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REAL ALGEBRAIC CURVES

BY BENEDICT H. GROSS AND JOE HARRIS

In this paper we investigate the geometry and topology of real algebraic curves. After
some introductory material on real abelian varieties in paragraph 1, we take up the study of a
real curve X and its Picard scheme Pic X in paragraphs 2 and 3. In paragraph 4 we show
how the topological invariants of a real curve X are determined by the action of complex
conjugation on the group H^ (X(C), Z / 2 ) and in paragraph 5 we show how the topological
invariants of X determine the number of real theta-characteristics of each parity in
Pic X. We illustrate the general theory with a discussion of real hyper-elliptic curves in
paragraph 6, real plane curves in paragraph 7, and real trigonal curves in paragraph 8, and
end with some remarks on real moduli.

Acknowledgments

Much of the material in paragraphs 2 and 3 is classical—see, for example, the papers of
Klein ([7], [8]); Weichold [16], Hurwitz [5] and Witt [19]. The existence of real theta-
characteristics on any real curve X was first proved by Atiyah and Serre [2]; real abelian
varieties and real moduli were discussed by Shimura in [14]. We also wish to thank Bill
Thurston, who showed us a nice approach to spin structures, and Alan Landman, for several
helpful discussions.

1. Real abelian varieties

Let A be an abalian variety of dimension g over R. Let A(IR)° denote the connected
component of the identity in the group A(tR) of real points.

PROPOSITION 1.1. — (1) A([R)° is a real torus of dimension g .
(2) A(R)/A([R)0 is an elementary abelian 2-group.
(3) A([R)^([R/Z)^x(Z/2)' with Q^d^g.
Proof. — (1) Since A (R)° is a connected, compact, abelian real Lie group of dimension g , it

must be isomorphic to the torus (1R/Z)^.
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158 B. H. GROSS AND J. HARRIS

(2) Consider the map 1̂ : A(C)-^ A(IR) defined by N(P)=P+P. Since ^J is a
continuous homomorphism and A(C) is compact and connected, the image NA(C) is a
closed connected subgroup of A (R). Since it contains 2 A (1R) it has finite index and is also
open. Consequently ^J A(C)=A(tR)° and the quotient A(R)/A([R)° is killed by 2.

(3) Since A([R)° is a divisible group, the exact sequence:

0 -> A W° -^ A (R) -^ A (1R)/A (R)° -^ 0 splits.

Hence A([R)^([R/Z^ x(Z/2)d. The bound on d follows from a count of the 2-division
points: (Z^-^AW^ A (C)^(Z/2)20.

Let A denote the dual variety over R and let G=Gal(C/[R). Let
n(A)=Card(A([R)/A((R)°).

PROPOSITION 1.2. — n(A)=n(A).
Proof. - The Weil pairing A(C)^xA(C)^-> ̂  is non-degenerate and G-

equi variant. Hence:

Card (A (R)^ = Card (A (R^).

But ^=2^ if and only if AW^Z^)04^.

PROPOSITION 1.3. - J/n(A)=2d, ̂ n H^G, A(C))^(Z/2)d/or allieZ(where ft1 is Ta^
cohomology).

Proof. — Since G is cyclic, its Tate cohomology is periodic with period 2. We have
already seen that:

H°(G, A(fc))=ATO/^A(C)=A(R)/A(R)o^(Z/2)d .

Tate has shown that H^G, A(C)) is isomorphic to the dual of H°(G, A(C)) [15]; so by
Proposition 1.2, H^G, AOQMZ^.

COROLLARY 1.4.- (1) Ifn(A)= 1 then every principal homogeneous space for A is trivial.
(2) J/0 -^ A -> B -^ C -^ 0 is ^xacr, r^n;
(a) n(A)=l=>n(B)=n(C);
(^) n(B)=l=>n(A)=n(C);
(c) n(C)=l=>n(A)=n(B).

Proo/. - (1) The principal homogeneous spaces for A correspond to elements of
H1 (G, A(C)) [9], which is trivial by 1.3.

(2) This follows from the exact cohomology sequence:

H-1 (G, C) -> H°(G, A) -> H°(G, B) ̂  H°(G, C) ̂  H1 (G, A) -. . . .

and 1.3.
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REAL ALGEBRAIC CURVES 159

2. Real curves: geometry

Let X be a complete, non-singular, geometrically connected curve of genus g over R. Let
Pic be the Picard scheme ofX over (R, and Pic^ the subscheme representing divisor classes of
degree d. Pic^ is a principal homogenous space for the Jacobian J = Pic° of X, which is an
abelian variety of dimension g over R [13].

The real points of the Picard scheme consist of those complex divisor classes which are
invariant under the action of G=Gal(C/IR):

(2.1) Pk^^PicCC)0.

This group contains the subgroup PicTO"^ of those classes represented by a G-invariant
divisor a. Elements of Pic (IRQ correspond to complex line bundles on X which are
isomorphic to their complex conjugates; elements of Pic^)'^ correspond to algebraic line
bundles which may be defined over R.

For ̂ 0 let S^X denote the symmetric rf-fold product of X. The usual map:

(p : S^X-^Pic^,
d

(Pi, . .^Pd)-^^ ^ (p,\
i = l

is defined over R. Clearly (p maps S^tR) into Pic^tR)^

PROPOSITION 2.1. - If d ̂  g the map cp : S^ X (R) -> Pic^ (R)+ is surjective.
Proof. - For any complex divisor class a let L (a) denote the associated complex line

bundle and:

^(a)=dimcH l(X,L(a)).

If a is in Pic W let L^ (a) denote the associated real bundle; then H1 (X, L^ (a)) is a real vector
space of dimension h1 (a).

Now assume aeRic^)"^ has degree d^g. Then by the Theorem of Riemann-Roch,
^°(a)^l. Hence there is a function /elR(X)* such that the divisor b=a4-div(/) is
effective. This divisor gives a point P in S^R) with (p(P)=a.

PROPOSITION 2.2:
(1) J/X(R)^0 thenPicW^PicW.
(2) IfX (R) = 0 then Pic (R)4^ has index 2 in Pic (R). If a is a class generating the quotient

then ̂ (a)^^)^ (mod 2) and dega=^-l (mod 2).
Proof. - Let D denote the group of complex divisors on X and P the subgroup of principal

divisors. The exact sequence of G=Gal(C/[R) modules:

0-,p-,D-^Pic(C)-^0,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



160 B. H. GROSS AND J. HARRIS

gives the exact cohomology sequence :

0 -^ PicW -> PicW ^ H1 (G, P) -> 0,

as H1 (G, D) = 0 (D is an induced ~L [G]-module). Since G is cyclic, the transition map 5 may
be identified with the homomorphism:

PicW-^H-^G, P),

a -> div(/)=a—a.

To calculate H~ 1 (G, P) consider the exact sequence:

0-^C*^C(X)*-^P->0.
div

This gives the cohomology sequence:

O^H-^G.P^H^G.C*) -^ H°(G,C(X)*),
p < |

[R*/R* [R(X)*/^C(X)*.

The map oc takes the divisor div(/) into ^ /(mod R*). Since oc is an injection, the group
Pic (IRQ/Pic (IR^ has order at most 2. It has order 2 precisely when there is a function
/ e C (X)* with ^J / = -1. Writing / = u + iv with u, v e R (X)* we see that X maps to the real
quadric N : { u2 + v2 + 1 = 0 }. This is impossible when X has a real point.

