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ON LENS SPACES WHICH ARE ISOSPECTRAL
BUT NOT ISOMETRIC

BY AKIRA IKEDA

Introduction

A compact connected Riemannian manifold of positive constant curvature 1 with cyclic
fundamantal group is called a lens space. The purpose of this paper is to show that there are
many pairs of lens spaces which are isospectral but not isometric and also to give explicit
examples of lens spaces which are isospectral to each other but not even homotopy
equivalent.

In this paper, we consider only compact Riemannian manifolds. One of the most
important differential operators arising from the Riemannian geometry is Laplacian A acting
on the space of smooth functions on a Riemannian manifold. It is well known that the
operator A has a discrete spectrum consisting non-negative eigenvalues with finite
multiplicities. Riemannian manifolds M and N are said to be isospectral to each other if
their spectra are identical. The fundamental problem of the spectrum of A is;

(0.1) Does the spectrum on a Riemannian manifold M determine the Riemannian
structure on M ?

The famous negative example for the above problem was constructed by Milnor [9]; there
exist two flat 16-dimensional tori which are isospectral but not isometric. Recently,
negative examples for the above problem were constructed for certain compact Riemannian
surfaces by Vigneras [13]. These examples are diffeomorphic and also homeomorphic
examples. The negative examples for the above problem (0.1) which we shall give in this
paper are not even homeomorphic. Moreover, we shall give examples which are isospectral
but not even homotopy equivalent. This shows that the spectrum of Laplacian on a
Riemannian manifold M does not determine the topological structure on M in general and
does not determine even the homotopy class of M.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. — 0012-9593/1980/303/$ 5.00

© Gauthier-Villars



304 A. IKEDA

Remark 1. — It is known that the following Riemannian manifolds are completely
characterized by their spectra as Riemannian manifolds:

(i) the standard n-dimensional sphere (n^6) and the standard n-dimensional real
projective space (n^6) ([I], [12]);

(ii) compact connected 3-dimensional Riemannian manifolds of positive constant
curvature ([6],[7], [II], [14]);

(lii) compact connected 5-dimensional Riemannian manifolds of positive constant
curvature whose fundamental groups are non-cyclic [8].

Remark 2. - From the computations of Ray for analytic torsion of lens spaces in [10], we
know the following: let Li and L^ be (2 n - l)-dimensional lens spaces with the same
fundamental groups of order q, Z q. For each irreducible unitary representation a of Z q, one
has the associated locally flat line bundles E i - ^ L i , E^-^I^. Suppose that the
corresponding Laplacians A ^ p , A^p acting on each p-forms (0^j?^2n-l) with values
these bundles are isospectral for all p . Then they are isometric.

1. Preliminaries

Let q be a positive integer. We denote by Zq the ring of residues modulus q of integers and
Kq the multiplicative group of residues modulus q of integers prime to q. The order of Kg is
denoted by (p (q), the Euler's function. Put q^ = (p (q)/2. Throughout this paper we always
assume q o ̂  4. For any positive integer n with 2 ̂  n ̂  (q o - 2), the set I (q, n) is the set of n-
tuples ( p i , . . . , / ? „ ) of integers prime to q, and put

(1.1) ^o(q,n)={(Pi, . . . , p n ) ^ ( q ^ ) \ P i ^ ± P j ( m o d q ) \^i<j^n}.

We introduce an equivalence relation in I (q, n) as follows: ( p i , . . . , pj is equivalent to
(s i , . . . , s J if and only if there is a number I and there are numbers e i e { — 1, 1} such that
( P i . • • • » Pn) ls a permutation o f ( e ^ l s ^ , . . . , e^lSn) (mod q).

This equivalence relation also defines an equivalence relation in To(^, n). The quotient
sets ofl(g, n) and To (^, n) by the relation are denoted by l(q, n) and lo(q, n) , respectively.

Throughout this paper we use the same notation for an element ofl(^, n) [resp. To (q, n)]
and its equivalence class in I (q, n) [resp. Io (q, n)]. Put k=qQ—n. We shall define the map
co ofloO?, n)into Io(<?, k):

(1-2) co: Io(^n)-^Io(^),

as follows: for any element (p i , . . . , pjelo(^, n), we choose an element
(^i ? • • • ? ^ fe )^Io(^? ^) sucn tnat tne set of integers

[ P i . -Pi, " ' . P n . - P n . ^ 1 , -<?!, • • • , < 2 f e , -<?fc}

forms a complete set of incongruent residues prime to q. Then we define

(1.3) co((pi , . . . , p J ) = ( < ? i , . . . ,^)-
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LENS SPACES WHICH ARE I SO SPECTRAL 305

It is easy to see that the map co is well defined and gives a one to one onto mapping of I o (q, n)
onto lote, k)'.

