
ANNALES SCIENTIFIQUES DE L’É.N.S.

PETER BUSER
A note on the isoperimetric constant

Annales scientifiques de l’É.N.S. 4e série, tome 15, no 2 (1982), p. 213-230
<http://www.numdam.org/item?id=ASENS_1982_4_15_2_213_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1982, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASENS_1982_4_15_2_213_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. scient. EC. Norm. Sup.
46 serie, t. 15, 1982, p. 213 a 230.

A NOTE ON THE ISOPERIMETRIC CONSTANT

BY PETER BUSER

1. Introduction

The isoperimetric inequality for the standard sphere S" implies that the volume ratio
vol ^A/vol A for open subsets A with vol A ̂  1 /2 vol S" and sufficiently regular boundary 8A
is minimized for A equal a hemisphere. Similarly one defines an isoperimetric constant:

/^M^inf^,
vol A

for any compact ^-dimensional Riemannian manifold M where A runs over all open subsets
with not more than half of the total volume, and it is known from geometric measure theory
that a minimizing set A always exists though in general 9A need not be a smooth hypersurface
(see below). We shall also deal with relatively compact (connected) subdomains D of a
Riemannian manifold. In this case SA in the definition ofh(D) is to be replaced by the part
in the interior of D, i. e.:

/^inf^0111^.
vol A

In 1970 Cheeger [10], proved the lower bound:

^(M)^^(M),

where X^ is the smollest positive eigenvalue of the Laplace-Beltrami operator A== —div
grad. If M has boundary then Cheeger's inequality still holds if 'k^ is meant subject to the
Neumann boundary condition AM==XM, *du\9M=0. Cheeger's inequality has found a
number of applications e. g. ([5], [8], [II], [12], [16], [18], [21], [22], [24]), andfor each compact
manifold there exist Riemannian metrics for which the inequality becomes sharp [8]. This
has suggested that ̂  and the isoperimetric constant h ought to be equivalent in the following
sense:
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214 p. BUSER

Given a family of Riemannian manifolds without boundary, then under suitable curvature
conditions:

(1 .1) ^i -^ 0 if and only if h -> 0.

From Cheeger's inequality (which gives the "only if") one might hope to dispense with
additional assumptions on the manifolds. However it is possible to perturb the Riemannian
structure of a manifold near any given subdividing hypersurface as to make h arbitrarily small
with hardly affecting ̂  (cf. the example in [6], see also [9]). Yet such procedures involve
heavily negative curvature and small injectivity radii. Inspired by the article [16] by
Gromov we prove here:

1.2 THEOREM. — If the Ricci curvature of a compact unbordered Riemannian manifold M" is
bounded below by —(n—l)^2^^^) then:

UM)^Ci(8/z+/?2),

where c^ is a constant which depends only on the dimension.
The two dimensional version of the theorem has already been proved in [6].

1.3 Remarks. - (a) In 3.2 we find more precisely 'k^2S (n-1) h +10 h1. (b) Flat tori
provide families of Riemannian manifolds where h -> oo such that ?4 = 0 (h2}. On the other
hand Schoen-Wolpert-Yau [23] have shown that for compact Riemann surfaces of fixed
genus g ' ^ 2 (curvature = -1) one has ^i ̂  Const. {g). h, i. e. ̂  is of the same order as h, as
h -> 0, in this case. Hence to some extent the upper bound in Theorem 1.2 has the best
possible form. (c) It would be interesting however to know whether 1.1 can also be proved
under different circumstances, e. g. if there are no curvature conditions but if a lower bound
on the injectivity radius is given instead. Such a possibility seems imaginable from the work
of Berger ([2], [3]) and Croke [11].

1.4 Example. — Theorem 1.2 has no analogue if the manifold is bordered, at least not
under the given circumstances. To obtain an illustrating example we consider the
differential equation:

(PU du
^+m^+.=0 (^0).

where m is an arbitrary large parameter, subject to the boundary-condition ^(0)=0,
M' (O)=I . Its unique solution is:

u(x)=]-el/2^-m)x-1-e~l/2^+m)x, fk=+fm2r^.
A : A

We have:

, / x ^ - l , m + ^ lu {a)=0 for a=-log——- > — log m2,
^ m-1^ ~ m
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A NOTE ON THE ISOPERIMETRIC CONSTANT 215

and u is a solution of the eigenvalue equation:

M"+mi/+r|M=0, xe[0,a], i/(0)=0, M'(a)=0,

with the eigenvalue TI == 1.
Now consider the following flat domain (which imitates a cylindric surface of strongly

negative curvature):

G(m,c)={(x,}Qe^2 ; -a^x^a, O^^c^l}.

