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SECOND ORDER LINEAR
DIFFERENTIAL SYSTEMS

BY F. NEUMAN

I. — Introduction

We shall deal with second order linear differential systems

(Q) y"=Q(t)y.

where n by n real symmetric continuous matrices Q: R -> R"2 satisfy

Q(r+7i)=PQ(r)P-1

for a constant orthogonal matrix P. We shall derive a sufficient condition under which all
solutions of (Q) comply with

(1) y(t+n)=Py(t),

and we shall construct some (Q) of the property (1). If P = ± I (I denoting the unit matrix),
all solutions of(Q) are periodic or half-periodic. For the case we shall construct an example
of two-dimensional system (Q) having only half-periodic solutions so that Q is not
diagonalizable, i.e., it is not of the form

C- ldiag(^,...,^)C,

C being a real constant regular n by n matrix, and q, are scalar functions such that all
solutions of

y"=^iWy

are half-periodic. For constructing such q, (see [5], pp. 573-589).
Systems (Q) with solutions satisfying (1) are in close connection with investigations in

differential geometry, especially with Blaschke's conjecture see [I], pp. 225-230.
The problem considered here was proposed by Professor M. Berger.
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438 F. NEUMAN

II. — Notations and basic properties

For an integer m ̂  0, let C'" (J, R"2) denote the set of all matrices T: J -> R"2, J c: R, having
continuous derivatives up to and including the m-th order. T* means the tranpose of T,

denotes d / d t . Throughout this paper the matrix Q in (Q) is supposed to be continuous
onR:Q€C°(R,R"2) .

/Y Y \
IfY^ and Y^ are two matrix-solutions of(Q) on R such that the 2 n by 2 n matrix ^ 2 )

\^i ^G/
is regular at least at some to (then it is regular on R), then Y^ (r)Ci +Y;,(r)C, is a general
matrix-solution of(Q), C^ and C^ being arbitrary constant n by n matrices.

For each solution Y of (Q) with symmetric Q, Q*=Q, the expression
Y^OY^O-Y^OY^) is a constant matrix, say C. I fC=0 (the null matrix), then Y is
called isotropic. For each isotropic solution Yof(Q) such that Y is regular on an interval J,
the matrix

Y^ f 'Y^^Y* - 1 ^ )^ ^eJ,
J d

is a solution of(Q) on J, see e.g. [2] or [3].

LEMMA 1. - Let Y be a solution o/(Q) satisfying Y (a) == 0, Y' (a) being regular. Then there
exists a neighbourhood V ofa such that Y(r) is regular on V - { a } .

Remark 1. — We need not suppose the symmetry of Q for the Lemma. However, if
Q*=Q, then the Y in Lemma 1 is isotropic.

Proof. - If such a V does not exist, there is a sequence { t , }^ i, t^ a, t, ->a2Lsi-> oo, such
that detY(r,)=0. Because of the continuity of det as a function of n2 variables, we have

detY'(a)=det{lim[Y(^)-Y(a)].[r ,-fl]-1}
I —> 00

=limdet{[Y(t;)-Y(fl)].[t ,-fl]-1}
i->' oo

= lim^-^-'detY^^O,
i —> oo

that contradicts the regularity of Y'(^). •

LEMMA 2. - Suppose Q*=Q. Let a solution Y^ oj (Q) satisfy: Yi(a)=0, ^[(a) is
regular. Let Y^ be regular on {a, b). For

Y^O^Y^OrYi-^Yr1^, de(a,b\
J d

the expression Y^ (t)C^ ^z(t}C^ is a general solution of (Q) on (a, b).
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SECOND ORDER SYSTEMS 439

Proof. — It is sufficient to show that

( Yi(r); Y^rY^Yr1^ \

t I
Y;(0; Y^of^-^YrWs+Yr1^) /

J d /

is regular at least at some roe (a, b). For ro=rf we get

/Yi(^); 0 \
YY^); YFW

whose determinant is det Y, (d). det Y* -1 (d) = 1. •

III. — Sufficient condition for y{t-\- K ) = P y ( t )

Suppose that a matrix-solution Yi of(Q), Q*=Q,

(2) Q(r+7r)=PQ(r)P- 1 ,

P being a real constant orthogonal matrix, satisfies:

Yi(a)=0, Y; (a) is regular,
YI (r) is regular on (a, a-\-n),

Yi(r+7r)=PYi( r ) .

