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INFINITESIMAL BLASCHKE CONJECTURES
ON PROJECTIVE SPACES

BY CHIAKI TSUKAMOTO

1. Let M be a closed smooth manifold. A Riemannian metric g on M is called a C^-metric
if all the geodesies on M are closed and have a common length (. Compact rank one
symmetric spaces are the examples of manifolds ofCj-metrics. The standard C^-metric on
the sphere S" is non-trivially deformable (Zoll [II], Guillemin [6]). On the other hand, M.
Berger proved that there exists no C ̂ -metric on the real projective space P" (R) (n ̂  2) other
than the standard one (Besse [3], Appendix D). The purpose of this paper is to study a
deformation of the standard C ̂ -metric on other projective spaces.

Let ^(^e(-£, c), go=g) be a smooth one-parameter family ofC^-metrics on M. We set
h=8g^/8t | (=Q. Then for any closed geodesic y with respect to the metric g , we have:

(1.1) r/z(y(5),y(5))rfs=0,
J o

where we parametrized y by its arc-length 5 and denoted by y(s) its tangent vector at y(s)
(Michel [9], Besse [3], 5.86). If the family g^ is trivial, i.e., there exists a smooth one-
parameter family (p^ of diffeomorphisms satisfying g^ = (p* g , then h is a Lie derivative of the
metric g by some vector field X(h=L^g).

We give the following definition according to Besse [3].

DEFINITION 1.1. — A symmetric covariant 2-tensor h on a manifold M with a C ̂ -metric g is
called an infinitesimal C^-deformation if the condition (1.1) holds for any geodesic y. We
say the infinitesimal Blaschke conjecture (I.B.C.) holds for (M, g) when every infinitesimal C^-
deformation h is trivial, i.e., there exists some vector field X satisfying h=L^g.

Let (P",^o)(^2) be one of the projective spaces P"(R), P"(C), P"(H) and P 2 (Ca)(^2=2)
with the standard C^-metric. We denote by P1 the projective line over the same field of P"
[for P^Ca), P1 =S8]. R. Michel gave in [9] a sufficient condition for an infinitesimal C^-
deformation of (P", g^} to be trivial.

THEOREM 1.2.- Let h be an infinitesimal C^-deformation o/(P", go)' Suppose that for any
totally geodesic imbedding i ; P1 -> P" there exists a vector field X on P1 satisfying:

(1.2) i*/i=Lxl*^o.

Then there exists a vector field X on P" satisfying h=L^gQ.
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340 C. TSLJKAMOTO

Especially, in case of P" (R) (n ̂  2), the condition (1.1) implys the existence of a vector field
X satisfying (1.2). Thus Michel proved:

THEOREM 1.3. - The I.B.C. holds for (P"(R), go) (n^2).
See Besse [3] for another proof of Theorem 1.3. We notice that K. Kiyohara gave in the

recent work [8] another sufficient condition. He replaced (1.2) by a conformality condition.
Now we state our main Theorem.

THEOREM 1.4. - The I.B.C. holds for any (P", go) (n^2).
N. Tanaka comments in [8] that the I.B.C. for (P", go) implys the analytic non-

deformability of the C^-metric go. See also Michel [9]. Therefore we have:

THEOREM 1.5. — Let ^ [?e(—£, e)] be a one-parameter family ofC^-metric on P"(n^2)
around the standard C^-metric which is analytic with respect to t. Then there exists a one-
parameter family (P( of diffeomorphisms of?" satisfying ^=(p*^o-

It seems that P" (C), P" (H) {n ̂  2) and P2 (Ca) admit few C.-metrics. But the rigidity or
the smooth non-deformability of the standard C^-metric is still in question.

We can reduce Theorem 1.4 to the case P" = P2 (C), using Theorem 1.2. Our program
is as follows: section 2 is devoted to the general theory on compact rank one symmetric
spaces. In section 3, we prove that the I.B.C. holds for (P2 (C), go) and we give the proof of
Theorem 1 . 4 m the last section.

The auther would like to express his sincere thanks to Dr. K. Sugahara on his indication of
Calabi's work and also to Mr. K. Kiyohara whose work stimulated his interest and was of
great help to this paper.

2. We always assume the smoothness of class C°°. The spaces of functions, vector fields
and symmetric covariant 2-tensors on a manifold M are denoted by F (M), X (M) and S2 (M),
respectively.

Let a Riemannian manifold (M, g) be a C,-manifold. Then the geodesic flow on the unit
tangent bundle UM is a free S^action. Therefore Geod M, the set of oriented closed
geodesies on M, naturally has a manifold structure.

For a C ̂ -manifold (M, g ) we define linear mappings:

L : X (M) -. S2 (M) and A : S2 (M) -. F (Geod M)
by:

L(X)=L^ [XeX(M)],

A(^)(Y)=(l/7i) h(y(s\y(s))ds [/zeS^M), yeGeodM].
J o

In general ImL is included in Ker A, and the I.B.C. holds for (M, g ) if Im L=Ker A.
Further we define linear mappings:

i : S2 (M) ̂  F (UM) and P : F (UM) -. F (Geod M)
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I N F I N I T E S I M A L BLASCHKE CONJECTURES ON PROJECT1VE SPACES 341

by:
i(h)(x)=h(x, x) [heS^M), xeUM],

P(/)(Y)=(l/7i) [ n f(y(s))ds [/eF(UM), yeGeodM].
J o

Then the mapping i is injective and we have A = P o i. The I.B.C. for (M, g) holds if and only
if Im (i o L) = Im i n Ker P. Notice that this relation is unchanged as we complexity all the
spaces and mappings. In the following we always assume that linear spaces and modules
are over the complex number field C and that mappings are C-linear. For example X(M)
denotes the space of complex valued vector fields. Ker L is the complexification of the space
of Killing, vector fields with respect to the metric g .

Let (M, g) be a compact rank one symetric space. We can choose a compact connected
Lie group G acting transitively on M as isometries and also transitively on UM. We denote
the isotropy group at a point oeM by K and the isotropy group at a point i;o^UM<, by
H. The group G also acts transitively on GeodM. We denote the isotropy group at a
geodesic yoe GeodM that is tangent to VQ by L. We get M^G/K, UM^G/H,
GeodM^G/L, L n K = H and L/H^yo=S1 .

