ANNALES SCIENTIFIQUES DE L'É.N.S.

NORIHITO KOISO Hypersurfaces of Einstein manifolds

Annales scientifiques de l'É.N.S. 4^e série, tome 14, nº 4 (1981), p. 433-443 http://www.numdam.org/item?id=ASENS_1981_4_14_433_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1981, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scient. Éc. Norm. Sup., 4° série, t. 14, 1981, p. 433 à 443.

HYPERSURFACES OF EINSTEIN MANIFOLDS

By Norihito KOISO (¹)

0. Introduction and results

Let $(\overline{M}, \overline{g})$ be an Einstein manifold of dimension n + 1 ($n \ge 2$). We consider certain classes of hypersurfaces in $(\overline{M}, \overline{g})$. First, let (M, g) be a totally umbilical hypersurface in $(\overline{M}, \overline{g})$, i.e., we assume that the second fundamental form α satisfies $\alpha = fg$ for some function f on M. If we know completely the curvature tensor of $(\overline{M}, \overline{g})$, we can get much information on (M, g). For example, if $(\overline{M}, \overline{g})$ is a symmetric space, then (M, g) is also a locally symmetric space, and so the classification of such pairs $[(\overline{M}, \overline{g}), (M, g)]$ reduces to Lie group theory (see Chen [4] (²), Chen and Nagano [5], Naitoh [10]). But if we know nothing about $(\overline{M}, \overline{g})$, we can *only* say that (M, g) has constant scalar curvature. In fact, we will prove the following.

THEOREM A. – Let (M, g) be a real analytic riemannian manifold with constant scalar curvature. Then, there exists an Einstein manifold $(\overline{M}, \overline{g})$ (which may be non-complete) such that (M, g) is isometrically imbedded into $(\overline{M}, \overline{g})$ as a totally geodesic hypersurface.

This Theorem means also that there exist many examples of totally geodesic Einstein hypersurfaces in Einstein manifolds. But, if we assume that $(\overline{M}, \overline{g})$ is complete (or compact), the situation changes drastically. In fact, we will show the following.

THEOREM B. – Let (\mathbf{M}, g) be a totally umbilical Einstein hypersurface in a complete Einstein manifold $(\mathbf{M}, \overline{g})$. Then the only possible cases are:

(a) g has positive Ricci curvature. Then g and \overline{g} have constant sectional curvature;

(b) \overline{g} has negative Ricci curvature. If M is compact or (M, \overline{g}) is homogeneous, then g and \overline{g} have constant sectional curvature;

(c) g and \overline{g} have zero Ricci curvature. If $(\overline{\mathbf{M}}, \overline{g})$ is simply connected, then $(\overline{\mathbf{M}}, \overline{g})$ decomposes as $(\widetilde{\mathbf{M}}, \widetilde{g}) \times \mathbf{R}$, where $(\widetilde{\mathbf{M}}, \widetilde{g})$ is a totally geodesic hypersurface in $(\overline{\mathbf{M}}, \overline{g})$ which contains (\mathbf{M}, g) .

^{(&}lt;sup>1</sup>) Supported by Sakkokai Foundation and C.I.E.S. (France).

^{(&}lt;sup>2</sup>) Theorem 1 is not true as stated, but Theorem 2 is true. See Proof of Proposition 15 in Naitoh [10].

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE. -0012-9593/1981/433/\$ 5.00 © Gauthier-Villars

To prove this Theorem, we need essentially a result of D. M. DeTurck and J. L. Kazdan according to which all Einstein metrics are real analytic. In other words, the manifold $(\overline{M}, \overline{g})$ in Theorem A is uniquely defined by (M, g) (Prop. 4). If we apply Proposition 4 to a Kähler-Einstein manifold $(\overline{M}, \overline{g})$, we can get much information on (M, g) and $(\overline{M}, \overline{g})$, even without assuming anything on (M, g), since in this situation, the Gauss-Codazzi equations imply many properties of (M, g).

THEOREM C. – Let $(\overline{\mathbf{M}}, \overline{g})$ be a simply connected complete Kähler-Einstein manifold with Ricci curvature \overline{e} . If there exists a totally geodesic real hypersurface (\mathbf{M}, g) in $(\overline{\mathbf{M}}, \overline{g})$, then there exists a totally geodesic complex hypersurface $(\mathbf{\tilde{M}}, \overline{g})$ in $(\overline{\mathbf{M}}, \overline{g})$, and $(\overline{\mathbf{M}}, \overline{g})$ decomposes as $(\overline{\mathbf{M}}, \overline{g}) = (\mathbf{\tilde{M}}, \overline{g}) \times (\mathbf{S}, \overline{e})$, where $(\mathbf{S}, \overline{e})$ means the simply connected and complete Riemann surface of constant Ricci curvature \overline{e} . In this decomposition, \mathbf{M} is contained in $\mathbf{\tilde{M}} \times \mathrm{Im}\gamma$, where γ is a geodesic in \mathbf{S} .

Remark that Theorem C holds locally even if $(\overline{M}, \overline{g})$ is not complete. Next, let (M, g) be an orientable minimal hypersurface in an orientable manifold $(\overline{M}, \overline{g})$. By Corollary 3.6.1 in Simons [11], if \overline{g} has positive Ricci curvature, then there is no orientable compact stable minimal hypersurface in $(\overline{M}, \overline{g})$. By a similar method, we will show.