Now assume X (R) = 0; we must show Pic (tR^ 7^ Pic (tR). If equality held, (p would map
S^R) surjectively onto Pic^tR) for d^g (Proposition 2.1). Since S^R) is connected
when d is even, Pic^ X (R) ̂  J (R) would be connected. Hence every principal homogeneous
space for J would be trivial (Corollary 1.4) and, in particular, Pic^ (R) would be connected for
all d e Z. This contradicts the fact that (p is surjective for all d ̂  g , when d is odd, SdX(R) is
empty.

Hence Pk^H^ has index 2 in Pic(R) and there is a function / in C(X)* with ^J /= -1
(Compare, Witt [19]). Writing ( / )=a—a we see that a generates the quotient
Pic([R)/Pic([RO\ "Multiplication by /" gives an isomorphism:

H°(X,L(a))^H°(X,L(a)).
/

Complex conjugation gives a C-anti-linear isomorphism:

H^X.Ma^H^X.i^a)).
T

The composition; = / o T is a complex anti-linear automorphism of H° (X, L (a)) of order 4; it
gives this complex vector space a quaternionic structure. Hence h° (a) = 0 (mod 2). By the
Theorem of Riemann-Roch:

(*) /z°(a)-^(a)=l-^+deg(a),
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so to prove h1 (a) = 0 (mod 2) it suffices to show that deg (a) ̂  g — 1 (mod 2). To see this, take
a generator a for the quotient with deg (a) ̂ 2g—l. Then ^(^=0 and the desired
congruence follows from (*).

3. Real curves: topology

For any variety X over [R, let n (X) denote the number of non-trivial connected components
ofX(tR).

The real locus X((R) of a curve X of genus g consists of n(X) disjoint circles. The
complement of the real locus in the complex locus has either one or two connected
components [7]. Put a(X)=0 if X(IR) divides the complex locus, and a(X)=l if
X(C)—X(IR) remains connected.

n (X) =1
a ( X ) = 0

n (X) = 1
a ( X ) = 1

The quotient of X(C) by complex conjugation is a connected 2-manifold M with n(X)
boundary components. M has Euler characteristic (1 -g) and is orientable if and only if
a (X) = 0. From the classification of 2-manifolds we obtain the following restrictions on the
topological invariants n(X) and a(X).

PROPOSITION 3.1. - (1) 0^n(X)^+l.
(2) J/n(X)=0 thena{X)=l. Ifn(X)=g-^l then a(X)=0.
(3) J/a(X)=0 then n(X)==g+l (mod 2).
Klein proved that all pairs (n(X), a(X)) which are permitted by Proposition 3.1 actually

occur for some real curve X of genus g ([7], [8]).
Now recall the varieties SdX and Pic^X defined in paragraph 2. Put

W^ = Image (cp : S^ X -^ Pic^ X).

PROPOSITION 3.2. — (I):
Wn(X)W 2 ] / /v, V

^^ .?.(.?.)• •'a»•
(2) J/n(X)>0 then:

^(W^^X), ^0,

n(J)=n(PicdX)=2n(x )- l .

We thank Shimura for showing us the following simple argument.
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162 B. H. GROSS AND J. HARRIS

Proof. — (1) Let C\, ...,C^ be the distinct components of X(IR) and put
W = {( j ? , p) e X (C) x X (C)}. The connected set:

U(;\, . . . , i , ) = C , ^ x C ^ x . . . xC, xW5,

maps to SdX(R)ifd=r-}-2s. By the definition of S^ X, the totality of the sets LJQ'i, . . . , i,)
cover S^X^). There are some obvious intersections; for example the sets:

and:
C i X C ^ x C ^ x W 5

C ^ x W x W 5 ,

have the subset C^ xp^ xp^ xW5 in common. Taking this into account, we find that
^S^X) is the number of combinations (i\, . . . , Q of distinct indices from { 1 , 2 , . . . , d} with
Q^r^d and d—r=2s even.

(2) If n(X)>0, then by Proposition 2.2, PicW ==Pic(R). I claim that
W^ff^q^S^X^)). Indeed ifpeW^IR) we may choose a divisor a representing p with
a=a. Since ^°(a)^ 1 we may find fe R(X)* such that a+(div/) is effective and fixed by
complex conjugation. This gives a point in S^X^) mapping to p .

Since the map ̂ d :SdX (R) -> W4 (R) is a surjection, n (W^) ̂  n (S4 X). To prove equality
it suffices to show that the images of two distinct components of S^X^) cannot over-
lap. But if a and a' are two effective real divisors of degree d with (p^ (a) = (p4 (a'), then there is
a function / e R (X)* of degree e ̂  d with div (/) = a - a'. The function f^ : X (!R) -> P1 (R)
induces a continuous map:

F : P^-^XTO,

y-^/"1^).

Since P^ff^S1 is connected, the divisors b^'^O) and b^/'^oo) lie in the same
connected component of S6 X (tR). Hence a = b + c and a' = b' + c lie in the same component
of 3d X (R). This completes the proof that n(Wd)=n (S4 X).

Since n(X)^+l by Proposition 3.1, we have:

n(SdX)=n(Wd)=2"(x)-l for d^g.

Since W^Pic^ for d^g, this counts the number of components of Pic^ when d is
large. Since Pic4 is a (trivial) principal homogeneous space for the Jacobian, we have
^(.O^Pic4)^"^-1 for all d.

When n(X)=0 it is more difficult to compute ^W4), as PicW ^PicQR). However, the
number of components of Pic4 depends only on the parity of d and g .

PROPOSITION 3.3. — Assume n(X)==0.
(1) Ifg=Q (mod 2) then:

^(Pic^l, deZ.
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(2) Ifg==l (mod 2) then:

n^ic2^1)^ 1
n{])=n{Pic2d)=.l] e '

Proof. - By Part (1) of Proposition 3.2:

n(S2dX)=l,
n(S2d+lX)=Q.

If g is even, then Pic^W =Pic2d(R) by Proposition 2.2. Consequently,
n(^2d)=n(S2dX)=l for all d^Q. But W^Pic2' for 2 d^g, so Pic2' has one component
for d large. Since it is a (trivial) principal homogeneous space for the Jacobian,
n (J) = 1. Corollary 1.4 now implies that n (Pic') = 1 for all d, as any principal homogeneous
space for J is trivial.

If g is odd, then Pie2'-'1 (H^ =Pic2<i+l (R) by Proposition 2.2. Hence Pic2^1 QR) is
trivial for all d. On the other hand, n(S2dX)=l, so Pic2^^ is connected when
2 d > g . Hence J (R)^ is connected; since it has index 2 in J (1R) we must have n (J) ̂  2. But
the Jacobian cannot be connected, as it has a non-trivial principal homogeneous space
Pic1. Hence n (Pic2') = 2 for all d.

4. Packaging the topological data

We will show how Proposition 3.2 gives information on the 2-divisibility of an element in
Pic((R), and how the topological invariants n(X) and a(X) are stored in the Z/2-homology
ofX(C).

LEMMA 4 . 1 . — Iff e R (X)*, then div (/) = a has an even number of points on each component
ofXW.

Proof. - Restricting / to the component C^ gives a continuous map
fi: Ci -> P1 (R). Going around the loop C;, we see/; (t) changes sign precisely when we
cross a point of div (/) n C^ which occurs with odd multiplicity. Since the total number of
sign changes is even, this gives the Lemma.