LEMMA 2.1. — Let l(t) be a one-parameter subgroup ofL such that the curve l(t). ohas a
tangent vector VQ at t=Q. Then we have jQ(t)=l(t).o, where t is the arc-length.

Proof. - As a curve, I (t). o coincides with jo, and its tangent vector I (t)^ VQ is a unit vector.
Q.E.D.

The spaces X (M), S2 (M), F (UM) and F (Geod M) are G-modules in the usual way, and it
is easy to verify that the mappings L, A, i and P are G-homomorphisms. The G-modules
X(M) and S2(M) have natural G-invariant inner products induced by the Riemannian
metric g . We regard F(UM) and F (GeodM) as G-submodules of F(G) as follows:

F(UM)={/eF(G);/(^)=/te),^eG,/ieH},
¥(GeodM)={fe¥(G)-J(gl)=f(g\geG,leL}.

We define an inner product on F(G), using a normalized Haar measure dg on G, by:

</i,/2>= \ fi(g)f2(g)dg [/i,/2^F(G)],Jo
which induces G-invariant inner products on F(UM) and F (GeodM). The following
Lemma is easy to verify in view of Lemma 2.1.

LEMMA 2.2. - Using a normalized Haar measure dl on L, the G-homomorphism P is
expressed as follows:

P(/)to)= f fWdl [/eF(UM), geG].

PROPOSITION 2.3. — The G-homomorphism P is an orthogonal projection of¥(VM) onto
F(GeodM). '

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



342 C. TSUKAMOTO

Proof. - It is easy to see that P2 = P and Im P = F (Geod M). And P* = P is easily verified
from Lemma 2.2.

Q.E.D.

We denote the pre-Hilbert spaces X(M), S2 (M) and F(UM) by H^, H^ and H3. We will
consider an irreducible decomposition of H, as a G-module (for i= 1, 2, 3).

For an irreducible G-module (p, Vp) we define a G-homomorphism

ip . , :Vp(g )Hon iG(Vp ,H. . )^H, ( f = l , 2 , 3 )
by:

i^.(i;(x)0)=0(i;) [reVp.cDeHom^Vp.H,)].

Then ip ; is injective and Im ip „ denoted by Fp „ depends only on the equivalence class of
(P,Vp).

We denote by V^ the complexification ofTM^, the tangent space at o, considered as a K-
module, and also by V^ the K-module S2 Vf

For a K-module (p^, VJ we denote by C°°(G, K; V^) the G-module of V^-valued
functions / on G satisfying:

fW=p^(k-l)f(g) [keK^geG],

Then the G-module H^ is isomorphic to C00 (G, K; V^.) ( f= l , 2). By Frobenius5 reciprocity
law HomoCVp, C°°(G, K; V,)) is canonically isomorphic to Hom^Vp, V,). In the same
way the G-module H3 is isomorphic to C00 (G, H; C), where C is considered as a trivial H-
module, and Hom^Vp, C°°(G, H; C)) is canonically isomorphic to HoniH(Vp, C). We
notice that Hom^ (Vp, V,) ( f=l ,2)and Hon^ (Vp, C) are finite dimensional. Thus we get:

PROPOSITION 2.4.- The G-module Fp ^ is finite dimensional (i = 1, 2, 3), and Fp i is a direct
sum of dim HoniiJVp, V ̂ -copies o/Vp.

If two irreducible G-modules (p, Vp) and (p\ Vp') are not isomorphic, Fp , and Fp^ are
orthogonal. We denote by 1̂  the set of equivalence classes of irreducible G-modules.

PROPOSITION 2.5. - ^Fp^ ,([p]elo) is dense in H,( f=l , 2, 3).

Proof. — Take a G-invariant elliptic differential operator D^ : H^ -> H^. We denote by
E^ i the eigenspace of D^ with an eigenvalue .̂ Then ̂  E^ , i^ dense in H^. Since E^ ^ is
finite dimensional and G-invariant, E^ ^ is a direct sum of irreducible G-
submodules. Therefore ̂  E), , c ̂  Fp ,..

Q.E.D.

We remark that we can take L* L as D^. For the detail and the proof of the following
Proposition we refer to Berger-Ebin [1].

PROPOSITION 2.6. — Im L is closed in H^.

PROPOSITION 2.7. - ^L(Fp i) ([p]e Io) 15 dense in Im L.

Proof. - We set S=^rp^([p]elG) and K=ImL. We denote by H, and £ the
completions of (Hi ,< , » and (K, < , ». We define an inner product <•< , » on K by
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INFINITESIMAL BLASCHKE CONJECTURES ON PROJECTIVE SPACES 343

«x, y »=<x, ^ > + < L * x , L*y> and denote by K'the completion of (K, « , »). £'
is included in K and L* can be extended to a mapping from K' to Hi.

It suffices to prove that L(S) is dense in (K ' ,« ,») . Let L(S)1 be the orthogonal
complement of L(S) in (K\ « , »). Let xeL(S)1. We have for V yeS:

0 = « x , L y » = < x , L y > + < L * x , L * L y > = < L * x , y + L * L y > .

Since S is the direct sum of eigenspaces of L* L, the set { y + L* L y ; y e S ] is also dense in
Hi. Therefore L*x=0 and for V zeHi ,wehave:

«Lz ,x » = < L z , x > + < L * L z , L * x > = < z , L * x > = 0 .

It means x -LK, i.e., x=0. Q.E.D.

The next Lemma and Proposition are easily seen.

LEMMA 2.8. — The mapping i is a homeomorphism (into).

PROPOSITION 2.9. — (a) Im ( f o L ) is closed in Imf;
(fo) ^ (i o L) (Fp, i) ([p] e Io) is dense in Im (i o L);
(c) ^ i (T^ 2) ([p] e Ic)is dense in Im L

We notice that L(rp^)crp^,^°L)(rp, 1)0=1^2)^^ 3 and f ( rp^ )= Imfn rp , 3.

PROPOSITION 2.10. - ^i(r^ 2) n Ker P([p]elo) is dense in Im i n Ker P.

proo/. - f (F 2) ls f111116 dimensional and hence we can define an orthogonal projection Pp
oflm i onto i(F 2)- Since fe Im i is approximated by a sum ofPp/, it suffices to show that
i f / e I m f n K e r P , then Pp/eKer P. But since P is continuous and P(Fp 3)c=rp 3 for

V [p]elo, PPp/and P(/-Pp/) are orthogonal. . ̂ ^

PROPOSITION 2.11. — The I.B.C. holds for a compact rank one symmetric space (M, g), if and
only if for every [p]elo we have 0 'oL)(rp^)=f(rp^)nKer P(c:Tp 3).

