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Etale K-theory II:
CONNECTIONS WITH ALGEBRAIC K-THEORY

BY ERIC M. FRIEDLANDER (1)

We continue our study of etale K-theory begun in [11]. We introduce a natural
transformation from algebraic K-theory to /-adic etale K-theory which extends our
previously defined natural transformation in degree 0 and which admits associated natural
transformations between K-theories with coefficients. Our expectation is that etale K-
theory may soon become a successful tool for deciding geometric questions, especially those
involving galois actions. Consequently, we investigate various relationships between
algebraic and etale K-theory of varieties quasi-projective over an algebraically closed
field. Work in progress indicates that etale K-theory of more general schemes should prove
to be a useful tool for certain number theoretic problems.

The paper is divided into three sections, the first dedicated to constructing the natural
transformations (Theorem 1.3) and verifying their multiplicative behavior. Section 1 also
provides a particularly simple description of the /-adic natural transformation in degree 1,
and verifies agreement with the construction of [11] in degree 0. Examples studied in
Section 2 demonstrate the non-triviality of our natural transformations. These examples
offer new computations of algebraic K-groups with finite coefficients (e. g., affine spaces and
projective spaces minus unions ofhyperplanes). One important technique we employ is the
comparison of Mayer-Vietoris exact sequences presented in Theorem 3.5. The galois
equivariance of our natural transformations (proved in Theorem 3.3) strongly restricts the
image of algebraic K-theory in /-adic etale K-theory. Whereas the image in /-adic etale K-
theory of algebraic K-theory in degree 0 is the subject of the Tate Conjecture, the image in
positive degrees is even less well understood. Motivated by the example of an affine curve,
we pose several questions concerning this image in positive degrees. We conclude with an
analogue of C. Soule's chern classes with denominators.

We gratefully acknowledge valuable conversations with Jean-Louis Loday, Christophe
Some, and Robert Thomason. We especially thank the referee fop his valuable suggestions.
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232 E. M. FRIEDLANDER

1. Natural Transformations

We consider algebraic and etale K-theories of (simplicial) schemes defined over a fixed
complete discrete valuation ring F with separably closed residue field. Although F is a
(separably closed) field in examples of interest, the added generality enables "lifting to
characteristic 0" arguments. We consider a prime / invertible in F, also fixed throughout
this section.

Definition 1.1 presents a definition of etale K-theories more easily related to that of
algebraic K-theory than the definition considered in [11] (which was based on generalized
cohomology theories associated to complex K-theory); Proposition 1.2 demonstrates the
equivalence of old and new definitions. Theorem 1.3 constructs the natural
transformations p^ and p^ from integral and mod-/" K-theory to /-adic and mod-/^ etale K-
theory, shown to be multiplicative in Proposition 1.4 and Corollary 1.5. In
Propositions 1.6, 1.7, and 1.8, we present explicit descriptions of po, pi, po, and pi,
descriptions which are amenable to computations as seen in the next section.

We adopt the following notation: y (respectively, ^o) denotes the category of simplicial
sets (resp., pointed simplicial sets) and Jf (resp., J^o) denotes the homotopy category of<99

(resp., ^'o) obtained by inverting weak equivalences. We employ the etale topological type
functor:

( )gt : (loc. noeth. s. schemes) -> pro-e^,

sending a somplicial scheme X. which is locally noetherian in each dimension to the pro-
simplicial set (X.)^ indexed by the category HRR(X.) of rigid hypercoverings ofX. (cf. [12],
4.4); this functor ( )^ is extended to a functor on closed immersions of such simplicial
schemes, sending Y. -> X. to (X., Y.^epro-^2, an inverse system of inclusions of simplicial
sets also indexed by HRR(X.) (cf. [12], 15.4.2). We let (X./Y.)^epro-^o be defined by
collapsing the subsimplicial set of each pair of (X., Y.^epro-^2. In particular, if
Y.=0,then(X./Y.^=(X.^Upt.

We employ several constructions in homotopical algebra, including:

#( ):^->pro-^,
(Z//U ) : ^^,

holim( ) : y ^ - ^ y ,

where # (S.)= {cos^S.; n^O] is the canonical "Postnikov tower" of S.e^ (recall that
cos k^( ) is right adjoint to sk^( ) [3]), (Z/l)^ ( ) is the Bousfield-Kan Z//-completion
functor, and holim ( ) is the Bousfield-Kan homotopy inverse limit functor [4]. Moreover,
ifS. and T. are pointed simplicial sets, then Horn. (S., T.) e VQ denotes the function complex
of pointed maps.

For any n ̂  0, GL^ denotes the general linear group (scheme) over F (with GLo = Spec F)
and BGL^ denotes the (geometrically) pointed simplicial scheme over F obtained by
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ETALE K-THEORY II 233

applying the bar construction to GL^. We define BGL^ e pro-^o by:

BGL;=#o(Z//Lo(BGL^,

[where we have used the fact that if X. is pointed, then (X.^epro-c^oL
The following definition incorporates a suggestion by the referee to consider X. x GL^

(fibre product over Spec F is implicit) when defining low dimensional etale K-groups.

DEFINITION 1 . 1 . — Let Y. -> X. be a closed immersion ofsimplicial schemes locally of finite
type over F. For any ̂ 0, we define:

BGL^^holim colim Hom.((X./Y.)^ BGLJ,

where the homotopy inverse limit is indexed by the indexing category of BGL^ [namely,
HRR(BGLJxN] and the colimit is indexed by the indexing category for (X./Y.)^
[namely, HRR (X.)]. We define the etale K-groups of (X., Y.) by:

K^.Y^T^BGI/^), z>0,

K^X., Y.)=ker.{K?(X. xGLi, Y. xGLJ ̂  K?(X., Y.)},
Kf(X., Y.; Z/lv)=ni(BGL^X•fY•\ Z/F), z > l ,

K^X., Y.; Z/r»=ker {K^(X. xGL,, Y. xGL,, Z/F)-. K^(X., Y.; Z//-)}

8=0,1

where BGL^ Y ) is the colimit with respect to n of BGL^'^,
(X., Y.) -> (X. x GL^, Y. x GLi) is induced by e : X. -> Spec F -> GL^, and v is any positive
integer. •

In [II], we defined etale K-groups using the classifying space BU xZ of complex K-
theory. Namely, for e=0 or 1, we defined:

K^X., Y.^Homp^Z^X./Y.)^, # (SinBU)' xZ'),
^((X., Y.^, Z//v)=Homp,^(££C(/v)A(X./Y.)e„ # (Sin BU)),

where ( )^ : J^o -> pro-J'fo denotes the Artin-Mazur /-adic completion functor [3], Sin ( )
denotes the singular functor, S° is the identity and S1 = Z is the simplicial suspension functor,
and C^) is the (simplicial) Moore space determined by the mapping cone of multiplication
by /v on the circle.

PROPOSITION 1.2. — Let Y. —> X. be a closed immersion ofsimplicial schemes locally of finite
typeover F satisfy'ing the condition that^^X., Y.; Z //) is'finitefor allk^Q and is zerofor allk
sufficiently large. Then there are isomorphisms (natural with respect to maps over F):

(1.2.1) Kf(X., Y.)^K<°((X., Y.)J, ^0,

(1 .2 .2 ) K?(X., Y., Z/r^K^ftX., Y.)^ Z/D, ^0, v>0,

where < ; > =1 /2 (1 - (-1 )1) is the parity of i.
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234 E. M. FRIEDLANDER

Proof. - For z>0, isomorphism (1.2.1) is the composition of the following chain of
isomorphisms:

Kf(X., Y.)^colim7i,(holimcolim Horn. ((X./Y.)^, # o { ( Z / / ) ^ } oSin BUJ)
w

^colimHom^JE^X./Y.),,, # °{(Z//),,} o Sin BUJ
w

^ colim Hom^.^ (Z'(X./Y.)e,, # o(SinBUJ') ̂  K<'>((X., Y.)J,
w

where the first is given by [12], 13.10; the second by [12], 13.9; the third by the weak
equivalence (Sin BUJ^ ̂  {(Z/ / )^ (BUJ; n > 0 } of [12], 6.10 [where ( f : pro-^o -^ pro-
J^o is the Artin-Mazur /-adic completion functor], and the last by Bott periodicity and
obstruction theory for the 2 m-equivalences # o(SinBUJ^ -^ # o(SinBU)^. To prove
(1.2.1) for f=0, we employ the Kunneth Theorem (in this case, given by the smooth base
change theorem for etale cohomology) to obtain the Z//-equivalences:

(1.2.3) (X. xGL,/Y. xGLi^_^^./Y.^ x(GL^/(GLJ^ (X./Y.),, xS^S1.