For any divisor a fixed by G let:

c, (a) = Card { C, n a } (mod 2).

By Lemma 4.1 this is independent of the choice of representative a, and we obtain a
surjective homomorphism:

c : PK^H^ ^(Z/2)"^,

a ->( . . . , c , ( a ) , . . . ) .

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



164 B. H. GROSS AND J. HARRIS

PROPOSITION 4.2. - (1) Ifn (X) > 0, ker c = 2 Pic ((R). [A dass divisible by 2 m Pic (R) iff it
has an even number of points on each component of the real locus.]

(2) J/n(X)=0:

2PlcTO={p l c w + ; ^0 (mod2)-
^Pic^, ^=1 (mod 2).

Proof. - If n(X)==0 then the determination of 2 Pic (R) follows from Proposition 3.3.
Now assume n(X)>0, so Pic (^ =Pic(IR). Clearly ker c^2P ic (R) . Suppose

c(a)=0; then a has even degree I d . Let peX([R) and b=a-2 d{p}\ then beJ(R) and
c (b) E= 0. To show a is divisible by 2 it suffices to show b e J (IR)°; this follows from the proof
of Proposition 3.2.

COROLLARY 4.3 (compare [2]). — The canonical class k is divisible by 2 in Pic(IR).

Proof. — First we must check that k e Pic (IR^. Let/be a non-constant function in R (X)*
and let co = df. Then k = div (co) clearly lies in Pic (R) +. When g = 1 (mod 2) and n (X) = 0 k
lies in 2 Pic (^ as it has degree 2^ -2=0 (mod 4).

Now view o) as a complex (1,0) form on X (C): as such it gives rise to a meromorphic section
of the line bundle Hom^ (r, C), where T is the complex tangent bundle ofX(C). Let Q denote
the dual section of T; then Q is a meromorphic vector field on X (C), and by Proposition 4.2,
it suffices to show Q has even index on each component C^ of X(R).

Since CD is defined over R, the foliation determined by Q remains fixed under the action of
complex conjugation on X (C). In particular, for t e C^ the vector Q( is a real multiple QC( of
the tangent vector to C; at t. Passing a point of index m changes the sign of o^
by (—I)"1. Since the total number of sign changes must be even, Q has even index on C^.

We now show how the Z/2-homology of a real curve X neatly packages the topological
invariants n(X) and a(X). The vector space:

V-Hi(X(C),Z/2)=J(C),,
of dimension 2 g carries the additional structure of a symplectic space with involution. The
symplectic form e on V is given by the Well pairing [which in this case is the reduction of the
intersection pairing on H^ (X (C), T) modulo 2]. The involution T e Sp (V) is induced from
the action of complex conjugation on X(C).

Clearly the isomorphism class ofV(as a symplectic space with involution) is determined by
the conjugacy class of T in Sp (V). We can always find a symplectic basis for V with respect
to which the matrix of T takes the form:

-M. W=H
The isomorphism class of V is then determined by the class of H = ((^-)) as a symmetric
bilinear form over Z/2. The class ofHis known to be determined by the two invariants [6]:

rank (H),

d,>s(H)={° '.'•"-0 " • • •[1 otherwise.
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REAL ALGEBRAIC CURVES 165

The following proposition shows that the invariants n (X) and a (X) completely determine the
structure of V, and that conversely, the isomorphism class of V determines n (X) and a (X) (if
X has a real point).

PROPOSITION 4.4:
(1) J /n(X)>0 then:

(2) J /n(X)=0 then:

rank(H)+n(X)=^+l ,

diag(H)=a(X).

rank(H)=2[^/2L
diag(H)=0.

Proof. - Since JW^V^^Z^)2^111^, we have n(J)=20-rank(H) by Proposition
1.1. On the other hand:

CT^-^ ^(X)>0,
n(J)= ^ 1, n(X)=0, ^=0 (mod 2),

[2, n(X)=0, g=\ (mod 2).

by Proposition 3.2 and 3.3. This gives the desired formula for rank (H). Now consider
the linear form:

/: V^Z/2,

v -> e(v, v^).

Clearly diag (H) = 0 if and only if/is identically zero. Let c^ denote the class of the real locus
X(R) in V=Hi (X(C), Z/2); I claim we have the formula:

(*) f(v)=e(c^v) for all ceV.

This will complete the proof, as e is non-degenerate and Cx==0 iff X(R)=0 or
a(X)==0. [X(R) divides X(C) into 2 components.] To prove (*), represent v and c^ by
cycles A and X so that A, X, and AT meet transversally. Let E denote the intersection
pairing on H^ (X(C), Z); then e is obtained by reducing E (mod 2). Consequently:

e (i;, i;') = E (A, A') (mod 2)

^Card^eAnA'}

^Card^eAnA' .peXOR^+Card^eAnA^^X^)}
=Card { p e A n A \ p e X ( R ) } (mod 2)

=Card { p e X ( [ R ) n A }

=E(X,A)=^(cx , iQ (mod 2).

Note. — The non-singular bilinear form of rank (H) determined by V is the intersection
form of the compact surface M obtained from M = X ( C ) / < T > by glueing n(X) discs to the
boundary.
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166 B. H. GROSS AND J. HARRIS

5. Real theta-characteristics

We begin with a brief review of the complex theory ([2], [11]). Let X be a complex curve of
genus g and S the set of its theta-characteristics:

S^aePic^-^C) : 2a=x} .

The set S is a principal homogeneous space for V=J(C)2 and has cardinality I29.
Each aeS gives rise to a map:

^V ->Z/2,
y -, h° (a + v) - h° (a) (mod 2),

which is a quadratic refinement of the Well pairing e : V x V -> 02. More precisely, after
identifying u^ with Z/2 we have the formula:

e (v, w) = ̂  (v + w) - ̂ (u) - ̂  (^)-

I f < X i , . . . , x ; ^ i , . . . , ^ > i s a symplectic basis for V and q is any quadratic refinement of e
with values in Z/2, define the invariant:

Arf(^)= tq(x,)q{y,).
i = = l

This invariant is independent of the basis chosen; for q=q^ we have the formula:

Arf(^)E=/i°(a) (mod 2).

We say a is even or odd if /i°(a) is even or odd respectively.
The parity of ^°(a) is a topological invariant which remains unchanged under analytic

deformations o fX [11]. Thurston has shown us a simple topological description of the
map q^ Let co be a meromorphic differential on X with div (co) = 2. a and let Q be the dual
vector field, defined as in the proof of Corollary 4.3. Represent v e V = H i (X (C), Z /2) by a
simple closed curve C which does not pass through any of the singularities of Q. The
turning number Wc(0) of Q around C is then well-defined (up to sign) and:

(*) ^0;)=EWc(Q)+l (mod 2).

To prove this formula, one first checks that the right-hand side is independent of the curve C
representing v. Indeed, if C — C' = 8M where M is an oriented 2-manifold with boundary,
then:

Z (M) = Index^M ̂  + We (0) - W^ (0).

Since both the Euler characteristic of M and index of 0 are even, the right-hand side of (*)
depends only on v.