Proof. - Both Im (i o L) and Im i n Ker P are closed in Im L If the above condition
holds, then they include a dense subspace in common and hence they coincide.

A G-submodule W of Fp 3 can be written as a direct sum of
Im <D(<DeHomG(Vp, H3)). When m independent elements of HomofVp, H 3) are needed to
express W, we say the G-module W has a multiplicity m. Thus we can verify the I.B.C. by
computing the multiplicities of (f o L)(Fp i) and i(rp 2) n Ker P. Since Ker L is a finite
dimensional G-submodule of H^ we have Ker L=^ Ker Ln Fp^ ([pjelo), and we can
compute the multiplicity of(f o L) (Fp^ i) from Proposition 2.4. To compute the multiplicity
of ((Fp 2 ) ^ K e r P we will characterize the elements (DeHomoCVp^) for which
I m O c f ( r p 2 ) ^ K e r P .

We fix a G-invariant inner product on Vp. Then Homn (Vp, C) is isomorphic to V^, the
space of H-invariant vectors in Vp, by:

V^^^.eHom^Vp.C); x¥^v)=(v,wy [veV,].

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



344 C. TSUKAMOTO

As we have mentioned, Hom^Vp, 113) is canonically isomorphic to HoniH(Vp, C), so is to
V^. We have explicitly:

V^9w^<D,eHomG(Vp,H3);

^.^)^)=^u,(P^ - l)^=<P^~ l)^^>=<^pto)w> [reVp.^eG].

First we seek the condition for Im <I>.<,ci(Fp^)(w(=V^).

DEFINITION 2.12. - A function on a standard sphere S" = { x e R"+1; | x | = 1} is called of
degree 2 if and only if it is expressed as the restriction of a homogeneous polynomial of degree
2. A function / on UM is called of degree 2 at x e M if and only if /1 UM is of degree 2.

Obviously fe F (UM) is contained in Im i if and only if / is of degree 2 at V x e M.
The "of degree 2" property has an intrinsic meaning. Let A be the Laplacian on a

standard sphere. Then / e F (S") is of degree 2 if and only if / is contained in the sum of
eigenspaces of A with the eigenvalues 0 and 2n+2.

For the standard sphere UM(), we have a group theoretical characterization, too. Since
UMo is a homogeneous Riemannian manifold K/H, eigenspaces of A are K-modules and so
is the space of functions of degree 2. As we have done for F(UM)=F(G/H), a finite
dimensional K-submodule of F (K/H) can be written as a direct sum oflm (p ((p e Hom^ (U^,
F (K/H)), [(o, UJ] e 1^). Thus there exist irreducible K-modules (a,, U,) (1 ̂  i ̂  u) and H-
invariant vectors w^ j (+ 0) in U^ (1 ̂  j ̂  v,) by which the space of functions of degree 2 can be
written as ^(p^ (U,), where (?„ is an element ofHom^^,, F(K/H)) determined by w^.
and some fixed invariant inner product on U^:

(p,jM)(k)=<u,a,(fe)w,,,> [ue\3^keK].

PROPOSITION 2.13. — Assume that an irreducible G-module Vp has a K-irreducible
t

orthogonal decomposition Vp== ^ U^ where U^ is a K-module isomorphic to some Vifor
a = i

l^a^s and not isomorphic to any U^/or 5+l^a^t . When U^ is isomorphic to U,, we
denote by w^ ^.(1 ̂  j^v,) the H-invariant vector in 0^ identified with w, ^ in U,. Then Im ^)^,
(weV^) is included in Im f, if and only ifw is a linear combination ofw^ ..

Proof. - If Im 0^ c: Im f, then 0^ (v) is of degree 2 at o = [K] for V v e Vp. On the other
hand, sincere G induces an isometry between UM^ and UM^ .„, «X>^ (i;) is of degree 2 at^. o if
and only if ̂ .(^(^(D.^p^-1) i;) is of degree 2 at o. Thus Im 0 „ c Im; if and only if
^>w(v) is of degree 2 at o for V r e V .

Let w^ be the orthogonal projection of w on U^. For ueU^ and keK we have:

0,(M)(/c)=<p(k- l)M,w>=<p(k- l)M,w,>=(p^(M)(/c).

Therefore the restriction ofO^(M) on UM<, is equal to (p^ (i^). When w^ and u do not vanish,
cp^ <M) is of degree 2 if and only ifU^is isomorphic to some U, and w^ is a linear combination
Of ^a. r"a,j-

Q.E.D.

46 SERIE - TOME 14 - 1981 - N° -3



INFINITESIMAL BLASCHKE CONJECTURES ON PROJECTIVE SPACES 345

We denote by V^ the subspace of V^ spanned by u^j.
Next we compute how P acts to <I>^(u) (weV^ , f eVp) :

PO)Ji^)= [ <S>^(v)(gl)dl= f (v, p(gl)w)dl= < r, p(^). f p (Qw^> .

We set pw = p (J) w dl. Let V^ be the space ofL-invariant vectors in Vp. The next Lemma

is easily verified.

LEMMA 2.14. — The mapping p is an orthogonal projection of\^ onto V^(c:V^).
Since p ( g ~ l ) v ( g e G ) span Vp for u^O, PO^(u) vanishes if and only i fweKer p . Thus

Im Oy, is included in Ker P if and only if w is contained in Ker p .

PROPOSITION 2.15. - The multiplicity ofi(V^ 2) n Ker p is eclual to dim (VI?n Ker P ) '

3. In this section we prove that the I.B.C. holds for (P^C), g ^ ) by means given in
section 2. Let G=U(y i+ l ) be the group o f ( / ? + l ) x ( / ? + l ) unitary matrices, which acts
on C"^1 as linear mappings and on (P"(C), go) transitively as isometries. The isotropy
group K at o=[l : 0 : . . . : 0] is U( l )xU(n) . We set H - A ( U ( l ) x U ( l ) ) x U ( n - l ) and
L=TxU(n- l ) , where A(U( l )xU( l ) ) is the diagonal subgroup of U ( l ) x U ( l ) and
TcU(2) is a total group given by:

(Tscost s sin t ~| ^/^ ^ 1s cos t s sin t \ ^/^ ^
T = ^ . - ; s e U ( l ) , ^ R ^ .s sin t s cos t
-=\\ . . ; s e U ( l ) , ^ e R y .