THEOREM D. – Let $(\overline{M}, \overline{g})$ be an orientable Einstein manifold with zero Ricci curvature. Then all orientable compact stable minimal hypersurfaces without singularity are totally geodesic.

Combining with Theorem C, we will get.

COROLLARY E. – Let (M, \overline{g}) be a Kähler-Einstein manifold with zero Ricci curvature and without local factor \mathbb{C} . Then there is no orientable compact stable minimal real hypersurface without singularity.

Remark that we do not assume in Theorem A, B, C that (M, g) is complete. The paper is organized as follows: In 1, we derive some fundamental formulae and prove Theorem D. In 2, we consider the real case and prove Theorem A and Theorem B. In 3, we consider the Kähler case and prove Theorem C and Corollary E. The author would like to express his sincere gratitude to Professors J.-P. Bourguignon and R. Michel. Theorem A is an answer to a question of R. Michel and Corollary E is a generalization of a remark of J.-P. Bourguignon.

1. Preliminary and propositions

Let (M, \overline{g}) be an Einstein manifold of dimension $n+1 \ge 3$ and M a hypersurface in (M, \overline{g}) with induced metric g. In this paper, riemannian manifolds are not assumed to be complete, unless otherwise stated. The second fundamental form α is given by:

$$\alpha(\mathbf{X}, \mathbf{Y}) \mathbf{N} = \overline{\mathbf{D}}_{\mathbf{X}} \mathbf{Y} - \mathbf{D}_{\mathbf{X}} \mathbf{Y},$$

where N is the unit normal vector field, X and Y are vector fields on M, and D (resp. \overline{D}) is the

4° série – tome 14 – 1981 – N° 4

covariant derivative of (M, g) [resp. (M, \overline{g})]. The following formulae are known as the Gauss-Godazzi equations:

$$R(X, Y; Z, U) = R(X, Y; Z, U) + \alpha(X, U)\alpha(Y, Z) - \alpha(X, Z)\alpha(Y, U),$$
$$\overline{R}(X, Y; Z, N) = (D_{Y}\alpha)(X, Z) - (D_{X}\alpha)(Y, Z),$$

where R (resp. \overline{R}) is the curvature tensor of (M, g) [resp. $(\overline{M}, \overline{g})$] and the sign convention is taken in such a way that $R(X, Y; X, Y) \ge 0$ for the standard sphere. Set:

$$R(X, N; Y, N) = \beta(X, Y).$$

Then, the Ricci tensor \overline{r} of $(\overline{M}, \overline{g})$ is given by:

$$\overline{r}(X, Y) = r(X, Y) + \alpha^{2}(X, Y) - \mu\alpha(X, Y) + \beta(X, Y),$$

$$\overline{r}(X, N) = (d\mu)(X) + (\delta\alpha)(X),$$

$$\overline{r}(N, N) = \text{tr } \beta,$$

where r is the Ricci tensor of (M, g), μ is the mean curvature defined by $\mu = \text{tr } \alpha$, and α^2 and $\delta \alpha$ are defined by:

$$(\alpha^2)_{ij} = \alpha_i^k \alpha_{kj},$$

$$(\delta \alpha)_i = -\mathbf{D}^k \alpha_{ki}.$$

Since \overline{g} is an Einstein metric, i.e., $\overline{r} = \overline{eg}$ for some real number \overline{e} , we see that:

(1.1.a) $\overline{eg} = r + \alpha^2 - \mu\alpha + \beta,$

- $(1.1.b) \qquad \qquad 0 = d\mu + \delta\alpha,$
- $(1.1.c) \qquad \qquad \overline{e} = \operatorname{tr} \beta,$

and so:

(1.2)
$$(n-1)\bar{e} = u + \operatorname{tr} \alpha^2 - \mu^2,$$

where u is the scalar curvature of (M, g). Thus it is easy to check the following.

PROPOSITION 1. – If (\mathbf{M}, g) is a minimal hypersurface (i. e., $\mu = 0$) of an Einstein manifold $(\overline{\mathbf{M}}, \overline{g})$, then $u \leq (n-1)\overline{e}$. Equality holds if and only if (\mathbf{M}, g) is a totally geodesic hypersurface in $(\overline{\mathbf{M}}, \overline{g})$.

PROPOSITION 2. – If (\mathbf{M}, g) is a totally umbilical hypersurface of an Einstein manifold $(\overline{\mathbf{M}}, \overline{g})$, i. e., $\alpha = fg$ for some $f \in C^{\infty}(\mathbf{M})$, then f is constant and $u \ge (n-1) e$. Equality holds if and only if (\mathbf{M}, g) is a totally geodesic hypersurface in $(\overline{\mathbf{M}}, \overline{g})$.

Proof. – By (1.1.b), $0 = d \operatorname{tr}(fg) + \delta(fg) = (n-1) df$, so f is constant. Since $\mu = nf$ and tr $\alpha^2 = nf^2$, the latter half is obvious by (1.2).

Q.E.D.