Standard techniques show that for small s > 0 the function / (x, y ) = u (| x |) is almost the first
eigenfunction of the Laplacian -(B2 / Q x 2 - ^ - ^ / O y 2 ) on G(m, c) subject to the Neumann
boundary condition, and that ^i (G(m, s)) -^ 1 as s -^ 0. On the other hand obviously:

/r0
/z(G(m,8))==l/ ^^^/(m2-!).

/ J o

The example also shows that additional curvature conditions for the boundary would still
be insufficient to make 1.2 true: Glue two pieces ofG(m, s) together along | x \ = a and smooth
the "upper" boundary curve gently at x==0 and x=a. The flat annulus Z(m, s) thus
obtained has ?4(Z(m, s))>l/2, h(Z(m, c))<2/m and the geodesic curvature of the
boundary approaches zero as s -> 0.

Sections 2, 3, 4 deal with the proof of Theorem 1.2. In section 6 we present another
application of the used technique obtaining bounds for the higher eigenvalues which have the
same growth rate as WeyFs asymptotic law. Section 7 provides a version of Theorem 1.2 for
non compact manifolds and shows how to proceed if a separating hypersurface needs a
haircut.

2. About the proof

We shall give two proofs of Theorem 1.2 (The proof given in [6] for the case of a surface
does not generalize to higher dimensions.) The second proof (section 4) is elementary,
based on standard comparison arguments. The first one (section 3) uses a result from
geometric measure theory: It is shown in [1] or follows indirectly though more accessibly
from [19] (see also remark 3.3 below) that /z(M), as mentioned in the introduction, is a
minimum, obtained for an open submanifold of M whose boundary X is a rectifiable current
([13], p. 355) with the following.

2.1 REGULARITY PROPERTY. - Ifp e X is a point whose tangent cone is contained in a half
space {regular point), then there exists a neighbourhood^ ofp in M such that X n U is a smooth
submanifold of U.

The set X° of all regular points in X will be called the regular part. It is known [14] that the
complement X - X° has Hausdorff dimension ^ n - 8 (in particular X = X° if dim M ̂  7) but
we shall not need this fact here. Note that since X is an area minimizing current, X° is a
hypersurface of constant mean curvature.
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216 P. BUSER

For the sake of simplicity the metric of M is scaled such that 5 = 1 i. e. such that the Ricci
curvature is bounded below by —(n—1) in the sequel.

3. Proof using a minimizing current

Consider a hypersurface X which satisfies the regularity property 2.1 and which subdivides
M into two open submanifolds A, B such that (cf. remark 3.3) 8A = 8B = X, A n B = 0 and
such that:

,/^^____vol X____
1 ' m i n ^ o l A . v o l B j '

By Courant's minimax principle we have ̂ i (M)^max { ^i (A), X^ (B)}, where ̂  (A), ̂  (B)
are the smallest non trivial eigenvalues of A, B for Au='ku with respect to the Dirichlet
boundary condition u |X==0. Hence it suffices to estimate the Rayleigh quotient
r /r|| grad /II2 / /2 for a suitable test function, say on A. To this end we put:

•/ / J

A(0={/?eA;dis t ( /7 ,X)^}

and define for sufficiently small t>0 :

f(p)=
-^dist^X) if peA(t),

1 if peA-A(t).

The function / is Lipschitzian satisfying || grad /H2^"2 on A(t) and Hgrad /|| =0 on
A-A(^). Therefore we have only to estimate the volume of A(t):

Let C = C (X) denote the cut locus ofX, i. e. the closure of the set of all points;? e M to which
more than one distance minimizing geodesic from/? to X exists. It is known that C has zero
measure. Now consider p e M — C and let p^ e X be the endpoint of the unique distance
minimizing geodesic from p to X. Then X and the open metric ball U of radius dist (p, /?x)
around/? are disjoint. Moreover/? and/?x are not conjugate points (ptC (X)), hence U has a
well defined tangent hyperplane T at/?x and the tangent cone ofX at/?x is contained in one of
the half spaces defined by T, i. e.:

/?xeX° for all peM-C.