(L4) o): Io(^n)^Io(^).

For a finite set A, we denote by | A | the number of elements of A. For non-negative
integers a and b with a^fc, we put

M , .. , . a(a-l)...(a-fc+l) , .
y=l ifa^O, = f c (b_ i ) . . .2 . l otherwise.

PROPOSITION 1.1.- Let Io (<?, n) be as in the above. Then

r-'̂ 'î C:)
Proof. - Let To (q, n) be the subset of To (q, n) such that

I o ( < L ^ ) = { ( ^ i , . . . , p , ) 6 l o ( ^ , n ) | l = p i < . . . <^<^/2}.

Then it is easy to see that any element of To (q, n) has an equivalence element in To {q, n). On
the other hand, for any equivalence class in I o (q, n), the number of elements in To (q, n) which
belong to that class is at most n. Hence we have

|Io^n)|^l|To^n)|=-lf'o-l)=J-M,• n 1 ' n \ n - l j q o \ n j

which proves the Proposition.
Q.E.D.

Let q be a positive integer and y a primitive q-th root of 1. We denote by Q (y) the q-th
cyclotomic field over the rational number field Q and denote by 0^(z) the q-th cyclotomic
polynomial. We assume q is an odd prime. Then we have

qQ={q-l)/2

q-i
and 0^00= E z1.

(=0

We shall define the map ̂ ^ ^o f lo (q, k) into Q (y) [z]. For any equivalence class in Io (g, k),
we take an element (p^ . . . , p^ of lo(q, k) which belongs to that class. Then the
polynomial

? n^-y^-y-^
I =1 1=1

in Q (y) [z] is independent of the choice of the elements which belong to the class. Hence we
can define the map ^Vq ^ by

(L5) ^((^i, ...,^))='E n (^-Y^-Y-^).
1=1 1=1

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



306 A. IKEDA

PROPOSITION 1.2. — If we put

^,J(Pi, ...^^-Z (-l)1^^-1,
i=0

^n u^ have:
(i) a f=a2k- , ;

(ii) ao=(<?-l);
(iii) a^=-2k;
(iv) a2=fc (<? -2 fc+ l ) .
Proo/. - Since we have (z-y^) (z-y~pil)=(ypil z-1) (y-^ z-1): (i) is easy to see, (ii) is

clear. On the other hand,
q-l k k q-1

ai=Z E 7^=2 E Z 7'"'=-2fe,
and i=l i=l i=l i=l

a2=''E( E Y±(^)'+ ^ ^,-^)=_2(' fe)-2f fc)+k(q-l)=fete-2/c+l).
^ = 1 I^KJ^/C l^l,J^fc V2/ V-/

Thus (iii) and (iv) have been shown.
Set Q E D -

(1.6) J(^fe)=^(Io(^)).

COROLLARY 1.3. — L^^ q be an odd prime not less than 11. Then we have

\J(q, 2)|=1.

Proof. — Let ^ be an odd prime not less than 11, then q o = 4. Hence, I o (^, 2) and J (q, 2)
can be defined. On the other hand, for any (p i , ^eloO?, 2), the polynomial
^q, 2 ((? i » ?2)) ^s degree 4. By Proposition 1.2, its coefficients are independent of the choice
of elements in I o {q, 2). Thus we have | J (q, 2) | = 1.

Q.E.D.

Let p i , p ^ , p3 be integers with ( j? i , ^2, p3)elo(g, 3) and Si , 52, 53, 54 be integers
wi th (5 i ,52 ,53 ,54) (=To(<L 4). We define the sets A^ ( p i, p ^ , ^3) and A^ (51, 52, 53, 54) by

A g ( p i , p 2 , P 3 ) = { ( ^ ^ P i + ^ P 2 + H P 3 = 0 ( m o d ( 3 ) , ? i , ^ e { -1, 1}},

Aj5i, 52, 53, 54) ={(^, ̂  V): 5 i+? l52+H53+V54^0(mod (?), ?l, [I, V e { - l , l},

respectively.

