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ON THE MIXED HODGE STRUCTURE
ASSOCIATED TO =,
OF A SIMPLY CONNECTED COMPLEX
PROJECTIVE MANIFOLD

By J. CARLSON, H. CLEMENS anp J. MORGAN

1. Introduction

Let X be a simply connected complex projective manifold of (complex) dimension N. By
the universal coefficient theorem for cohomology, H? (X; Z) is torsion-free. Thus:

1.1) ‘ M=H"'(X)nH*(X; Z)cH*(X; C),

makes sense and is free. ./ is identified with the Neron-Severi group of linear equivalence
classes of divisors on X. Let S" denote r-th symmetric product and form the natural map:

{ o S2 M — HZN—4(X; Z),
Y a,;D:®D;—~{} a;D;.D;},

obtained by intersecting divisors. If) a;;D,®D;ekera,then ) a;;D;.D;is the boundary
of a (2N —3)-chain I' on X, and T is determined up to integral (2N — 3)-cycles.

Next let F* denote the Hodge filtration on H*(X; C). We recall that Griffiths has defined
aset of complex tori, called intermediate Jacobians, associated to X, and that the intermediate
Jacobian J,_,(X) is defined as:

1.2)

(1.3) (FN1(HN (X C)))*/{J ineHy 5(X; Z) }
n
Thus yekera in (1.2) determines a well-defined element:
: f €Jn-3(X)
r
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324 J. CARLSON, H. CLEMENS AND J. MORGAN

and so we obtain a homomorphism:
(1.4) ®: (kera)— J_;(X).

The purpose of this paper is to show how the homomorphism (1.4) comes out of the mixed
Hodge structure which Morgan has defined on 75 (X) in[M]. We will also give examples of

diffeomorphic algebraic manifolds X; and X, such that the induced isomorphism of
cohomology rings:
H*(X,)=H*(X,),

preserves Hodge types but not the homomorphisms (1.4). Thus, although the rational
homotopy type of X, and 75 (X)®Q in particular, is determined by the cohomology ring
H* (X; Z) (according a result of Deligne, Griffiths, Morgan and Sullivan), the mixed Hodge
structures on 7, (X) are not determined merely by the ring H* (X; Z) together with the Hodge
structures on the groups of H*(X; C). Finally we will give somé geometric applications
which show the usefulness of the ‘‘extra information” contained in the mixed Hodge theory
of the homotopy groups of X but not in the Hodge theory of the cohomology.

2. The group 1%

We define:
(2.1) © m,=mn,(X)/(torsion subgroup).

Furthermore, if no coefficients are specified for homology or cohomology, we will mean
integral homology or cohomology modulo torsion. We let:

(2.2) X, =aK(m,, 2)-space.
There is a continuous map:
2.3) _ i X-X,,
unique up to homotopy, such that fx : m,(X) - m,(X,) is just the natural quotient map
7, (X) - =, )

Viewing (2.3) as a homotopy inclusion, the homotopy sequence for the pair (X,, X) gives
that:

ny (X) =, (X, X)
The generalized relative Hurewicz theorem ([H], pp. 306-310), with & the category of one
element groups, says that:
my (X5, X) = Hy (X3, X; Z),
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MIXED HODGE STRUCTURE ON T, 325
is an epimorphism. Furthermore, since m; (X,, X) is torsion, the generalized relative
Hurewicz theorem also says that:

T4 (X2, X) > Hy (X3, X)

is a ®%-isomorphism, where % is the category of torsion groups. Thus
n4 (X;, X)/(torsion) - H, (X,, X) is onto and injective so that:

T3 =14 (X,, X)/(torsion)=H, (X,, X),

and so by the universal coefficient theorem for cohomology:

2.4) H*(X,, X)=Hom(rs, Z) = n.

(def.)

Central to our results will be the examination of the mixed Hodge structure, defined over Z,
onn¥. As usual, this is a question of setting up the right complex in which to compute the
relative cohomology group (2.4). The rest of this section will be devoted to doing just that.

Now H3(X,; Z)=0 and:

(2.5) - H*(X,; 2)=S*H?*(X,; 2)=S*H*(X; Z),

where S? denotes second symmetric product. So we have the exact cohomology sequence:
0- H3(X) > H*(X,, X) > S*H*(X; Z) > H*(X; Z).