Evidently Yi eC^R, R^and 0+71 is the first conjugate point to a, [2]. The matrix

Y2: t ^ \ , ( t ) [ \,l(s)\^l(s)ds, de{a,a+n\
J d

is also a solution of (Q) on (a, a+jc). LetY^eC^R, R"2) denote the (unique) continuation
of Y^. Due to Lemma 2 every solution y of (Q) satisfies (1) if and only if

(3) Y2( r+7i )=PY2(r ) on R.

Because of the uniqueness of solutions, the relation (3) holds if and only if

\^(a+n)=P\(a) and Y^+T^PY;^).

Since Y^^Y^r) on (a, a +71), and Y^eC^R"2), there exist

l imY2( r )=Y2(a ) , lim Y^r) =¥2(^+71),
t -^0+ f->f l+7t_

l imY2(t )=Y2(a) , lim Y^^Y^a+Tt).
t - » a + r -»a+7 t_
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440 F. NEUMAN

Hence (3) holds iff both

(4) lim Y^O^PlimY^O,
t -> a+7t_ r-+a+

(5) lim ¥3 (r)=P lim ¥,(().
t->a+n_ t-*a+

Define

A^^Y^Q.sin"1^-^) for te(a-{-kn, a+k-\-ln),
A^^-P^Y,^) for t=a+kn, k = 0 , ± l , . . . ;

sin'^s denoting (sins)"^ throughout this paper. We have

lim A^^-P^Yi^), lim A'(r)=0,
t -> a+kn t-^a+kn

lim A"(t)= l(-P) k(Q(fl)+I)Yl(a) .
t -> a + k-n J

Hence AeC^R,^2), A(r+7i)=-PA(Q, A being regular on the whole R. Using
FHospital rule we get

(A* (5) A (5)) -1 sin-2 (s-a)ds
limY^^limA^)-^AAAA^ ^ 2 V " / ma " ^ V ^ / . _ 1 / x^^ ^ sin '(r-a)

.AMIin,**!!')̂ .̂ .-̂
^, -cos(t-a)

and

lim Y2(Q= lim A^+ji)^0^ 1 =-PA*-1^).
—cos ( t—^)t ^a+7t_ a-+a+7t_

Thus the condition (4) gives no further restriction on A. For (5) we have:

limY;(r)=Hm{(A(.)sin(r-.))' f (A-^A(.))-(A*(a)A(.))-'^
(-a. t-a, (. J d 81^(5-0)

+(A(()sin(t-fl))'(A*(fl)A(a))- l[ctg^-fl)-ctg(t-a)]+A*- l(t)sin- l(t-fl)l

, , f''(A*(s)A(s))- l-(A*(a)A(a))- l

=A(a)J ̂ -L_^^L^JL_,^A*-(a)ctg(^-.).

because of

l im[-(A(r)sin(^-fl)) ' (A*(a)A(a))- lctg(t-a)+A*- l(t)sin- l((-a)]=0.
( -»K+
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SECOND ORDER SYSTEMS 441

Analogously

to Y;(,)-PA«,) f-tA-^AMr^A^A,.^^^^..
r-.+^_ J ^ sm^s-a)
Due to our conditions on A the expression

(M(s)A(s))-l-(A^(a)A{a})-l

sm2(s—a)

has limits both for t -> a and for t -> a + 71, hence the above definite integrals are well defined
and we may equivalently rewrite the condition (5) as

^ f l +n(A*(OA(r))- l-(A*(^A(a))- l^_^
J a sm^t-a)

Let us summarize our considerations in:

THEOREM. - Let Q* = Q, a eR, Y^ fo^ a matrix-solution oj (Q) SMC/I that Y^ (^) = 0, Y'i (a) is
regular, Y^ (t + n) = PY^ (r) /or wi orthogonal constant matrix P, Y^ fo^m^ regular on (a, a + 71)
(or equivalently, a+n being the 1st conjugate point to a).