Therefore we can apply the comparison theorem ofHeintze-Karcher [17]: Since the regular
part X° has constant mean curvature, say T| (with respect to the normal vector which points
towards A) and since the Ricci curvature of M is bounded below by —(n—1), it follows:

n n
volA(0=vol(A(^)-C)^volX° J^T)rfT^(M) vol A J^(r)A,

J 0 J 0
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A NOTE ON THE ISOPERIMETRIC CONSTANT 217

where J^(T)=(coshT—r| sinhr)""1 as long as the term in the bracket is positive and
J^ (j) = 0 otherwise. Now:

r i rl lgrad/ I^^M^-^volA^) and \ f2 dM^vo\ A-vol A(^).
JA ^ JA

Hence the Rayleigh principle yields:
Ct

(coshr+ri sinhr)" 1 ch
. 31 ) ^h(M) Jo_______________
^.1; A-i^—,2——————(^t—————————————————————5

1-h (coshT+risinhTy1"1^
J o

for all t for which the denominator becomes positive. The inequality 3.1 holds for X,i (A) as
well as ,̂1 (B) and a for tiori for Xi(M)ifr | is now interpreted as the absolute value of the mean
curvature ofX°.

In order to eliminate T| we estimate T| in terms of h: Nothing has to be done if
O ^ T t ^ l - If r (=l -h8 with e>0 then coshr—ri smhT=^~ T ~es inhT^ l—eT, from
which:

foo pl/e j[
J,(T)Ad ( l -err1^, ,

J o J o b't

^00 /•GO 1

J , (T)^< e-^-^d^——-.
J o ^ " Jo ^-1

/r00
Since /z^vol X°/min {vol A, vol B} ̂  I/ J^(r)^T, the first inequality shows that:

/ J o^
(which is trivially tr^ie if T| ̂  1) and the second inequality implies:

h^(n-l) if r|^l.

Now an elementary calculation yields from 3.1:

(3.2) ^(M)^2(/2-- l ) /^(M)-hlO/^ 2 (M).

[Take r=3 / (4^-4) i fO<A^(w- l ) /2 resp. t=l/(2n-2) if (n-l)/2^h^n-l and use
that T| ̂  1 for these two cases. If h ̂  n — 1 use the fact T| ̂ 1 + h / n and take t = 1 /(5 /?).]

3.3 Remark. — The precise result from geometric measure theory is that the ratio
vol X/vol A is minimized by a current X with regularity property 2.1 if A runs over all open
subsets of M with a fixed volume vol A = v, whereas in the definition ofh(M) this v also varies
in the interval (0, 1/2 vol M). Hence in order to find a minimizing current, one needs an
additional argument. One way to proceed is as follows:

3.4 LEMMA. — There exists v>0 and a series of open submanifolds Aj^cM such that
vol \=vfor all k and such that h(M)= lim vol M^/vol A^.

k^oo
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218 P. BUSER

Proof. — Consider a sequence A^ of open submanifolds of M such that:

Hm.X01^^)
fc->oo vol A^

and such that the limit v : = lim vol A^ 1 /2 exists. We first show that v ̂  0. To this end
fe-^OO

we represent M as a sum M==M^ u. . . u M^, where each M^ is a cell which is mapped
homeomorphically onto the euclidean ^z-ball B" of radius 1 by some fixed quasi isometry 0^,
and where int M; n int M^.= 0 (i^j). (This can be achieved by a suitable triangulation of
M, or with the Dirichlet regions of section 4. The length distortion of the 0; is
irrelevant.) Now if the volume of A=Afe is sufficiently small (if this occurs at all) then
vol 0 ; (AnM,)^l /2 vol B", ;=1, . . . , /. It follows from the classical isoperimetric
inequality in B" c V that (if A n M;^ 0):

vol 0, (int M^nBA) , . .,. , , .,
-vor^AnM.) ^(vol<I>.(AnM.))-^

where c^ is a dimension constant. Therefore:

vol (int M; n OA)
^(voKAnM^r^c^vol A)^",

vol (An M;)

with a constant c^ which depends on the length distortion of the quasiisometry 0;, but which
is independent of the subset A=A^. It follows:

^^.(volAJ--
vol A,

Since vol ^A^/vol A^ converges to h(M)< oo, this shows that vol A^ cannot approach zero.
In a second step we replace the \ whose volumes converge to v > 0 by subsets A^ of M

whose volumes equal v. We restrict ourseleves to the case that vol A^ < v. The remaining
case is similar. We try to attach a little ball U (/?, r) of radius r and center;? to A = A^. We
may assume that | u—vol A | is very small. Then the formula:

r rvol (AnU(p, r)}dp=\ vol U(p, r}dp
JM JA

and the fact that vol A^ 1/2 vol M help us to find a point p and a radius r such that:

vol(U(/?, ^ n A ^ ^ v o l U Q ^ r ) , vol U(/?, r )^4| y-vol A| .