LEMMA 1.4. — For any element (p i , p ^ , p 3)0 To te, 3), w^ have

| A ^ ( p i , P 2 , P 3 ) | = l -

46 SERIE - TOME 13 - 1980 - ?3



LENS SPACES WHICH ARE I SO SPECTRAL 307

Proof, — If one of the integers pi ±p2±P 3 ls congruent to zero (mod q), we may assume
P i+P2+P3=0 (mod q), if necessary, changing the sign of p^ or ^3. Then
(Pi+P2+P3)- (P i+P2~P3)=2p3 (mod ^). Hence, pi+p2-P3^0 (mod q). In the
same way, we can see the integers p i -p2+P3 and p ^ — p z — p z are not congruent to zero
(mod q). Hence we have proved the Lemma.

Q.E.D.

LEMMA 1.5. — For any element (p i , p ^ , ^3, p4)elo (q, 4), we have

(;) |A , (p i , p2 ,P3 ,P4 ) | ^ l ;
(i0 Z |A,(p.,,p,^)|^2.

1^'1«2<'3^4

Proof. — (i) can be obtained in the same way as Lemma 1.4. We shall prove
(ii). Suppose

E |A^,p.,,p.,)|^3.
l ^ l l < f 2 < l 3 ^ 4

Then we may assume

|A,(pi,P2,P3)|=|A,(pi,P2,P4)|=|A^i,;?3,/M)|=l-

We may also assume, changing the sign of ^2 or P3 if necessary,

(^^ Pi+P2+?3=0 (mod ^).

Since p3^±p4 (mod q), we have p i -p2+P4=0 (mod ^) or p i — p 2 — P 4 = 0 (mod ^). In
the same reason as above, we may assume

(1-8) P i—P2- t -P4=0 (mod q).

Since ^2 ^+P4, we have

(L9) Pi-^3+P4=0 (mod^),

or

(1.9') Pi-P3-P4=0 (mod^).

From (1.8) and (1.9), we have p 2 = p 3 (mod ^), which is a contradiction. On the other hand,
from (1.7), (1.8) and (1.9'), we have 3 p i = 0 (mod q). Since To (3,4) is empty, we have a
contradiction. Thus we have proved the Lemma.

Q.E.D.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



308 A. IKEDA

Let q be an odd prime and p i , p 2 ? P s » ?4 integers prime to ^ such that (pi , p^ P s ?
p4.) elo (^f, 4). Fix a primitive ^-th root of 1, say y. We shall compute the coefficients 03,
04 of the polynomial ̂ 4 ( ( p i , p 2 , P 3 . ^ 4 ) ) :

^3='E S y(±p,,±p,,±^)/^3y1 y,±p./
i=l Ki.<i,<i,<4 7 - 1 • 1i=l l^ii<;2<i3^4 1= 1 i=l

=1\ ^ Y^.±^±P••3)f+6^ ^ f11

1=1 l^li<l2<l'3^4 f = l l = l

=2(^-1) ^ |A,^,,^,,pj|
l ^ l l < l 2 < ( 3 ^ 4

-2(16- ^ |A,(^,^,pj|)-24
l^i i<t2<i3^4

=2^ ^ A^(p^,^,^)|-56,
and i^<^<^4

q-1 q-1 9 -1 /4 \
fl4=2^1y(pl±p2±p3±p4)^+4^1 ^ y(p.±p^+^ ( '

• ^ = 1 i= l l^i<^4 ^ = 1 \2

=2 y y^^1^^^ y y y(pi±pj)i ^. y ( )
• ^ = 1 1=1 l^i<^4 ^ = 1 \^/

= 2 g | A ^ ( j ? i , p2, P 3 , P ^ ) \ +6^-70.

Hence we have:

PROPOSITION 1.6. - L e t ( p ^ p 2 , P3 . P4 ) , ( s l . ̂  S3. S4)e lo(^ , 4). T^n we have

^,4((Pl. P2, P3, P4))=^,,4((Sl, S2, S3, 54)),

if and only if

(i) Z |A,(p,^^,^) |= ^ |A,(s^s,^s,^) |
l^ll<l2<l'3^4 l^li<l2<l3^4

and

(ti) |Ag( j9 i , /?2, ^3. P^\=\Aq(sl. S2. S3, S4) | .

