centraliser C(5) of 5
contains the image of n^ (U') and is therefore a subgroup of finite index by WLT. Therefore
y (C) is afmite set. But N is generated by the y (C), C c= D, and is therefore finitely generated,
and its centraliser is a finite intersection of subgroups of finite index, and it has finite index
therefore in n^ (X'). It remains to prove that N is abelian.

Let U be a tubular neighbourhood of H = C -> X as before.
From 3.24, there is a commutative diagram:

with Y a normal surface, (p a finite morphism unramified outside R (put \f=^)~l(X')),
Tii (U') -> n^ (Y') a surjection.

Let Z = = { ^ e Y | ( p i s not etale at y }. Then Z n 5"(H) = 0, and by Lemma 5.2, Z does not
contain any irreducible component of (p~ 1 (D). In other words (p is unramified outside E
itself, and therefore N is contained in the image of^i (Y') -> n^ (X'). Because y (H) is central
in TCi (U') and n^ (U') -> n^ (Y') is onto, y (s(H)) is central in n^ (Y'). The image ofy^(H))
in Tii (Y') -> Tii (X') is a member § of y (C) and therefore 5 commutes with N. But N, being
normal, commutes with all the conjugates of 8; in other words every element ofy(C)
commutes with N. Finally N is generated by the y(C), C<=D, and this shows that N is
abelian.

4. Homogeneous spaces and ZariskFs Conjecture

PROPOSITION 4.1. - With the notation of WLT, ;/ X^=P2 , then
n^(\J—q~l(R))->n^(X-R) is surjective.
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Remark. - This is stringer than WLT (C). Also there is no need to assume the ampleness of
^u(H)|H.

Proof: Let D be the normalisation of any irreducible component ofH and denote by d the
composite D -> H -^ X. PutG=Sl(3).

6 : G x D - ^ X given by 6(g, a)=g.d(a) makes G x D a fibre-bundle on X. This is
elementary. In any case, Lemma 1.5 A gives a Zariski-open V c X such that 9 ~1 (V) -> V is
a fibre-bundle and the G-equivariance of 6 shows that 9 is locally trivial, in the usual
topology, everywhere. Because X is simply connected, the fibres of 9 are all
connected. Putting X'==X-R, S=9~1(X /) , S-^X' is a fibre-bundle with smooth
connected fibres and therefore n^ (S) -> n^ (X') is surjective.

Now the fibres of the projection S -> G are of course all smooth, and they are non-empty
outside a finite union of cosets of the stabiliser of the curve J(D). However no subgroup of
G has codimension one, and therefore 1.5 C applied to S -> G allows us to conclude that
Tti (F) -> Tii (S) is surjective, for a general fibre F of S -> G, because G is simply connected.

The two surjectivities above show that for all o- in a Zariski-open M <= G,/: D -> X defined
^ f(a)=<jd(a) induces a surjection Ti^D-y'^R)) -^ Tii(X'). But q : V ->X being a
local homeomorphism, as in 3.12, for cr close to the identity, there is g : D -> U such that
f=qog. Thus n^(\J-q~l(R))->n^(X-R) is surjective.

COROLLARY (Zariski's Conjecture). - n^^—D) is abelianfor a nodal curve D in P2.
Proof. - Let H be the nonsingular model of an irreducible curve C in D and let U be a

tubular neighbourhood, as in 1.11, of H -> P2. Put R = D and apply 4.1 to conclude that
y(C) is central in n^ (P2 -D), and because n^ (P2 -D) is generated by the y(C), the result
follows.

This argument can be extended to prove the following:
PROPOSITION 4 . 3 . — Assume that the connected component G of the group of automorphisms

of a projective variety X acts transitively. Let DcX be a divisor such that:
(a) outside a codimension 3 subset Z ofX, each singular point ofD has normal crossings:
(b) no irreducible component ofD is the fibre of a G-equivariant morphism X -> Y with

Y=P1 or \=an elliptic curve.
Then n^ (X — D) -> n^ (X) has abelian kernel.
We omit the proof. In any case, by taking the intersection with a general linear subspace,

it reduces to a special case of 3.27, the condition C2>2r(C) being a consequence of (b).

5. Tame fundamental groups
We work exclusively with complete normal surfaces over an algebraically closed field k.

LEMMA 5.1. — (p : Y -> X is a finite morphism with X smooth. On Y we have irreducible
curve A such that:

(a) A -> (p(A)=B is birational, and B is a nodal curve, with B2 >2r(B),
(b) (p is etale at every point of A.
Then A^O and deg (p^B^B2^^).
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Proof. — (b) assures us that Y is smooth at every point of A, and that the only singular
points of (p~1 (B) lying on A are nodes.