[|_s sin t s cos t J J

Then we have U(P"(C))^G/H and Geod(P"(C))^G/L. We take a maximal abelian
subalgebra A of u (n +1), the Lie algebra of U (n +1), as follows:

A={diag(^o, Hi, . • • , Hn); ^V^TR}.

We define ^eA*(i=0, 1, . . . , n) by ^(diag(^o,Hi, • • • , H n ) ) = = P i and take ^o-^i,
^i-X-2, . . . , ^n-i-^n as the simple roots of U(n+l ) (1). The highest weight of an

n

irreducible U(n+l)-module is written as ^ /,^, where /, are integers satisfying

/o^/i^ . . . ̂ . Thus we can identify I^^with [{f^V^-J^f^. . . ̂ }. The
Lie algebra of U(l) x U(n) also includes A as its maximal abelian subalgebra. We take
?4-^ • . • . ^n- i -^n as the simple roots of U( l )xU(n) . The highest weight of an

n . . , , . " , . ' . • •

irreducible U(l)xU(n)-module is written as ^ g^ where g, are integers satisfying
1=0

9^... ̂ 9n' We can identify Iu(i).u(n) with {(^^eZ^1; g^... ̂ g,}. We cite the
following branching law from Boerner [4].

(1) We do not include the center part in simple roots.
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346 C. TSUKAMOTO

PROPOSITION 3.1. — An irreducible \J(n-\-l)-module with the highest weight ^ /^
1 = 0

n
includes an irreducible U (1) x U (n)-submodule with the highest weight ^ g , ̂  if and only if

1=0
n n

S fi= S ^i andfi_^ ̂ g^fi(l ̂ i^n). The irreducible U(l) x \J (n)-submodule with the
1=0 i=o

i
highest weight ^ ^ ̂  is unique, if it exists.

1=0
Using this Proposition, we can compute dim Hom^(Vp, V\) in case of P"(C). The K-

module V^ is a sum of two irreducible U(l) x U(n)-module with the highest weight ^o~~^n
and — X-o -h ^-1. By Schur's Lemma dim Hom^ (Vp, V\) is equal to how many times either of
these irreducible K-module appears in the K-irreducible decomposition of a G-module
Vp. We denote the highest weight of an irreducible G-module Vp by H. W. (Vp).

PROPOSITION 3.2. — Hom^(Vp, Vi) has the following dimension.

H.W.(Vp) dimHomK(Vp,Vi)

h^o-h^, h^l 2
/ i^o+^i-(^+l)^n, h^l 1

(/i+l)?io-^.-i-^, h^l 1
Otherwise 0

The space of Killing vectors on (P" (C), go) is isomorphic to su (n +1), the semisimple part
of u(n-{-l), and Ker L is isomorphic to its complexification s / (n+ l ,C) , which is an
irreducible U(n+ l)-module with the highest weight ^o -^n-

PROPOSITION 3.3. - (ioL)(r^ i) has the following multiplicity.

H.W.(Vp) Multiplicity

h\ ^ h^2 2

^o~ / I^/z=l i
^o+^i-(^+l)^p h^l 1

(h+l)A,o-^_i-h^, h^l 1
Otherwise 0

Next we investigate the subspace V^ and the operator p . We identify the hermitian
vector space TM, with C"= {z=(z i , . . . , zj; z,eC}, where we assume that the

hermitian inner product on C" is given by < a, b > = ^ a, ~b, (a, fceC"). Then
1=1

UM,^K/L=U( l )xU(n) /A(U( l )xU( l ) )xU(n- l ) is identified with S^-^zeC";

E I Zi |2 = 1} . We notice that K acts unitarily on C" and therefore isometically on S2""1

by: _ _
(^-le, ^.z^-^UoZ [(^-le, Uo)eU( l )xU(n) , zeC"].
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INFINITESIMAL BLASCHKE CONJECTURES ON PROJECTIVE SPACES 347

The space of homogeneous polynomials of degree 2 on C" is a K-module, which consists of
four irreducible K-modules U^ (f= 1, 2, 3, 4):

U^Li izJ^aed ,
I i = l )

U2={ Z a^z,;^eC, i ^=0^
U,j=i i=i J

f n 1^^ S ^^^^•ec,fl^=^.^,i ^ j - i -)

f n - - 1
^^ S a i j z i z p a i j E c ^ a i ^ a } i \ '

U,J=1 -)< i , J = l

Their highest weights are 0, ̂  - ̂ , 2 ̂  - 2 ?i, and - 2 ̂ o + 2 ̂ i, respectively. We notice
that Uo^Ug, Ui^Uf , U3^U; and \J^^ as K-modules.

Since each U, has a unique A(U(1) x U(l)) x U(n-1 ̂ invariant vector up to a constant
factor (, which can be verified using Proposition 3.1 again), the submodule of C°° (S2" 1)
isomorphic to some U, consists only of functions of degree 2. Using Proposition 3.1, we
can determine the irreducible U (n +1 )-module Vp for which V^ { 0 }.

PROPOSITION 3.4. - An irreducible \J{n+l)-module Vp(n^2) which includes a
U(l) x U (n)-submodule isomorphic to some U, has the following highest weight.

H.W. (Vp) U, included dim V\

h=0 Ui 1
h'ko-h^ h=l U i , U 2 2

h^2 U i , U ^ U 3 , U 4 4

(h+l)^o-^-i-^. ^ ^3 \

h^o+^i-^+1)^ ^ ^,^4 2 '

(h+2)?io-2^-i-/i^, ^^2 U3 • 1
h^o+2?ii-(h+2)^, h^2 U4 1

y4n^ ifn^3, we have further the following.

^o+?4-^n-l-^ /1^1 ^ 1

The I.B.C. holds for (P"(C), go) if and only if dim (V^nKerp) is equal to
mul t . ( ( foL)( rp^) ) , the multiplicity of ( f o L ) ( r p / i ) , for every [p]el^, ,+i , . But,
since dim (V^ n Ker p) ̂  mult. ((io L) (Fp, i)), it is enough to show that
dim(p (V^^dim V^-mult.fti o L) (Fp, J). We will check this for n=2. We will freely
use the representation theory, especially, the theorems on the structure of irreducible
modules. Consult, for example, Humphreys [7].