So if we let K denote the kernel of the natural cup-product mapping:

(2.6) a: S*H?*(X; Z2)-H*(X; Z2),

then we have the short exact sequence:

2.7) 0-H3X)->n¥->K-0.

Since a in (2.6) is a morphism of Hodge structures of weight four, K has naturally a Hodge

structure of weight four. Also H?(X) has a Hodge structure of weight three. So the

sequence (2. 7) tells us that we may expect to find a natural mixed Hodge structure on n¥ such

that all morphisms in (2.7) are morphisms of mixed Hodge structures (see [G—S], §1).
Let:

2.8) M, =S*H2(X; Z),

where S* denotes the graded symmetricalgebra. Definingd=0,(M,, d) becomes a complex
and:

H*(M,, d)=H*(X,; 2).
Also M,® C=H*(X,; C) carries a natural Hodge filtration:
F?(M,®C),
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326 J. CARLSON, H. CLEMENS AND J. MORGAN

induced formally from the Hodge filtration on H?(X; C). The cohomology H* (X,, X; C) is
computed from the complex:

2.9) A*(X,, X)=A*"1(X)®(M3®C),
' d(a, B)=(do—f*B, —dp),

where A* (space) means the C-valued de Rham complex on the space, and f* is obtained as
follows. Pick a vector space V of closed forms in A*(X) such that the natural map:

(2.10) { }: VoH(X; C),
is an isomorphism and such that, if {®} is of type (p, gq), then so is o:

2.11) f*: S*H2(X; C) - A*(X),

is then the homomorphism of differential graded algebras induced by the inverse of the
mapping (2.10).
Morgan defines the Hodge filtration:

(2.12) FP(A*(X,, X)= ) FrA* ' (X)@F:Mi®C),

pitp2=p

on the complex (2.9). This filtration, together with the natural integral structure on
H(X,, X; C) gives the canonical mixed Hodge on H* (X,, X)=n%. The exact sequence
(2.7)is a sequence of morphisms of mixed Hodge structures. It is separated in the sense of
[Ca] so that the mixed Hodge structure on 1% determines canonically an obstruction class to
the splitting of sequence (2.7) over Z. This obstruction is an element of:

Hom(K®C, H?(X; C))
Hom, (K®C, H*(X; C))+Hom (K, H?* (X))’

(2.13)

where Homy, is the group of homomorphisms respecting the Hodge filtrations. To see what
this element is, let: : s
sz K—-n¥,

be an integral splitting of (2.7) and léltv:
SF . K®C - TC?@C,

be a splitting of the complexification of (2.7) re‘speActih‘g' the Hodge filtrations. The element
of (2.13) determined by the mixed Hodge structure on 5 is then simply the equivalence class
of:

(2.14) —Sp-

We wish to get our hands on a portion of the information given by (2.14). As in the
introduction, put: -

M=H*(X; Z) nH" 1 (X),
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MIXED HODGE STRUCTURE ON T, 327

the Neron-Severi group of X. Let:

(2.15) K* =824 K.

Then, via restriction, the element (2.14) determines an element:
(2.16) u(n¥),

in the group:

Hom (K**®C, H3(X; C))
Hom, (K**®C, H3(X; C))+ Hom (K*¥, H? (X))’

As in [Ca] one checks that this last group is just:

H3(X; C)
"F2H3 (X; C)+ H° (X)

2.17) Hom (Ka'& >= Hom (K*¥, J,\,_4(X)).

We can now rephrase our main result as the assertion that:
(2.18) u(n3)=0,

where @ is the homomorphism (1.4). In the next section, we will prove this assertion.

3. Proof of the main assertion

To prove (2.18), we will first enlarge the complex A*(X,, X) used to calculate n§. We
begin by enlarging the complex A*(X) to the complex of C-valued integration currents of
deRham (see [deR], § 14) which we will call B*(X). B*(X) has a Hodge filtration such that
the natural incl'lvlsjone A*(X)eB*(X) induces in cohomology an isomorphism of Hodge
structures ([K], p. 169 ff.).