Consequently, (1.2.1) for / = 0 follows from (1.2.1) for ; = 1 and the natural isomorphism:

^((X./Y.^xS^S^^^aX./Y.^)®^0^.^.^),

implied by the cofibre triple:

(X./Y.^^X./Y.^xS^S^^X./Y.)^

The isomorphism (1.2.2) for i^2 is obtained by modifying the above chain of
isomorphisms used for (1.2.1) with ; ̂  1 by replacing (X. /Y. )^ by C (/v) A (X. /Y. )^. Using
(1.2.3), we conclude the natural isomorphisms for s=0, 1:

(1 .2 .4) ^((X. xGLi, Y. xGL,),,, Z/Z^K^X., Y.),,, Z//V)®K£+1((X., Y.),,, Z/F).

Isomorphism (1.2.4) for £ = 0 and isomorphism (1.2.2) for / = 2 imply isomorphism (1.2.2)
for i= 1; similarly, isomorphism (1.2.4) for e = 1 and isomorphism (1.2.2) for i= 1 imply
isomorphism (1.2.2) for ;=0. •

The definitions of Definition 1.1 lead us to the following natural transformations from
algebraic to etale K-theories. We recall that the finiteness theorem of [8] implies that any
closed immersion Y -> X of schemes quasi-projective over F satisfies the hypotheses of
Proposition 1.2.

THEOREM 1.3. — There are natural transformations ofabelian groupvaluedfunctors (from
algebraic K-theory to "etale K-theory")for each /^O, v^ 1; ^

p , : K,( ) -Kf( ), p , : K,( .Z/n^K^ .Z/F),

on the category of closed immersions of quasi-projective schemes over F. In particular, if
X == Spec A is an affine scheme of finite type over F, then:

p , : K,(A)-K?(X)=Kf(X,0) for i>0

4s SERIE - TOME 15 - 1982 - N° 2



ETALE K-THEORY II 235

and:
p , : K^Z/n^K^Z/Z^K^X^Z/r) for i>l,

are determined by an infinite loop space map:

\|/: BGL(A)+->BGL^.

Proof. — We first consider an affine scheme X = Spec A. A ^-simplex of the simplicial set
BGL^(A) can be naturally identified with a map of simplicial schemes over F of the form
X®A[^]-^BGL^, where X(g)A[(| is the naturally constructed simplicial scheme with
(X(x)A [t])^ equal to a disjoint union of copies of X indexed by A [t]^ Because the natural
map (X(g)A[r])et -> X^®A[r] is an isomorphism in pro-c^ by [12], 4.7, sending:

a : X(g)A[^BGL, to o^ : X,,®A[^(X®A[^ ̂  (BGL^,

determines:
BGLJA) -. lim colimHom. ((X/cp)et, (BGLJJ.

Composing this with the maps induced by (BGL^ -> BGL^ and the canonical natural
transformation lim( ) -> holim( ), we obtain the natural map:

U^,: UBGLJA^UBGL^.
n^O n^O n^O

To obtain a natural extension of U v|/^ to a map of group completions which we identify
n^O

with \|/: BGL(A)+ xZ -> BGL^ xZ, we introduce G. Segal's infinite loop space
machinery [17] (this naturality is necessary only for the relative theory, otherwise naturality
up to homotopy suffices). External direct sum determines a permutative category ^/(A)
whose object space is U pt. and whose morphism space is U GL^(A) (both discrete); this

n^O n'^0
determines a functor ^/(A) from the category ^ of finite pointed sets to the category of
permutative categories of simplicial sets (cf. [15]); applying the functor diago Nerve:
(permutative categories) -> c^o, we obtain:

^GL(A) : jF-^o-

^ GL (A) is a "Segal F-space" with ̂  GL (A) (_1) = U BGL^ (A). Similarly, external direct
n^O

sum determines a "permutative category of schemes" ̂  / whose object scheme is ]J[ Spec F
n^O

and whose morphism scheme is U GL^; ^ I determines ^ I from ^ to the category of
n^O ^

permutative categories of simplicial schemes; consequently, we obtain a "Segal r-simplicial
scheme" as in [10], 9.1:

The naturality of:
^ GL : ^ -> (pointed simplicial schemes).

( ^x : (pointed simplicial schemes) -> ^o?

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



236 E. M. FRIEDLANDER

together with the fact that # o (Z//)^ o ( )^ commutes up to homotopy with products (i. e.,
fibre products over F) implies that ̂  GL determines a Segal F-space:

^GL^: ^-^o.

with ^GL^C^UBGL^. As in [10], 5.2, we identify ^GL(A)(m) and
n^O

^GL^(m)with:

U(nBGL,(A)x ]"[ EGL,(A)), UdTlBGL^x n EGL.p
/e l je J (I) ;6l yeJ( I )

where the sum is indexed by ordered m-tuples of non-negative integers I, where the product
]~[ is indexed by the (appropriately ordered) set J (I) of all sumsy e J (I) of at least two of the

7eJ(I)
entries of I, and where EGL^ is defined by applying the non-reduced bar construction to
GL^. Then we define a map of Segal F-spaces:

l? : ^GL(A)^^GL^,

by setting ^(m)^^^), where ̂ j^ is defined by replacing BGL^ in the definition of
^n by:

riBGL.x n EGL,.
/6l yeJ(I)

We may identify ^(S^diago^ vl/ftS1^)) (where S1 is the minimal simplicial
circle) with the group completion of the map ^ (1). Moreover, the natural H-map
UBGL^-^BGL ^Z is a group completion because the fact that the fibre

n^O

of BGL^-^BGL x becomes more highly connected as n increases implies that the

homology of BGL^ x Z is the localization of the homology of ]J BGL^ with respect to
n^O

N+ cNciTCo (U BGL^) (cf. [14]). Consequently, we have obtained the asserted infinite
n^O

loop space map (given by ^¥(S1) with appropriate identifications):

v|/: BGI^^BGI/^.

We define p,=7r,ov|/for f>0 and p,=7r,( , Z/y^ovj/for ;> 1. These definitions are extended
to po, pi, and po by employing the map (x) t : Ko (A) ̂  Ker { K ^ (A [t, t~1]) -. K^ (A)} and
the following (homotopy) commutative square:

BGL(A[r, t-1]^ -^ BGL^'01"

\ \
v|/

BGL(A)+ -> BGL^

4e SERIE - TOME 15 - 1982 - N° 2



ETALE K-THEORY II 237

To define p, : K, (A, A/I) -. Kf (X, Y) and p, : K, (A, A/I; Z/F) -. Kf (X, Y; Z//"), we use
the naturality of the preceding construction to get a commutative square:

^
^GL(^)(S1)^^GL^X(S1)

(1.3.1) \ \
T

^GL(A/I)(S1)^^GL^Y(S1)

which determines a well defined homotopy class of maps on homotopy fibres. This
determines p^-for ;>0 and p.for z> 1. For po, pi,and po, we use the fact that (1.3. l)fits in a
commutative cube with the analogous square fore A[t, t~1] -> A / l [ t , t~1] and
YxGL^XxGLi .

Finally, to extend p^ and p^ to a closed immersion of (not necessarily affine) quasi-
projective schemes Y-^X, we employ Jouanalou's construction [13]: a scheme X quasi-
projective over F admits an "affine resolution" oc : X -> X with X affine and a locally in the
etale topology on X a product projection with affine spaces as fibres. Because oc^ : X^ -> X^
and a 1^ : Y^ -> Y^ are Z//-equivalences (where a | is the pull-back of a via Y -> X), we may
define p^ for ;>0 and p^. for ;> 1 by:

P-(ae*)~1 ° P. oa* : K,(X, Y) ̂  K,(X, Y) -^ Kf(X, Y) -^ K?(X, Y),

P-^e*)"1"^^* : K^X,Y,Z//V)-^K^X,Y;Z//V)
-^ Kf(X, Y; Z/n ̂  Kf(X, Y; Z//').