Consequently if (p~1 (B)=A+R as divisors, A intersects R transversally in { P e A | A is
smooth at P and B is singular at (p (P)}. Therefore (A. R) = 2 r (B) - 2 r (A). Also A -> B
being birational, B 2 =B. (p(A)=A. (p- l (B)==A 2 +A.R, so that A 2 -2r(A)=B 2 -2r(B) ,
showing finally that Q<B2-2r(B)^A2.

By the Hodge Index Theorem on the intersection pairing, the matrix:

r (A+R)2 ( A + R ^ A t ^ r B ^ e g c p B21
|_A.(A+R) A2 _ | | _ B2 A 2 ] 9

has determinant ^0. Thus:
deg (p^B^A^B^B2-!^).

Remark. — The intersection number (D^. D^) of Cartier divisors D^ and D^ on a normal
surface Y is taken, by definition, to be f~l(D^).f~l(D^) for any desingularisation
/: Z -^ Y.

LEMMA 5.2. — //(p : Y —> X is a finite tamely ramified morphism unramified outside D u E
where D and E are as in Proposition 3.27, then any two irreducible curves in (p ~1 (D) intersect
each other.

Proof. — Clearly we may assume that (p is Galois with Galois group G.
Let S be an irreducible curve in (p~1 (D). Let:

G(S)={^eG|^S=S} , Z=Y/G(S), v | / : Z ^ X and ? i : Y - . Z

the natural morphisms, and X,(S)=S/G(S)=A and (p(S)=B. We want to apply 5.1 to
v|/ : Z -> X. By Field Theory A -> B is birational and \|/ is etale at the generic point of A.

For PeS, \|/ : Z-^ X is etale at ^(P) if G(P)= { g e G | ^ P = P } is contained in G(S),
because Y/G (P) -> X is etale at the image of P in Y/G (P). But it is well-known from local
considerations that:

(a) G(P) is abelian, and:
(b) if (p (P) = Q, the inverse image of any analytically irreducible branch of D u E at Q is

analytically irreducible at P {see [F]), showing that G(P)c=G(S).
Applying 5.1, we see that A2 > 0, and therefore [S] = ^~1 (A) is an effective Cartier divisor

on Y supported on S. If S^, S^ccp'^D), then by the Hodge Index Theorem:

([SinSJ^tSjMS^^S,) : 1][G(SJ : 1].(A^)(A|)>0,

where A^ is the image of S^ in Y/G(S^).
Therefore S^ n S^C). This proves the lemma.
Appealing to 5.1 also shows that:
B^B^^^B^deg \|/=[G : G(S)]=the number of irreducible curves in (p-1 (B), where

S, G and G(S) are as before.
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Let I (S)=={^6G|^=xfora l lxeS} . Then for any PeS^ n S;, with S.ccp-^D) for
;=1, 2, G(P)=)I(Si) and G(P)^I(S2), showing that I(Si) and 1(82) commute with each
other. Thus the group I(D) generated by all the I(S), Sccp-^D) is abelian. This is the
ramification subgroup along D.

With S as above, I(S)c:^=^-th roots of unity, for some n not divisible by the
characteristic, and in fact the action of I (S) on J^/^2, where ^ is the ideal-sheaf of S, is just
multiplication by the corresponding root of unity. It follows that G (S) is the centraliser of
I(S).

Therefore Z(I(D))=Z, the centraliser ofI(D), has index [G : Z]^ [] (B^B2-2r(B)).
BcD

Denoting by TI,(X-R) the tame fundamental group o fX-R, the above remarks show
(after taking inverse limits):

PROPOSITION 5.3. - For a smooth surface X, and D and E as in 3.27, the kernel N of
7i^(X-D u E) -> TI((X-D) is abelian and has a finitely generated dense subgroup. Moreover
its centraliser has finite index in TT((X-D u E).

This dense subgroup has not more than ^ [F(B)] generators and the index of the
BcD

centraliser is ^ R] [F(B)], where F(B)==B2 /B2-2r(B).
BcD

Denoting algebraic fundamental groups simply by n^ we also get:

PROPOSITION 5.4.- For any irreducible nodal curve ConX with C2 > 2 r (C), the image of
HI (C) -> Tii (X) is a subgroup of index ^C2/C2 -2r(C), where C is the normalisation ofC.

Proof. - Any subgroup H of finite index in n^ (X) containing the image ofn^ (C) gives a
commutative diagram:

.Y

C——^X

with (p a finite etale morphism. Applying Lemma 5.1, deg (p ̂  C2 /C2 - 2 r (C). But the
image of 71:1 (C) is the intersection of all subgroups of n^ (X) of finite index containing it,
because we are working with profmite groups. Therefore the image itself has finite index^cw^^c). . . .