Then
Yi( t )=A(Osin(r -a) ,

where
A e C2 (R, R"2), A is regular on R,

(7) A(r+7i)=-PA(r), A(a)=\[(a), A'(^)=0,

and

(8) Q(0=A"(r)A- l(0+2A /(OA- l(Qctg(r-a)-I.

Moreover, every solution y of (Q) satisfies (1) i/ anri on!}; ;/ (6) holds.
Remark 2. A^OA'^Qctg^-a) in (8) is continuous by defining its value at a +kn as

PkAff(a)A~l(a)P~k.

Remark 3. — We may always take Y^ normalized by Y'i(^)=I that gives A(a)=I and

(9) ^-(A^OMO)--!^^
J, sm^t-a)

instead of (6).

IV. — Constructions

In the first part of the paragraph we shall use the condition (9) for constructing some
differential systems (Q) with all solutions satisfying (1).
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442 F. NEUMAN

In the second part we shall construct a two-dimensional differential system (Q) with all
solutions satisfying

y(t+n)=-y(t),

[i.e. P= — I in (1)], the system (Q) being non diagonalizable, i.e., Q being not of the form
C~1 diag((^, ..., qn)C for a regular constant matrix C.

For both the parts relation (8) with a suitable A satisfying (7) and (9) will be considered. If
such an A is taken, the only one requirement we need to guarantee is the symmetry ofQ. In
can easily be checked that for

S^^A^A-^)

the relation (8) reads

(10) Q(t)=Sf(t)+S2(t)+2S(t)cig(t-a)-L

Compare with formulae in [5].
We shall prove:

LEMMA 3. Q=Q* ij and only i) S=S*.
Prooj. (^) I fS=S* then (10) gives Q=Q*.
(=>) For Q = Q*, the solution Y ( r ) : = A ( r ) sin (t-a) [hence Y(t / )=Y*(c/)=0] is isotropic:

Y*Y'-Y*'Y=0,
or

(A*A'-A* /A)sin2(r-^)=0.

Because of continuity of A' wege tA*A / —A*'A==0 ,o rA / A - l =A* - l A* / =(A / A - l )* . •
As a sufficient condition for Q being not diagonalizable we shall use the following two

Lemmas:

LEMMA 4. — Let Q=Q* and Q be diagonalizable, i.e. Q(r )=C~ 1 D(r)C, where
D(r)=diag(^ (r), ..., d^(t)). Then jor R(r) :=(A*(r)A(0)- 1 the matrix R/R^R" is
symmetric.

Proof. — Let Z be a solution of

Z / /=diag(^(0,. . . ,^(r)).Z

determined by Z(a)=0, Z'^)^. Then

Z(0=diag(zi(0, . . . ,z^(r)) ,
where

z;^)^^)^),
z,(a)=0, z[(a)=l.
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PutY^^C-^QC.
Then

and
Y(^)=0, Y^)=I,

Y / / = C - 1 D ( O Z C = C - 1 D ( O C Y = Q ( O Y .

For Y(r )=A(r)s in( r -a) we have A(Q=C~ 1 8(r)C, where C is a regular constant matrix
and 5 is a diagonal matrix.

According to Lemma 3 it holds A*A'=A*'A. Hence

R / R- 1 =-(A*A)- 1 (A*A) / =-A- 1 A*- 1 (A* 'A+A*A / )

=-2A- 1 A*- 1 (A*A / )=-2A- 1 A'=-2C - 1 5- 1 8 / C,

i.e. R 'R~ 1 is diagonalizable.
Thus it commutes with its derivative

(R'R-^R'R^y^R'R-^^R'R"1),

or

R /R-1(R"R-1-(R /R-1)2)=(R / 'R-1-(R /R-1)2)(R /R-1) .