These definitions are extended to po, pi, po by applying the argument used in the affine case to
X x GL^. So defined, p^ and p^ are independent of the affine resolution oc : X -> X because
any two affine resolutions are dominated by a third (their fibre product over X). Naturality
is verified for a map/: X' ->• X by using the fact that X' x X is (Z/^-equivalent to X' and

x
maps to X over/whenever a' : X' -> X' and a : X -> X are affine resolutions. •

We recall that tensor product determines a ring space structure on BU x Z, thereby
determining associative, graded commutative ring structures on K*(( )^) and
K*(( )^, Z/F) for ^7^2 (a universal choice of co-product on mod-F Moore spaces must
be made for /v even; cf. [2]). As argued in [II], 3.2, these ring structures correspond
under the isomorphisms (1.2.1) and (1.2.2) to ring structures on K^ ( ) and K^ ( ; Z/F)
induced by the external tensor product homomorphisms:

® : GL,xGL,->GL,,, m.^O/

For an algebra A over F, these homomorphisms determine ring structures on K^ (A) and
K^(A, Z/F) for ^^2 (for /v even, we use our choice of co-product on mod-/ Moore
spaces), associative and commutative for /^2, 3, 4, 8 (cf. [2]).

PROPOSITION 1.4. — The natural transformations p; and pi/or /^2 and z'^0 determine
contravariant functors:

( closed immersions of \ , , ,p^, p^ : . . . ]-> (graded rings with unit).
\schemes quasi-projectwe/r j

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPEMEURE



238 E. M. FRIEDLANDER

Proof. - We recall that a "Segal F-space with multiplication" consists of a Segal F-space
^ \^F -> y^ together with an associated functor ^ : ^ x ^ -> y^ provided with natural
transformations ;\ : ̂  -^ ^ opr^ , ^ : ̂  -> ̂  opr^, and [i : ^ -> ̂  -> ̂  o ® [where (x) :
^ x ^ -> ^ sends (m, n) to m^] such that:

;i x ̂  : ^ (m, n)->^(m)x^ (n),

is a weak equivalence for all m, ^0 [17]. The Segal F-space ^GL(A) : ^ ->^Q
(respectively, ^GL^ : ^^-^o) admits this added structure determined by the bi-
permutative category structure on ^/(A) (resp.,^/) whose second multiplication is
determined by tensor product. The natural transformation T : ̂ GL(A) -^GL^
extends to a natural transformation ^F : ̂ GL(A) ̂ -^GL^ commuting with ;\, ^,
a. Therefore, \|/ : BGL (A)+ x Z -> BGL^X x Z is a map of ringed spaces so that:

(1.4.1) ®o(p .xp , )=p^ ,o® : K,(A)xK,(A)^K^,(X),

(1.4.2) ®o(^.x^)=p^o(x) : K,.(A, Z/Z^xK^A', Z/n^KJ^.^X, Z//-),

for ;', i^O and7,/>l.

More generally, we conclude that the natural transformation ^F determines a homotopy
commutative square of ringed spaces:

®
(BGUA)-" xZ) A(BGL(B) + xZ) ̂  (BGL(A ® B)' xZ)

(1.4.3) ^^ 1̂
® T

(BGL^XxZ) A(BGL^xZ) ^ (BGL^^xZ)

where X = SpecA and Z = SpecB. Namely, (1.4.3) follows from the fact that ^F extends to a
natural transformation of functors on ^ x ̂  to c^o :

<^GL(A),^GL(B)>^<^GL^,^GL^>,

mapping to l? : ^GL(A) -> ̂ GL^ via i^ ^ : ^GL(B)-^^GL^ y^ /^ and ^ :
^ G L ( A ® B ) - > ^ G L ^ X X Z y ^ a .

We employ (1.4.3) to prove (1.4.1) for i > 0 and i' = 0 as follows. Consider the map of
complexes:

K,(A) ® Ko (A) -. K,(A) ® KI (A [ t , t~1]) -> K, (A) ® K^ (A)
(1.4.4) ^ ^ ^

K,(A) ^ K,^(A[r,r1]) ^ K,^(A)

By the naturality of (1.4.3), \|/^ maps the right hand square of (1.4.4) to:

K^ (X) ® KT (X x GLi) ̂  K;1 (X) ® K^ (X)
\® ^®

K^ . (XxGLi ) ^ Kf^(X)

4e SERIE - TOME 15 - 1982 - N° 2



ETALE K-THEORY II 239

Consequently, \|/^ determines a commutative square:

K, (A) (x) Ko (A) ̂  K? (X) ® ker {K^ (X x GL^.) ̂  Kl1 (X)}^
(1.4.5) I® ^I ® I®

K,(A) ^ ke r{K^ i (XxGLJ->K^(X)}

whose right vertical arrow determines (by definition) the tensor product multiplication:

Kf(X)®K eo t(X)^Kf(X)^ker{Kf^(XxGLl)-^Kf+l(X)}.

The cases ;=0, f>0for( l .4 . l);7^2J'<2and7<2,/^2for(l.4.2) are treated in exactly
the same manner as z>0, ^=0 for (1.4.1). The case i=Q=i' for (1.4.1) is treated by
considering the following analogue of (1.4.4):

Ko(A)®Ko(A)^Kl(A[^- l ])®Kl(A[^- l ])^(K,(A[^- l ])®Kl(A))e(Kl(A)®K,(A[^r l ]))

|® |® [®+®

K,(A) ———K, (A [s^ - \ t , t - 1 ] )———————— K^A^-1])®!^^-1])

The cases in which both j and/ are less than 2 in (1.4.2) are treated similarly.
For a closed immersion Y=SpecA/I-^X=SpecA, we use the commutative square

(1.3.1), whose maps we've seen are maps of ringed spaces.
For X not necessarily affme, we verify that p^ and p^ are ring homomorphisms by

observing that:

a* : K^ (X) ̂  K^ (X), a* : K^ (X, Z/F) ̂  K^ (X, Z/F)
and:

ex,* : K6; (X) - K$ (X), oc,* : K^ (X, Z/F) - K6; (X, Z/F)

are ring homomorphisms for any afTine resolution a : X -> X.
Finally, to prove that p^ and p^ preserve units, it suffices by naturality to check for

X=SpecF, Y=p. 'This special case follows from the fact (verified by inspection) that:

po®Z,: ^(F^Z^KfKX), po : ^(F.Z/n-^K^X.Z/r),

are ring isomorphisms (where Z^hmZ/r). •
Because tensor product is the coproduct in the category of (graded) commutative,

associative rings with unit, the following is an immediate corollary of Proposition 1.4.

COROLLARY 1.5. - Let X -> W, Z -> W be maps of schemes quasi-projective over F. Then
there are commutative squares (of commutative, associative rings):

®
K^(X) ® K ^ ( Z ) ^ K ^ ( X x Z )

K^(W) W

( 1 . 5 . 1 ) |p.®p. ^P*

K^(X) ® K^Z^K^XxZ)
K^(W) W

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



240 E. M. FRIEDLANDER

®K^ (x, z/n ® K^ (z; z/n -. K^(X x z; z/n
K^W^/n W

(1.5.2) j^ 0^ IP.
®

K^(X, Z/U ® K^(Z, Z/n^K^XxZ; Z/n
K^W.Z/H W

provided that ̂ 2, 3, 4, 8.

The following proposition gives an explicit description of pi, leading to a more concrete
description of po in Proposition 1.7 and pi, po in Proposition 1.8.

PROPOSITION 1 . 6 . — Let X=SpecA be an affine scheme of finite type over F. There is a
natural isomorphism:

9; K^X) ̂  colim Hony^((X/(p)^ GLJ
n>0

(where GL^ = # o (Z / / ) ^ (GL^) such that 9 o p^ is determined by sending
aeGL,(A)=Hom(X, GLJ to a; : X,, -> GL,.