Next we want to enlarge (M,®C)* as follows. Let ;, j=1, ..., s be the collection
of (1,1) forms in the vector space V in (2.10) which correspond to a basis of
H?> (X; Z)AnH"'(X) under the isomorphism (2.10). Let D; be a divisor on X
whose Chern classis w;, j=1, ..., s. Each {w,;} is a basis element of M3. For each j we
make a new free closed generator §; to adjoin to the vector space (M,®C)?, and define:

(3-1) f*(sj)=[Dj],

where brackets denote integration currents. Next, for each j we adjoin a free generator ¢ ;in
degree one and put:

do;={w;}-3;
Define: | |
f*(oj)=a(l, Q)—qurrgnt n; such that dn;= ;-3
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328 J. CARLSON, H. CLEMENS AND J. MORGAN

In (M,®C)* we adjoin free generators:

O;AD;

]
for each 1<i<j<s. Finally for each of these we adjoin a free generator:

G, A®;+8;A T,

of degree three, and define the coboundary of these new elements by the Leibniz rule and
define f* multiplicatively. So altogether we have a new complex:

Ng,
such that:
(i) NE=(M,®C) for k=0,5,6, ...,
(i) Ne= Z Co;,
j=1
(3.2) (iii) NZ=(M,®C)*+ ;IC({mJ.}—Sj),
(iv) Ne= Y C(o;a{w;}+8;A0)),
1<i<jss
v) NE=(M,®C)*+ Y C({o;}r{w;}—8:A8)),

1sigjss
and it is immediate that the natural inclusion:
(3.3) (M,®C)*<SNg

induces an isomorphism in cohomology.

Additionally, we can put a Hodge filtration on N by defining o ; to be of type (1, 0) and §;
of type (1, 1), and putting types on elements of (3.2) (iv) and (v) multiplicatively. Notice
that the complex Ng is not defined over the real numbers since there is no conjugation
operator in degrees 1and 3. However itis clear that the cohomology isomorphism induced
by (3.3) is an isomorphism of Hodge structures.

We then replace A* (X,, X) with the larger complex:

(3.4) B* (X, X)=B*" 1 (X)®Ng,

which, by the ““five-lemma” is quasi-isomorphic to A*(X,, X). The complex B*(X,, X)has
a Hodge filtration defined analogously to (2.12). What we must next check is that this
filtration induces the same filtration on cohomology as does the filtration (2.12). To see
this, suppose (S, T)eF? (B* (X,, X)) is closed. Then TeN¢ is closed. So, by
construction, there exists Ue F? (Ng) such that T+dU=¢eF? (M3®C). Then: '

(S, T)+d (0, U)=(S', @)eF?,
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MIXED HODGE STRUCTURE ON T4 329

and d(S', ¢)=0. Thus:
as’=f*eo

so that there exists ve F? (A* (X)) with dv= f*¢. Therefore:
(S, @)+d(v, 0)=(8", ¢)eF?,

with dS”=0. Since S" is closed and of Hodge level p, there is a current V of Hodge level p
such that in B*(X):

S +dV =y eF?(A*(X)).
So finally:
(S, T)~(¥, p)eFP(A*(X,, X)),

which proves that the Hodge filtrations on A* (X,, X) and B* (X,, X) induce the same
filtration in cohomology.
Next, let K¥® be as in (2.15), and for each {y} in some free basis for K** we write:

(3.5) Y=Y a;;8,A9;

and:

f*()=%a;[DIAD), : . .
the image current on X. Since ) a,;D;.D;~0 there is a (2N —3)-chain I'(y) such that:
ar=Ya,;D,.D,,

so that, as currents:
d[I]=f*(y)-
Thus:
(I, v)€B* (X, X),

is a cocycle. We wish to check that it is integral, that is, that it pairs with every element of
H, (X,, X; Z) to give an integer. For this we need only notice that this last group is
computed from the complex:

5.6) Cx(X,, X)=(M,)+@Cx _, (X),
' 0(A, B)=(0A+ fx B, —0B),

where:
(M, )+ =dual of M%,
Cx (X)=complex of integral valued singular chains on X.
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Since each class of H, (X,, X; Z) has a representative (A, B) such that B is in general position
with respect to each I' defined after (3.5), the pairing becomes:

<(A, B), (I, v)>=(".B)+<A, v,

which clearly takes integral values.
We are finally ready to prove (2.18). By what we have done just above, we may evaluate
the obstruction homomorphism s, —s; of (2.14) by taking a generator {vy } eKe: ;

{(v}={2a;8:n8;}={Y a;0;n0;}

and putting:

-Sz({'Y} )=(T (v)], Zaijsi/\sj)a
SF({'Y})=(P, Zaij{mi}/\{mj}),

where pe F? (A%(X))and dp=}) a;;0; A®;. Tofind arepresentative fors; ({v})—sz({v})
in B3 (X), we simply add on:

a((o, Zaij(ci A {O)j}+8i AG))),
to obtain the representative:
(3.7) [CN—p=f*Eajcin{e;}+3,A0).