We getR'R^R'^R^R^R'. Because of symmetricity o fR=(A*A)~ 1 ,

R'R^R'^R'R^R")*. •

LEMMA 5. — Let R(0== ( 1 2 ) be a 2 by 2 regular real symmetric matrix oj the
\u^(t) u^(t) J

class C^J, R22). Then R ' R ~ 1 R" 15 symmetric on J if and only ij

/ u , ( t ) u^(t) u^(t)\
det( u[(t) u'^t} u^(t) ) =W(^i , u^u^}=Q on J.

\u',(t) u'^t) u^t)/

Prooj. - LetA:=detR. Then

R-i^A-1 . u3 ~U2

\-U2 U^

R'R-^'^A-1 ^1^3-^2 -U\U^U^\(U'^ U^\

\u'^-u^ -u^u'^u^)\u^ u'i)

and R' R"1 R" is symmetric if and only if

u\ u'^-u^ u^ u^-u\ u^ u'^ u^ u\ 1 1 , = ̂ ^ ̂  - u'^ u^-u^ u\ u^ +1/11^3,
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444 F. NEUMAN

or
u^(u2U^-u'2U^)-U2(u[u^-u^u^)+u^(u[u^-u^u^)=Q,

orW(Ui,^^3)=0. •

PART I. — We are going to construct a system (Q) with all solutions satisfying (1) for an
orthogonal constant matrix P.

Let a symmetric matrix MeC^R^R"2) be periodic,

r"M(f+7i )=M(r) , and M(t)dt=0.
J o

Moreover, let the eigenvalues of M be greater than — 1. Then the matrix M (t) sin2 t +1 has
only positive eigenvalues. Let N(r) denote the symmetric square root with only positive
eigenvalues of the symmetric matrix (I + M (t) sin2 t)~1. Then N e C2 (R, R"2), det N (t) is
always positive,

N (r+7i)=N (Q, N* (r)=N (0, N (0)=I, N' (0)=0,
and

f " N"2^)-! f "{ ) dt=\ M(r)^=0.
J o sin21 J o

We put A (r) : = B (r) N (r), where B e C2 (R, R"2) is an orthogonal matrix. With respect to
Lemma 3 we are looking for such a B, that S :=A'A~ 1 is symmetric. Hence we need

0=S-S*=(BN)'(BN)-1-(BA)*-1(BA)* /=2B /B-1+B(N'N - 1-(N'N-1)*)B-1 ,
because of orthogonality of B and skew-symmetricity of B ' B ~ 1 , see e. g. [4]. We get

(10) B^B.-^N'N-^N'N--1)*).

Since 1 /2 (N' N ~1 - (N' N -1 )*) e C1 (R, R"2) is skew-symmetric, B is orthogonal for every t if
it is orthogonal at some IQ.

By taking B (0) = I we have B e C2 (R, R"2) and orthogonal for every t. Then S = S* and
also Q=Q* due to lemma 3. For A==B.N we get

^(A^OA^-^.^FN-2^-!^^
J o sin21 J o sin21

Evidently AeC2 (R, R"2), A (0)=N (0)=I, A' (0)=B' (0)+N' (0)=0, and A is regular
on R. Moreover, since N is periodic, the system (10) is also periodic and due to Floquet
Theory, there exists a regular real constant matrix C such that B (t+7i)==CB(r) for
all t. Because of orthogonality of B, C is also orthogonal. Hence

A ( r+7t )=B (r+7i) N (r+7i)=CB (t) N (Q=CA (r).
For P: = — C we have

A (.r + n) = - PA (0 for all t.
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Let us summarize our construction. MeC2 (R, R"2) is symmetric, periodic with all
f "eigenvalues > -1, and M (t) dt=0. N is the symmetric square root of (I+M (t)

J o
sin2 t)~1 with only positive eigenvalues. B is a solution of (10) with B (0) = I. Thus (9) is
satisfied for A: =BN, a=0, and Q defined by (8) is symmetric. Also P: = -B (r+jc) B~1 (r)
is a constant real orthogonal matrix and A(r+7i)=-PA(r) .