Without any further property of β , we cannot proceed any more. To answer the question "What is the meaning of β ?" we consider a one-parameter family of hypersurfaces in $(\overline{M}, \overline{g})$. Denote by *i* and *i*, the mappings: $M \times \mathbb{R} \to \overline{M}$ and $M \to \overline{M}$, defined by:

$$i(x, t) = \exp_x t \mathbf{N}, \qquad i_t(x) = i(x, t).$$

Then there is an open set R of $\mathbf{M} \times \mathbf{R}$ containing $\mathbf{M} \times \{0\}$ such that $g_t = i_t^* \overline{g}$ is a riemannian metric on $\{x \in \mathbf{M}; (x, t) \in \mathbf{R}\}$. We identify $\overline{\mathbf{M}}$ with its image R (locally) and we see that $g_t + dt^2$ coincides with \overline{g} . In fact, N extends as the vector field d/dt, whose integral curves are geodesics in $(\overline{\mathbf{M}}, \overline{g})$, and:

$$\frac{d}{dt}\overline{g}(\mathbf{X},\,\mathbf{N}) = \overline{g}(\overline{\mathbf{D}}_{\mathbf{N}}\mathbf{X},\,\mathbf{N}) + \overline{g}(\mathbf{X},\,\overline{\mathbf{D}}_{\mathbf{N}}\mathbf{N}) = \overline{g}(\overline{\mathbf{D}}_{\mathbf{X}}\mathbf{N},\,\mathbf{N}) = \frac{1}{2}\mathbf{X}(\overline{g}(\mathbf{N},\,\mathbf{N})) = 0,$$

where we identify $X \in T_x M$ with the vector field along the geodesic $i_t(x)$ defined by $X(i_t(x)) = i_{t^*} X$. We derive the relation between g', g'' and α, β , where ' means the derivative with respect to t:

$$\begin{split} g'(\mathbf{X}, \mathbf{Y}) &= (\bar{g}(\mathbf{X}, \mathbf{Y}))' = \bar{g}(\mathbf{D}_{\mathbf{N}}\mathbf{X}, \mathbf{Y}) + \bar{g}(\mathbf{X}, \mathbf{D}_{\mathbf{N}}\mathbf{Y}) \\ &= \mathbf{X}(\bar{g}(\mathbf{N}, \mathbf{Y})) - \bar{g}(\mathbf{N}, \overline{\mathbf{D}}_{\mathbf{X}}\mathbf{Y}) + \mathbf{Y}(\bar{g}(\mathbf{X}, \mathbf{N})) - g(\overline{\mathbf{D}}_{\mathbf{Y}}\mathbf{X}, \mathbf{N}) = -2\alpha(\mathbf{X}, \mathbf{Y}), \\ \beta(\mathbf{X}, \mathbf{Y}) &= \bar{g}(\overline{\mathbf{R}}(\mathbf{X}, \mathbf{N})\mathbf{Y}, \mathbf{N}) = \bar{g}(\overline{\mathbf{D}}_{[\mathbf{X}, \mathbf{N}]}\mathbf{Y} - \overline{\mathbf{D}}_{\mathbf{X}}\overline{\mathbf{D}}_{\mathbf{N}}\mathbf{Y} + \overline{\mathbf{D}}_{\mathbf{N}}\overline{\mathbf{D}}_{\mathbf{X}}\mathbf{Y}, \mathbf{N}) \\ &= -\bar{g}(\overline{\mathbf{D}}_{\mathbf{X}}\overline{\mathbf{D}}_{\mathbf{Y}}\mathbf{N}, \mathbf{N}) + (\bar{g}(\overline{\mathbf{D}}_{\mathbf{X}}\mathbf{Y}, \mathbf{N}))' - \bar{g}(\overline{\mathbf{D}}_{\mathbf{X}}\mathbf{Y}, \overline{\mathbf{D}}_{\mathbf{N}}\mathbf{N}) \\ &= -\mathbf{X}(\bar{g}(\overline{\mathbf{D}}_{\mathbf{Y}}\mathbf{N}, \mathbf{N})) + \bar{g}(\overline{\mathbf{D}}_{\mathbf{Y}}\mathbf{N}, \overline{\mathbf{D}}_{\mathbf{X}}\mathbf{N}) + (\alpha(\mathbf{X}, \mathbf{Y}))'. \end{split}$$

Here, $\overline{g}(\overline{D}_{Y}N, N) = 0$ and $\overline{g}(\overline{D}_{Y}N, X) = -\alpha(X, Y)$. Thus we get:

$$(1.3) g'=-2\alpha,$$

(1.4)
$$\beta = \alpha^2 - (1/2)g''.$$

The Einstein equation becomes:

$$\bar{eg} = r + (1/2)(g')^2 - (1/4)(\operatorname{tr} g')g' - (1/2)g'',$$

$$0 = -(1/2)d\operatorname{tr} g' - (1/2)\delta g',$$

$$\bar{e} = -(1/2)\operatorname{tr} g'' + (1/4)\operatorname{tr} (g')^2.$$

We conclude that:

(1.5.*a*)
$$g'' = -2 \,\overline{e}g + 2r - (1/2)(\operatorname{tr} g')g' + (g')^2,$$

(1.5.*b*) $d\operatorname{tr} g' + \delta g' = 0,$

(1.5.c) $\operatorname{tr}(g')^2 - (\operatorname{tr} g')^2 = 4(n-1)\overline{e} - 4u.$

Remark that these equations hold on R, where r, tr, $(-)^2$, δ and u are defined by g_t . We shall solve this equation in 2.