But since the last two terms in (3.7) are in F2B?(X), we see by (2.17) that:

u(né‘)({v})=[l“(v)]=j €Jon-3(X),

T(y)

which is the assertion (2.18).

We next turn to some applications of (2. 18) in the case in which X is a simply connected
projective manifold of complex dimension three. For example, suppose we start with a
smooth curve CSP3.  Let us mark two distinct points P, Qe C. First blow up P and Q
in P3, then blow up the proper transform of C. We obtain a smooth threefold X with
three irreducible exceptional divisors Ej, E, and E lying over P, Q, and C respectively.
Then by (2.18):

u((EP—EQ)®EC)=J ’ eJ;(X),
Lq

where L, is the fibre over P of the P!-bundle E. — C. But under the natural isomorphism

Lp P
J3 (X)=J (C) (see [C1—G], p. 294), f becomes f eJ(C).
LQ Q
This means that the subgroup u (K*#) varies as we continuously vary P and Q on C (as long
as Cisnot rational). However the cohomology ring with its Hodge structures defined over
- Zdoes not vary as P and Q are moved, showing that the mixed Hodge theory of % (X) is not a
- formal consequence of the cohomology of X.
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MIXED HODGE STRUCTURE ON T4 331

From these remarks it is clear that it will be important to understand what happens to the
mixed Hodge structure on n¥ under blowing up. We treat this in the next section.

4. Blowing up threefolds

From now on, X is a threefold so that the obstruction homomorphism associated to the
mixed Hodge structure on 7% takes values in J5(X). We let '

(4.1) B?*(X)=Chow group of rational equivalence classes

of algebraic one-cycles on X which are homologous to 0.

There is a natural map, called the Abel-Jacobi map:

B*(X) - J5(X),

4.2)
Z— |, ar==2.
r

Then (2.18) simply tells us that the obstruction homomorphism:
(4.3) ox: K&~ J3(X),

is the restriction of the Abel-Jacobi map (4.2) to the subgroup of B?(X) generated, via
intersection, by the Neron-Severi group of X, which we denote .#.

We next analyze what happens when a threefold X is obtained from X by blowing up a
point. Then:
4.4) KZE=KED(MRZ{e}),

where e is the cohomology class of the exceptional divisor, and:
u =y,
@.5) X |th(lg X
Ug I/X®Z{e} =0.

So no new information is gained from 0Ox.

The situation is quite different, however, when -
4.6) ' n: X-X,
is the monoidal transform with center C, a smooth irreducible curve on X. First of all
([C1-@G], p. 294):
“.7) J3(X)=15(X)®J(C).
Again under the natural inclusion S® H? (X)< S® H? (X) we have K% <K%, To describe

the rest of K%¥, let e as before denote the cohomology class of the exceptional locus, let ¢
denote the cohomology class of C in X, and let:

(4.8) oy: SP ., - HYX; Z),
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be the wedge-product mapping. Define:
n.=min{n>0: ncelmage oy},

-9 mc=min{mgO:m=j C/\(O,O)EHZ(X)}.
X

Finally choose:

AeS® 4y such that oy (A)=n,c,

4.1
#-10) Be.#y such that jCAB=mc.
Then:
4.11) K‘,l('g:K;‘g‘@Z{e}@{meHz(X): j m=0}€|~)Z{t},
c
where:
T=m;e®e+m,e@B+m; A,
and:

(my, my, m3)eZ3,

is the generator of the solution set of the system of equations:

4.12) n.mz—m; =0, ym;+m.m,=0,
and:
4.13) y=degree of the normal bundle N of C in X.

All this follows easily from the multiplication table for a monoidal transform of a threefold
(see, for example, [I-M], p. 146).

The behavior of ug has been computed by M. Letizia of the University of Trento, Italy, as
follows:

(i) If D.C=0 on X and y, is the Chern class of D, then:
ug (e®wp)=(0, (D.C))el; X)@I(C).
(ii) If D is a divisor such that w,=B and:

L=(A’>N¢)"®0(m,(D.C)),
(4.14) ¢ then:

“x(f)=< j , {L})eJ3(x>@J(C),
T
where: ) |

OI' =m, (image of A under intersection map)—m, C.
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After getting accustomed to the geometric objects in (4.14) and the notation, the results
contained therein are quite easy to apply. Some examples:
(4.15) Suppose we take two sets of smooth, mutally disjoint curves in P>:

{Cy,....,C,} and {E, ...,E]},

and we blow up P along the C; to obtain a rational threefold (1), and then we start over
with P and blow it up along the E, to obtain a rational threefold P(2). We ask ourselves
under what conditions it can be true that:

P1)=P(@2).