6. Examples

We discuss to what extent the results of paragraph 2 and the WLT are best possible for
nodal curves and then discuss other singularities briefly.

Let C be an irreducible nodal curve on a surface X, C its normalisation, and h : C -> X is
the given morphism.

6.1. For the examples in 3.19 (A), [Tii (X) : ̂ (C^CW^^C) which is the upper
bound imposed by WLT. Assuming Remark 3.18 however, there are C with
CW^^C) very large and n,(X)==h^n,(C).
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6.2. There exist C with C 2=2r(C)>0 and [7ii(X) : h^n^(C)] infinite, and non-abelian
kernel {n, (X-C)-. n, (X)).

Letfi : Ci -> P1 be a double-covering ramified at S^c P1 for z== 1,2. Let s and t be the
cardinalities of 8=81^82 and T == S^ u S^ — S respectively. Put X = C^ x C^,
f^fi^fi '' X-^xP^andletC^'^AP1). Then:

(a) C is irreducible if and only if S^ ^S^;
(b} C is nodal and r(C }=s,
(c) g(C)-(g(C,)+g(C,))=(t/2)-l.
We shall show that s^4 and S^S^ imply:
(A) [7Ei (X) : h^ Tii (C)] is infinite.

Note that H^ (C, Q) -> H^ (X, Q) is a surjection, and even an isomorphism if t=l \
(B) ker(7ii (X—C)^ 71^ (X)) is non-abelian if in addition, S^ cS^.

Case 1 : Si<=S2.
We see that C —> C^ is an unramified double-covering, and this makes Y = C^ x C a double-

cover of X = Ci x C^, and h : C -> X has then a natural lift to h : C -> Y with p^ h(x)=x for
all xeC. It follows that Tii(Ci) acts simply transitively on 7ii(Y)/h^7ii(C), which is
contained in n^(X)/h^K^(C), and because TT^CJ is infinite, we deduce that
[7ii(X) : /^7Ti(C)] is finite.

Now (Y, Y —h (C)) is a fibre-bundle pair with fibre (C\, C\ — { P}) and base-space C,from
which ker(7Ti(Y-/?(C))-^7ii(Y)) is isomorphic to ker(7ii(Ci - { P } ) -> n^(C^)) which is
certainly non-abelian! This combined with the facts:

(a) TCI (Y - 9~1 (C)) -^ Tii (Y -~h(C)) is onto, where 9 : Y -> X is the given double covering,
and:

(b) ke^n^Y-e-^C)^ n, (Y))^ker(7ii(X-C) ̂  71^ (X)) proves (B).

Case 2 : S^S^ and S^ 9^ Si. We sketch the proof of (A) briefly in this case. Put
G=7ii(C) and G/N;=7Ci(C;) for ;=1,2. Then [7ti(X) : ̂ 7ii(C)]=[G : N^NJ,
71^ (Z)^G/Ni N2 where Z is the "double-mapping cylinder": the disjoint union ofCxI ,Ci ,
C^ with(x, 0)and(x, 1) identified to q^(x) SLndq^{x),fov xeC Sindpioh=q^or i= 1, 2, and
the p , : X -> C, are the projections.

There is a natural (p : Z-^P 1 given by (p(.v, /)==/i <7i(^)=/2 ^2GV) f01" ^^C,
^el. Analysing the fibres of (p, we see that 71:1 (Z) is generated by x^, x^ . . . , x^ subject to
the relations x] = 1 for all;' and x^ x ^ . . . x^ = 1. It is easy to see that for s ̂  4, this group is
infinite; in fact for s ̂  5, it is a Fuchschian subgroup F of PSL^ (P) such that h/V ^ P1 and the
elliptic fixed-points of F correspond to the points of Sc: P1.

Remark. — In the above examples, the quotient of 7ii(X) by the normal subgroup
generated by h^n^(C) is (Z/2Z)5"1.

PROPOSITION 6.3. - ^C^max^, 2r(C)-2), then the normal subgroup generated by
n^ n! (C) has finite index in n^ (X).
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Proof. - Case 1. lfC2>2r(C), the result follows from WLT.

Case 2. If C2=2r(C)>0, choose a pair of points P and Q o f C such that h(P)=h(Q)
and P^Q. Take C x {0 , 1} and identify (P, 0) with (Q, 1) to get a curve F and a
morphism /: F -> X, and let (U, ;, q) be a neighbourhood of / as in 1.8. Denoting
the irreducible components of F by F^ and F^, F^=Fj=0 and (F^.F^l, from which
it follows that ^j(F)|F is ample. Now WLT shows that
[7l! (X) :/„ Tii (F)] ̂  2C2, but Tii (F) = Tii (Fi)* Tii (F^) and the images of these subgroups are
conjugates of h^ n^ (C). The result follows.