46 SERIE - TOME 14 - 1981 - N° 2



REAL ALGEBRAIC CURVES 167

More generally, if C is any curve on X(C) representing the class v, we may define:

p, (i;) = We (0) + C. C + n (C) (mod 2),

where n(C) is the number of components and C.C is the self-intersection number
of C. Again the right-hand side is independent of the curve chosen. Clearly p^ gives a
quadratic refinement of the intersection pairing (mod 2), as Wc(0) and n(C) are both
additive. To prove (*) one checks that pa=<?a when X is hyper-elliptic; this is a purely
combinatorial question (see § 6). Next one observes that both p^ and q^ are invariant under
analytic deformation of X; since the moduli space of complex curves of genus g is connected,
this gives the equality p^ = q^ for any X. Similarly, using hyperelliptic curves, one can obtain
the count:

Card S^^l9-1 (2^+1),
Card S0^ I9 ~1 (2^-1).

Now assume that the curve X is defined over R and put:

S([R)=SnPic f f- l([R).

We have already seen that S(IR) is non-empty (Corollary 4.3); since it is a principal
homogeneous space for J((R)2 we find:

Card S (R) = Card J (R)^ =2g+d where n (J) = 2<

This number depends only on g and n (X). The number of real characteristics of each parity
depends on the further invariant a(X).

PROPOSITION 5.1.- Assume n(])=2d and let c^ denote the class ofX(R) in V=Hi (X(C),

f Card S(R)even=2ff- l (2^+1),
I) C x = 0 then ^ ̂ ^ ̂  (R)odd^-1 (2^-1).

[Card S([R)even=20-l(2d),
If c^Q then {cardSW0-^-^).

Note. - (1) If n (X) > 0 then d = n (X) -1 and a (X) = 0 iff Cx = 0. Proposition 5.1 may be
restated as follows:

Card S (R)^ = I9 ~1 (2"00-1 +1 - a (X));
Card S W = I 9 - ' (2"(x)-l -1 + a (X)).

(2) If n(X)=0 then Cx=0 and Proposition 5.1 may be restated as follows:

CardSd^r-P-29"1' 00dd>
[ 29, gewn.

CardSdT'1^29"1' godd'[ 0, g even.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



168 B. H. GROSS AND J. HARRIS

Put STO^STOnPic'7"1^; this is a principal homogeneous space for JW ^(Z/2)0

which is trivial iff^f is odd [2]. Consequently:

CardSTO-{29 ' 00dd'
[0, ^ even.

Card(S(R)-S([R)+)=20.

By Proposition 2.2, every aeS^—S^'^ is even; also notice that the quotient
Pic (R)/ Pic (R)'1" is always generated by an even theta-characteristic !

Proof of 5.1. — Consider the I9 orbits ofJ((R)^ on the set S. These orbits are indexed by
the linear forms/: J (R)^ -> Z/2. Indeed, the subspace J (IR)^ is maximal isotropic for e, so
for any a e S the map/ = q^ J (R)^ -> Z/2 is linear. Furthermore, the form/depends only
on the orbit of a under J(IR)^; call this orbit S j-.

From the formula h° (a + v) = h° (a) + ̂  (v) we can deduce that Card 87"= Card
^o^d^yi ̂ e^y ̂  o. Similarly, when/ = 0 all the elements of So have the same parity; in
fact they are all even as S contains more even theta-characteristics than odd. Since S ((R) is
the union of 2^ such orbits, we have:

CardS^-P"^2^ if ^"^CardS W -^ ^_,^ ^ So^SW.

To complete the proof we must show So is real if and only if Cx=0.
Take aeSo and let l ;o=aT—a in V. Then:

e (VQ, v) = ̂  (VQ + v) - q^ (v^) - q^ (v)

^^(a+^o+^+^^a+^+^^+^+^^a)

= h° (a' + v) + h° (a') + h° (a + v) + h° (a).
Since h° (b) = h° {V) for any class b:

e (vo, v) = h° (a + ̂  + h° (a + v) = q, v^) + ̂  (i;).

By the proof of 1.1, y+i^e.HR)^. Since aeSo we must have q^(v-{-vx)=0. Hence:

e (VQ, v) = q^ (v + y1) - q^ (v) — q^ (v^) = e (v, v " ) = e (c^, y) by Proposition 4.4.

Since ^ is non-degenerate, VQ=C^ in V. Consequently a=aT if and only if Cx=0.
Finally, we wish to discuss the components in the real locus of 9 = W9"1 for a curve with

n(X)>0. Proposition 3.2 gives the formulas:

n(Q)=n(Picg~l) if 0<n(X)<^+l ,
^^(Pic^-1)-! if n (X)=^+l .

More precisely, the components of Pie0"1 (R) correspond to the fibres of the map:

c : Pic^TO-^Z^y1^,
a-^(. . . , c,(a), . . . )
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defined in paragraph 4. This map is not surjective: its image consists of all n (X)-tuples with
n(X)

^ Ci=g-l(mod 2). When 0<n(X)<^+l each component of Pic0"1 (R) contains exactly
1 = 1
one component of9(R); when n(X)=g-\-l each component of Pic^^tR) contains one
component of 9 (IRQ except for the component c~1 (1, 1, . . . , 1), which contains no effective
divisors. In all cases, each component of Pic^"1^) contains exactly 29 real theta-
characteristics.

Now suppose n (X) < g +1 but X (R} divides X (C) into 2 components. By Proposition 5.1
there is exactly one component U of 9 (IR) with no odd theta-characteristics. We can identify
U using the following.

PROPOSITION 5.2. - c(U)=(l, 1, . . . , 1).

Proof. - Assume a e S (R) has odd multiplicity on each component T^ ofX(R). We must
show /i°(a)=Arf(^)==0.

Let v, denote the class of Q in V = Hi (X (C), Z/2). Then ̂  (^) = c, (a) +1. Indeed, by
Thurston's formula for q^ we must show that c, (a) = w^ (Q) (mod 2), where Q is the vector field
dual to the differential co with divisor 2 a. This is clear, as Q 1^ is always a real multiple of
the tangent field.

Now assume X(IR) divides X(C) and let k=(g-{-1 -n(X))/2. Choose a symplectic basis
for V of the form:

( v ! ^ • • - 5 ^ ( x ) _ i , X i , ...,Xj,,x\, . . . , x ^ ; W i , . . . , M^(X)_I , }/'i, . . . , y\, y\, . . . , }^> .

Then

Since:

"(X)-l k k

Arf(^)= ^ ^(^)^(^)+Z^(^)^(^-)+S^aW)^^
i'=l i=l i = l

<?a(^)=^a(^) and q^(yi)=q^(y]),
n(X)-l

^0^)= Z ^a(^)<?a(^)-

But when c, (a) = 1 we must have ^ [v^ = 0. Hence Arf (^) = 0.