Proof. - Let y^ : GL^ (A) -^ GL„x=holim colim Horn. ((X/(p)^, GLJ be defined by
sending aeGL^(A) to o^ : X^ ̂  GL^, so that the following diagram commutes:

GL, (A) -^ EGL^ (A) -^ BGL^ (A)
(1 .5 .1 )^ \v. \^ \^

GL7 ̂  EGL7 ̂  BGL^

Because GL^ -> EGL^ -> BGL^ is equivalent to an inverse system of fibre triples, the colimit
of (1.5.1)^ with respect to n determines a map of fibre triples, colim (1.5.1)^, with
contractible total spaces. We define 9 as the composition:

9 : K? (X) ̂  Tio (GL^) ̂  colim Homp^ ((X/0)^ GL,),

where the first isomorphism is the connecting homomorphism of the bottom row of colim
(1.5.1 )„ and the second is given by [12], 13 .10. Because n^ (BGL (A)) -> n^ (BGL (A)^!^
the abelianization map, pi can be viewed as the abelianization ofTii ( ) applied to colim \|/^ :
BGL (A) -> BGL x or equally as the abelianization of 7io( ) applied to colim y^. •

In [II], we studied in detail a homomorphism:

p : Ko(X,Y)->K,°(X,Y)

=H°(X, Y; Z,) xhm colim Hom^.^((X/Y^, cos^(Grass,^,,f),
r m, n

defined for X=SpecA, Y=0 by sending a rank n, projective A-module P to (n, (r )^),
where Tp: X^Grass^+^ „ is a classifying map for P. The next proposition verifies
that p may be identified with po of Theorem 1.3.
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PROPOSITION 1.7. — For any scheme X quasi-projective over F, there exists a natural
isomorphism A : K^(X) ^K^(X) with the property that:

p o = A o p : K,(X)^KW.

Proof. — The isomorphism A"1 : K^ (X) ̂  K^ (X) is given by the composition of the
isomorphism Kg(X) ̂  K° (XJ of Proposition 1.2 and the isomorphism K° (XJ ̂  Kg°(X)
implied by the weak equivalence # (SinBU) ^ {cos A:,. Grass^,.}.

Using the naturality of po and p together with an affine resolution a : X -> X, we conclude
that it suffices to prove the commutativity of the following square:

A o p

KC^A^KO^X)

^ p. \'

K,(A[^ r^^K^XxGLJ

where the right vertical arrow is the defining inclusion and X=Spec A.
By naturality, it suffices to verify that pi o(® t)=io\op on the universal projective A

module over GL^+^/GL^ xGL^=SpecA (=Grass^+^J for m, n>0. Using standard
"lifting to characteristic 0" arguments (cf. [II], 3.6), we conclude that it suffices to assume
F=C because the universal projective module over Grass^+^ „ is the reduction of a
(universal) projective module over the lifting ofGrass^+^ „ to the Witt vectors of the residue
field of F. Using the relationship between p and the forgetful functor p sending an algebraic
vector bundle (i. e., projective module) to its associated topological vector bundle given by
[II], 3.5, and employing Proposition 1.6, we conclude that it suffices to prove the
commutativity of the following square for the complex affine variety X=SpecA With
associated analytic space X1^:

K^A^pC1015, BUxZ]
(1 .7 .1 ) ^/ ^

Ki(A[^ r^^pC^xCMJ]

In (1.7, 1), [ , ] indicates homotopy classes of maps, y is determined by the map sending
oc: X x GLi ̂  GL^ in GI^ (A [t, F 1]) to o^: X1015 x C* ̂  U^, and i sends/: X^ ̂  BU x Z
to ® o (/, t) : X^ x S1 -> (BU x Z) x U -> U. We recall that (x) t :
Ko (A)-^KI (A [t, r1]) sends the projective A-module P with PQQ^A" to (® t) (P)
represented by ^©1 :

P[t, r1]®?^, r^P^, r^eQ^, r1] in G4,(A^, r1]).

Thus, y o ((x) t) (P) is represented by X1015 x C* -> GL^C) defined to send (x, s} to ^@1 :
P^@Q^ ̂  P^@Q^. This map is well known to represent; o p (P). •

In conjunction with Propositions 1.6 and 1.7, the following proposition (in the absolute
case Y = 0) determines pi up to extension and po in terms of more explicit constructions than
those of Theorem 1.3.
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PROPOSITION 1 . 8 . — For any closed immersion Y -> X of schemes quasi-projective over F, p;
and p; with f^ 0, v ̂  1 determine the following map (i. e., "commutative ladder") of long exact
sequences (1.8.1):

. . . ̂  K^ (X, Z/F) ̂  KI (X) ̂  KI (X) ̂  KI (X, Z/T) ̂  Ko (X) ̂  Ko (X) -. Ko (X, Z / D

1 (o) ^ ^ ( i ) I ( I D ^ ^ ( i n ) ^

. . . ̂  K^ (X, Z/n ̂  Kl1 (X) -> K? (X) ̂  Kl1 (X, Z/n -^ K^ (X) ̂  Ko1 (X) -^ Ko1 (X, Z / F )

Proof. — The upper long exact sequence (with K, (X) -> K^ (X) equal to multiplication by
/v) is aformal consequence of the definition ofK^ (X, Z/^); the lower exact sequence, in view
of Proposition 1.2, is also a formality. The commutativity of all squares in the above
ladder except (I), (II), and (III) is clear. The commutativity of (I) follows from the definition
of K? (X, Y; Z/r) as Ker {K^ (XxGL^, YxGL^; Z/D -^ K^ (X, Y; Z//')} and the
commutativity of the following diagram:

® /
KI (X) ̂  K^ (X x GLi) -> K^ (X x GLi, Z / F ) -^ K^ (X, Z / F )

IPI lp2 ^P2 lp2

K?(X) -^ K^X x GLi) -̂  K^X x GL^, Z/F) ̂  K^X, Z//')

The commutativity of (II) and (III) follow directly from the naturality of the top and
bottom rows of (1.8.1) and the commutativity of (0) and (I) for both X and X x GL^.

2. Examples and Mayer-Vietrois

We examine the natural transformations p^ and p^ in a few specific cases: a point
(Example 2.1), a torus (Proposition 2.4), a multi-punctured affme line (Corollary 2.6),
affine and projective space minus hyperplanes (Propositions 2.7 and 2.8), and a smooth
curve (Proposition 2.9). These examples serve to indicate the non-triviality of our natural
transformations as well as provide new computations of algebraic K-groups with coefficients.

Throughout this section, we consider a separably closed field F of characteristic p and a
prime l ^p . Of particular interest is the special case F=Fp, the algebraic closure of the
prime field. Computations restricted to this special case apply to more general separably
closed fields F provided that F p -> F induces an isomorphism K^ (F p, Z//) ̂  K^ (F, Z//) (or
that we consider the natural transformation p^ : K^ ( , Z/F) [1/PJ^K^ ( , Z/F) of
Proposition 2.2 and assume that ¥ p -> F induces an isomorphism :

K^F,, Z/Z-HI/PJ^K^F, Z/rm/PJ).

Example 2 . 1 . — Let P denote Spec F p. Because P^ is contractible :

Ke2t,(P)=Z„ K5,(P)=0, K^P, Z/Z^Z/^, K^(P, Z/r»=0,

for any ;^0, v>0, whereas K^- (Fp)=0 and K^+i (F^)= colim Z / n . Consequently,
(n, p)=l
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pi=0 for f>0. On the other hand, v|/^ : BGL^ (F^,) -> BGL^ induces an isomorphism in
Z// cohomology for each m^O (c/. [9]), so that \|/ : BGI^F^ -^BGL^ is a Z//-
equivalence. Consequently, for any /v ̂  2 :

p^ : K^(F,, Z/D-^K^P, Z/Z^Z/np], deg(P)=2,

is a ring isomorphism as observed by Browder in [5]. •
Using Example 2.1, we next verify that p^ factors through the map from K^ (X, Z / l v ) to

"K^(X, Z/F) with the Bott element inverted." The latter theory is considered by
R. Thomason in [19].

PROPOSITION 2.2. — Let PeK^ (Fp, Z/F) be a generator (corresponding to a primitive
l^-th root of unity in F ), for. l^^l. For any quasi-projective variety^. over F, p^ :
K^(X, Z/F) -> K$ (X, 7.^) factors through the localization:

K^(X, z/n^K^x, z/nci/pj^
w^^ P^ e K^ (X, Z/F) ̂  the image o/P a^ K^ (X, Z/F) [1 /PJ + ^ the subring ofK^ (X, Z/r)
[1/PJ of elements of non-negative degree.