Case 3. V C2=(2r(C)-l)>0, take Cx {0 , 1, 2} and points P and Q as above and
identify (P, i) with (Q, ;•+ l)for f=0,l, and call the resulting curve F and let/: F -> X be the
natural morphism. Let (U, /, q) be a neighbourhood of/, and denote the irreducible curves
in F by F,, for /=0, 1, 2. Then F?==- l for f=0, 1, 2 and Fo.F^ =Fi .F,=l and
FQ . F^ = 0. From which R = 2 Fo + 3 F^ + 2 F^ is ample restricted to each F,.. Applying
WLT to R -> X, [TTi (X) :/^ Tii (R)] is finite, and as above, /^ 711 (R) is generated by three
subgroups of Tii (X) each of which is conjugate to h^ n^ (C), and the result follows.

The examples 6.2 raise the:

Question 6.4. - If D is an effective divisor on a surface X with D2 > 0, is the normal
subgroup generated by the fundamental groups of the nonsingular models of all the
irreducible curves in D a subgroup of finite index in n^ (X)?

We now discuss other singularities. Let A = C [[a, b]}, T = Spec A, and/e A is square-free
and in the square of the maximal ideal. By a sequence of blowing-up transformations we get
a proper birational v|/ : S -^ T with div \|/* (/) = F + G where F is the proper transform of / = 0
and F meets G^ transversally. Let s = G. (G + 2 F).

For any irreducible curve C on X and for any singular point P of C, identity (§^ p with A and

let /= 0 be the defining equation of C here. Put s = s (C; P). Let F (C) = ̂  s (C; P).
p

PROPOSITION 6.5. - With the above notation, /C^F^), then n^ (X-C) -> n^ (X) is a
central extension.

Proof. - After a series of blowing-ups, we get (p : Y -^ X with (p ~1 (C) = C' + G, where C' is
the proper transform of C, C' meets G^ transversally, and G.(G+2C')=F(C). Thus
(C7)2 > 0. Putting (Y, C', G) in place of (X, D, E) in 2.5, we see that y (C') is central in
^i (Y-(p~1 (C)) and therefore y(C) is central in n^ (X-C).

Remark 6.6. - It is interesting to note that the s(C, P) are just right! For a node,
s (C; P) = 2 and therefore if C2 > 4 r (C) for an irreducible nodal curve C, n^ (X - C) -> n\ (X)
is a central extension. However example 3.19 (C) shows that this is false when C2= 4 r (C)

Example 6.7. - For an ordinary cusp (^-Z^O), s(C, P)=6.
The general curve C in P2 of degree 6 given by /2 - g3 = 0, where / and g are homogeneous

of degrees 3 and 2 respectively, is smooth outside /= g = 0 where its singularities are ordinary
cusps. Therefore C2 = F (C) = 36 in this case. This example is due to Zariski [Z]. He shows
that n, (^-C^^/dY l./(3\
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In fact Tii (P2—^ is canonically isomorphic to PSL^Z).
In any case, G=n^ (P2 -C) has G/[G, G]^Z/(6), and it is easy to show that [G, G], the

fundamental group of the six-fold cyclic covering Z of P2 -C, is infinite ! The functions
fe3//2-^3)^3 and (f21f2-g3Yl2 on Z define a morphism Z-.E where
E= {(x, y ) | ^2 =x3 +1} with connected fibres. Therefore K^ (Z) -> n^ (E) is a surjection,
and E being the complement of a point on an elliptic curve, n^ (E) is certainly infinite.

Example 6 . 8 . — Let X be a smooth hypersurface in P3 of degree d. Let C = H n X where
H is a hyperplane in P3. Then X — C is simply connected. This is rather striking because:

(a) C need not be irreducible;
(b) C may have arbitrary singularities;
(c) even if C is irreducible nodal, 2r(C)^(d—l)(d—2) and equality can be attained,

whereas C2 = d,
(d)X is a minimal model if d'^4.
Suppose that X contains a line L, with L t- H, and also assume that C is irreducible. Then

P = C n L is necessarily a smooth point of C and C and L intersect transversally at
P. Therefore the homomorphism n^ (L - P) -> n^ (X - C) takes y (P) into y (C). But L - P
is the affine line and therefore y (P) and y (C) are both trivial. But n^ (X) is the quotient of
Tii(X-C) by the subgroup generated by y(C), and therefore n^(X—C)->n^(X) is an
isomorphism. Finally, X is simply connected by the Lefschetz hyperplane section theorem
and therefore the proof is complete under these additional assumptions.