COROLLARY 5.3. - X (R) divides X (C) if and only ifn (X) > 0, n (X) = g + 1 (mod 2), and the
component c~1 (1, 1, 1, . . ., 1) in Pic^'^tR) contains no odd theta-characteristics.
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6. Real hyper-elliptic curves

A curve X over C of genus g ' ^ 2 is hyper-elliptic if the canonical map
X -. P (H° (X, L (k))) = P9-1 is 2-to-l onto a rational normal curve Y of degree g -1 [3]. If

7T

PY is any point on Y (C), the divisor n ~1 (p^) gives a representative for a class d in Pic2 (C) with
/!°(d)=2. The properties deg (d) = h° (d) = 2 completely characterize d, and the map
X -> P (H° (X, L (d))) is a 2-sheeted cover of P1 ramified at 2 g + 2 points. Without loss of
generality, we may assume the branch points { p ^ , . . . , p^g + 2 } lie in the finite plane, and X is
given by the equation:

2g+2^= n (x-pi)•1=1
The theta-characteristics on X are easy to describe [11]. Any semi-canonical class may be

represented by a divisor of the form:

a=(m-l)d+e,

where d is described above, 0 ̂  m ̂  [(g +1)/2] and e is a formal sum of elements in a subset E
of the (2^+2) branch points. Clearly Card(E)=^+l—2m; this representation of a is
unique except when m = 0, in which case the subset E may be replaced by its complement. In
any case we have the formula:

/i°(a)=m,

the linear series |a| having (when m>0) the divisor e as fixed part.
Using this description of the characteristics, and the fact that the differential:

^n^-p.)'
y P.-eE

has divisor 2 a, it is an easy exercise to verify Thurston's formula q^ (v) = w^ (Q) +1 (mod 2) on
complex hyper-elliptic curves.

Now suppose X is a hyper-elliptic curve which is defined over [R.

PROPOSITION (6.1. - (1) dePic^R).
(2) If X((R)=^0 or g is even, X may be represented as a 2-sheeted cover of P1 over R.
Proof. - Since h° (d') = h° (d) and deg (d') = deg (d) we must have d^d. Hence

dePic2^). I fX( (R)^0or^=0 (mod 2), then Pic^G^Pic2^)'^ and d corresponds to a
line-bundle L on X which is defined over R. The map X -> P (H° (X, L)) = P1 is the desired
cover. Alternatively, the canonical map is 2-to-l onto a rational curve Y of degree g — 1; if
Y([R)^0 then Y^P1 over R.

When g ̂  3 is odd and X ((R) = 0, the curve Y may be isomorphic to either P1 or the conic
N^i^+^-l}. Since d-Tr'^py) we find.
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PROPOSITION 6.2. — If g is odd and X(tR)=0 then one of the following occurs:
(1) dePic^R)"^ and X may be represented as a 2-sheeted cover of P1 over R.
(2) d^Pic^ff^ and X may be represented as a 2-sheeted cover of N over R.
In all cases but (2) of 6.2, the curve X is given by the real equation:

y2=f(x), deg/=2^+2.

In case (2), X is given by the pair of equations:

u2+v2=-l,
y2=f{u, v), deg/=^+l.

The fact that the curve X is hyper-elliptic puts surprisingly strong restrictions on the pair
(n (X), a (X)) of its topological invariants. Recall that a (X) = 0 iff X (tR) divides X (C) into 2
components.

PROPOSITION 6.3. — Let X be a real hyper-elliptic curve with a(X)=0. Then one of the
following occurs.

(1) n(X)=^+l.

f2)nOO-J lif^=o(mod2)'
^^-[lifg^KmodI).

Note. — This result shows that entire components of the real moduli contain no hyper-
elliptic curves once g^4 (see §9).

Proof. — Assume a (X) = 0 and X is given by the equation y2=f (x). If/ (x) has a non-real
root p , we can connect the points (x, y) and (x, —y) on X(C)-X(IR) by lifting a loop on
P1 (C) — P1 (U) based at x and winding once around either p or p (but around no other branch
point). If/(x) has a real root, we can connect the point (u, v) to either (x, y) or (x, —y) on
X(C)-X(R) by lifting a path from u to x on ̂ ^-{ze^ W:f(z)^0}.

The assumption that a (X) = 0 therefore implies that either all or none of the roots of/(x) are
real.

If all the roots of/(x) are real, then n(X)=g+1 and the two branches of y disconnect
X (C) - X (R). If none of the roots of / (x) are real, the two components of X (C) - X (1R) are
given by Imx>0 and Imx<0. In the latter case, X(IR) is an unramified double cover of
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P1 (IR)^S1 which may be either trivial (disconnected) or non-trivial (connected). The two
cases are distinguished by the parity of^ :X(IR) is always a submanifold of the total space of
the bundle ^pi (^+ 1)(IR). This is a cylinder when g is odd and a Moebius strip where g is
even.

0
g= 1 (mod2) g= 0 (mod2)

One can also attack 6.3 by counting real theta characteristics on X and using Proposition
5.1. For example, assume X is given by the equation y2 =/(x) where / has degree 2^+2
with 2 n > 0 real roots. Then n (X) == n and the theta-characteristic a = (m -1) d + e is real if
and only if E^E. Hence E will consist of k pairs of conjugate branch points and
^ +1 — 2 m — 2k real branch points. Of the:

1 g+-n[g^l-n\f2g-}-2-2n\

2 A) \ k ) [ g - ^ l - 2 k )
K._)^._-.^i_,y ,^_,, ^

.-i VA) \ k )\g+l-2m-2k)}

real theta-characteristics on X, exactly 2g+n~2 will be even when n<g-{-1, and 2fi'-l (2<?+1)
will be even when n=g-}-1. This shows that X(R) can only disconnect X(C) in the latter
case.

7. Real plane curves

In this section we assume X is a smooth real plane curve of degree d. The genus of X is
given by the formula g = ((d -1) (d - 2))/2. Restricting the hyperplane bundle (9^ (1) to X
gives a divisor class b e Pic^ (d^ with h° (b) = 3, the divisor {d - 3) b is equal to the canonical

class kx. Since the embedding X c> P2 is projectively normal, h°(nh)=[ ] for

n<d[3].
The real locus X(IR) consists of n(X) disjoint circles; Harnack proved that all possible

values l^n(X)^+l are actually attained ([I], [7]). Call a circle S1 -> P2^) an outfit is
homotopic to zero in P^tR) and a pseudo-line if it represents the non-trivial class in
Tii (P2 (R)). When d is even all of the components ofX(IR) are ovals in P2 (IR); when d is odd
exactly one component is a pseudo-line. Indeed, the number of components not homotopic
to zero must be congruent to d (mod 2), and no two components can intersect. Each oval C;
in X (R) disconnects P2 (R): the two components of the complement being homeomorphic to
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a disc and a moebius strip. We call the disc the interior of C; and say that two components
are nested if one lies in the interior of the other.

The nesting of ovals on real plane curves has been extensively studied ([I], [18]). Here we
make some remarks relating the nesting of X([R)c^ P2^) to the topological type of
X(IR) ̂  X(C). First note that plane curves do not exhaust the possible topological types.

PROPOSITION 7.1. - If d=5 (mod 8) and n(X)=l , then:

a (X) = 1 [X (R) does not divide X (C)].

Proof. - If d = 5 (mod 8) then g = 0 (mod 2). A curve with n (X) = 1 will have a (X) = 1 if
and only if it has a real odd theta-characteristic (Proposition 4.1). But a = ({d — 3)/2). b is
clearly a real theta-characteristic and h°(a)=(d2-1)/2=1 (mod 2).

We now consider plane curves of degree d^5 in more detail:
d= 1, X is a line and g=0. There is only one possibility:

n(X)=l , a(X)=0, X^P1 .

d=2, X is a conic and g=Q. There are two possiblities:

n(X)=0, a(X)=l, X^N,
n(X)=l , a(X)=0, X^P1.

d=3, X is an elliptic curve and g=l. There are two possible configurations:

n(X)=l , a(X)=l, A<0,
n(X)=2, a(X)=0, A>0.

where A = g\ — 27 gj, is the discriminant of any Weierstrass model y2 = 4 x3 — g^ x — g^ for X.
d=4, X is a plane quartic, which is the canonical model of any non-elliptic curve of genus

^-3.