In the same way as above, we have:

PROPOSITION 1.7. - Let (p i , p2, ^3), (si, 52, s^)elo(q, 3). T^n w^ have

^,3((Pi,P2,P3))=^,3((si, 52 ,53 ) )
i/an^ o^J^ i/'

\^q(Pl.P2.P3)\= Ag (5 i , 52, 5 3 ) ] .

From Lemma 1.4, 1.5 and Proposition 1.6, 1.7, we have:

PROPOSITION 1.9. - (i) let q be a prime not less than 11, then we have \ S(q, 3)| ^2;
(ii) let q be a prime not less than 13 then we have |j(^, 4)| ^6.
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LENS SPACES WHICH ARE I SO SPECTRAL 309

2. Lens spaces, their generating functions
and certain topological conditions

Let q be a positive integer and p i , p 2 ? - - - - > P n integers prime to q. We denote by g the
orthogonal matrix given by

/R(piA?). 0 \
0=\ • .- .\ 0 ' R ( p n / q ) /

where
/ cos 2 7i 9 sin 2 716 ^

^^l -sin 2716 cos 27T9.

Then g generates the cyclic subgroup G = { ^ k }^= i of order q of the orthogonal group 0 (2 n)
of degree In. By the definition (see [6]), the lens space

L(^:pi, ...^^S^/G,

is a Riemannian manifolds of positive constant curvature 1.
On lens spaces, the following Theorems are known.

THEOREM2.1(c/.[2],[6]). - LetL=L(q : pi, ..., pn)and U=L(q : 5i, ..., s^belens
spaces. Then the following assertions are equivalent:

1. L i5 isometric to L';
2. L i5 diffeomorphic to L';
3. L is homeomorphic to L';
4. ^re f5 a number I and there are numbers ^e{ — 1 , 1 } such that (pi, . .., pj 15 a

permutation of(e^ ?5i, .. .,^»?5j (mod ^).

THEOREM 2.2 (c/. [2], [3]). - Let L anrf L' be as in the above Theorem. Then L is homotopy
equivalent to L' if and only if there are numbers I and e e { - l , l ] such that
s^...Sn=elnp^...pn(modq).

LEMMA 2.3. - If^(q) is prime to n, then all the (2n- ̂ -dimensional lens spaces with
fundamental group of order q are mutually homotopy equivalent to each other.

Proof. — If (p(g) is prime to n, then the homomorphism g -> g " of Kg into itself is an
isomorphism. Now, the Lemma follows directly from Theorem 2.2.

Q.E.D.
Let A be the Laplacien acting on the space of smooth functions on

L(q : p i , . . . , pj. Then each eigenvalue of A is of the form k(k-{-2n- 2) (^c=0,1,2, . . . ) .
We denote by Efe (k+in-i) the eigenspace of A with eigenvalue k (k + 2 n - 2). In [6] (see also
PL [8]), we introduced the generating function associated to the spectrum of A on
L(q : pi, . . . , pn). In this paper, the generating function is denoted by ¥q(z : pi, . . . , pj;

oo

(2.1) F,(z :p i , . . . , p J = = ^ (dimE^fe+2n-2))^.
k = 0

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



310 A. IKEDA

First note
(2.2) The lens space L (q : pi, . . . , j?JisisospectraltoL(^ : Si, . . . , 5 J if and only if their

generating functions are identical (see [6]). And next, we observe that the generating
function is a meromorphic function and more strongly it is a rational function;

(2.3) F , ( z : p , , . . . , p J = ^ - t l-z2

q l = l n^-f11)^-^'1)

where y is a primitive q-ih root of 1 (see [6]).

Let S"(q, n) be the family of all the (2n-l)-dimensional lens spaces with fundamental
group of order q, and let So(q, n) the subfamily of S(q, n) defined by

^o(^ n)= { L ( ^ : pi, . . . , pj6^(g, n)\p^ ±p, (mod q) (l^i<j^n)}.

The set of isometry classes of S"o(q, n) [resp. S(q, n}} is denoted by J^o(^» n) [resp.
^(q, n)]. Then by Theorem 2.1, the map L(^ : pi, . . . . pj-^(pi, . . . . pJof5?o(^, ")
[resp. ^(q, n)] onto To(^» n) [resp. I(q, n)] induces a one to one corresponding between
^Q(q, n) and Io (^, n) [resp. J^f (^, n) and I (q, n)]. Together this fact with Proposition 1.1,
we have:

PROPOSITION 2.4. — Retaining the notations in the above, we have

(2.4) |^(,,.)|^(<;).