Note that | y—vol A| is arbitrarily small, so we can assume that:

0.99 co r"^vol U(/?, r)^ 1.01 cor",
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A NOTE ON THE ISOPERIMETRIC CONSTANT 219

whenever the radius r is so small, that at some point qeM we have:

volU(^r)^10 |y-volA| ,

((D= volume of the euclidean unit ball).
We now take r^ e [0, r] such that the volume of A^ : == A^ u U (/?, rj equals y and obtain

the lemma with this new sequence of domains.

4. Elementary proof

We give a second proof of Theorem 1.2 which avoids area minimizing currents, since the
regularity Theorem 2.1 is not very accessible. For the sake of simplicity we do not hesitate
to loose large factors here.

Let this time X be a smooth hypersurface which subdivides M into M — X = A u B ,
A n B = 0 with:

voIX(4.1) ^f:
min { vol A, vol B

arbitrarily close to /z(M). The difficulty which arises in dimension n'^3 is well
known: The maximal distance dist (p, X), p e M might be smaller than s for any s > 0 (the
problem of "hairs", see fig. 2) and therefore no a priori bound exists for the volume of
A (r). Hence in order to define a test function / as in section 3 we shall first replace X by a
more "bald headed" subset X and then define / in terms of the distance to X.

The comparison argument will be the usual one: Let p e M and describe the inside of the
cut locus C(p) with polar coordinates (p, (p), 0< p < oo, (p £ S"~1 centered at p. Then the
volume element of the given Riemannian metric takes the form:

dM=g(p^)dpdSn-\

where afS""1 is the volume of the standard S""1; e.g. if M" has constant sectional
curvature —1, then ^(p, (p)=sinh"-l p. In general, i.e. if the Ricci curvature of M" is
bounded below by — (n — 1), standard arguments on Jacobi fields (e. g. [4], p. 256 or [17]) yield
^/^[^(p^sinh^pl^Oor:

(A -)\ g(pi, (p) sinh^pi a(pi) .
^ .(p^^srnh^^ (0<P^P.).

For quicker reference we list the following immediate consequences:

__^,^ ,<.<K>,
<?(P.<P)^P

J r

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



220 p. BUSER

g(p,(f>)dp

(4.3.2) ^——————^^!^ (0^o<^),
^(p,(p)rfp p(rl) p(ro)

J /•0

(4 t 3 -3 ) f ^(P.<P)^P^^.|^(P,(P)^P (a<r^R);
J O PV) J 0 -

where P(p) is the ^-volume of the hyperbolic p-ball (curvature -1) and
a (p) === d / d p P (p) ^= Const. {n) sinh""1 p is the (n -1 )-volume of the corresponding boundary
sphere. The inequalities 4.2 and 4.3 hold as long as the considered geodesic segmenti
p^(p, (p) does not meet the cut locus.

The geometric meaning, say of 4.3.1 is that of an isoperimetric inequality:

\
\

tX \

' ! -
• ) 

1̂

Fig. 1

Consider for instance a point p e M - A and an infinitesimal cone ̂  of geodesies of length
R ̂  dist {p, cut locus of p) issuing from /?, and assume that X = 8 A cuts ^ into two pieces like
in figure 1. Then 4.3.1 says:

vol(Xn^) a(r)
voHAn^^R)-?^)5

where r is the distance along ^ from p to the intersection of ̂  with X. The inequality is
sharp for constant negative curvature, if X meets ^ perpendicularly.

In order to define the set X we consider a collection of points/?!, . . . , p^ e M with pairwise
distances ^2r such that the open metric balls U(/^, 2r) with center p , and radius 2r
cover M, where r is an adjustible sufficiently small parameter. (U(/?,, 2r) need not be
homeomorphic to a euclidean ball). Such a collection of points will be called a complete
r-package.

It can be obtained in the following way: First let^i e M be just any point. If there exists
a point in M whose distance to p^ is greater or equal 2r, let p^ be such a point. Now
assume by induction that we have points p^ . . . , p , with pairwise distances ^2r. If the

4* S^RIE - TOME 15 - 1982 - N° 2



A NOTE ON THE ISOPERIMETRIC CONSTANT 221

open metric balls U ( p p 2 r)J= 1, . . . , ; ' still don't cover M, we find again a point p,+^ with
dist(^-n,7^)^2rj=l, . . . , i. And so on. Since M is compact, there is a positive lower
bound E (r) for the volume of U (77, r), p e M. Since the balls U ( p p r) are pairwise disjoint,
we can have at most k^vo\ M/e(r) such points. So eventually the package will be
complete.