The linear mapping p is an orthogonal projection of V^ onto V^. We first study the T-
invariant vectors in an irreducible U (2)-module (V, p). We choose the following elements
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in gl(2, C), the complexification of u(2):
ro 1-1 ro 01 n 01

x-Lo 0} ^LI oj- ^LO -1}
Then we have [X,Y]=H, [diag(^i), X]=(^-^)X and
[diag(Xo, ^,1), Y]=-(Xo-^i)Y. We denote the action of the Lie algebras u(2) and
< 7 / ( 2 , C ) o n V b y p , t o o .

A maximal vector VQ in (V, p) is a non-zero vector satisfying p(X)i;o=0. When the
- highest weight of V is ho 'ko + ̂  ̂ , the vectors v, = p (Y)1 Vo(0^i^ho-h^) form a basis of V

and ptYy'""^^1^ vanishes. Each y, is a vector of weight (^o-0^o+(^ i + Q ^ i . Since
p(diag(?i, ^))u,==(/io+^i)^ tor each f, we have p(diag(?i, ?i))u=(/?o+^i)^ for V yeV.

PROPOSITION 3.5. - An irreducible \J(2)-module (V, p) contains a non-zero ^-invariant
vector if and only if the highest weight of\ is of the form h (Xo - ̂ ) (h ̂  0). The ̂ -invariant
vector is unique up to a constant factor and is a linear combination of vectors of weight
(7 i—2fe)(Xo—^) (k=0, 1, . . . , h) with non-zero coefficients.

Proof. - A vector ve\ is T-invariant if and only if p(diag(?i, 'k))v and p(X-Y)y
vanish. For a non-zero vector v,p (diag (X, X)) v vanishes if and only if the highest weight of
V is of the form M^o-^iK^O). Now assume that V has the highest weight

2h - ,

h (X-o - ̂ i). We set v = ̂  a, v,, where {v>\\ 0 ̂  i ̂  2 h} is a basis of V given ahead. From
1=0

the formula:

p(X)i;,=p(X)p(Y)^_i=p(Y)pfX)r, ,+p( fX,Y])r , ,

= p ( Y ) p ( X ) ^ _ i + 2 ( ^ - f + l ) ^ _ i ,
one can easily deduce:

p(X)v,=i(2h-i+l)v,_, :

p(X-Y)r=^ a,{i(2h-i^l)v,.,-v^,}

2h-l

=2ha,v^ ^ {O'+lK^-O^+i-^-i}^-^,-!^.
1=1

vanishesThus p(X-Y)r ^1=^-1=0if and only if
^•-i^+lK^-O^+^l^f^/!-!), where the coefficients o fa ,+ i do not vanish.

Q.E.D.

and

We shall describe the structure of an irreducible U(3)-module (V , p). We choose in
gl(3, C) elements X,, Y, and H,(f= 1, 2, 3), as follows:

0 1 0" 0 0 0 0 0 1

X3== 0 0 0

0 0 0

Xi= |0 0 0 ] , X^= [0 0 1

0 0 OJ [o 0 0

Y.^X, (i=l;2, 3) (the transpose),

H-[X,YJ ( f = l , 2 , 3 ) .
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We denote the action of the Lie algebra gl(3, C) and the universal enveloping algebra
^(^J(3,C)) on Vp by p, too. We conventionally set U°=l and U^O (r<0) for
Ue^(3,C).

We denote the highest weight ofVp by A and fix a maximal vector i^, which is a non-zero
vector satisfying p(X,)i^=0 ( f= l , 2, 3). When A(Hi)=r and A(H2)=s, p(Yrl+l)^^ and
p(Y^+l)l^ vanish. We set i^ , j ,k=p(YiY^Y^) i^ , which is a vector of wieght
A—i('ko—'k^)—j('k^—'k^)—k(kQ—^)ifit does not vanish. The module Vpis spanned by
the vectors ^ ^ ^ for non-negative integers i, 7 and k.

LEMMA 3.6. - [Y^, YJ=Y3, [Yi, Y3]=[Y^, Y^O.

LEMMA 3.7. - Y^Y^^C.m^m-n+OIY'r-^Y^Yr1, u^r^ ̂  summation is
taken over the integers i for which Y^'^'Y^Y^"1 does not vanish.

Proof. - We first prove [Y^, Y^mY^-^ by induction:

[Y2,YW+l ]=[Y2,Ym ]Yl+Ym [Y2,YJ=mYW- lY3Yl+YWY3=(m+l)Y?Y3.

Therefore we have Y^ Y^ = m Y^ ~1 Y3 + Y^ Y^. We prove the Lemma by induction on n:
w »

V'"+lV"i V V f^ '___vm—n+iyi yn—iY, Yi=Y,.^,,C,^_^,Yi Y^Y,

^

V r^ ' f /^. M-i-l^vm-n+l-lv i.Y'"""'^^ ly^Y"1 '"1
=Ln (-f.^_^^^,t(^-^+ l)Y l ^ 3 + 1 1 1 2 ^ 2 ^ 3

m'_ V r^ ____________^/m-n+i-l-vi ^n-i+l

~.i" ••(m-n+f- l ) !1 1 Y2Y3

m!
,,"-••• (m-n+i)\11 t2 l3

_i V r^ _____*___^\/m— n+ i vi+ 1 vn— i+ 2."^-^_^+^t ^i ^ 1 3

m!
o^r

_ v r^ ___fft'___vm-("+l)+ivl v(n+l)-i

- 2."^'^-^-Li^j-n» A l Y 2 1 3
^" -(m-^+^+O! 1

m!, v /-^ vw-(n+l)+iv1 V(n+ l)- l

+ L^-r^-^^l^nt'1 I 2 Y 3
' l'(m-(n+l)+0! 1

1^1

m'
_ _ V r^ ____________Y^"^"1"1)'1"1^' v<n+ l)- l

-2.^1L.•^_(„+1)+;),Y1 ^^3

LEMMA 3.8. — We have the following identities:

[X,,Y'n={wH,+n(n-l)}Y';-1,
[Xi,Y^]=0,

[Xi,Y"3]=-nY2Yr1.