The required isomorphisms of integral cohomology H? and intermediate Jacobians tell us
that r=s and, reordering if necessary, there are abstract isomorphisms:
ngEj’ j=1, o, T
The ring structure on cohomology gives some additional numerical information which is very
useful (as in [I-M]). Furthermore the required isomorphism:
3 (P (1)) =73 (P (2)),
gives:
Up ) =Up)-
This means that, for example, if C; and E, have the same degree and:
G.#Cp
for any j#j,, then up to a line bundle of specified finite order, sections of the same line bundle
were used to embed C; and E, in P°.
(4.16) Let X be a smooth cubic hypersurface in P*. Let C be a smooth rational curve of
degree 3 lying inside X. Then K% is generated by the single element:
1=—-3e®e+4e@®h—3h®Hh,

where h is the Chern class of the hyperplane section of X. The image of tin J X)=J(X)is
then simply:

. C
4.17) 3 J ,

G

where G is a cubic plane curve lying in X. Thus the mixed Hodge structure on 5 (X)*
determines the rational equivalence class of C modulo elements of order three. (It can be
shown that the theta divisor of J(X) exactly parametrizes rational equivalence classes of
rational cubics.)
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5. A “‘torelli-type” theorem
for projections of cubic threefolds

As a final illustration of the techniques described in this paper, we will give an example of a
class of threefolds for which the polarized cohomology ring with its integral and Hodge
structures is not sufficient to distinguish between the various threefolds in the class but the
additional datum of a mixed Hodge structure on ¥ does allow us to distinguish.

Our class will be formed from a fixed smooth cubic threefold:

-

(5.1) YSP*.
Let UZY denote the Zariski open subset of Y consisting of those points ye Y such that:

(i) if H = P*is the hyperplane tangent to Y at y, then H,. Y has an ordinary node
at y;

(ii) (H,.Y) contains six distinct lines through y. (See [CI—G]).
For each ye U, we build a threefold:
- (5.3) X

y?

as follows. Beginning with Y, we first blow up y and then blow up the proper transforms of
each of the six lines through y. It is this family (5.3), over the parameter space U, that we
wish to study.

We begin by laying out the cohomology ring for X in even degrees. This is simply the
Chow ring modulo numerical equivalence, which we denote:

A*(X,) H*(X)).

Let us denote by H, the irreducible rational surface in X, which lies over yeY, and let H,
denote the proper transform of the tangent hyperplane section (H,.Y) of Y at y. Let:

E,, ..., E

stand for the six irreducible surfaces obtained by blowing up the (proper transforms of the) six
lines through y. Then the group of divisor classes on X, is given by:

. 6 .
(5.4) A'(X,)=Z{H,}®Z{H,}® @ Z{E,}.
j=1
In this situation we will have to distinguish two divisor classes:
(5.5) D*=H,+H, D =H!-H?

to serve as \“pc')‘la’rizing classes” for X,. D™ allows us to define a symmetric bilinear form on
(5.4) by the formula: '

(5.6) o (A,B>=%(A.B.D+).
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MIXED HODGE STRUCTURE ON T4 335

D~ has norm one with respect to the form (5.6) and we will be interested in the subspace:
(5.7 (D7) A (X))

To recognize the subspace (5.7) and compute the form (5.6) on this subspacé, recall that
the projection map:

. Y- P,
centered at y can be resolved so as to realize X, as a finite branched double cover:
(5.8) . X, - B,
where P is obtained from P* by blowing up the six image points Py, ..., P of the six lines
through y. [By (5.2) (i), the P, lie on a non-degenerate conic.] Then:
! (H)=H1+H2’

where H< P is the proper transform of the plane through the P;.