PROPOSITION 2.5. - Let L(q : pi, . . . , ? „ ) fc^ a kn5 5pac^ belonging to S^^n},
k=qo—n and let co be the map o/Io(^, n) onto lo(q, k) defined in 1. Assume q is an odd
prime. Then we have

(2-5' F.'^:^••••^4{(^+T•••(°to••^•)))"'^i)}•
Proo/. - We choose integers q^ . . . , q^ such that the set of integers

{ P i , -Pi, . • . , ? „ , -P^,^i , -^i, . . . , ^ f c , -qk]

forms a complete set of residues prime to q. Then for any 1-^0 (mod q), we have

i /n (z-y^Kz-y-^^ n (^-Y^H^-Y^)/^)./ f = i 1=1
Now, the Proposition follows directly from the formula (2.3).

Q.E.D.

4° SERIE - TOME 13 - 1980 - ?3



LENS SPACES WHICH ARE I SO SPECTRAL 311

From this Proposition and (2.2), we have:

PROPOSITION 2.6. — Let L=L(q : p i , . . . , pj and L'=L(q : 5i , . . . , sj b^ /^ns spaces
belonging to ^o(q, n). Assume q is an odd prime. Then L 15 isospectral to U if and only if

^(CO((PI, ...,Pn)))=^,fc(0)((5l, ...,SJ)),

where k=qQ—n.

3. Lens spaces which are isospectral but not isometric

We have the following diagram from the results in 1 and 2,

(3.1) J?o(^ n)^lo(^ n)^lo(^ ^ ̂  Q(y)M,
<o 4\.k

where q is an odd prime, qo=^>(q)/^•> k, n^2and /c+n=^o- Hence by proposition 2.6, to
obtain lens spaces which are isospectral but not isometric, we must seek the integers q, n such
that ^Vq^k ls not injective.

THEOREM 3.1. — (i) let q be a prime not less than 11. Then there exist at least two (q — 6)-
dimensional lens spaces with fundamental groups of order q which are isospectral but not
isometric;

(ii) let q be a prime not less than 13. Then there exist at least two (q — S)-dimensional lens
spaces with fundamental groups of order q which are isospectral but not isometric;

(in) let q be a prime not less than 17. Then there exist at least two (q — 10)-dimensional lens
spaces with fundamental groups of order q which are isospectral but not isometric.

Proof. - (i) let q be a prime with q^ll. Thenqo=^(q)/2=(q-l)/2^5. PutA;=2and
n = qQ — 2. Then 2n-l=q—6. To prove (i), it suffices to show that the map ̂  2 is not
injective. By Proposition 2.4 and Corollary 1.3, we have

|^o(^^|^- l-f^)=^o-l) /2^2>l=|J(^2) | .
<?o \ 2 /

This means that ^F^ 2 ls not injective;
(ii) let q be a prime with <?^13. Then qo^6. But k=3 and n=^o-3. Then

2 n — 1 = ^ — 8 , On the other hand,

|^o(^^) |^^f^o)=^o-l)(^o-2)/6^20/6>2^|J(^3) | ,
<?o \ J /

which implies ^¥q 3 is not injective;

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



312 A. IKEDA

(iii) let q be a prime and q^ll. Then ^8. Put k=4 and n=^-4. Then
2 n-1=^-10. Since

|^o(^n)|^J-^o)>6^|J(^4)|,
yo \ -t /

the map ̂  4 is not injective, which implies (iii). Now the Theorem is completed.
Q.E.D.

Remark. — By Theorem 2.1, these lens spaces, which are isospectral but not isometric, are
neither diffeomorphic nor homeomorphic to each other.

4. Examples

Let q be a positive integer (q ̂  2) such that the multiplicative group Kg is cyclic. We shall
give a combinatorial method to determine all non-isometric classes of lens spaces with
fundamental group of order q. It is known from the elementary number theory that K^ is
cyclic if and only if q = 2, 4, p^ or 2 p", where p is an odd prime and a ̂  1. For such a q, an
integer r is said to be a primitive root ofq if the residue class (mod q) of r is a generator of K^.

In what follows, we always assume that Kq is cyclic and qQ=^)(q)/2^4. We fix a
primitive root of q, say r. Since Kq is cyclic of order (p(^), we have

(4.1) r^EE- l (modq).