An effective complex divisor ^~={p^-\-{p^) will be semi-canonical iff the line p^ p^ is
bitangent to X at p^ and p ^ . Since no divisor a of degree 2 has /i°(a)^2, the odd theta-
characteristics on X are in one-to-one correspondence with the 24 bitangent lines to X (C) in
P^C).

The real bitangent lines are related to the nesting of ovals on P2^) by the following:

LEMMA 7.2. — If Ci and C^ are two components of X (IR), there is a line L c= P2 (IR) which is
tangent to each if and only if C\ and C^ are not nested.

Proof. — We can define an involution g : C^ x C^ -> C\ x C^ as follows. For every pair of
points pi eC^ and p^eC^ the line p^ p^ meets X(R) in two additional points q^ eC^ and
q^eC^. Define g ( ( p ^ , P2))=((ll^ ^2)- Then bitangent lines correspond to fixed points of
the involution g , which we will compute using the Lefschetz fixed point formula.

Since g is the pull-back, via the natural embedding C\ x C^ —> Pic^(tR), of the involution
a - > k x — a , we see that g^ acts as — 1 on the tangent space to C\ xC^ at each fixed
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point. Hence g will have a fixed point iff its Lefschetz number / (g) is non-zero. By the fixed
point formula:

l(g)= i ( - iyTr(^ |H,(CiXC,,Z))=det( l-^ |H,(CiXC,,Z)) .
1=0

Hence l(g) =^0 iff g^ acts as the scalar — 1 on H^C^xC^,^ . This will occur iff
Tr(6fJHi(Ci xC^, T))= -2 in which case 4e0=4.

To compute the trace on first homology, let T|; be the 1-cycle obtained by holding fixed a
point p^Cj with j^i. The cycles r^ and r\^ form a basis of H^(Ci xC^, Z), and the
coefficient of r^ in 6^(r^) is given by the degree of the involution on C, obtained by
interchanging points on C^ collinear with p . This degree is clearly — 1 when p is exterior to
Ci and +1 when p is interior. Hence the trace ofg^ is 0 if the ovals are nested and — 2 if they
are mutually exterior. In the latter case l{g) -^ 0 and there are 4 bitangent lines between C^
and C^.

We can now enumerate the possible configurations of real plane quartics. Note that
nesting of ovals can only occur when n (X) = 2, by Bezout's Theorem. This is also the only
case where n(X) does not a priori determine a(X). In fact, we have the following possible
configurations:

# real
n (X) position of ovals a (X) bitangents

0. . . . . . . . . . . . . - 1 4
1. . . . . . . . . . . . . - 1 4
2. . . . . . . . . . . . . .nested 0 4
2. . . . . . . . . . . . . non-nested 1 8
3. . . . . . . . . . . . . - 1 16
4. . . . . . . . . . . . . - 0 28

Indeed, when n(X)=2 we have a(X)=0 if only if the component c'^l, 1) of Pic^(IR)
contains no odd theta-characteristics (Proposition 5.3). This means there are no bitangent
lines connecting C^ and C^, which by 7.2, occurs if and only if C^ and C^ are nested.

The fact that no component of Pic^ (R) can contain more than 4 odd theta-characteristics
shows that the total number of lines bitangent to a single component of X(IR) is at
most 4. This affords a simple proof of a classical Theorem of Zeuthen.

PROPOSITION 7.3. — Of the 24 complex Weierstrass points on a real non-hyper-elliptic curve
of genus 3, no more than 8 may be real.

Proof. — The Weierstrass points on X are exactly the inflectionary points in the canonical
model. IfCis any component ofX(IR), the number of flexes on C is exactly twice the number
of lines bitangent to C. To see this, give C an orientation. At any point p of C other than a
flex or point of contact with a bitangent line, the tangent line to C at p meets C residually in:

(1) no points;
(2) 2 points in the positive half of the tangent line;
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(3) 2 points, one in each half of the tangent line;
(4) 2 points in the negative half of the tangent line.

As p moves around C, the disposition of this residual intersection changes from (1) to (2) at the
first point of contact with a bitangent, from (2) to (3) or (3) to (4) at an ordinary flex, and from
(4) to (1) at the second point of contact with a bitangent.

Hence there are exactly two Hexes between each pair of bitangent points of contact. Since
there are at most 4 pairs of bitangent points, this gives the Lemma. Note that a hyperflex
occurs in the interior of an interval of type (1) and counts as two flexes and one pair of
bitangents.

d=5, X is a plane quintic and has genus g=6. The canonical series on X is cut out
(completely) by the conies in the plane.

There is one distinguished odd theta-characteristic b with h° (b) = 3 which is cut out by lines
in P2; the odd th ta-characteristics other than b correspond in a one-to-one manner to the
quinti-tangent conies to X.

When n (X) = 1 we must have a (X) = 1 by 7.1. Similarly, a (X) = 1 when n (X) = 2, 4, 6 and
a(X)=0 when n(X)=7. Only the cases n(X)=3, 5 are ambiguous.

When n(X)=3 the 2 ovals of X(IR) may be nested or not. In the nested case
a(X)=0. Indeed no quinti-tangent real conic can meet each component ofX(IR) once, so
the component c'^l, 1, 1) of Pic^(IR) contains no odd theta-characteristics and we may
apply 5.3. In the non-nested case, we suspect that a (X) is always 1 but have no proof. One
can construct examples with a(X)= 1 as follows. Take a real quartic Y with 2 non-nested
components plus a real line L with L (R) disjoint from Y (R). Since Y (C) — Y (R) is connected
and the 4 points of Y n L come in complex conjugate pairs, the singular quintic Y. L is also
not disconnected by its real locus. The same will hold for a small deformation X of Y. L
(which is smooth) as the singular points are all complex.
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When n (X) = 5 there can be no nesting of ovals (by Bezoufs Theorem). Although there
are no apparent topological distinctions among real plane quintics with 5 components, we
shall see that both cases a(X)=0 and a(X)=l actually occur! As usual , we must check
whether the component c'^l, 1, 1, 1, 1) in Pic^(IR) contains odd theta-charactci-istics: i . e . ,
whether there are quinti-tangent conies which meet each component ofX((R) once.

Consider the involution g : C^ x . . . x €5 -> C^ x . . . x €5 which sends a divisor
^ = ( P i ) ^ - " - + ( p 5 } to the divisor (<^)+ . . . +(^)-kx-a, where the q, are the residual
intersection of a conic through pi, . . ., p5withX(IR). This conic is unique, as no four of the
pi are collinear. As in the quartic case, we find:

a(X)=l <=> g has a fixed point o /(^)^0,

where l{g)=dei(l -g^ \ H^ (C\ x . . . x €5, Z) is the Lefschetz number.