Before developing this equation, we point out some facts related to Proposition 1. Assume that M is compact without boundary and that i_0 is a *stable* minimal immersion. (Here, stable means: the second derivative of volume is non-negative for any variation.) Then, if the unit normal vector field N is globally defined on M:

$$0 \leq \left(\int_{\mathbf{M}} v_g \right)_{t=0}^{\prime \prime} = -\frac{1}{2} \int_{\mathbf{M}} \operatorname{tr} (g')^2 v_g + \frac{1}{2} \int_{\mathbf{M}} \operatorname{tr} g'' v_g + \frac{1}{4} \int_{\mathbf{M}} (\operatorname{tr} g')^2 v_g,$$

where v_g denotes the volume element of g. By (1.3) and (1.4), we see that:

$$0 \leq \int_{\mathbf{M}} (-2(\alpha, \alpha) - (\operatorname{tr} \beta - \operatorname{tr} \alpha^{2})) v_{g} = -\int_{\mathbf{M}} (\operatorname{tr} \alpha^{2} + \overline{e}) v_{g}.$$

Here, $\operatorname{tr} \alpha^2 + \overline{e} = n\overline{e} - u$ by (1.2), and we get:

PROPOSITION 3. – If (\mathbf{M}, g) is compact without boundary and immersed in an Einstein manifold $(\overline{\mathbf{M}}, \overline{g})$ as a stable minimal hypersurface with trivial normal bundle then:

$$\int_{\mathbf{M}} uv_g \ge n\overline{e} \operatorname{Vol}(\mathbf{M}, g).$$

Moreover, if $\overline{e}=0$, then u=0 and (M, g) is totally geodesic.

Proof. – The integral inequality is obvious. If $\overline{e} = 0$, then $\int_{M} uv_g \ge 0$. But Proposition 1 implies $u \le 0$, so u = 0. Then the equality in Proposition 1 holds, so (M, g) is totally geodesic.

Q.E.D.

Proof of Theorem D. - It is obtained as a corollary of Proposition 3.

Q.E.D.

Remark 4. – In Theorem D, if M is simply connected, then the assumption that M is orientable is not necessary. In fact, Lemma 4.5 and Theorem 4.6 in Hirsch [8] says that all compact hypersurfaces in a simply connected manifold are orientable.

2. Solution of (1.5) – real case

Consider equation (1.5). Theorem 5.2 in DeTurck and Kazdan [6] says that all Einstein metrics are real analytic with respect to harmonic coordinates. This implies that the solution of (1.5) is unique for given initial data $g=g_0$ and g'=h, as long as g_t is positive definite. Moreover, we get the following global uniquess property.

PROPOSITION 5. – Let (\mathbf{M}, g) be a real analytic hypersurface of a simply connected and complete Einstein manifold $(\overline{\mathbf{M}}, \overline{g})$ with second fundamental form α . Assume that there is another simply connected and complete Einstein manifold $(\overline{\mathbf{M}}_1, \overline{g}_1)$ such that (\mathbf{M}, g) is imbedded

into $(\overline{\mathbf{M}}_1, \overline{g}_1)$ as a real analytic hypersurface with the same second fundamental form α . Then $(\overline{\mathbf{M}}, \overline{g})$ and $(\overline{\mathbf{M}}_1, \overline{g}_1)$ are isometric with one another.

Proof. – By the uniqueness Theorem 5.4 in DeTurck and Kazdan [6].

Q.E.D.

Conversely, by Cauchy-Kovalevski's existence Theorem, we can solve (1.5.a) locally for any real analytic initial data, since the Rjcci tensor r is expressed in terms of the derivatives up to the second order of the metric tensor g.

PROPOSITION 6. – Let (\mathbf{M}, g) be a real analytic riemannian manifold and α a real analytic symmetric bilinear form on \mathbf{M} which satisfies $d \operatorname{tr} \alpha + \delta \alpha = 0$ and $\operatorname{tr} \alpha^2 - (\operatorname{tr} \alpha)^2 = (n-1)\overline{e} - u$. Then, there exists an Einstein manifold $(\overline{\mathbf{M}}, \overline{g})$ with $\overline{r} = \overline{eg}$ in which (\mathbf{M}, g) is imbedded as a hypersurface with second fundamental form α .

Proof. – There exists a unique real analytic solution g_t of (1.5.a) with initial data $g_0 = g$ and $g'_0 = -2\alpha$. We must check that this solution satisfies (1.5.b) and (1.5.c). By standard tensor calculus, we see using (1.5.a) that:

$$(\operatorname{tr} g')' = -2 \operatorname{ne} + 2 u - (1/2) (\operatorname{tr} g')^{2},$$

$$(\delta g')' = (1/4) d \operatorname{tr} (g')^{2} - (1/2) (\operatorname{tr} g') \delta g' - du,$$

$$(\operatorname{tr} (g')^{2})' = -4 \overline{e} \operatorname{tr} g' - (\operatorname{tr} g') \operatorname{tr} (g')^{2} + 4(r, g'),$$

$$u' = \Delta \operatorname{tr} g' + \delta \delta g' - (r, g') \quad (see \text{ Berger [1] } (2.11)).$$

Therefore:

$$(d \operatorname{tr} g' + \delta g')' = -(1/2)(\operatorname{tr} g')(d \operatorname{tr} g' + \delta g') + (1/4) d (\operatorname{tr} (g')^2 - (\operatorname{tr} g')^2 + 4u),$$

$$(\operatorname{tr} (g')^2 - (\operatorname{tr} g')^2 + 4u)' = 4 \delta (d \operatorname{tr} g' + \delta g') - (\operatorname{tr} g')(\operatorname{tr} (g')^2 - (\operatorname{tr} g')^2 + 4u - 4(n-1)\overline{e}).$$

Thus analyticity implies that (1.5.b) and (1.5.c) hold for all t.