Due to Theorem 1, all solutions of the system (Q) with Q given by (8) satisfy (1).

PART II. - Now we are going to specify the matrix P in (1), namely we take P = — I. The
aim of this part is to construct a two-dimensional system (Q) with non-diagonalizable Q
having only half-periodic solutions, y(t+n)==- —y{t).

Again we use Theorem 1 and relation (8) for constructing Q. We are looking for A of the
form

A(0=H(r)D(OG(0,

where periodic H, D, GeC2 (R, R22),

T^_^i(0 0 ^D(r)=
0 d,(t)^

is diagonal,

G(t)=( cosoc(o sma(0^ H(t)=( cos^^ ^P^P
\-sinoc(Q cosa(0/5 u \-sin (3(0 cos|3(0^

are orthogonal 2 by 2 matrices such that

H(0)=I, H'(0)=0; D(0)=I; D'(())=();
G(0)=I, G'(0)=0;

that is satisfied by

oc.M^C^R.R),

(n) oc(0)=0, oc'(0)=0, P(0)=0, P'(0)=0, ^.(0)=1,
^(0)=0; i= l , 2 .

With respect to Lemma 3 we need A* / A=A* / A, or

D(H*H'-H*'H)D=GG* /D2-D2G /G*,

or

2B'(t/ ° ^W 0 -^-dl\
2p(t\-^^ 0 )~[di+di 0 J"^
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446 F. NEUMAN

or equivalently

(12) 2 |3 /^d2+a /(^4-rf j)==0 on R.

Consider now (9) for a=0:

^(QA(t)r-I^f^^_^_^
o sin21 J o

{d[2-\)cos2a+{d22-l)sm2y. ^(di-2-^-2)^^
sin 2 trft.

,(rfl-2-ri22)sm2a (rfl-2-l)sm2a+(^-2-l)cos2a

Let

/.eC^R), i=l ,2 ,

and

(13) ft(t+n)=f,(t),

f,(n/2+t)=-f,(n/2-t), or /,(()= -/,(ir-t),

1/,(01<1,
/;(0)=0, /S(0)=0.

Then rf, :=(!+/,(())-1/2 satisfy

rf.eC^R),

(14)
d,(t)>0, rf.(0)=l, ^(0)=0,

d,(t+it)=d,(t),
d^(t)-l=-(d^(n-t)-l), (=1,2.

Hence

't^2^-l)c$?)dto sin i.

= ft2^-2(0-l)c^s^)^+ [^.-(-O-i)^--0^^)J o sin2? J o s i n - ( T T / )J o sin" t
if

(15) a(r)=a(7i-r).

4® SERIE - TOME 13 - 1980 - ?4
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Similarly

V^)-!)51112^^
o sm21

and

J '̂O)- ,̂)8"^",,, ̂ 'w'w-^-w'w-iy^^,

because of sin 2 a (71 -1) = sin 2 a (r).
Let us see for conditions on a and P. If

/ oceC^R.R), oc(?+7i)=a(0,
(16) ) a(0=a(7i-0 [see(15}],

a(0)=0,a'(0)=0 [5^(11)],

then G e C2 (R, R22) is periodic, G (0) = I, G' (0) = 0. The same remains true for G if instead
of a the function A; a is taken, k being a constant.

Due to (12):

^ ^(s)(d,(s) d,(s)\
^'-Jo^-^-^^^

and hence

peC^R.R),

P(0)=P'(0)=0,

and because of periodicity of a, d^, d^ also

P(^+7T)=P(0-feo,

where

f ^ a ' / ^ d^\,
4- T-r-^r5-

J 0 2 \^2 ^l/

If feo=0, then HeC2 (R, R22) is periodic, and that is what we need.
If feo^O. then take (2n/ko) a (Q instead of a (t).
Then ? ( r+7c)=p (0-271, and HeC2 (R, R22) is periodic.
Since again P (0)=?' (0)=0, we have H (0)=I, H' (0)=0.
It remains to look for conditions of non-diagonalization of Q. According to Lemma 5 it