Let €5 denote the pseudo-line in X(IR) and for i= 1, 2, . . ., 5 let T|, denote the class of
pi x . . . x Q x . . . x ^5 in Hi (Ci x . . . x €5, Z). By arguments similar to Lemma 7.2, the
coefficient ofr|, in g^ (r|,) is -1 for f = 1, 2, 3, 4. The key to the situation is the coefficient of
r|5 in ^(ris); this is precisely the degree of the involution / on €5 interchanging the points
lying on a conic through the four points ̂ .eC^f=l , 2, 3, 4. The degree of/will be +1 and
the Lefschetz number I (g) will be 0 precisely when / has no fixed points: i.e., when no conic in
the pencil through j^, . . ., p^ is tangent to €5. As the same topological considerations
apply if we replace €5 by a homologous line (which we call the line at infinity), we have
established the criterion:

l(g)=Q <=> the pencil of conies through j?i, p^ Ps. ?4 contains no parabolas.

But a pencil of conies through 4 points in the finite real plane will consist entirely of
hyperbolas if and only if cone of the four points lies inside the triangle with vertices at the
remaining three. In general, the three lines p^ p ^ , p^ ^3, and p^ p^ divide P2^) into 4
regions, of which exactly 3 are not met by the pseudo-line €5. We say €4 is surrounded by
Ci, C^ and €3 if €4 lies in the remaining region of P2^). Since no line meets 3 of the
components C^, . . . , €4 this condition does not depend on the choice ofj^ e C;, and we have
proved:

LEMMA 7.4. — If X is a real plane quintic with n (X) = 5, then a (X) = 1 if and only if none of
the ovals C^, . . . , €4 is surrounded by the other three.

We point out that both a (X) == 0 and a (X) = 1 actually occur among quintics with 5
components. Start with a plane quartic Y with four components, which may be obtained by
deforming slightly the sum E. F of two ellipses meeting in 4 points. Now add a line L with
L(tR) disjoint from Y(R); if we vary the coefficients of the singular quintic Y. L slightly we
obtain a smooth curve X with 5 components, where €5 corresponds to L. IfLis positioned
as Lo in the picture, then C\, C^ and €3 will surround €4 and a (X) =0. If L is positioned as
Li then no bounded component surrounds another and ^(X)=l.
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c~)
(?

To summarize, the list of possible configurations for plane quintics is as follows:

n{X) position of ovals a{X} cardS(R)odd

1 . . . . . . . . . . . . . - 1 32
2. . . . . . . . . . . . . - 1 64
3. . . . . . . . . . . . . nested 0 96
3. . . . . . . . . . . . . non-nested 1 128

(0) (96)??
4. . . . . . . . . . . . . - 1 256
5. . . . . . . . . . . . . surrounded oval O 480
5. . . . . . . . . . . . . no surrounded oval 1 512
6. . . . . . . . . . . . . - 1 1024
7. . . . . . . . . . . . . - 0 2016

Note. — What are the restrictions on the pair (n(X), fl(X)) when the curve X has a non-
singular real plane model of degree ^? For example, can X(R) disconnect X(C) when
n(X)<[(^+l)/2]? We can construct examples which disconnect when n(X)=[(^+1)/2]:
when d is even take a small deformation ofn(X) concentric circles in the finite plane, when d is
odd take a deformation of n ( X ) — l concentric circles and the line at infinity.

8. Real trigonal curves

A non-hyperelliptic complex curve X of genus g ^ 4 is trigonal if there is a divisor class
aePic^(C) with /i°(a)=2. The map X -^ P(H°(X, L(a))) then exhibits X as a 3-sheeted

n

cover of P1. When g ^ 5 the two properties deg (a) = 3 and h° (a) = 2 uniquely determine the
trigonal class; when g=4 a non-hyperelliptic curve will have either 1 or 2 trigonal classes.

The intersection of all quadrics in P0"1 containing the canonical model of a trigonal
curve X is a rational normal scroll Y. Each line of Y meets X in exactly 3 points: the
rulings cut out the trigonal series. As an abstract complex variety, Y is a
P ̂ bundle F^ = P (0^ © (9^ (k)) -^ P1. The integer k satisfies the congruence
k = g (mod 2); for a generic trigonal curve k ^ 1 [3].
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Now assume that X is trigonal and defined over IRL When g ^ 5 the class a is unique, so
a ePic3 (R). Similarly, the scroll Y is always real; when g ^ 5 its unique ruling is also
real. We have the following possiblities.

IfY(tR)=(Z) then X has no real points. Since deg (a) = 1 (mod 2) the class a cannot lie in
Pic3 (IR)^ so g == 0 (mod 2). Furthermore, Y ^ F^ over C with k == g+2 (mod 4). We
can construct pointless trigonal curves of any even genus g ^ 4 as follows. If g = 2 (2 m — 1)
take a curve of type (3,2m) on Y= P1 x N, where N = { u 2 +u 2 = -1}. If^=4mtake three
times the section at oo in the P1 bundle P (^ ®^N (2)) -> N P11^ (2m+4) fibres.

Now assume Y (R) ̂  0 and ̂  5. Since every real line ofY meets X (C) in 3 points, at least
one of which is real, X also has real points. Furthermore, Y is a real P^bundle over P1, so
Y(IR) is either a torus (g even) or a Klein bottle (g odd). Hence we have established.

PROPOSITION 8 . 1 . — Let X be a real trigonal curve of genus g ̂  5 which lies on the rational
normal scroll Y ̂  P^"1. Then either:

(1) Y(R)=0:
g=Q (mod 2),

n(X)==0,

Y(C)^Ffc(C) with k=g+2 (mod 4).

(2) YW^S^S^
g=0 (mod 2),

n(X)>0,

Y (C) ̂  Ffc (C) with k = 0 (mod 2).

(3) Y(R)^ Klein bottle :
<7=1 (modi),

n(X)>0,

Y(C)^FJC) with ^c=l (mod 2).

When X has genus 4, its canonical model lies on a unique real quadric Yc P3. If Y is
singular its ruling is unique and hence real. IfY is non-singular (which is the generic case) it
has two rulings. If these rulings are both real, Y ̂  P1 x P1 and Y (IR) is a hyperboloid; if they
are switched by complex conjugation, Yc±:R^(P1) and Y(R) is a sphere. By studying
degenerations of curves on Y and on P2 (where X may be viewed as a plane quintic with
2 nodes), we can show that all topological pairs (n(X), a(X)) occur for trigonal curves X of
genus 4 on the hyperboloid, and all pairs with the possible exception of n(X)= 1, a(X)==0
occur for curves on the sphere. As in the case of plane curves, the invariant a(X) is often
determined by the configuration of the locus X((R)cY((R). For example, if n(X)=3 and
Y((R) is a sphere, we find:

a(X)=loevery 2 components of X(IR) lie in the same connected component of the
complement of the third in Y(IR).

a(X)=Ooone component ofX(R) separates the remaining two on Y(1R).
The proof uses (5.3) and the Lefschetz fixed-point formula.
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We now consider trigonal curves X of genus g ̂  5 with n (X) > 0 in more detail. Since the
trigonal class a lies in Pic3 (^, it corresponds to a real cover X -> P1 of degree 3. Hence

X(R) has an odd number of components having odd degree over P1 (R). We can separate
into the following four cases:

(1) X(R) has 1 component of degree 3 over P^tR).
(2) X(R) has 3 components of degree 1 over P1 (P).
(3) X ((R) has 1 component of degree 1; 1 component of degree 2 over P1 (IR).
(4) X (R) has 1 component Ci of degree 1; n(X)-1 components of degree 0 over P1 (IR).