For the general case, first observe that:
{a) any hyperplane section of X is reduced;
(b) if X^ and X^ are smooth hypersurfaces in P3 of degree d containing C, there is a

diffeomorphism \|/ : X^ -> X^ such that \|/(x)=x for all xeC, and finally;
(c) if L is any line in P3 such that L <^ H and L n C is a smooth point of C, then the general

hypersurface of degree d containing both C and L is smooth.
(a) is standard, and (b) and (c) are easy to check (though we omit to do so here).
By (u), for every irreducible component F of C, there is a smooth point P of C lying on

F. Choose L as in (c) with P = L n C and let X' be a general hypersurface as in (c). Then
the argument above shows that y (F) c: 71^ (X' — C) is trivial, and by (&), y (F) is also trivial in
Tii(X-C). This holds for all F and therefore n^{X—C)—>n^(X) is an isomorphism,
proving the result.

Alan Howard, Annals of Math., 1966, has shown that X — X n H is simply connected, ifX is
a smooth hypersurface in P", n ̂  4, and H is any hyperplane. This follows from 2.1 and 6.8.

APPENDIX 1

The 6-excellence of the universal deformation.
We just prove Proposition 3.10 here. All the notation introduced in 3.9 is

retained. The major step is to prove 0-excellence, i. e. the smoothness of V at p (m H) for m
large.
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We need some algebraic preliminaries:
For every complete local Noetherian C-algebra S with residue field =C, fix a surjection

P(S) : R(S) -> S inducing an isomorphism of Zariski tangent-spaces, with R(S) a power-
series ring over C. Let t (S) be the maximal ideal of R (S) and let J (S) be the kernel of P (S),
and define D°(S) and D1 (S) to be the dual vector-spaces of t ( S ) / t ( S ) 2 and J(S)/^(S)J(S)
respectively.

A homomorphism /: S' -^ S" lifts to a commutative diagram:

R(S')^R(S")
P ( S ' ) t LS")

• / '
S' ——^ S"

inducing linear transformations D1 (S") ̂  D1 (S') for ;• = 0,1, which depend only on / and not
on the choice ofg; these will be denoted by D'(/) for /=0,1. We have:

Fact A 1 : D^S) =lim D^T) for ;=0,1 where the T range over all finite-length quotients

of S.

Let; : H -> U be as in 3.9 and let S be the complete local ring of V at p (H). Then we
have:

Fact A 2: There are d,: D^S) -^ H^U, I~1/^), where (9 =(9^ and d^ is an isomorphism
and d^ is a monomorphism.

Replacing ;• : H -^ X by ̂  : m H -> X in A 2, we get: d,: D^S^) -. H^U, I-m/^), where
S^ is the complete local ring of V at p (m H).

Define z : V-^ V by z(x)=a(x,7?(H)). Because z(^(mH))=p((m+l)H), we get
fm '• ^m+i-^^m ̂  a^ w^ 1. From the definitions of the d^ we see:

Fact A3: For all m^ l and ;==0, 1, there are commutative diagrams:

D^sj——^iroj,!-^)
D'C/J ^ [ §(w, i )

^(S^^-^H^U,!-"-1/^)

where §(m, i) is induced by the inclusion ofI^AP in I"^1"1/^.
In particular, D° (/J is an injection and therefore:

COROLLARY A4. - /^ : S^i -> S^ ^ a surjection for all m^l.

Denote the direct limit o f V ^ V ^ V - > . . . b y V a n d the point (p (H\p (2 H),;? (3 H), . . . )

of V by e. Then V is a commutative associative monoid with e as the identity and naturally
we expect that "V is smooth at e" with a suitable definition of smoothness, and this is done in
A 7 below:
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DEFINITION A5. - S =lim S^. Let J(m, k) be the inverse image of the k-th power of the
4 m

maximal ideal ofS^ in the homomorphism S -> S^, and topologise S by taking the J(m, k) to
be a fundamental system of neighbourhoods of zero.

Now a : V x V -> V induces S^+^ -> S^ (x) S^, and passing to the inverse limit, we get a
continuous algebra homomorphism \|/ : S -> S ® S where S ® S is the inverse limit of the
S/P ® S/Q where P and Q go through all open ideals in S.

A 6 : Let B be the collection of continuous linear functionals on S. Then S=B*=the
dual space of B and the open linear subspaces of S are precisely the annihilators of the finite-
dimensional subspaces of B.

The above \|/ and the algebra-structure on S induces the structure of a commutative
associative C-algebra with identity on B, and we also get an algebra homomorphism
a : B -» B (x) B such that [i is co-associative, co-commutative and has a co-identity.

Now B is the union of its finitely generated subalgebras C such that u (C) c C ® C. For
such a C, M = Spec C is a commutative affme monoid-scheme. The representations of M
are unipotent because S is a local ring. Therefore M is a unipotent commutative group-
scheme over C and so M^(Q^ (see Prop. 4.1, page 497, [DG]).