Proof. - Because K^ (X, Z/r)^K^ (X^, Z/r)-", where K^ (X^, Z/F) is the Z-graded,
Z/2-periodic, mod-r K-theory of X^, it suffices to prove that p2(PJ ls invertible in
K^(X^, Z/F). By naturality, it suffices to observe that the image of ReK^F, Z/F)
under p^ is an invertible multiple of the Bott element in the mod-F homotopy of
BGL^^^ (weakly equivalent to (Z^o(Sin BU)), because the composition
BGUF^ -. BGL(F)+ -. BGL^P^ is a Z//-equivalence. •

We next employ Proposition 1.6 to study the example of GL^.

Example 2.3. - Let GL^ =Spec Fp [t, t~1] and /"T^. Because:

K,(F,[^, r l])=K,(F,)@K^,(F,),
we conclude that:

K,(F^, r1], Z/Z^Z/r for any ^0.

Because S1 -> (GLJ^ is a Z//-equivalence, we conclude that:

K^GL^ZJr, P]/^2, K^(GLi, Z / l ^Z / l ^ t , p]/^2,

withdeg(^)=l anddeg(P)=2. The unit r e F p [ ^ , r1] corresponds to 1 :GLi^GLi,so
that t^ : (GLi)^ ̂  GL^ is a topological generator of ^(GL^01^) for any n^l. Hence,
Proposition 1.6 implies that pi : K^ (Fp [^ r"1])-^]^ (GLi) sends the class of t to a
topological generator. We conclude using Proposition 1.8 that

p,: K,(F^, r1], Z/D-^K^GLi, Z/n,
is an isomorphism.
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We employ the following commutative squares for e=0 and 1.

K2,(F,, Z / r ) ® K , ( ¥ , [ t , r-1], Z/n^K^JFJr, r-1], Z/F)
(2.3.1) k.oop. Ip,,,,

®
K^(P, Z/n^X^GLi, Z/n-^K^JGLi, Z/F)

implied by the proof of Proposition 1.4 (cf. (1.4.3)). By Example 2.1 and the above
discussion, p2i®Pe is an isomorphism. Clearly, the horizontal maps of (2.3.1) are
isomorphisms for s = 0; for E = 1, the top arrow is the mod-^ reduction of the isomorphism:

K^F^Z/rKgK^F^, r^K^^F^, r1], Z/D

(given by the "fundamental theorem ofK-theory") and the bottom arrow is an isomorphism
essentially by definition. Consequently, we conclude that:

(2.2.2) p^ : K^(F^, r^Z/n-^K^GL^Z/n,

is an isomorphism of (commutative, associative) rings for ^^2. •
The following proposition generalizes Example 2.3. In particular, we obtain elementary

examples for which p^ is not an isomorphism for small i.

PROPOSITION 2.4. — For r^l, 3, 4, o.r 8, there is a ring isomorphism:

K^(F^, ...,x,,^,^-1, . . . .^^LZ/r)^ ® K^F^.r^Z/n,

where the tensor product is as algebras over K^ (Fp, Z/F). Furthermore:

p, : K,(F^, . . . , x,, y,, y,\ . . . , ^, ^-1], Z/^^K-^A-x GLr, Z/r),

^ injectivefor all i^O and bijectivefor i ' ^ s — l , where:

Spec Fp[xi, . . . , x^ y^ y,\ . . . , ^, ^ l ]=A m x GL^.

Proo/. - Quilen's fundamental theorem for regufar rings [16], Corollary to Theorem 8,
implies the isomorphism:

K^(GL^, Z/r) ^K^A'xGL^, Z//').
Moreover, the fact that Aw x GL^5 -> GL^ is a Z//-equivalence implies the isomorphism
K6; (GL^, Z/F) -^ K^ (A^ xGL^, Z/r). Thus, we may assume m=0. We proceed
by induction on s, where the cases ^=0 and ^=1 are verified in Examples 2.1 and 2.3.

We consider the following special case of (1.5.2):

K^(GL^-1, Z/n ® K^(GLi, Z/r)^K^(GL^, Z/F)
K ^ ( P , Z / / " )

(2.4.1) ^®p, \P.
K^GL^-1, Z/r) ® K^CGLi, Z//v)^Ke;(GL^, Z/F)

K^z/n
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The Kunneth Theorem implies that the lower horizontal arrow of (2.4.1) is an
isomorphism. Using Examples 2.1 and 2.3, we re-write (2.4.1) as follows:

K^GL^-1, Z/r» ® Z/np, rl/r^K^GL^Z/n
' z/^p]

(2.4.2) ^ (

K^GL^-1, Z/n ® Z/r[p, r]/r2 -^K^(GL^, Z/F)
z/np]

By induction, the left vertical arrow is an injection in all degrees and a bijection in degrees
i^s—1. Therefore, the upper horizontal arrow of (2.4.2) is an injection; by Quillen's
fundamental theorem for regular rings, this injection must be a surjection. The proposition
now follows, since we have shown that the two vertical arrows of(2.4.2) are isomorphic. •

In order to obtain further examples, we employ the followin-g comparison of "Mayer-
Vietoris" long exact sequences.

THEOREM 2.5. — LetX be a connected, smooth quasi-projective variety over ¥,andlet\J, V
be Zariski opens ofX with U u V = X and U n V = W. Then p; and p^ determine maps of long
exact sequences for any v>0:

. . . ̂  K, (X) ̂  K, (U) C K, (V)-^ K, (W)-. K,_ i (X) ̂
(2 .5 .1) \ \ \ \

.. . -. K" (X) -. K;1 (U) © K^ (V) -> Kf (W) ̂  Kf_, (W) -.

. . . ^K^x.z /n^K^u.z /neK^v.z /n^K^w.z / r )^ . . .
(2.5.2) \ \ \

. . . ^ Kf (x, z/n ̂  Kf (u, Z/T) e Kf (v, z/r) -^ K? (w, z/r) ̂  . . .
Proof. — An shown in [6], the following square is homotopy cartesian:

BQP(X)-^BQP(V)
(2.5.3) J ^

BQP(U)^BQP(W)

where ]P(X) is the exact category of locally free, finite rank Ox modules and QP^(X) is the
Quillen Q-category associated to _P(X) [16]. Because n, (BQJP(X))==K,_i (X) , (2.5.3)
implies the long exact sequences constituting the top rows of (2.571) and (2.5.2). The fact
that the natural map from the homotopy push-out of U^ <- W^ -^ V^ to X^ is a Z//-
equivalence ([12], 14.10) implies that the following commutative square is homotopy
cartesian [thus determining the long exact sequences in positive degrees of the bottom rows of
(2.5.1) and (2.5.2)]:

BGL^ x Z -> BGL^ x Z
(2.5.4) \ \

BGL^xZ-^BGL^xZ
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Let X = Spec A -> X, U = Spec B -^ U, and V = Spec C -^ V be afflne resolutions with U
and V mapping to X over X, and let W=Spec 0 -> W be the afflne resolution
W = U x V - > W .

x

The homotopy property for afflne bundles ([16], 4.1) and the fact that (2.5.3) is homotopy
cartesian imply that:

^ GL (A) (S1) -> ̂  GL (C) (S1)
(2.5.5) ^ ^

^GL(B)(S1)^^GL(D)(S1)

is homotopy cartesian in dimensions greater than 1 [providing the top rows of (2.5.1) and
(2.5.2) in positive degrees]. The natural transformation ^F of Theorem 1.3 determines a
map from (2.5.5) to the commutative square:

-^ GI/^S1)-^ GI/^ (S1)
(2.5.6) \ ^

^GL^S^-^GI/^S1)

Moreover, the Z//'equivalences X -> X, U -> U, V -> V, W -> W fit in21 map of commutative
squares, thereby determining a weak equivalence from the following commutative square:

^GL^S^^GI/^S1)
(2 .5 .7) \ \

^GL^(Sl)-^^GL^(Sl)

to (2.5.6). Because Qo(2.5 .7) is equivalent to (2.5.4), we obtain the asserted
^'commutative ladders" (2.5.1) and (2.5.2) except for those squares involving po, pi, and
po. The commutativity of these low dimensional squares (as well as the exactness of the
bottom rows in dimension 0) is obtained by repeating the argument for
X x GL^ = (U x GLi) u (V x GL^) and then considering the map between ladders induced by
I x e : X ^ X x G L i . •

COROLLARY 2.6. - L^W=SpecFp[x,(x-ai)~1 , . . .,(x-a,)~1], where^, ...^,are
distinct elements of F p . For /v ̂  2 :

P * ^ K^[x,(x-ai)-1, ....(x-a.rUZ/^K^W.Z/r),

is an isomorphism.