In the first three cases X (R) = n ~1 (P1 (tR)) c X (C) and a (X) = 0. Hence g must be even in
cases (1) and (2), and g must be odd in Case (3). By degenerating curves on Y, we can prove
these cases indeed occur.

We know much less about the general Case (4). For example, are all values
1 ̂ n(X)^+1 possible? Even for trigonal curves of a fixed topological type, there is a
further discrete invariant to consider: the class of the distinguished component C^ ofX(R) in
the homology of the real scroll Y(tR). When g is even, we may find a basis of
Hi (Y(R), Z) ̂  Z©Z by taking cycles corresponding to the ruling of Y and a hyperplane
section. The class of C^ then has type (1, a). To see that a may vary, start with a trigonal
curve X' of genus ̂ - 2 o n y = P l x P l . Add a fibre to X' and deform to a smooth trigonal
curve X of genus g . Then a (X) = a (Y) +1 or a (X) == a (Y) -1, depending on the direction of
deformation. Hence the moduli of trigonal curves with fixed g , n (X), and a (X) need not be
connected (compare 9).

9 Real moduli

Let J be a principally polarized abelian variety of dimension g over R. The polarization
induces a unimodular alternating pairing on T(J)=Hi (J(C), Z):

E : T(J)xT(J)^(l),

which is equivariant for the action of Gal(C/(R). The fixed space T^ has rank g and is
maximal isotropic for E; furthermore the pairing:

(9.1)
T(J)4-®[R x H° (J, Q^IR)-^ (R,

f
(m, co) \—> co

is non-degenerate.
Fix a basis < m i , . . . , m ^ > for T^ and extend this to a symplectic basis

<mi , . . . , nig; HI, . . . , n^> for T(J). With respect to this basis, the matrix for complex
conjugation on T(J) has the form:

(9.2) 1 = 1 " H ) where H^H.
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If we change basis by a symplectic automorphism oc which fixes Tf^ we find:

———'C"^) -^B) °-B.

---(; A!"') •' "-(: ;,).

Hence, without loss of generality, we may assume that T has the form (9.2) where H is a fixed
lift to Z of one of the inequivalent symmetric bilinear forms over Z/2 described on Page
14. The basis < m^, . . . , my, «i, . . . , Hg) is the then uniquely determined up to the action
of the group:

r H = { A 6 G L ( 0 , Z ) : A H A ' = H } Sp(2g, Z),

A ( ^ ° \
^(o A-.}

Now let < ©i, .. ., o)^> be the basis of H°(A, Q1/^) which is dual to < m^, . . ., m^>
under the pairing (9.1). The complex g x g matrix:

is symmetric, with imaginary part Y positive definite. A different choice of basis for T(J)
gives the matrix: .

Z^-H+fY' where Y^AYA^, AeFn.

Hence J determines a point in the quotient of the cone ̂  = {(1 /2) H + i Y : Y 0} in Siegel
upper half-space by the discrete subgroup F^ in Sp(2g, T). Conversely, using Weil's
criterion [17], it is easy to show that any point in the cone ̂  represents the period matrix of a
principally polarized abelian variety over R. Fixing lifts H^ of the inequivalent symmetric
bilinear forms on a vector space of dimension g over Z/2, we obtain the following (compare
Shimura [14]).

PROPOSITION 9 . 3 . — The set of isomorphism classes of principally polarized abelian varieties
of dimension g over (R is in one-to-one correspondence with the points of the real-analytic space
of dimension g over R is in one-to-one correspondence with the points of the real-analytic
space .<=U^H../rH,.

i

Note. — The number of components of ^/g is (3 g +1)/2 if g is odd and (3 g + 2)/2 if g is
even; each component has real dimension g (g +1)/2, and two varieties J and J' lie in the same
component if H^ (J (C), Z/2) ̂  H^ (J' (C), Z/2) as symplectic spaces with involutions. The
individual components are themselves quite interesting. If n (J) = 29 we may take H = 0 and
FH=GL(^, Z); the moduli of such varieties is the classical space of lattices:

^H/FH-O^) \GL(^, U)/GL(g, Z).

At the other extreme, if n(A)=l and H=I^ the group r^nis finite of order 2^(g!).
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The space j^ has a natural involution a which may be described as follows. The real
forms of a principally polarized abelian variety J over R are classified by elements of the set
H1 (Gal (C/^), Autc (J)) [17]. The assignment T \-> - Ij is a one-cocycle on Gal (C/tR) with
values in Aut^(J), we denote the corresponding real form of J by J*. Then
J*(R)={peJ (C) : p'= - p ] , and J* is [R-isomorphic to J iff (?'=-(? for some
(p E Aut^ (J). Generically Aut^ (J) = < + 1 >, so J and J* represent the two distinct real forms
ofJ.

The map J -> J* induces an involution a of^, and even an involution of each component
^H/^H- To see that J and J* lie in the same component, notice that T*= — T , so both
complex conjugations have the same action on H^ (J (C), Z/2). For example, when n (J) = I9

we may take H=0, and the involution a on ̂  is given by fYl—^'Y"1 .
We now turn to the moduli Jig of real curves of genus g . To a curve X we associate the

abelian variety J = Pic °X which is principally polarized by a translate of the theta divisor
6 c=Pic g~lX. This gives a map on the level of real moduli.

t : ^g^^g

Xh^J.

The space MQ consists of 2 points which correspond to the curves P1 and
^=[u2-\-v2=-l}. Both map to the single point of j^o- The space ^ has 3
components, which correspond to curves with n(X)=0, 1, 2. Each component is
analytically isomorphic to an open interval, and the latter two make up the moduli j^ of
elliptic curves. (For an analytic description of ^\ using Jacobi's parametrization see
[4].) The map t identifies the curves in the component where n(X)=0 with those in the
component where n(X)=2.

When the genus of X is greater than 1, however, we have a real analog of the Torelli
Theorem.

THEOREM 9.4. - Ifg^2 the map t : ̂  -» s/g is one-to-one.
Proof. - By Torelli's Theorem, J determines X over C. For g^2 the natural map:

(9.5) /: Autc(X)^Autc(J),

is an injection. The image of / is all of Aut^(J) when X is hyperelliptic; otherwise
Aut^ (J) = < ± 1 > x / (Autc (X)) [10]. In any case, the map:

/„ : H1 (Gal(C/R), Autc(X)) -. H1 (Gal(C/R), Autc(J)),

is injective. Hence two distinct real forms X and X' of a fixed curve will have non-
isomorphic Jacobians. This shows t is one-to-one.

What can we say about the image of t when g ̂  2? Since any inclusion X -> J induces a
Gal(C/R) isomorphism Hi(X(C), Z/2)^Hi (J(C), Z/2), all curves of a fixed topological
type (n (X), a (X)) go into a single component ^/^H • Seppala [12] (see also Klein [7]) has
shown that the moduli of real curves of a fixed topological type form a connected real analytic
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space of dimension 3 ^ — 3 . Hence each component or ja^ contains a single component of
Jacobians, with the exception of the component where:

/f° 1}I V 1 o/
f ° ' )\ v 0; > .

\ o
which contains the additional component corresponding to curves with n(X)=0.

Note that the image t { J^) is no t stable under the natural involution a of ^/g once g ̂  3. a
does preserve the Jacobians of hyper-elliptic curves: if X is given by the equation y2=f (x} [or
y2=f(u, v)] then X* is given by the equation yl= —f(x) [or y2^ —f(u, v)}.
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