Q.E.D.

Proof of Theorem A. – In the above Proposition, set $\alpha = 0$ and $\overline{e} = u/(n-1)$.

Q.E.D.

Remark 7. – In the situation of Theorem A, the change $t \to -t$ of the parameter t preserves the solution. Therefore there is an isometry of $(\overline{M}, \overline{g})$ of order 2 such that all points of M are fixed.

Let g_t be an analytic solution of (1.5) with initial data $g_0 = g$ and $g'_0 = h$. If the metric $g_t + dt^2$ on R does not extend to a complete metric, for example, if the sectional curvature of $g_t + dt^2$ diverges for $t \to t_0$, then we see that (M, g) cannot be immersed in any complete Einstein manifold as a hypersurface with second fundamental form $\alpha = -(1/2)h$. We apply this method to a family $g_t = f(t)^2 g_0$ where g_0 is an Einstein metric and f(t) is a positive function of t such that f(0)=1. Let this family g_t be a solution of (1.5). Then:

$$g'_{t} = 2(f'(t)/f(t))g_{t},$$

$$g''_{t} = 2((f'(t)/f(t))^{2} + f''(t)/f(t))g_{t}.$$

 4^{e} série – tome 14 – 1981 – n° 4

438

From now on, we will omit t for simplicity. Since the Ricci tensor is invariant under multiplication by a scalar factor:

$$r = r_0 = e_0 g_0 = e_0 f^{-2} g,$$

where e_0 is the Ricci curvature of g_0 . As a result, (1.5.c) becomes:

(2.1)
$$4n(f'/f)^{2} - 4n^{2}(f'/f)^{2} = 4(n-1)\overline{e} - 4ne_{0}f^{-2},$$
$$(f')^{2} = e_{0}/(n-1) - (\overline{e}/n)f^{2}.$$

Further (1.5.*a*) becomes:

(2.2)
$$\begin{aligned} ff'' &= -\bar{e}f^2 + e_0 - (n-1)(f')^2 = -(\bar{e}/n) f^2 \quad [\text{using } (2.1)], \\ f'' &= -(\bar{e}/n) f. \end{aligned}$$

Equation (2.2) reduces to (2.1), except in the case where f is constant. We get the following solutions.

(2.3.a) If $\overline{e} > 0$, then $e_0 > 0$ and:

$$f(t) = (\sqrt{e_0/(n-1)}/2\sqrt{\overline{e}/n}) \sin\left(\pm\sqrt{\overline{e}/n}(t+C)\right).$$

(2.3.b) If $\overline{e}=0$, then $e_0 \ge 0$ and:

$$f(t) = \pm \sqrt{e_0/(n-1)} t + C.$$

(2.3.c) If $\overline{e} < 0$, then:

$$f(t) = |(n/4\overline{e}) \exp(\pm\sqrt{-\overline{e}/n}(t+C)) + (e_0/(n-1)) \exp(\mp\sqrt{-\overline{e}/n}(t+C))|.$$

Therefore, if $(\mathbf{M}, \overline{g})$ is an Einstein manifold and if (\mathbf{M}, g_0) is an Einstein manifold which is isometrically immersed into $(\overline{\mathbf{M}}, \overline{g})$ as a totally umbilical hypersurface, then \overline{g} is locally isometric with $f(t)^2 g_0 + dt^2$, where f(t) is one of the solutions (2.3). In fact, since the equation expressing that a hypersurface is totally umbilical is elliptic, (\mathbf{M}, g_0) is analytically immersed into $(\overline{\mathbf{M}}, \overline{g})$. Now, we check completeness of the metric $\overline{g} = f(t)^2 g_0 + dt^2$.

Remark 8. – If (M, g_0) is a complete Einstein manifold with negative Ricci curvature, then (2.3c) gives a complete Einstein metric. This metric is not homogeneous by Theorem B, if (M, g_0) does not have constant sectional curvature.

Let f(t) be one of the solutions (2.3) and set $g_t = f(t)^2 g_0$ and $\overline{g} = g_t + dt^2$ on $\overline{M} = M \times I$. Denote by $\overline{K}(V, W)$ [resp. $K_0(X, Y)$] the sectional curvature of $(\overline{M}, \overline{g})$ [resp. (M, g_0)] of the plane spanned by V and W [resp. X and Y. Suppose that X and Y are unit orthogonal vectors on (M, g_0). Then, by the identification $\overline{M} = M \times I$ and the formulae in 1, we see that:

$$(2.4) \quad \overline{\mathbf{K}}_{t}(\mathbf{X},\mathbf{Y}) = \overline{\mathbf{R}}(\mathbf{X},\mathbf{Y};\mathbf{X},\mathbf{Y})/(g(\mathbf{X},\mathbf{X})g(\mathbf{Y},\mathbf{Y})) = f^{-4}(\mathbf{R}(\mathbf{X},\mathbf{Y};\mathbf{X},\mathbf{Y}) + \alpha(\mathbf{X},\mathbf{Y})^{2} - \alpha(\mathbf{X},\mathbf{X})\alpha(\mathbf{Y},\mathbf{Y})) = f^{-4}(g(\mathbf{R}(\mathbf{X},\mathbf{Y})\mathbf{X},\mathbf{Y}) - (1/4)g'(\mathbf{X},\mathbf{X})g'(\mathbf{Y},\mathbf{Y})) = f^{-4}(f^{2}\mathbf{K}_{0}(\mathbf{X},\mathbf{Y}) - f^{2}(f')^{2}) = f^{-2}(\mathbf{K}_{0}(\mathbf{X},\mathbf{Y}) + (\overline{e}/n)f^{2} - e_{0}/(n-1)) = \overline{e}/n + f^{-2}(\mathbf{K}_{0}(\mathbf{X},\mathbf{Y}) - e_{0}/(n-1)),$$

$$\begin{array}{ll} (2.5) \quad \mathrm{K}_{t}(\mathrm{X},\,\mathrm{N}) = \mathrm{R}\,(\mathrm{X},\,\mathrm{N};\,\mathrm{X},\,\mathrm{N})/g\,(\mathrm{X},\,\mathrm{X}) \\ &= f^{-2}\,((1/4)\,(g'(\mathrm{X},\,\mathrm{X}))^{2} - (1/2)\,g''(\mathrm{X},\,\mathrm{X})) \\ &= f^{-2}\,((f'/f)^{2}\,g\,(\mathrm{X},\,\mathrm{X}) - ((f'/f)^{2} + f''/f)\,g\,(\mathrm{X},\,\mathrm{X})) = -f''/f = \overline{e}/n, \\ (2.6) \quad \overline{\mathrm{K}}_{t}(\mathrm{X},\,\mathrm{N} + a\,\mathrm{Y}) = \overline{\mathrm{R}}\,(\mathrm{X},\,\mathrm{N} + a\,\mathrm{Y};\,\mathrm{X},\,\mathrm{N} + a\,\mathrm{Y})/(g\,(\mathrm{X},\,\mathrm{X})\,\overline{g}\,(\mathrm{N} + a\,\mathrm{Y},\,\mathrm{N} + a\,\mathrm{Y})) \\ &= f^{-2}\,(1 + a^{2}\,f^{2})^{-1}\,(\overline{\mathrm{R}}\,(\mathrm{X},\,\mathrm{N};\,\mathrm{X},\,\mathrm{N}) + 2\,a\,\overline{\mathrm{R}}\,(\mathrm{X},\,\mathrm{N};\,\mathrm{X},\,\mathrm{Y}) + a^{2}\,\overline{\mathrm{R}}\,(\mathrm{X},\,\mathrm{Y};\,\mathrm{X},\,\mathrm{Y})) \\ &= f^{-2}\,(1 + a^{2}\,f^{2})^{-1}\,(f^{2}\,\overline{\mathrm{K}}\,(\mathrm{X},\,\mathrm{N}) + a^{2}\,f^{4}\,\overline{\mathrm{K}}\,(\mathrm{X},\,\mathrm{Y})) \\ &= (1 + a^{2}\,f^{2})^{-1}\,(\overline{\mathrm{K}}\,(\mathrm{X},\,\mathrm{N}) + a^{2}\,f^{2}\,\overline{\mathrm{K}}\,(\mathrm{X},\,\mathrm{Y})). \end{array}$$

By these formulae, we see that \overline{g} has constant sectional curvature if and only if g_0 has constant sectional curvature. From now on, we assume that $(\overline{M}, \overline{g})$ extends to a complete Einstein manifold, which we denote by the same symbol $(\overline{M}, \overline{g})$.

LEMMA 9. – Assume that g_0 does not have constant sectional curvature. Then, $(a)f(t) \neq 0$ for all real number t. (b) If f(t) converges to 0 for $t \to \infty$ or $-\infty$, then the sectional curvature of $(\overline{\mathbf{M}}, g)$ is not bounded.

Proof. - Easy, by (2.4).

Q.E.D.

Denote by G the isometry group of $(\overline{M}, \overline{q})$ and by d the metric on \overline{M} induced by \overline{q} .

LEMMA 10. – Assume that there is a positive number D such that d(p, G(q)) < D for all $p, q \in \overline{M}$. If f(t) converges to ∞ for $t \to \infty$ or $-\infty$, then g_0 has constant sectional curvature.

Proof. — Without loss of generality, we may assume that f(t) converges to ∞ for $t \to \infty$. Let B be the closed ball with center $x \in M$ and radius r in (M, g_0) , where r is sufficiently small so that B is compact. By assumption, there exists t_0 such that f(t)r > D for all $t \ge t_0$. Then for all $t > t_0 + D$, $B \times (t_0, \infty) (\subset \overline{M})$ contains the closed ball \overline{B}_t with the center $(x, t) \in \overline{M}$ and the radius D in $(\overline{M}, \overline{g})$. By (2.4), (2.5) and (2.6), the sectional curvature of $(\overline{M}, \overline{g})$ at the point (y, t) converges uniformally in B to \overline{e}/n for $t \to \infty$. Thus the sectional curvature of $(\overline{M}, \overline{g})$ is constant, since:

$$\bigcap_{>t_0+\mathsf{D}} \mathbf{G}(\overline{\mathbf{B}}_t) = \overline{\mathbf{M}}.$$

Q.E.D.