Proof. - We proceed by induction on s, the case ^=1 having been considered in
Example 2.3 (and the case s=0 implied by Example 2.1). Let:

X=SpecF^[x, (x-oci)-1, . . . , (x-a^)-1],

U=SpecF,[x,(x-oci)-1, . . ., (x-(^_,)-1],
and:

V=SpecF^[x, (x-aj-1, . . . , (x-a,_,)-1, (x-a,)-1],
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so that X = U u V and W = U n V. For positive degrees, the corollary follows from (2.5.2),
induction, and the 5-Lemma. For degree 0, the corollary is implied by the isomorphism:

Ko(F,[x, (x-^}-\ . . . , (x-a,)-1], Z / n ̂  Z / r

and the weak Z//-equivalence S^v^/vS 1 -^ W^.
•
The next proposition demonstrates how Theorem 2.5 enables one to avoid the

identification of maps in the Mayer-Vietoris sequences of algebraic K-theory.

PROPOSITION 2.7. — Let A" = Spec Fp[xi, . . . , xj and let:

U,=SpecF^[xi, ...,^,x,-1, . . . , x J c A " .

For 7^2, 3,4,^8:

p,: K, (U^,^uU, , , , ,_^^u . . .uU^,^_^;Z/ / v )
-Kf(U^,^uU, , . , ,_^^u. . .uU^, , ,_^ ;Z/ / v )

is infective for j^ s—2 and bijec five for j^s— 1, where m is any integer with s^m^n and
U"i ^_i ^=U^ n . .. n Us_i n U^. In particular (taking s=l and m=n):

P*: K^(A"-{0},Z//v)^Ke ;(An-{0},Z//v),

^ ̂  isomorphism.
Proof. - Le tY m =U^,^uUl , , ^_^^u . . . uUl , , ^_^ , so tha t :

Y^Yr'uIV,^,, Y^^Y-^nU^,,,^,,.

By Proposition 2.4, p, : K^.(U^ ^_,^, Z//)-. K^(U^ ,_^, Z//)isinjectivefor^0and
bijective fory ̂  ̂  — 1. Using descending induction on s and ascending induction onm ̂  s (for
a given ^), we conclude the proposition by applying the 5-Lemma to (2.5.2). •

The proof of Proposition 2.7 applies essentially verbatim to the following analogue
concerning the standard opens of projective space.

PROPOSITION 2.8. - LetPn=Pro]¥p[XQ, . . . , X^andlet^^^ c: P" be the complement
of the hyperplane X,==0. For 1^2, 3, 4, or 8:

P/ : KJ(VO,...,.-l.^Vo,...,.-l,.+l^ • • • ^Vo,...,.-l,m, ^//v)

-^Kf(Vo,,.,,_^uVo,.,,,_l,^lU...uVo,,„,_^,Z//v),

is infective for j^s— 2 and bijective for j^s— 1, where m is any integer with s^m^n and
^o, ...,s-l,m=^o n • • • '^^s-i ^^m- In particular (taking s=0 and m=n):

p ^ : K^P^.Z/n^K^P^Z/n

^ fl^ isomorphism. •
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We apply the description of pi implicit in Proposition 1.8 to provide a proof of the
following example announced by R. Thomason. Thomason's example is particularly
interesting because it uses K-theory with coefficients in an essential way: torsion classes
in K()(X) determine classes in K^(X, Z/F) which are mapped via pi to the reduction of
classes in Kf(X).

PROPOSITION 2.9. — Let X be a smooth connected curve over F. 7/7^2, then:

^ : K^ (X, Z/n -^ K$(X, Z/F),
is surjective.

Proof. — Because p^ is a ring homomorphism and K^(X, Z/F) is periodic of period 2 via
multiplication by p2(P:c) (rf- Proposition 2.2), it suffices to prove the surjectivity of po
and pi. Because X^ is Z//-equivalent to the homotopy type of a (not necessarily compact)
Riemann surface, we conclude that K^(X) is torsion free.

Proposition 1.8 implies that it suffices to prove that po : Ko (X) -> K^ (X) has dense image
in order to prove that po is surjective. This is proved by observing that the following map
has dense image:

(deg@ci)op : Ko(X)^K,°(X)^nmH°(X^ Z/nehmH^, Z/F),

where C i ( a : X^ -> Grassy +„ ,„ )= a* (c^) for c^elimH2 (Grassy +^, Z//'1) the universal
^ r

chern class, so that Proposition 1.7 implies that p o has dense image.
To prove that pi is surjective, we use Proposition 1.6 to define:

^,; K^X^H^X^Z/r),

by sending a :X^ -> GL^ to a* (c^ i), where c^ i is the pull-back via det: GL^ -> GL^ of the
canonical class in H1 ((GLi)^, Z/r). Because K^(X) is torsion free, c^ ^ induces:

c, , , : Kl^X.Z/n^H^X^Z/D,

which is clearly an isomorphism for X a Riemann surface and is seen to be an isomorphism for
F^C by "lifting to characteristic O".

Applying the 5-Lemma to (2.5.2) and using the surjectivity of p2, we conclude that the
surjectivity of p i for general X follows from the bijectivity of c\ ^ o p ^ for
X=SpecA. Using the exact sequences:

0 ̂  KI (AXOZ/^ ̂  KI (A, Z/r) ̂  ,vKo (A) ̂  0,
0 -^ A^Z/F ̂  H1 (X,,, Z/F) -> /vPic(A) -> 0,

we conclude that the order of K^ (A, Z / F ) is greater than or equal to the order of
H^X^, Z//"). Consequently, it suffices to prove that

^i, i "pi •' KI (A, z/n -^ H1 (x^, z/n
is injective.

By construction, c^ i o p^ : K^ (F [t, t~1]) ̂  H1 ((GL^, Z/r) sends ^ to its image under
the natural inclusionF[t, t~ 1]*®Z//V ̂  H1 ((GL^, Z//^. By naturality, c^ i o p^ when
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restricted to A* (x) Z/TcKi (A, Z/^) is the natural inclusion
A^z/r-^H^x^z/r).

Consider the following commutative square:

KI (A, Z/n ̂  colim KI (A^., Z//') ^(A)* (x) Z/F
( 2 - 9 - 1 ) ^.,"P, ^.,"p. ^

H1 (X^ Z/r) ̂  colim H1 ((X^, Z/r)^(A)* (x) Z/^

where the colimit is indexed by/eA*, A: (A) is the field of fractions of A, and the
commutativity of the right hand square is implied by the preceding argument. Because:

Ki(A//, z/r^nK^F, z/r»=o,
by Quillen's devissage theorem, Quillen's localization theorem implies that each
Ki(A, Z/r) -> KI (A^., Z/F) is injective (cf. [16]). Consequently, (2.9.1) implies
that ~c^ ^ op\ ; Ki (A, Z / r ) -> H1 (Xet, Z/F) is also injective as required. •

3. Galois actions

We investigate galois actions on algebraic and etale K-theory, as described in Proposition
3.1 and Definition 3.2. Our basic result, Theorem 3.3, asserts that p^ : K^ (X) -> K^ (X) is
galois equivariant. Throughout this section, we consider a fixed prime /, a given field k
finitely generated over the prime field with 1 // e k, and a chosen separable algebraic closure F
of k. The galois actions we shall consider will be those of Gal (F, L) c Gal(F, k) for
various finite extensions L / k . [If k were not finitely generated over the prime field—for
example, A:=Fp—then L might contain all /-primary roots of unity so that the action of
Gal(F, L) would be less interesting.]

In Proposition 3.5, we use galois equivariance to prove that p^(x)Q=Ofor;>0 whenever X
is proper and smooth over ¥ p. This is to be contrasted with the Lichtenbaum-Quillen
conjecture concerning p^ (Conjecture 3.9). Motivated by the example of an affine curve
studied in Proposition 3.6, we pose several questions concerning the image of p^. We
conclude by introducing chern character maps related to the work of C. Soule [18].

We begin with the following proposition which describes the natural action of Gal (F, L)
on K^ (A) in a manner which is easily translated to etale K-theory.