The complete r-package p ^ , . . . , p^ gives rise to Dirichlet regions:

Di: = { < 7 e M ; dist(^,^)^dist(^,^.)for all7'=l, . . . , /:}.

Clearly each Dirichlet region satisfies:

(4.4) U(^,r)cD^U(^,2r) ,

The main tool is the following lower bound for the isoperimetric constant of a Dirichlet
region D (satisfying 4.4):

*<~=a!̂ ^•
Here c^ < 1 is a constant which depends only on the dimension of M. The proof of 4.5 is
postponed to section 5. We now assume r at least so small that:

-^4
(where ^f is from 4.1) and enumerate the collection p^ . . . , p^ in such a way that:

vol(AnU(^f , r))^- vol \J(pi, r) for z'=l, . . . , m

(me{0 , .. . , k ] ) and:

vol(AnU(/^., r))>- vol U(^, r) for ; '=m+l, . . . , / ; .

It follows from 4.3.3 and 4.4 that vol D^vol U(^, r )P(2r ) /P( r ) . Therefore by 4.5:

vol (A n D,) ̂  2 p _2 r) . vol (X n int D,), ^=1, . . . , m .

Since the Dirichlet regions do not overlap we obtain from 4.6 because of
volX/volA^(4.1).

m 2Rf2 r ) 1
(4.7) ^ vol(AnD^^^.^.volA<,volA.

1 = 1 y v ^ P v ^ ^
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222 P. BUSER

Hence there exists at least one ball U {p^ r) where B contributes to more than half of the total
volume and by the same reason there exists another ball U ( p p r) where A is predominating,
i. e. the following sets are non empty:

A: =^eM; vol(AnU(/?, r ) )> 1 vol V ( p , r ) j> ,

B: =LeM; vol(BnU(^, r)>1 vol U(^, r)^.

By the continuity of the function p \—> vol (A n \ J (p , r ) )—vol(B n \J{p, r)) we see that the
open submanifolds A, B are separated by the closed subset:

X: ={7?eM; vol(AnU(/?, r))=vol(B nU(^, r))},

which need not be a null set, let alone a hypersurface.^

A

Fig. 2

Note that passing form A to A we eliminate all "lower dimensional looking" parts of A
(the problem of hairs).

Let us see whether it is now possible to estimate the volume of the ^-hull:

X1: ={peM',dist(p,X)^t}.

We take a new complete r-package p ^ , . . . , p^ which satisfies the following conditions:
l)/?i, . . . ,^eXandXiscoveredbythebal l sU(^ ,2r ) , ;= l , . . . , ^ . 2 ) ^ + i , . . . , /^eB
and^^+i, . . . , 7 ? f e e A . Now X^ is covered by the balls U(^., 2 r+ t), ;'=!, . . . , ^ , and we
obtain from 4.3.3, since p ^ , . . . , / ? , e X:

volX-S^ £_ ,olU(,,,,) -2^' £_ vol(AnU(,.,,)).

4e SERIE - TOME 15 - 1982 - N° 2



A NOTE ON THE ISOPERIMETRIC CONSTANT 223

Therefore by Lemma 5.1:

(4.8) voIX^2^^ ^vol(XnU(^.r)) ^ ̂ -J^ .^.min.{vol A, vol B}.

Now fix ^ = 2 r. If p e B — X2 r, then U ( p , 2 r) is contained in B since it is impossible to get
from p to A without crossing X. Hence p is contained in a Dirichlet region D^ with
s +1 ̂  ̂  m, and we have B — X 2 r c= D^+ ^ u . . . u D^. Therefore together with 4.7
and 4.8:

(4.9) vol(A-X2r)^vol(An(A-X2r))=volA-vol(An(BuX2r))

w / 4 ̂  Rf4^ \
^volA-voIX^- V vol(AnD,) ^ 1- p v / volA.

i=s+i ~\ J\r)^(r) )

With 4.6, 4.8 and 4.9 we are now in a position to proceed like in section 3 by defining
f(p)=d\st(p,X)/2rl{peAnX2rSindf(p)=l on A-X2 'and ditto on B to obtain:

, (M}<^-^-<^cl+r

^^TO^^3 5

where r is assumed to satisfy 4.6 and €3 > 1 is another constant depending on the dimension
such that the inequality on the right hand side is true for arbitrary r > 0. Taking r = 1 /8 in
case ^f^l /c j and r=(8^fc j )~ 1 i f ^ f ^ l / c j we obtain:

^(M)^8cf(^+^2),

for ^ arbitrarily close to /z(M).
Q.E.D.