[X2,Y';]=0,

[X2,Yy={nH2+n(n-l)}YF1,

[X2,YS]=nYiYr1.
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Proof. — Use the induction on n.

LEMMA 3.9. — We have the following identities:

P(Xi)^^. , fc=i(A(Hi)+7-fe-^+l)^i - i , , ,k-^ , ,+i , fc- i ,
p (X2)u^ , fe=7 ' (A(H2)-7+l )^ , - i , fe+feu ,+ i , , , fc - i .

Proof. — Using Lemma 3.8 and the fact p(Xi)i^=0, we get:

P(XlK^=p(X,)p(YiYiYk3)^

=p([Xi, Yl]Yro^+p(Y; [X,, Yi]Y^)^

+p(YiYi[X„YS])^+p(YiYiY fc3)p(XJ^ .

=fp(Hi)^-i,,,fe+^0'-l)yf-i,,,fe-^,,+i,fe-r

Since i^_i ^ is a vector of weight A—(i—l)(ko—^^)—j(k^—^)—k(^Q—^) (if U i - i ^ f c
does not vanish), we have p ( H i ) i ^ _ i ^ f c = { A ( H i ) — 2 ( f — l ) + . 7 — k } ^ _ i ^ f c . Thus
follows the first identity; the second one can be shown similarly.

A maximal vector of an irreducible U(2)xU(l)-submodule [resp. U(l)xU(2)-
submodule] o fVp is a non-zero vector v which satisfies p (Xi )u=0 [resp. p(X^)v=0].

When the highest weight of the submodule is ^, p (Y\) v [resp. p (Y^) v] is a vector of weight
?i-f(^o-^i)[resp.?i-f(?4-X2)](f=0, 1, . . . , X (H i) [resp. ?i(H 2)]) and they form a basis of
the irreducible U(2) x U(l)-module [resp. U(l) x U(2)-module].

We now study V1? and p when the highest weight of Vp is h ̂ o — h \^ (h +1) ̂ o — ̂ i — h ̂
and (h + 2) ?io - 2 ̂  - h ̂ , separately.

77u? ca56? A=/i?io-^2 (h^O). - We have A(Hi)=A(H2)=/z. Since p(Y^1)^
vanishes, v^ ^ ^ vanishes for j ̂  h +1.

LEMMA 3.10. — For non-negative integers i, j and k satisfying i 4- k ̂  h and j ̂  h, rh^ vectors
vi, j, k are linearly independent.

Proof. — If Vi ^ ^ does not vanish, it is a vector of weight
(h — i — k) Xo + (i — j) ̂ i + 0' + k — h) ̂ . The sum of weight spaces of weight p X-o 4- q ̂ i + r ̂
satisfying p^O, which we denote by Vp', is spanned by v^j^ satisfying i+k^h and
j^h. The highest weight of U(l)xU(2)-submodules appearing in the U(l )xU(2)-
irreducible decomposition of Vp are (^ — ti) ^-o +t! ̂ i — h ̂ 2 (ft ̂ t! •> h ̂  n} (Lemma 3.1),
and the dimension of each irreducible U (1) x U (2)-submodule is ^ +1^ +1. ; Therefore the

dimension of Vp' is ^ {t^ + ̂  +1) = (n +1 )2 (^ + 2)/2, which agrees with the number of
0-^ti^t.i^h

sets of non-negative integers (f , j , k) satisfying i+k^h and 7^.
Q.E.D.

In order to determine V^ (L=TxU(l) ) , it is enough to know maximal vectors of
irreducible U(2)x U(l)-submodules with the highest weights t^o—t^i (^0), in view of
Proposition 3.5. From Lemma 3.10, the vectors y,^+^_, - ( (O^f^ f t -1) form a basis of
the weight space of weight t ̂  -1 ^4 (^0).
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LEMMA 3.11. — Let w be a maximal vector in the irreducible U (2) x U (1 )-submodule of V
with the highest weight t ^ o — t ^ i (^0). Then w is written as:

h-t
w= Z ^i^+t^h-i-t,

u^ier^ OQ =/= 0 and:

».-̂ p- <—->•
Proof. — Write down the condition that p(X^) . ^ ^ y ^ + ^ , , _ ^ _ ( vanishes, using

1=0
Lemma 3.9, and we have the Lemma.

LEMMA 3.12. — A maximal vector w in the irreducible U(2) x U (l)-submodule of Vp with
the highest weight t ' k o — t ' k ^ (t^Q) is perpendicular to the subspace spanned by v^ ̂  ̂ -i-t
(1-^i^h—t) with respect to the invariant inner product on Vp.

Proof. — A vector in the above subspace is written as p (Y^) i/, where v ' is a vector of weight
( t + l ) ^ o — ( t + l ) ^ . Since an irreducible U(2)xU(l)-module with the highest weight
t \Q — t A,i does not have the weight space of weight (t +1) ̂ o — (t + 1̂ ) X-i, v ' is perpendicular to
the irreducible U(2)xU(l)-submodule containing w, and so is p(Yi)i/.

Q.E.D.
The irreducible U(l) x U(2)-module Uo is included inVp for every h (^0). Uo is one-

dimensional and each vector in Uo is U ( l ) x U (2 ̂ invariant and therefore
A (U( l )xU( l ) )xU( l ̂ invariant. A vector UQ is contained in Uo if and only if UQ is
contained in the weight space of weight 0 and p{X^)uo vanishes.

LEMMA 3.13. — A vector UQG\JQ is written as:

E^.h-. where b^-^b, (Q^i^h).
1=0 i.

The irreducible U(2)xU(l)-submodule Wo of Vp with the highest weight 0 is one-
dimensional and each vector in Wo is U (2 ) x U ( l ̂ invariant and therefore TxU( l ) -
in variant.

PROPOSITION 3.14. — Let UQ be a non-zero vector in Uo and WQ a non-zero vector in
Wo. Then < M Q , WQ > does not vanish.

Proof. — We have W o = C M o + a linear combination of v^i^-i (1^^^), c^O, by
Lemmas 3.11 and 3.13. Thus the proposition follows from Lemma 3.12.

The irreducible U (1) x U (2)-module U3 is included in Vp for h ̂  2. A maximal vector u^
in U3 is a vector of weight 2 ̂ o — 2 ̂ 2 m ^p which satisfies p (X^) u^ = 0. We notice that the
vectors i^ ̂  ^ _ ^ _ 3 (0 ̂  i ̂  h — 2) form a basis of the weight space of weight 2^—2^.