PROPOSITION 3.1. — Let A be an ¥-algebra of finite type and let L be a finite extension ofk be
chosen so that A is defined over L (i.e., A=A^® F for some algebra A^ of finite type

L

overL). For aeGal (F, L), let:

a : BGL,(A)->BGL,(A), m^O,

be induced by l®cr : A^A^ ® F ̂  A. Equivalently', a sends: ^
L

a : X(g)A[^BGL^ to (KxXj-^oao^Oa) : X(x)A[^] -> BGL^,
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where X equals Spec A, GL^==GL^ p denotes the general linear group scheme of m by m
matrices over F, and:

l®a: GL^GL^L x SpecF^GL,
SpecL

equals 1 x CT. Then the natural action of a on K^(A) for i>0 is that induced by the
above a : BGL^(A) -> BGL^(A) cw ^ /-^ homotopy group of the group completion of
U BGL,(A).
m^O

Proo/. - The assertion that a on K,(A) is determined by a : BGL^(A) -> BGL^(A) is
essentially immediate from the definition of the functor K^( ). The automorphism a :
BGL^(A) -> BGL^(A) is clearly that sending a ^-simplex oc of BGL^(A) corresponding to
QCz :X®A[<| -^BGL^z to azo(l(x)a). We verify by inspection that
if a : X(x)A[^] -> BGL^ is the F-linear map determined by o^, then ( l^a '^oao^O^cT) is
the F-linear map determined by azo(l®a), thereby verifying the equivalent description
of a : BGL^ -. BGL^. •

With Proposition 3.1 as a guide, we proceed to define the action of Gal (F, L) on etale
K-theory.

DEFINITION 3 . 2 . — Let Y. -> X. be a closed immersion ofsimplicial schemes locally of finite
type over F, defined over some finite extension L of k (i.e., Y. -> X. is the pull-back via
Spec F -> Spec L of some Y1: -> X1: over L). For any CT G Gal (F, L) and any m ̂  0, define:

C T : BGL^^-BGL^^,

to be the map induced by composition on the left with (I(X)CT~ l)^ : BGL^ -> BGL^ and on
the right with (I(X)CT)^ : (X./Y.)^ -> (X./Y.)^ We define the natural actions:

Gal (F, L) x Kf(X., Y.) ̂  Kf(X., Y.),
Gal(F, L)xKf(X. , Y.; Z/n-^K^X., Y.; Z//'), ^0,

to be those determined by the above defined actions of creGal (F, L) on BGL^'^ (and
BGL^^01'1'^01^). •

In verifying that p^ and p^ are Galois equivariant, we obtain a refinement of p^ (for po, this
refinement was obtained in [II], 5.3).

THEOREM 3.3. — For any closed immersion Y —> X of schemes quasi-projective over F and
any finite extension L ofk over which Y —> X is defined, the natural maps:

p ^ : K^X,Y)-K^(X,Y),
^ : K^(X, Y^/F) ̂  K^(X, Y; Z/F),

are Gal (F, L)-equivariant. J/'Y=0, then the image of p^. for any i^Q is contained in the
"discrete" submodule Kf (X)5 ofK^ (X) consisting of those elements left fixed by some subgroup

46 SERIE - TOME 15 - 1982 - N° 2



ETALE K-THEORY II 251

o/Gal(F,L) of finite index. Consequently, the natural transformation p^ restricts to a
natural transformation:

p,: K,( )-Ke,t( )5,

from schemes quasi-projective over F to rings.

Proof. - For X=SpecA, Y=0, the galois equivariance of p^ and p^ follows from the
galois equivariance of:

UvL: UBGLJA^UBGL^
m^O m^O

and:

U^: UBGLJA^r^-UBGL^
m^O w^O

apparent from Proposition 3.1 and Definition 3.2 (and the fact that
00 / : K^ ( A ) - > K ^ + i ( A [^ r1]) is Gal (F, L) equivariant). For X=Spec A and
Y= Spec A/I, we employ the fact that the horizontal arrows ^F of(1.3.1) are also galois
equivariant (proved exactly as for \|/^) to prove the galois equivariance of p^ and p^. For X
not necessarily affine, we utilize an affine resolution X -> X.

To prove that p; (K, (X)) is contained in Kf (X)5, it suffices to assume that X = Spec A with
A=AL (x) F and to prove that each element of K;(A) is invariant under some subgroup of

L

Gal(F, L) of finite index. For ;=0, this follows from the fact that Gal(F, L') leaves
[P] e KQ (A) invariant whenever the projective A-module P is defined over L'. For ;' > 0, we
consider ̂  GL(A) (S1). A ^-simplex of ̂  GL(A) (S1) corresponds to a finite sequence of
matrices with coefficients in A (namely, a r-simplex of^ GL(A) (t) which has been explicitly
described in the proof of Theorem 1.3); this ^-simplex is invariant under Gal(F, L')
whenever each entry of each matrix of the sequence is defined over L'. Consequently, any
compact subspace of the geometric realization of ^GL(A) (S1) is invariant under some
subgroup of Gal(F, L) of finite index. This implies that any element of
7i,+i(^GL(A) (S^^^A) (for ;>0) is invariant under some subgroup of Gal (F, L) of
finite index.

To conclude that p^ : K^( ) ->K^( )5 is a natural transformation of ring-valued
functors, it suffices to prove that K^ ( )5 is a functor from schemes quasi-projective over F to
rings. To prove that K^ (X)5 c= K^ (X) is closed under multiplication, it suffices to observe
that the maps \cf. proof of Proposition 1.4) i^ : SGL^ -^ ^GL^opr^,
?2 : ^GI/^-^GL^opr^, and [i : ̂ GL^-^ ^GL^o ® are Gal(F, L) equivariant
whenever X is defined over L. If/: X' -> X is a map of schemes quasi-projective over F,
then/is defined over some finite extension L of k. Consequently, if a e K^ (X) is invariant
under Gal(F, L'), then/^oOeK^X') is invariant under Gal(F, L") where L" is the join
of L and L'. •

In the following proposition, we recall the definition of (etale) /-adic cohomology with
explicit "Tate twist" and the existence of galois equivariant chern character components.
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PROPOSITION 3.4. - Let \i,. denote the subgroup of units ofF consisting of l"-th roots of
unity. We define Q, (s) as the/allowing Gal (F, k)-module (a l-dimensional Q, vector space):

Q^)=Q®(liniH,) , s^O; Q,(,)=Hom(Q,(-,),Q), ,<o.
\ n /

For any closed immersion Y ̂  X of schemes over F defined over L, we define the GaHF U-
wo£?yfeH'"(X,Y;Q,(5))Ay

H"'(X, Y; Q^))=('limH'»((X/Y)^ Z//"))® Q,(,),
^ n / Z,

For all r, s with 2s^r^0, there are naturally defined, galois equivariant chern character
components:

^.r •• K^_,(X, Y)-.H'-(X, Y; Q,(^)),

Furthermore, the galois equivariant maps:

C(ch,,,®Q): Kf (X ,Y)®Q^ @ W(X,\;Q,(s)),
2s - r=>

for each i ̂  0 determine an isomorphism of graded rings:

ch^ : K^ (X, Y) ® Q ̂  @ H'- (X, Y; Q, (s)).
r, s

Proof. - If we forget the restriction that 8 be equal to only 0 or 1, then the proof of [11] 5 5
applies to establish the existence ofch, , [Ifa: I.25- (X/Y), -. BGL; represents a class in
^is-rW, then^ch^,(a) is the pull-back via a of the universal chern character component
ch, e H21- (BGLN, Qi (r)).] The fact that ch^ is an isomorphism of graded rings is implied by
[II], 2.4 and 5.5. •

With the aid of the isomorphism:

cho®Q: K^X^Q^eH^Q^)),

we studied the highly non-trivial map po 0 Q in [11]. On the other hand, we see below that
the Riemann Hypothesis for finite fields implies that p, (x) Q = 0 for X projective and smooth
over F = F p whenever ; > 0.

^ PROPOSITION 3.5. - IfX is a projective and smooth algebraic variety over F=F , then
Kf (X)5 (x) Q = Qfor i > 0. Consequently/or such X: p?

p, (x) Q : K,(X) (x) Q ̂  K?(X) ® Q,

is trivial/or any i > 0.