5. Starlike domains

Let PQ e M and D be a domain such that each distance minimizing geodesic from PQ
to q e D is contained in D. The Dirichlet regions of the preceeding section, e. g. are starlike
in this sense.

5 . 1 LEMMA. — IfD is as above and if\J(pQ, r)c=D(=U(7?o, R) then:

A(D)>max ^KP^-P^^I.R rfl\L')= max — — — — ^ < - 4 -o,̂  2(3(R)P(r) - 4 R" 5

where c^< 1 is a constant which depends on the dimension.
Proof. — Recall that the Ricci curvature is bounded below by — (n — 1), a (p) is the surface

area of the p sphere in hyperbolic space. We shall write Up instead of\J(pQ, p). For q e D
we let C(q} denote the cut locus of q with respect to M.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



224 P. BUSER

Let % be a smooth hypersurface of D which divides the interior of D into two open disjoint
subsets ^ and ^, satisfying vol ^^KX n intD), assume that ^ is the part for which:

vol(^nU^)^volU^.

In order to obtain a lower bound for vol 7/vol j^ we fix t,0<t<r/2. It is then necessary to
distinguish two cases, 1) where the major part of ^ is contained in D - U^ and 2) where a
considerable part of ^ lies inside U^. To this end we introduce a further parameter x,
0 < ,v < 1 which will be suitably chosen at the end of the proof.

Fig. 3

1. Case. - vol(j^nU^)^xvolj^. For p e ̂  - C( po) we define p* to bethel rst point
along the distance minimizing geodesic ppQ from p to /?o which meets ^, resp. ̂ * =PQ if the
whole segment ppo is contained in js/. Hence if we introduce polar coordinates p = (p, (p),
p^O, (peS"~1 with center^ [for M-C(po)] then ^*==(p*, <p), p*<p, and the geodesic
segment {(p', (p); p*^p '^p} is contained in s/. For /?==(p, (p)ej^-C(^o)-U^ we
further define the rod of p as the geodesic segment:

rod^^q)); ^p'^p}.

Finally we let (the bar denotes closure):

^={^e^-C(^o)-U^;^U,},

^2={p^^-C(po)-V^!od(p)^^},

j^3=={^eU^-Up qerod(p) for some^ej^^}.
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A NOTE ON THE ISOPERIMETRIC CONSTANT 225

j^2 can ̂ so be described as the set of points in ^ — U,./^ — C (7^0) with;?* G U^, and ̂ 3 is the
intersection of the shell U^^U^ with the union of all rod (p), p e ^ ^ . Note that
^3 <= ja^. From 4.3.2 follows:

voW^P(R)-(W2)^
vol^ = P(r/2)-P(?) •y '

By the assumption in this first case we have vo\(^—Vy^)^(l—x)vo\^/, on
the other hand since ^—^r/2~^(Po) ls contained in j^^^i we ^ave

vol^-U^^voW^+^^i- Finally since volj^^vol^nU^^xvoW we
obtain:

vol ja^ i ̂  (1 - x — y x) vol ̂ .

Now we are ready to use 4.3. l:vol 5c/vol ja^i ̂  a(t) (P (R) - P (t))~1 by the definition of j^,
and therefore:

f5 ?) volx > ^(0 _ ^(^)
v ' / vol^=P(R)-P(0 P(r/2)-P(r)'

2. Ca^. — vol(j^nU^2)^^vol^. We use an argument due to Gromov ([16],
lemma (C)). Let WQ = ̂  n U^ and W^ = ̂  n U,./^ or vice versa. Then for one of the two
possible choices of Wo, W^ we have the following.