More canonically, let P = [xeB\[ix=x® 1+1 ®x}. ThenHom(M, G^)=PnCand
S (P n C) -> C is an isomorphism. It follows that S (P) -> B is itself an isomorphism, where
S(P)==the symmetric algebra on P.

For any finite-dimensional FcP, S(F)cS(P)==B and n(S(F))<=S(F) ® S(F).
Therefore S (F)* = R (F) is an algebra; in fact it is canonically the completion of S (F*) at the
standard maximal ideal. The injection S(F) -> B gives a surjection S -> R(F) and we see.

PROPOSITION A 7. — (1) : S -> limR(F) is an isomorphism of C-algebras where the F go
F

through all finite-dimensional subspaces of R(F), and (2); the kernels of the composites
S -> R(F) -> R(¥)/t(¥)kform a fundamental system of neighbour hoods of zero in S, where t ( ¥ )
is the maximal ideal o^R(F).

COROLLARY A8. - lim0^8^0-
m

Proof. — Applying Al, we see that:

limD^SJ^limD^S/J^limDWF)),
~n^ J ) "F^

where the J run through all open ideals in S. But D1 (R(F)) =0 because R(F) is a power-
series ring!

PROPOSITION A 9. - P^L=(I/I2)*:
I. J/H^H, L^^/or all large m, then V is smooth at p(mH)for all large m.
II. If in addition, H°(H, L^ has no base-points for all large m then W - ^ V x U is

1-excellent at p(mH)for all large m.
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III. If L is ample on H, then W -> V x U is b-excellent for all large m.
Proof of 1. — The cohomology sequence of:

0 -, l - m + l / ( r ) -, r^ -> ̂ (î ) -̂  0,

where ̂  =^y shows that 8 (m-1, 1) : H1 (U, l ~ m + l / ( P ) -^ H1 (U, I^AP) is surjective for m
large. Because these are finite-dimensional, 8 (m, 1) is in fact an isomorphism for m large
and consequently:

(IA) : H° (U, I- m/^) -> H° (H, L^") -> 0 is exact for m large.

By A 2, D1 (/^) is injective for all large m and by A 8, D1 (S^)=0 for all m large. This
shows that S^ is a power series ring over C, and therefore V is smooth at p (m H). Note that
D° (SJ = TV (p (m H)) = the tangent-space of V at p (m H).

ProofofIL — By the assumption and (IA) above, the invertible sheaf I" m 10 on m H has no
base-points.

For any xeH, choose a neighbourhood G of (/?(mH), x) in V x U and a holomorphic
function/on G such that/=0 defines W n G as a complex-analytic subspace of G. The
projection W -> U is smooth at (/?(mH), x)eW if for some ueTV(/?(mH)), the directional
derivative Dy/is non-zero at (p (m H), x). But do : TV (p (m H)) -> H° (I~ w/^) is defined by
(IQ (v) = D^f/f, and because the complete linear system ofl"^^ has no base-points, the result
follows.

Remark. — Because the fibres of W -» U are smooth at all points (p (m H), x), x e H, for m
large, the tangent-spaces F^(x) to these fibres are hyperplanes in TV(p(mH)), we get a set-
function F^ : H^ ̂  P(TV(/?(mH))*) and the above actually shows that:

F,=P,oQ, with Q^H^P^

the morphism given by the complete linear system of 1̂  | H^ and P^ is a linear inclusion of
projective spaces.

Proof of 111. — The ^-excellence of W - ^ V x U at/?(mH) is equivalent, by the above
remarks, to the following:

The Q^-images of any b distinct points ofH span a (b — 1 )-dimensional linear subspace, for
all m large.

Let B={( jq , x^ . . . , x^eVb\i^j ^>x^x^}. Then:

B,={(xi ,^ , . . . ,x,)eB|QJx,)

span a linear subspace of dimension ^ b — 2 } is a closed subset of B. Note that:
(a) B^ n B^=)B^+^ if L"" and L" have no base-points;
(b) 0 B^ = 0 by Serre's FAC, by the ampleness of L, from which it follows that B^ = 0 for

W

all m>mo.

4° SERIE - TOME 16 - 1983 - ?2



ZARISKPS CONJECTURE AND RELATED PROBLEMS 341

Actually the smoothness of U was never used. All that matters is that I is an invertible sheaf
of ideals on U and (I/I2)* is ample on H. The smoothness of V at /?(mH) and the
smoothness of P^ -> U^ at all points of T(k) with the correct fibre-dimensions are proved
without assuming that U is a manifold.