Proof. - The Riemann Hypothesis for finite fields proved by Deligne [7] implies that the
discrete submodule H-(X, Q^))^ ofH^X, Q^)) is Ofor 2s-r > 0; namely, for X defined
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over F^, the absolute values of the eigenvalues of the arithmetic frobenius a e Gal (F, F )
acting on IT (X, Q^ (s}) are all equal to ^(2S- r)/2. By Proposition 3.4, Kf (X)5 (x) Q = 0 for
; > 0. The proposition now follows from Theorem 3.3. •

We next investigate p^ for an affine curve.
PROPOSITION 3.6. - Let X=SpecA be a smooth affine curve of genus g over F. Then

pi : KI (X) -> Kf (X) has dense image in Kf (X)8 which is a free Zi module of rank t, where t +1
is the number of closed points of the complement of X in a smooth, projective closure
X. Moreover, for any i > 1, K^X)5^ so that pi=0.

Proof. — The map X^ -> X^ is Z// equivalent to the inclusion in a Riemann surface of
genus g of the complement of t +1 points. Consequently, Kf (X) -> Kf (X) is split injective

lisomorphic to limH1 (X, Z//"(l)) -^ limH1 (X, Z//"(l))) with image a free Z^ module of
v n _ _ n /

rank 2g. Because Kf (X)6 c= Kf (X)6 (x) Q equals 0 by Proposition 3.5, it suffices to prove
thatpi(Ki(X))isdenseinasubmoduleofrankatleast ^ofKf(X) ^ Zf2^1 in order that we
may conclude that pi (K^ (X)) is dense in Kf(X)8 and that Kf(X)5 is a free Z^ module of
rank t.

Choose_a rational function/: X -> P1 with the property that/separates the (rational)
points of X - X and is etale at each of these points. Let W c: P1 denote the (Zariski) open
complement of / (X—X). By excision, the composition (factoring through
H^W.Z/Q^H^X.Z//)):

H1 (W, Z//) -> H2 (P1, W; Z//) -^ H2 (X, X; Z//),

is injective. Because K?(W) ̂  limH^W, Z//"(l)) and K?(X) ^ limH2 (X, Z//"(l)) are
torsion free, we conclude that /*: Kf(W) -^ Kf(X) is injective with rank equal
to t. Corollary 2.6 and the fact that K^ (W, Z/F) ̂  K^ (W) (x) Z/^ imply that pi (K^ (W))
is dense in Kf(W). Therefore, the naturality of pi implies that pi(Ki(X)) is dense in a
submodule containing the rank t submodule/*(Kf(W)).
^ Because Kf(X) is torsion free, the vanishing of K^X)5®? implies the vanishing of
K, (X)5. Using Proposition 3.4, we conclude that it suffices to prove that KT (X, Qi (s}}6 = 0
for Is-r^l in order to conclude that K^X)6^ for i^2. Because X has Z//
cohomological dimension 1, we need only observe that:

H^X.Q^))^ Q,(^=0, ^ > 0 ,

H^X.Q^^^H^X.Q^^QH^W.Q^^^O, s > 1,

where the second vanishing statement follows from Proposition 3.5 and the fact that
H1 (W, Q,(1))=Q^ as Gal(F, L)-modules (because KIW^K^W) ̂  H1 (W, Q,(l)) as
shown above). •

We recall that the Tate Conjecture concerning the identification of algebraic cycles in terms
of their behavior under Galois actions is equivalent to the conjecture that
po (x) Q^: KQ (X) ® Q^ ̂  Kg (X)6 (x) Q is surjective [11]. Theorem 3.3, Propositions 3.5
and 3.6 suggest the following questions.
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QUESTION 3.7. — For which smooth, quasi-projective varieties X over F is the natural
map:

P* ® Q/: K ^ ( X ) ® Q,^ K^(X) 6 ® Q,
surjective •

QUESTION 3 . 8 . — IfX is a Zariski open of some smooth, projective variety X over F, what is
the relationship between the vanishing range of K^(X)5 and the codimension of X-X
i n X ? •

Questions 3.7 and 3.8 should be contrasted with the following reformulation of a
conjecture of Lichtenbaum and Quillen. The reader should observe that the Galois action
is not necessarily discrete on limK,(X, Z//71). For example, limK^F, Z//") ^ Z;(l) [no

n
non-zero element of Z^( l ) is invariant under any subgroup of Gal(F, k) of finite index,
because the field k([i^) obtained by adjoining all /-primary roots of unity to k is not finite
overk].

CONJECTURE 3.9 (Lichtenbaum-Quillen). — If X is a smooth, quasi-projective variety over
F, then:

lim p,: lim K, (X, Z/7") -^ Kf (X),
n

is an isomorphism for ; greater than the /-cohomological dimension ofX. •
Our last proposition is inspired by the work ofC. Soule on the K-theory of rings of integers

in number fields [18]. Because the maps ch, ^ of Proposition 3.9 have the conjectured form
(corresponding to Soule's chern class components divided by (;'— 1) !), the method of proof
of Proposition 3.10 suggests a possible means of extending Soule's results.

PROPOSITION 3.10. — Let X be a quasi-projective variety over F defined over some finite
extension L of k. Then there, exists Gal(F, 1^-equivariant maps:

ch^: K^-,(X, Z/D^H^, Z//^)),

for r=0, 1, or 2 and s with 2s—r ^ 0.

Proof. — We assume X is connected (treating one component at a time) and affine (by
replacing X by an affme resolution X -^ X otherwise). Let BGL^0 denote the homotopy
fibre of BGLN-^COS^BGLN (adjoint to the inclusion sk.BGL^ -> BGL^), so that
^(BGL^0)^ for m < ; and Ti^BGL^0) ̂  ̂ ^(BGLJ for m ^ i. Using obstruction
theory as in the proof of Proposition 1.2, we conclude the isomorphisms:

(3.10.1) Kf(X, Z//v)^Hom^_^(I: l-2C(/v) A (X/^, BGL;^)

for N ^> 0. We recall from the integrality theorem of Adams [I], that the restriction of
ch.eH^BU, Q) inH^BU^, Q) lies in H^BU^, Z) if; =2s or 2s-l. Consequently,
the restriction ofch^ e H25 (BGL^, Qj (s)) for N :> 0 (cf. Proposition 3.4) lies in the image of:

HmH^BGL^, Z/l^s)) -> H^BGL;^, Q^)),
n
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provided that i = 2 s or 2 ̂  -1. Thus, if r = 2 s - i equals 0 or 1 and if i ̂  2, we define ch, , on
aeK^X.Z/nby:

ch^(oc)=(p,(oc))*(ch,)eH r(X,Z//v(^),

where ^(oc) is viewed as a map E1"2 C^) A (X/0\, -^ BGLff via (3.10.1).
To treat the case r= 2, we choose a geometric point for X which determines a retract

y : ^i~2C(lv)-^I.i~2C{lv) A (X/0)^ with retraction T. For any aeK,.(X, Z/F), with
f = 2 ^ — 2 ^ 2 , we observe that:

(3.10.2) P . (oO-p , (oc )oyoT : Z1-2 €:(/-) A (X^-^BGL^0,

satisfies (p,(a)-^(a)oyoT)*(ch;)=0. Consequently, (3.10.2) lifts to:

p,(af : Z1-2 W A (X/0)e, ̂  BGL;^^.

We define ch,, 2 on aeK, (X, Z/F) for f =2^-2^2 by:

ch^(a)=(p,(cxf)*(ch,)eH2(X,Z//v(.)).

For ;'= 1, we define ch^ i to be that map determined by ch^ 2 on K2 (x x GLl» z//v) and

K^ (X, Z/F). More concretely,

ch^ l ( a )®P=ch2 , l ( a (g )p )eH l (X ,Z / / v ( l ) )®Z/ / v ( l ) ^H l (X ,Z /^ v (2 ) )

where ReZ/Z^l) is a generator. We define cho,o to be the Z/F reduction of the rank
function and ch^ 2 to ^e tne (galois equivariant) first chern class.

The galois equivariance of the ch, ,( ) so defined is proved as is Proposition 3.4
(cf. [11], 5.5). For example, if o e Gal (F, L), then ~p (a o a)* (ch,) is the pull-back of ch, via
the composition:

(a-T^oOod A aj : E1-2^) A (X/0)^

^ Z1-2 C(n A (X/0^ -> BGL^1) -> BGL;^^,

by Theorem 3.3. On'the other hand, the action of a on p^oO^ch^eH25"^, Z//^)) is
also given by this pull-back of ch^ because the effect of (a~1)^* on ch^ when viewed in
H^BGL^0, Z / r ) is that of a on Z/r(4 •
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