CLAIM. — There exists W Q ^ W Q and a measurable subset W^ of W^ such that:
{a) volWi^l/2volWi.
(b) Each distance minimizing geodesic from q e W\ to WQ intersects / in a first point q* for

which dist(<7, ^*)^dist(^*, Wo).
(The geodesic segment qwQ is not assumed to be contained in U^/^.) For the proof of the
claim we consider the cartesian product W^ x Wo with the product measure. Since cut loci
are nullsets, it follows from Fubini's theorem that, apart from a nullset NcW^ x Wo, each
pair (q, w) of points ^eW^, we Wo is connected by a unique distance minimizing
geodesic qw. This geodesic is contained in U^cD since its length is less than r, so it
intersects ^. Now let Vo (resp. V\) in W^ x Wo — N be the set of pairs (q, w) which satisfy
dist(^, <7*)^dist(<7*, w) [resp. dist(^, w*)^dist(w*, w)] where q* (resp. w*) is the
intersection point of qw with 7 next to q (resp. w). Since V o u V \ = W i x W o — N now
Vo^l/2vol(Wi xWo) for one of the two choices of Wo, W^. The claim is now a
consequence of Fubini's theorem.

In order to estimate vol^/volW\ we introduce (new) polar coordinates (p, (p) centered
at WQ [inside the cut locus C(wo)]. If ^eW^, ^=(p, (p),then the corresponding point
<7*=(p*, (p)e5C satisfies p*^l /2p. Let p** be maximal such that the geodesic segment
{ ( p \ (p); p*^p'^p**} is contained in W\-C(wo). We also have p*^l/2p** and
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p**^r. Now 4.8.1 implies [the volume element is dM=g(p, (p^p^S""1 inside the cut
locus C(^o)]:

g(P*.<P) ^ a(p*) ^ a(p**/2) ^ a(r/2)

f^p (pW ^(P**)^?*) ^(P**)^?**^)^^)-?^)
J p*

[observe that J^fT(cT(T)(P(2T)-P(T)) - l)<0 for T>O]. This is at the same time a lower
bound for vol^/volWi and since we assumed xvolj^^vol(j^n U^2)^2volWi [recall
that volj^ n U,/2^vol(^ n U,^)] we obtain:

( 5 3 ) voix ^ xa(r/2)
voW=2(P(r)-P(r/2))'

In order to obtain the best possible bound from 5.2 and 5.3 we take x such that both bounds
become equal. Thus after some elementary simplifications we end up with:

h(D)> max awp(r/2)-^
o<.<./2 2p(R)P(r) •

Q.E.D.

6. An application

The above estimate of/z(D) for Dirichlet regions provides a simplified proof of Gromov's
bound [16]:

(6.1) ^e-2^8,

for the m-th eigenvalue of the Laplacian on M, where m = m (s) is the minimal cardinality of a
complete e-package of M, and c^ is a dimension constant.

Proof. — The simplification lies in the possibility of applying Cheeger's inequality
directly. By Courant's minimax principle ^^min{^i(D,); ;'=!, . . . , m} where D, are
the Dirichlet regions due to an optimal complete c-package p ^ , . . ., p ^ , and ?4 (D^.) is the
smallest positive eigenvalue of Au='ku with respect to the Neumann condition
*du | a D, = 0. By Cheeger's inequality ?4 (D,.) ̂  1 /4 h2 (D,), and by 4.5 h (D,.) ̂  1 /8 c\+ £.

Q.E.D.

We use this place to answer a question ofGromov in [16] concerning bounds for the higher
eigenvalues ̂  which have growth rate as given by WeyFs asymptotic law [20]:

MM) ~ Const. ( ĵ̂ ", ^».
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The bound will be obtained as a simple application of a result of C. Croke. In [II],
proposition 14, Croke proves the inequality:

n ( 2 V12

volume.,., c^(^) .„..

(b^ = volume of the unit ball in R") for a distance ball U^ in M" of radius r less or equal half the
injectivity radius p^ of M. The result holds in fact without any assumption on the
curvature of M and generalizes (up to a constant) Berger's inequality [3]:

/ D - . V
vo\M^n.b,.( rm) .

\ n )

6.2 THEOREM. — Let M" be a compact unbordered Riemannian manifold with vol M = V,
injectivity radius p^ = p and Ricci curvature bounded below by - (n -1) 82, 8 ̂  0. Then:

( K (^n-l \2 jv

(«) x..^)^- ,y ̂ .̂,

(^ \2/n 4v(») ..a ^ .«—— y ̂ ^,
x.̂ )2'-.,."-?2,

where c-j < 1 ^^^ Cg > 1 ^r^ dimension constants.

Proof. - Scale again 5=1. The upper bound (c) is from [7] for the sake of completeness
(see also [15] for particularly sharp bounds).