APPENDIX 2

We prove Proposition 3.14 here. The main ingredients are semi-continuity, the
vanishing theorems of Serre's FAC, and Grothendieck's existence of the Hilbert-
scheme. We need first some notation and well-known lemmas.

Let p : X -> S be a proper morphism and let F be a coherent sheaf on X. We put
XT = X x s T for a morphism T -> S and denote the projection by p^ : XT -> T. The base-
change of F to XT is denoted by FT and we put (/^ FT = F (T).

LEMMA 1. — Given:

X ——-Y
P\ /q

S

with p and q both proper, there is a unique open subscheme S' ofS with the property:
A morphism T -> ̂ factors via T -^ S' -> S if and only ifX^ -. YT is a closed immersion.

Proof. - Let A=S-p (support ^/v). Then ^/Y^ ^ zero and therefore
B == XA x Y^ XA - A XA is closed in the fibre-product. If C is the image of B in A, then it is easy
to see that S ' = A — C has the required property.

LEMMA 2. - For a proper morphism p : X -> S, 0^ -^P^x is an isomorphism if and only
P^x ls ̂  invertible sheaf.

Proof. - A =7^ (9^ is a coherent sheaf of algebras on S and therefore ̂ s/J -> A/JA is non-
zero for every maximal ideal J such that A/JA is non-zero. In particular, when A is
invertible, this shows that ^s -> A is a surjection, and therefore an isomorphism.

LEMMA 3. - Let F be a coherent sheaf on X, p : X -> S is proper, and F is S-flat. The
geometric points s of S for which F (X^, F^) is a vector-space of rank r are the geometric points of
a locally closed subscheme S (r) ofS. Moreover a morphism T -> S factors via T -> S (r) -> S if
and only if:

(a) F(T) is locally free of rank r and:
(b) for every g : M -> T, ^* F(T) -> F(M) is an isomorphism.

Proof. - By the semi-continuity lemma (see Lemma 1, page 47, [M2]) there is an affme
open cover U^ = Spec A^ of S and a non-negative complex of free A^-modules F^ such that for
every T = Spec B -> Spec A,,:

R^FT^H^B®^).
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In view of this, put V^ (t) = the closed subscheme of U^ given by the ideal generated by the
(t x ^-minors of the matrix F^ ->• F^, and let S^ (r) be the locally closed subscheme ofU^ given
^ ̂ ^a-^1)-^^-^ where m^ is the rank ofF^. Then SJr)n U p = S p ( r ) n U,
and the union of the S^(r) is the desired locally closed subscheme S (r), as is checked from the
defining property of the complex F^.

LEMMA 4. — Let p : X -> S be proper and flat. With F=^x in Lemma 3, S(l) is an open
subscheme of S.

Proof. — Because;? (X) is an open subscheme of S by the flatness ofp, we may replace S by
7?(X) and assume that/? is surjective.

Now (9^ ->p^C}x induces an augmentation:

A ^ F° -> F1
^Ot r a ' r i • • • ?

with the notation of the proof of the previous lemma. Also for any closed points of S given
by a maximal ideal J, the composite C < ^ / ] -^ p ^ C x / H p ^ C x ) ^(y^^x. is injective by the
surjectivity ofp, and therefore A^/JA^ -> F^/JF^ is injective for all maximal ideals J. Thus
there is (p : ¥^-> A^ such that (p. e is the identity. This shows that all the (m^ x m^-minors of
F^ -^ F^ are indeed zero where m^ = rfe (F^) and therefore SJ1)=U^- V^ (m^ -1) is open in
U^ ̂  proof of the previous lemma), thus completing the proof of Lemma 4.

LEMMA 5. — Let L be an invertible sheaf on X, and p : X -> S is proper and flat with no
geometric fibre ofp having non-constant global sections of its structure sheaf.

Then the geometric points s of S for which L | X, is trivial are the geometric points of a
locally closed subscheme S'of S. Moreover a morphism T -> S factors via T -> S' -> S if and
only if^L(T)-^Lr is an isomorphism. Recall that L(T)=(/?T^ Lq-.

Proof. — The given hypothesis and Lemma 4 together imply that p^ ((9^} is invertible. By
Lemma 2, (9^ ~^p^((Px) ̂  an isomorphism. The same situation prevails even after base-
change, i. e. (9^ -> (pr)^XT ls an i8011101'?̂ !!! for any T -^ S.

For r = 1 and F = L in Lemma 3, put A = S (1).
Let T -> S be such that^ L(T) -> Lr is an isomorphism. Thus L(T) is invertible because

PT: is flat and surjective. Given g : M -> T, denote by h the morphism XM -> Xy. Then
/^g*L(T)=/?*^L(T)-^/?*Lr=LM is an isomorphism. Taking p^-direct images and
recalling that (9^ -> (p^)^ (9^ is an isomorphism, we get the isomorphism g* L(T) -> L(M).
By the definition of A, there is a factoring T -> A -> S. Also the image of X^ -^ X^ is
disjoint from G, the support of the cokernel of/^ L(A)-> LA. Putting S^A—^/JG),
thus we have T —> S' —> S.