Proof of Theorem B. – Remark that f'(a) = 0 if and only if i_a ; $(M, g_a) \rightarrow (M, \overline{g})$ is totally geodesic.

(a) $e_0 > 0$. There is a real number a such that f(a) = 0. By Lemma 8 (a), g_0 and \overline{g} have constant sectional curvature.

(b) $e_0 = \overline{e} = 0$. $f' \equiv 0$. Then $(\overline{M}, \overline{g})$ is the riemannian product $(M, g_0) \times \mathbb{R}$ locally. If $(\overline{M}, \overline{g})$ is simply connected, then $(\overline{M}, \overline{g})$ decomposes globally as $(\widetilde{M}, \widetilde{g}) \times \mathbb{R}$, since \overline{g} is real analytic. Here $(\widetilde{M}, \widetilde{g})$ is a complete totally geodesic hypersurface of $(\overline{M}, \overline{g})$ which contains M.

4° série – tome 14 – 1981 – n° 4

440

(c) $e_0 = 0, \overline{e} < 0$. $f(t) \to 0$ for $t \to \infty$ or $-\infty$. By Lemma 8 (b), if the sectional curvature of $(\overline{M}, \overline{g})$ is bounded, then g_0 and \overline{g} have constant sectional curvature.

(d) $e_0, \overline{e} < 0$. There is a real number a such that f(a) > 0 and f'(a) = 0. So i_a is totally geodesic. Moreover, f(t) converges to ∞ for $t \to \infty$. If $(\overline{M}, \overline{g})$ satisfies the condition in Lemma 9, then g_0 and \overline{g} have constant sectional curvature.

By Proposition 2, these are the only possible cases.

Q.E.D.

3. Real hypersurfaces of a Kähler-Einstein manifold

In the general situation, we saw in Theorem A that we cannot get much information on (M, g), even if (M, g) is a totally geodesic hypersurface in an Einstein manifold $(\overline{M}, \overline{g})$. But if $(\overline{M}, \overline{g})$ is a Kähler-Einstein manifold, the Gauss-Codazzi equations give more information on (M, g). Let (M, g) be a totally umbilical real hypersurface in a Kähler-Einstein manifold $(\overline{M}, \overline{g})$. By Proposition 2, the second fundamental form α is expressed as $\alpha = ag$ for some real number a. Then, the Codazzi equation and formula (1.1.a) become:

(3.1)
$$R(X, Y; Z, N) = 0$$

(3.2)
$$r = (\overline{e} + (n-1)a^2)g - \beta.$$

Denote by J the almost complex structure of (M, \overline{g}) and set H = JN. In equation (3.1), if X is orthogonal to H, then JX is tangent to M, and we see that:

(3.3)
$$\beta(X, Y) = R(X, N; Y, N) = -R(JX, H; Y, N) = 0.$$

Then equation (1.1.c) implies:

$$\beta(\mathbf{H},\mathbf{H}) = \overline{e}.$$

PROPOSITION 11. – Let $(\overline{\mathbf{M}}, \overline{g})$ be a complete Kähler-Einstein manifold with zero Ricci curvature. Assume that there exists a totally umbilical but not totally geodesic real hypersurface (\mathbf{M}, g) in $(\overline{\mathbf{M}}, \overline{g})$ (i.e., $a \neq 0$). Then both $(\overline{\mathbf{M}}, \overline{g})$ and (\mathbf{M}, g) have constant sectional curvature.

Proof. – By equations (3.2), (3.3) and (3.4), g is an Einstein metric with positive Ricci curvature. Thus the proof reduces to Theorem B(a).

Q.E.D.

LEMMA 12. – Let $(\overline{\mathbf{M}}, \overline{g})$ be a Kähler-Einstein manifold. Assume that there exists a totally geodesic real hypersurface (\mathbf{M}, g) in $(\overline{\mathbf{M}}, \overline{g})$. Then there exists a totally geodesic complex hypersurface $(\mathbf{\tilde{M}}, \overline{g})$ in $(\overline{\mathbf{M}}, \overline{g})$ which is contained in (\mathbf{M}, g) . Moreover, $(\mathbf{\tilde{M}}, \overline{g})$ is a Kähler-Einstein manifold and (\mathbf{M}, g) decomposes locally as $(\mathbf{M}, g) = (\mathbf{\tilde{M}}, \overline{g}) \times \mathbb{R}$.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Proof. - Since (M, g) is totally geodesic, $\overline{D}_X N = 0$ holds for any tangent vector X of M. Then we see that:

(3.5)
$$D_{X}H = \overline{D}_{X}H = \overline{D}_{X}(JN) = J(\overline{D}_{X}N) = 0,$$

which implies that there is a hypersurface $(\tilde{\mathbf{M}}, \tilde{g})$ in (\mathbf{M}, g) and (\mathbf{M}, g) decomposes locally as $(\mathbf{M}, g) = (\tilde{\mathbf{M}}, \tilde{g}) \times \mathbf{R}$. Here J preserves the tangent space of $\tilde{\mathbf{M}}$. This implies that $\tilde{\mathbf{M}}$ is a complex submanifold of $\overline{\mathbf{M}}$. Moreover, equations (3.2) and (3.3) imply that \tilde{g} is an Einstein metric.