From the discussion just above, we can conclude first of all that:

(5.9) (D™} =n*(AL(P)).
Also, since n* (H)=D™ and the intersection map:
(5.10) Al(P) > AY(H),
is an isomorphism, we conclude that the bilinear form < , > on { D~ }* is simply given by
the usual intersection pairing on A'!(H) via the isomorphism (5.9).
Next, H is simply P? blown up at six points on a conic. Let h be the divisor class on H

given by the proper transform of a plane cubic through the six points. It is easy to check
that:

{h}rcAl(H),
corresponds under the isomorphisms (5.9) and (5.10) to:
(5.11) &={Be{D }':(D".D".B)=0}.
However, it is well-known ([B], p. 260) that the quadratic space { h }* is simply the negative
definitive quadratic space E¢. So the sameis true of the quadraticspace &. Theimportant

thing is that, & is complety determined as a quadratic space by the nng structure of H*(X,)
and the choice of D* and D™ (*).

(*) A similar situation obtains for the union X of a smooth cubic surface and a plane: the polarized one-motif
attached to H?(X) maps a lattice of type E4 to an elliptic curve, and determines X up to isomorphism. See
J. CARLSON, Extensions of Mixed Hodge Structures(Journées de Géométrie Algébrique d’ Angers, A. BEAUVILLE, Ed.,
Sijthoff and Noordhoff, 1980).
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Notice too thatif Be { D~ }*, then B is symmetric with respect to the involution associated
to (2.8), so that (B.D™) is skew. But the skew elements of A'(X,) form a rank one
submodule, as do the skew elements of A2 (X,). Consequently(B.D™.D™)=0ifand onlyif
(B.D7) is itself zero in A*(X,). Thus:

(5.12) &={Ben*(A'(P)): B.D =0}.
Now for each ye U[see(5.1)and (5.2)] we can identify H*(X,)and J; (X,) with H? (Y) and
J5(Y) respectively. So we have short exact sequences:
(5.13) 0-H*(Y)->n,(X,)*>K, -0,
for each ye U, and also obstruction homomorphisms: '

(5.14) Uy

y*

K, - J;(Y).

As we have seen in (5.12), the designation of the polarizing classes D* and D~ allows us to
distinguish the subspace:

D - ®&cK,,

as well as to determine an E4 quadratic structure on this space.

So the restriction of (5. 14) to the subspace D~ ®¢& can be considered, via (5.9)~(5.11),as a
map:

(5.15) uy: {h}l - J;(Y).
Using our main result (2.18), we have a very simple way to describe (5.15). Let:
y: H-(H,.Y),

be the natural birational mapping which blows down the proper transform of the conic
through P, ..., P¢. (Recall that H, is the tangent hyperplane to Y at y.) Then for any
element:

ve{h},
Y, (y) bounds in Y. Choose I' such that:
Ol =V, (v).
Then:
(5.16) uy(y)=J eJ; (Y).
) r

Now it is a classical fact ([B], p. 260) that if E is considered to be the module of finite cycles
on a smooth cubic surface, then the only elements of E¢ with square norm — 2 are differences
of skew lines. From this one concludes immediately that if ye { h }* has square norm —2,
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then \ (y) is either a difference of skew lines on (H j-Y) or a difference of lines both of which
pass through y, or zero.

Summing up, the ring structure on H*(X,), the choice of the cohomology classes D*
and D7, and the mixed Hodge structure on m;(X,)* determine the principally polarized
abelian variety:

J3(X,)=J5(Y)

and so, by [C1—G], the cubic Y. These data also determine a certain finite set & in J'3 (Y),
namely the points given by:

(i) I—=1" where I and I’ are skew lines in (H,.Y);

(5.17) . .
‘ (i1)) I—I" where [ and I’ are lines through y.

So we will establish the result claimed at the beginning of this section by showing that the
subset:

I3 (Y),

uniquely determines the point y. .
It is shown in [Cl1—G] that, if S is the Fano surface of lines on Y, then the Abel-Jacobi
mapping:

®: SxS-J5(Y),
(5.18) : ( l’)r—»ff

1
has as image the theta divisor ® of J;(Y). Furthermore the Gauss map:
(5.19) g: © — [P (tangent space to J;(Y) at 0)*,

assigns to each @ ([, I') the hyperplane spanned by / and I" as long as they are skew. Finally
the branch locus of g is the dual variety to Y:

Y* S (P*)*.

Now our restrictions (5.2) assure that H  is a smooth point of the dual variety Y*. So g s
defined at (I, I') if the pair is as in (5.17), and the image:

4(&)={H,}
and the dual map:
D*: Y* o (Y*)*=Y,

is defined at { H, } since it is a smooth point of Y*. Finally 2*({H, })=y and our claim is
established.
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