The converse is clear, because by very construction,^ L (S') -> L§' is an isomorphism, and
this holds even after a base-change by T -> S ' .

Remark. — Unlike the See-saw Theorem, page 54 of Mumford's book [M2], S' is not a
closed subscheme in general.
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For example, if S is the complete linear system of (1.1) curves in P^P1 and
L=^f^(l) (g)/^(—l), then S' is open in S: the smooth curves are in S' and the singular
ones (the pairs of lines) are not in S'.

We now come to Proposition 3.14. Let fo : ?o -> Q be a finite morphism of projective
schemes and assume that F(PQ, (9} is the base-field. Fix once and for all an ample line
bundle E on Q and a projective embedding ho : P() -> PN such that:

(a) /zg^( l )^ /^Eand:
(b) H l(Po,/gE)=0.
Fix further a polarisation of Q x PN and denote by Hilb the Hilbert-scheme of all closed

subschemes of Q x ̂  having the same Hilbert polynomial as that of the closed immersion
/o x HQ : PQ -> Q x P^ This gives a special ^-rational point to of Hilb. Letting X be the
universal closed subscheme of Hilb x Q x P1^ and applying Lemmas 4 and 5 to X -> Hilb, we
get a locally closed subscheme T of Hilb (containing to) such that the geometric points ofT
are precisely the closed subschemes A of Q x P^ such that F(A, 0^)== Const. and
p^{E) ® p^(9(— 1) restricted to A is trivial. By the same lemmas we know exactly when a
S-valued point of Hilb is S-valued point of T.

Let Y —>• T x Q x PN be the universal closed subscheme. The projection Y —> T x Q gives
a deformation of/o '' PO -> Q wltn parameter-space = (T, to ) in the sense of 3.2 and gives rise
to a member 9 of F(T, to). Recall that F(S, So) is the set of deformations of/o ; PQ -> Q
parametrized by (S, So).

LEMMA 6. — Given v|/ in F(S, So),there is an open subscheme U of'S containing SQ and a
morphism:

^ : (U, .s'o) -^(T, to) such that F (g) 6 = F (7) v|/ where:

j : U —> S is the inclusion morphism.

Proof. — Let /: P -> S x Q be the total-space of the deformation \|/. Because
H^PQ,/g£)=0, by semi-continuity (see Theorem 3, page 53, [M2]), there is an
affine neighbourhood G of.So in S such that Z=(pi of)^(?2 °/)* E restricted to G is locally
free and commutes with base-change. Thus if J is the maximal ideal of SQ
in S, Z/JZ^F(PO, /$E). The embedding /?o : Po -> PN is determined by
(po : ̂ N + l -> F(Po,/gE), and (po can be extended to (p : ̂ +1 -> Z|G. This in turn gives a
rational map ( /^o/^G-^GxP^ but the base-locus does not intersect (p^ o/)~1 SQ and
therefore (replacing G by a smaller neighbourhood of ^o) we may assume that it is
empty. Thus we get a morphism (p^of)~lG->Gx^. By Lemma 1 (and replacing G
by...) we may assume that ( / ^o /^G-^GxQx P^s a closed immersion. By Lemma 4,
we may assume that F(A, (9^)^k(s) for all geometric points s of S with
^ = ( P l o f ) ~ l s ' Also we may assume that G is connected so that the Hilbert polynomial is
constant. By the definition ofT, we get required morphism (G, s^) -> (T, ^). Put U = G.

PROPOSITION 3.14. — With the notation of the previous lemma, assume further that there is a
closed subscheme S^ of S containing SQ, the inclusion being denoted hv i '. Si —> S, and a
morphism g : (S^, So) -^(T, to) such that [F(^)0= tF(0^.
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Then there is an open subscheme S^ of S containing .s'o, the inclusion being denoted by
j : S^-^S and^ : (S^ ^)^(T, ^o) such that ^\sl ^^^[Si n S^ and F(^)e=F(/')v|/.

The proof of this is a minor modification of the previous one. We may assume that S is
affme and that Z = (p^ o/)^ (p^ o/)* E is locally free and commutes with base-change. Now
g : Si -> T gives an embedding (p^ of)~1 S^ -> S^ x Q x P^ and the projection to P1^ is
determined by (po : ̂ +1 -> Z |S^. This can be extended again to cp : ̂ +1 -> Z, and the rest
of the argument goes through, word for word.
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