would be sufficient to have

R^A)-^(^ ^V
^2 ^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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such that W {u^, u^ 1^3), Wronskian of u^ u^, 1^3, be different from zero. Since

d[2 cos2 oi+d^sin2 oi —(d^2 —d^2)sm2Qi
R=G*D-2G = 1 _ _

,(r i l - 2—^2'2)sin2a d^sm2 oi+d^cos2 a

if

(17) d^ and ^2 have different positive constant values
on some subinterval (c, d) of(7t/4,7i/3),

then the Wronskian of

d^2 cos2 a + d^ 2 sin2 a, — (d[ 2 — d^ 2) sin 2 a,

d^2 sin2 a 4- d^ 2 cos2 a

on the interval (c, d) has the value (a'^))3. W (y^, y^ , ^3), where

y^(t)=d^2 cos2 t + ̂ 2 2 sm2 ^

^(O^r2-^2)^!^,

^3 (?) = rf^-2 sin2 r + ̂ 2 2 cos2 r^

d ^ 2 ^ d ^ 2 being constants, are three linearly independent solutions of^'"+4^'=0, having
Ci +C2 sin 2 t-\-c^ cos 2 ? as its general solution. Hence W(^i, ̂ » ^3)7^0 and ifa besides of
al^nvp" rp'ctnptir^nc r»rtmrt1ip»c witl'i

a'(t)^0 on (c, rf),

Ci +C2 sin 2 ^+€3 cos 21 as its general solution. Hence W(^i, ̂ » ^3)7^0 and ifa besides of
above restrictions complies with

(18)

then our Q is not diagonalizable.
We summarize our considerations. Let/,, satisfy (13),/i and/2 being different constants

on (c, d) c: (7c/4, 7i/3), then d, (^-(^/.(Or^2 comply with (14), and (17). Takea
satisfying (16) and (18). If

4=ri^^wo.
J o 2 \d^ di /

take ( I n / k g ) a (t) instead of the a (t). Define

f 'ot ' (5)/^(s) d^s)\^-jo^^^r-
4e SERIE - TOME 13 - 1980 - ?4
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Using a, (3, and d, we get periodic matrices G. H, and D. For A: == HDG we define Q by
means of (8). This Q is symmetric [Lemma 3 and relation (12)], non-diagonalizable
[Lemma 5 and conditions (17) and (18)]. Our A complies with Theorem 1 for P = -1 [i. e.
A (t+TC)=A(r)] and satisfies relation (9) with a=Q. Hence all solutions of (Q) satisfy
y(t+n}=-y{t).

Remark 4. — Having a two-dimensional second order non-diagonalizable sy stem (Q) with
all solutions satisfying y {t 4- n) == - y (t), we may construct a non-diagonalizable system of the
same property for any dimension n{n>2) simply by extending the second order system (Q)
by adding n—2 equations y^== —y^ i=3 , . . .,n.

REFERENCES

[1] A. L. BESSE, Manifolds All of Whose Geodesies are Closed (Ergebnisse, Vol. 93, Springer, Berlin New York
1978).

[2] W. A. COPPEL, Disconjugacy (Lecture Notes in Mathematics, Vol. 220, Springer, Berlin, New York, 1971).
[3] L. W. GREEN, A Theorem of Hopf (Michigan Math. J . , Vol. 5, 1958, pp. 31-34).
[4] H. W. GUGGENHEIMER, Differential Geometry, Dover PubL, Inc., New York, 1977.
[5] F.NEUMAN, Linear Differential Equations ofthe Second Order and Their Applications (Rend. Mat. Vol 4 1971

pp. 559-617).

(Manuscrit recu Ie 13 septembre 1979,
revise Ie 21 fevrier 1980.)

F. NEUMAN,

Czechoslovak Academy of Sciences,
Mathematics Institute,

Brno,
Janackovo Nam. 2 A,

Tchecoslovaquie.

ANNALES SCIENTIFIQUES DE L/ECOLE NORMALE SUPERIEURE