LEMMA 3.15. — A maximal vector u^e\J^ is written as:

Z ^ , f , h - f - 2 where b,=(-1) ( ~ l ) ( / z ~ l ~ l ) ^o and b^Q.1=0 i \ h ( h — L )
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A non-zero A (U (1) x U( l ) )x U(l ̂ invariant vector in \J^ is a vector of weight
2^0-2^=2^0—2^-2(^1-^2) m L^, which is given by p(Yj)i<3.

LEMMA 3.16:
A - 2 ^ / _ 1 V

p(Yi)"3=,s^)I)fcol;-•+2•'--2•

PROPOSITION 3.17. - Let u;3 fo^ a non-zero T x U (l)-invariant vector in the irreducible
U (2) x U (1 )-submodule of Vp with the highest weight 1^-1^. Then < p (Yj) u^ w^ > do^s
nof- i^ms/i and < p(Yj)M3, WQ > vanishes.

Proof. - We have ^3 =c p(Yj) 1^3 + a linear combination ofi^+^h-f-i^^^-^+a
linear combination of vectors of weight other than 2^o-2 ̂ ,c^0. Hence< p(Yj)M3, 1^3 >
(=c) does not vanish. Since p(Yj)u3 and WQ are vectors of weights 2^o-2'k^ and 0,
respectively, < p(Yj)M3, WQ > vanishes.

PROPOSITION 3.18.- For an irreducible U (3)-module Vp with the highest weight h^o-h \^
we have:

>1, /?=0, 1,
d"nWV,)){^ ;;°,

77î  cas^ A=(/i+l)?io-^i-^^2 (^2). - Since A^)^^-!, p(Y^)^ vanishes and
therefore v, ̂  ̂  vanishes for j^h. When v^j^ does not vanish, it is a vector of weight
(h-i-fe+l)^o+(i-7-l)^+0'+fe-h)^. ' '

LEMMA 3.19.- For non-negative integers f , j and k satisfying i + k ̂  h + 2 and 7 = h -1, the
vectors v^ ^ ^ are linearly independent.

In fact, they form a basis of the sum of weight spaces of weight p X,o + q ^-i + r ̂  satisfying
p = -1. In particular, the weight space of weight t ̂  — t ^4 (t = 1) has as its basis the vectors
v^i+t-i,h-i-t+i (O^i^h-t).

LEMMA 3.20. — Let wbe a maximal vector in the irreducible U (2) x U (1 )-submodule of V
with the highest weight t ^ o — t ' k ^ (t^l). Then w is written as:

h-t
w= Z aiv)i, i+t-l, h-i-t+l'>

i=0

where:

^Ui^^-1 (l^'^-O and ao^O,

and w is perpendicular to the subspace spanned by y ^ + ^ _ i ̂ _ ^ _ ( + i (l^i^h—t).

LEMMA 3.21. — A maximal vector u^ in the irreducible U (1) x U (2)-submodule L^ of V is
written as:

h-2

U3= E fc^f+1 , , , ^ - , -2
i=0
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where:

^'^^ani ^°-
LEMMA 3.22. — A non-zero A(U(1) x U(l)) x \J (l)-invariant vector in L^ is a vector of

weight 2X,o—2^i in V^, that is:

p^^^^-----
PROPOSITION 3.23. — Let W3 be a non-zero T x\J(l)-invariant vector in the irreducible

U (2) x U (1 )-submodule of Vp with the highest weight 2 X,o — 2 ̂ i. Then < p (Yj) 1^3, w^ > does
not vanish.

PROPOSITION 3.24. — For an irreducible \J(3)-module Vp with the highest weight
(h-^l)'ko-^-h^ (h^2\ we have dim(p(\\))^l.

The case A=(h-{-2)'ko-2^-h^ (h^2). - Since \(H^=h-2, p(Y^-1)^ vanishes
and therefore v^j j, vanishes for j^h—1. When v^j^ does not vanish, it is a vector of
weight(^-f-fe+2)Xo+(f-7-2)?4+0'+fe-/i))i2.

LEMMA 3.25. — For non-negative integers f , j and k satisfying i + k ̂  h + 4 and j^h—2, the
vectors v^ ^ ^ are linearly independent.

In fact, they form a basis of the sum of weight spaces of weight p ^o + q ̂ i + r ̂  satisfying
p ̂  — 2. In particular, the weight space of weight t ' ko — t ̂ i (t^ 2) has as its basis the vectors
^^-2,/ .-f-(+2 (O^i^h-t).

LEMMA 3.26. — Let wbe a maximal vector in the irreducible U (2) x U (1 )-submodule of Vp
with the highest weight t^Q—t^^ (t^2). Then w is written as:

h-t
W= ^ aiVi^+^_2,h-i-t+2

1=0
where:

^=——^^-1 (l^i^h-t) and OQ^O,

and w is perpendicular to the subspace spanned by the vectors v^ i+^-i, h-i-i+i (1 ̂ i^h— t).

LEMMA 3.27. - A maximal vector u^ in the irreducible U (1) x U (2)-submodule \J^ of Vp is
written as:

h-2 (-1)1

^3= E f c ^ f + 2 , f , h - f - 2 where bi=———bo and bo^°-
i=o ' ' l -

A non-zero A(U(1) x U(l)) x \J (l)-invariant vector in \J^ is a vector of weight l^o—l^ in
U3, that is:

h - 2 9 / i y

P^J)^- Z————^o^^- .
1=0 l'
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PROPOSITION 3.28. — Let w^ be a non-zero T x\J(l)-invariant vector in the irreducible
\J(2)x\J(l)-submoduleof'Vp with the highest weight 2^o— 2 ̂ i. Then( p(Yj)i<3, 1^3 >do^s
not vanish.

PROPOSITION 3.29. — For an irreducible \J(3)-module Vp with the highest weight
(h+2)^o-2^-h^(h^2),wehavedim(p(^\))^l.