Let for the moment s>0 be given and consider a complete s-package p ^ , ' - • , Pm (see

above 4.4) with minimal cardinality m=m(s). If e^p/2 then volU(/^., e^c^e" by
Crokes inequality and m(c) has the upper bound Ve""^1 . I fs^p/2 then each U(^, s)
contains at least int( l /2+8/p) disjoint balls of radius p/2 (as long as s does not exceed
max dist (p,, q}, qeM, which is satisfied ifm(s)>l). Hence vol U {p^ e^c^p^)"^?
andy^e^^Ve"1?1""^1.

Now let ke ^ be given and define 8=8(A:)=(4V/C6^) l / n if ^^4Vc6 1 (p /2 )~" resp.
e^^Vc^-^p^^if^Vc^p^)-". Clearly k^m (c (/:)), ̂ ^ and (^),
(&) follow from 6.1.

Remarks. — (a) The growth rate of the lower bound has a sudden change from order k2 to
order k2^ if 8=0. Such a behaviour can indeed be observed for ?^, e. g. on the product
S{ x S^~1 of the unit circle with a very small r-sphere. (b) Gromov's bound in [16] (based
on 4.3) is in terms of the diameter d of M":

^—k^c^^.

For the first n" eigenvalues or so, this bound is better than the one given by 6.2 since
-V/p"~1 ̂  Const. (n).d as follows from Croke's inequality.
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7. Non compact manifolds

We now assume M is a complete non compact Riemannian manifold of
dimension n. Here one defines:

llgrad/II^M
^(N^inf^

f^dM
JM

where / runs over all sufficiently smooth functions; if M has finite volume, we require the
r

mean value /^M==0; we require / to have compact support if the volume of M is
JM

infinite. ^ (M) is the greatest lower bound for the spectrum of the Laplacian, except that on
manifolds with finite volume, one also has zero as a trivial eigenvalue corresponding to the
constant functions.

Cheeger's inequality is still true forX,(M)if /z(M) is defined as in paragraph 1 but with the
additional condition that A u 5A be compact. Upper bounds for X(M) in terms of h(M}
have recently become of interest on foliations and on universal coverings of compact
manifolds [5]. We are now going to check that in fact Theorem 1.2 holds without
restriction in the non compact case as well. Since foliations are often assumed of
differentiability class C1 only, we give the theorem a curvature free formulation introducing
the condition 8 [which is for example satisfied if M has Ricci curvature bounded below by
— 52 (n — 1), c.f. 4.2]. To emphasize our point of view in this paragraph, we assume that M
is of differentiability class piecewise C1, though this is not the weakest possible assumption to
make 7.1 and 7.2 true.*

CONDITION 5 (§>0). — In polar coordinates—up to the cut locus of the coordinate
center— the volume element dM=g(p, ^ d p d S " ' 1 always satisfies:

g(p,,(p) sinh^Spi f o < o < o ^
^(p^^sinh--^9 (°<Pi<P2)-

7.1 THEOREM. — If M is complete, non compact and satisfies condition 8, then:

?i(M)^c.5.7z(M),

where c is a constant depending only on the dimension.

Proof. — The term h2 (M) of 1.2 can be suppressed here by choosing c properly, for in the
non compact case we cannot have large h(M) [take two arbitrarily large disjoint distance
balls to prove h(M)^b(n-l)].

The method of paragraph 3 cannot be applied here, since minimizing currents need not
exist, even if M is C°°. However the procedure of paragraph 4 carries over. Assume
5=1. Take A relatively compact with vol^_i M/vol^A close to h(M) and restrict
consideration to a sufficiently large distance ball U which contains A. Now observe that
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paragraphs 4 and 5 use the curvature assumption only via 4•t.2, 4.3, and carry out the
remainder of paragraph 4 on U.

The main point is of course that a "hairy" <9A can be replaced by a hypersurface which
allows us to estimate the volume of its tubular neighbourhoods. Since we consider this an
appropriate substitute for the non-existence of minimizing currents, we formulate it here as a
lemma, omitting the proof which follows from 4.8 and 4.9 by handling constants.

7.2 LEMMA (Cutting off hairs). — Assume M satisfies condition 5. Consider an arbitrary
relatively compact domain AcM with vol^_i ^A/vol^A :==J^^/z(M), and let
0 < r ̂  1 /2 c min { 1 , 1 1 ̂  }. Then there exists a domain A = A (r) with boundary X = oA with
the following properties:

1. A is contained in Ar and vol A ̂  (1 — r J^/c) vol A.
n

2. vol^XVvol.A^c'Vr".^. {cosh^Y-1^ for all t^r.
J o

A'' is the tubular neighbourhood of radius r, the constants c'', c" depend only on the dimension.
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