Q.E.D.

Proof of Theorem C. – Let γ be a geodesic in (S, \overline{e}) . By Lemma 12, (M, g) may be immersed into $(\tilde{M}, \tilde{g}) \times \text{Im } \gamma$. On the other hand, since \tilde{g} is an Einstein metric with Ricci curvature \overline{e} , $(\tilde{M}, \tilde{g}) \times (S, \overline{e})$ becomes an Einstein manifold and $(\tilde{M}, \tilde{g}) \times \text{Im } \gamma$ is totally geodesic in $(\overline{M}, \overline{g})$. Then Proposition 4 implies that $(\tilde{M}, \tilde{g}) \times (S, \overline{e})$ is an open set of $(\overline{M}, \overline{g})$. Remark that this identification preserves the complex structure. Since $(\overline{M}, \overline{g})$ is real analytic, this decomposition extends globally. That is, (\tilde{M}, \tilde{g}) extends to a complete complex hypersurface of $(\overline{M}, \overline{g})$ and we get a global decomposition.

Q.E.D.

Remark 13. – Even if (M, \overline{q}) is not complete, the above decomposition holds locally.

Proof of Corollary E. – Assume that there is a compact stable minimal real hypersurface (M, g) in $(\overline{M}, \overline{g})$. Then by Theorem D, (M, g) is totally geodesic. Therefore we can apply Theorem C to the universal riemannian covering of $(\overline{M}, \overline{g})$ and get a global decomposition. This contradicts the assumption.

Q.E.D.

Remark 14. – In Corollary E, if \overline{M} is simply connected, the assumption that M is orientable is not necessary. See Remark 4.

Remark 15. – In particular, there is no compact stable minimal hypersurface in the K3surfaces \overline{M} with zero Ricci curvature. By Theorem 2.9 in Bourguignon [2], there is no stable closed geodesic in \overline{M} . We may say that these results are dual with one another.

COROLLARY 16. – Let $(\overline{M}, \overline{g})$ be a compact Kähler-Einstein manifold with zero Ricci curvature of complex dimension ≤ 3 . If $\pi_1(\overline{M})$ is not finite, then (M, g) has a local factor **C**.

Proof. – Since $\pi_1(M)$ is not finite, $H_n(M, Z)$ is not trivial by Poincaré duality. For $\dim_{\mathbb{R}} \overline{M} \leq 6$, a non-trivial homology class in $H_n(\overline{M}, Z)$ can be represented by stable minimal real hypersurfaces M without singularity (Federer [7], Thm. 5.4.15, Lawson Jr. [9], Remark 3.4). Then by Corollary E, $(\overline{M}, \overline{q})$ decomposes locally with a factor C.

Q.E.D.

Remark 17. — We can get Corollary 16 in more general situation by Theorem 3 in Cheeger and Gromoll [3]. But the proof is different.

4^e série – tome 14 – 1981 – n° 4

442

REFERENCES

- M. BERGER, Quelques formules de variation pour une structure riemannienne (Ann. scient. Éc. Norm. Sup., Vol. 3, 1970, pp. 285-294).
- [2] J. P. BOURGUIGNON, Sur les géodésiques fermées des variétés quaternionniennes de dimension 4 (Math. Ann., Vol. 221, 1976, pp. 153-165).
- [3] J. CHEEGER and D. GROMOLL, The Splitting Theorem for Manifolds of Non-Negative Ricci Curvature (J. Diff. Geom., Vol. 6, 1971, pp. 119-128).
- [4] B.-Y. CHEN, Extrinsic Spheres in Riemannian Manifolds (Houston J. of Math., Vol. 5, 1979, pp. 319-324).
- [5] B.-Y. CHEN and T. NAGANO, Totally Geodesic Submanifolds of Symmetric spaces II (Duke Math. J., Vol. 45, 1978, pp. 405-425).
- [6] D. M. DETURCK and J. L. KAZDAN, Some Regularity Theorems in Riemannian Geometry (Ann. scient. Éc. Norm. Sup., Vol. 14, 1981, pp. 249-260).
- [7] H. FEDERER, Geometric Measure Theory, Springer-Verlag, 1969, Berlin.
- [8] M. W. HIRSCH, Differential Topology, Springer-Verlag, New York, 1976.
- [9] H. B. LAWSON, Jr., Minimal Varieties in Real and Complex Geometry, Les Presses de l'Université de Montréal, 1974, Montréal, Canada.
- [10] H. NAITOH, Isotropic Submanifolds with Parallel Second Fundamental forms in Symmetric Spaces (Osaka J. Math., Vol. 17, 1980, pp. 95-110).
- [11] J. SIMONS, Minimal Varieties in Riemannian Manifolds (Ann. of Math., Vol. 88, 1968, pp. 62-105).

(Manuscrit reçu le 27 février 1981, accepté le 11 mai 1981.)

N. Koiso Laboratoire associé au C.N.R.S., nº 212, U.E.R. de Mathématiques, Université Paris-VII, 2, place Jussieu, 75221 Paris; Dept. of Math., Osaka University, Toyonaka, Osaka, 560 Japan.