We now study the remaining cases. For an irreducible U (3 )-module Vp, the dual vector
space Vp^ becomes canonically an irreducible U (3 )-module and an invariant hermitian inner
product on Vp gives an anti-linear isomorphism Ic between Vp and Vp\ When Vp includes
some U(l)xU(2)-module V, listed before, Ic maps \J, to a U( l )x U(2)-submodule U*,
which is again isomorphic to some U^. Since Ic (V^) = (V^)" and Ic (V^) = (Vp^, we have
Ic^^V^)1 and dim(p(V\))=dim(p((^)1)). When Vp is an irreducible U(3)-module
with the highest weight p 'ko + q X-i + r ̂ ^ ls an irreducible U (3)-module with the highest
weight —r'ko~c^^l~P^2• Thus we have:

PROPOSITION 3.30. - For an irreducible \J(3)-module with the highest weight
h?io+^i-(^+l)^2 (W) or ^o+2^i-(^+2)^ (^2), we have dim(p(\\))^l.

Comparing Proposition 3.4 with Propositions 3.18, 3.24, 3.29 and 3.30, we get:

THEOREM 3.31. - The I.B.C. holds for (P^C), g^).

4. We now prove Theorem 1.4. It suffices to show:

THEOREM 4.1. - For (P"(C), go), (P"(H), go) and (P^Ca), go) the I.B.C. holds.
We start with a preparatory Lemma.

LEMMA 4.2. - Let (M, g ) and (N, g ' ) be Riemannian manifolds and i: N -> M be a totally
geodesic immersion. If there exists XeX(M) for /zeS^M) such that L^g=h, then there
exists X'eX(N) such that L^g'=^h.

Proof. - The pull back i* TM have an inner product defined by g and includes TN as a
subbundle. Let X be a section ofi* TM defined by the restriction ofX and let X' be a section
of TN given by the orthogonal projection of X to TN. Since i is a totally geodesic
immersion, X' satisfies the required condition of the Lemma.

Q.E.D.

By this Lemma and Theorem 1.2, we can prove that the I.B.C. holds for (P" (C), go) (n ̂  3)
from Theorem 3.31. Let i:?1^) -^ P"(C) (n^3) be any totally geodesic
imbedding. Then there exist totally geodesic imbeddings i^ ^(C)-^ P^C) and
12 : P2 (C) -> P" (C) satisfying i = i^ o i^. (There exists a projective plane including a given
projective line.)

When heS2 (?"(€)) is an infinitesimal C^-deformation of (P"(C),^o). ^h is an

infinitesimal C^-deformation o^P^C), go), for \^ is totally geodesic. Because the I.B.C.
holds for (P^C), go), there exists XeX(P2(C)) such that ^h=L^go. By Lemma 4.2,
there exists X' e X (P1 (C)) such that L^o =l? (l^) =l* h' Thus from Theorem 1.2, there
exists XeX(P"(C)) such that h=L^go, which implys that the I.B.C. holds. We get:
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PROPOSITION 4.3. - The I.B.C. holds for (P"(C), go) (n^2).
For (P"(H), go) (n^2) and (P^Ca), go) we need a further consideration, which was

indicated by K. Sugahara. We first quote a result known in the projective geometry.

PROPOSITION 4.4. - Let P" be (P"(H), go) (n^2) or (P^Ca), ^o)-'
(a) let i^, i^ : S2 -^ P" fc^ totally geodesic imbeddings. Then there exists an isometry a of

P" satisfying \^ = a o ip
(fc) ^r^ exists a totally geodesic imbedding i: P^C) -> P";
(c) /or a totally geodesic imbedding i: S2 -> P", th^r^ exist totally geodesic imbeddings

i^S2-^?2^) and 12 : P2 (C) -> P" satisfying i==i2" i i .
Proof. — For (a) and (b), see Wolf [10]. There exist some totally geodesic imbeddings

TI : S2 = P1 (C) -> P2 (C) and ̂ : P2 (C) -> P" by (b). For a given totally geodesic imbedding "
i: S2 -> P", there exists an isometry a satisfying i = a o (i^ o i^). Setting i^ = a o i^ and ii = ii,
we get the imbeddings needed in (c).

Q.E.D.

Next we quote an integrability condition of the equation Lx g = h on a space form obtained
by E. Calabi. Let (X, g ) be a space of constant curvature K. For h e S2 (X) we define a 4-
tensor r^ by:

r,(x, y, z, w)=(V,V^)(^, w)-(V,V^)(x, w)-(V,V,h)(^ z)+(V,V,/z)(x, z)

+ K { ^ ( x , z)M^, w)-^(.y, z)h(x, w)-g(x, w)h{y, z ) + g ( y , w)h(x, z)},

[x, ^, z, weTX^].

One can verify:

LEMMA 4.5. — The tensor r^ is curvature-like:

r^(x, y, z, w)= -r^(y, x, z, w)= -rjx, ̂ , w, z),

r^(x, ^, z, w)+r^(y, z, x, w)+rjz, x, y, w)=0.

The next Theorem is stated in Calabi [5], but for a strict proof, see Berard Bergery-
Bourguignon-Lafontaine [2].

THEOREM 4.6. — Let (S", go) be a sphere of constant curvature. For heS2(Sn), there
exists XeX(S") satisfying L^go=h, if and only if r^ vanishes on S".

Proof of Theorem 4.1. - Let(P", ^beanyo^P^H), ^o)(^^2)and(P2(Ca), go). Let
h e S2 (P") be any infinitesimal (^-deformation of (P", go) and let i: P1 -> P" be any totally
geodesic imbedding of a projective line. If we can prove that i* h is trivial on P1, we have
done in view of Theorem 1.2. We will prove r^^ vanishes on P1 (=a sphere of constant
curvature). Since r^^ is a curvature-like tensor, r^ vanishes if and only if r^(x, y , x, y )
vanishes for any p e P1 and x, y e TP^. Let \ ' : S2 -> P1 be a totally geodesic imbedding of a
sphere of constant curvature such that the image is tangent to x and y at p . Since \' is totally
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geodesic, i'* r^ coincides with r^,^, a 4-tensor on S2 constructed from (i o i')* h. For the
totally geodesic imbedding loi'iS2-^, there exist totally geodesic imbeddings
II^^P^C) and ^P^C)-^ satisfying loi '^oii. By the same reasoning of
Proposition 4.2, (i^ o i j* /?=( io i ' )* /z is trivial on S2. From Theorem 4.6, r,^ vanishes
on S2 and r^/,(x, ^, x, ^) vanishes.

Q.E.D.
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