Take an integer n with 2^n^qQ-2. Put k=qQ-n. From (4.1), we have:

LEMMA 4.1. — For any ( p i , . . . , pn)el(q, n), ^r^ ar^ integers a ^ , . . . , a ^ i^T/i
0=01^02^ . . . ^an<qo such that ( p i , . . . , p^ is equivalent to (1, r02, . . . , r0").

LEMMA 4.2.- L^ (r01, r02, . . ., r0") ̂  (r^, r62, . . . , r6") ̂  elements in l(q, n). Suppose
the sequences { a j ^ i , {b j ?= i are non-decreasing with a^=b^=0 and a^, bn<qo. Then
(r^, . . . , r0") is equivalent to (r61, . . ., r6") ^an^ only if there are numbers no and b satisfying
the condition that whenever k = k ' - ^ - H Q (mod n), we have a^b-^rb^- (mod qo).

Proof. - Since r90 = -1 (mod a), (r01, . . . , r0") is equivalent to (r^, . . . , r6") if and only if
there is an integer b such that (ai, . . . , f l J is a permutation of ?+^1, . . . , f c + ^ )
(mod qo). Now, the Lemma follows from the assumption that the sequences { f l f c } ^ = i ,
{ ^ k } Z = i are non-decreasing.

Q.E.D.
For any non-decreasing sequence of n-integers [0^=1 with O i = 0 and Ok<qo

(k=2, . . . , n), we define the sequence of non-negative integers {c^}^! by

(4.2) [^k=^+i-^ it l ^ fe<n ,
[c^qo-a^a^.
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n

Thenwehave ^ Cfe=^oandc^>0. Conversely, for any sequence [c^^i of non-negative
k=l

n

n-integers with ^ Ck=qo and ^n>0, we define the non-decreasing sequence of n-integers
k=l

{^}^ iby

(4.3)
ai=0,

a^= ^ c^ if l<k^n.
i^fe '< /c

Then we have cik<qo ( fe==l , . . . , n).

Let G (q, n) [resp. Co te» n)] be the set of non-negative (resp. strictly positive) sequences
n

{ ^k} !?= i of n-integers with ^ c^=qo and c^ > 0. We define two sequences {Cj,} Z= i and
k=l

[ck]fk=lm^{c^^ n) [resp. Co(<?, n)} are equivalent if there is a number feo such that whenever
k = ^ ' + f c o (mod n), we have 0^=0^. The set of equivalence classes of C(^, n) [resp.
C()OL ^)] is denoted by C(q, n) [resp. Co(g, n)]. For the lens space L(q: r01, . . . , r0") with
0=01^02^ . . . ^ ^ n < ^ o » ^et { ^ ^ f c } 2 = i be the sequence defined as in (4.2). Then we can
see easily that the correspondence

(4.4) L^r01,^2, ...^^^{c,}^!,

defines a one to one corresponding between ^ (q, n) and C (q, n) [resp. ^fo(^, n)
and Co(^, n)].

By using the above one to one corresponding between J^o te» n) and Cote, n), and by
applying Corollary 1.3, Proposition 1.6 and 1.7, we can obtain many explicit examples of
lens spaces which are isospectral but not isometric. Here, we shall give three examples,
containing non-homotopy equivalent ones.

(I) 5-dimensional examples (n= 3).
Case(i): ^=11.
Then qo==-5, k==2 and r=2.

{ c i , C 2 , C 3 } L(q•.ra\ra2,ra3)

{ 1 , 1, 3} L(ll: 1 ,2 ,2 2 )
{ 1 , 2 , 2 } L ( l l : l , 2 , 2 3 )

Since k=2, these lens spaces are isospectral. On the other hand,
((pte), n)=(10, 3)=1. Hence, by Lemma 2.3, the lens space L(ll: 1, 2, 22) is homotopy
equivalent to L (11: 1, 2, 23).

Case(ii): ^=13.
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Then qo=^, k=3 and r=2.

{ c i , C2 , €3} L(q: r01, r02, r03) (q,, ̂  9s) IA^I ,^ , ̂ )|

{ 1 , 1 , 4 } L(13: l ,2 ,2 2 ) (2 3 ,2 4 ,2 5) 0

{ 2 , 1 , 3 } L(13: l^2^3) (2,24 ,25) 0

{ 1 , 2 , 3 } L(13:l ,2,23) (2 2 ,2 4 ,2 5 ) 1

{ 2 , 2 , 2 } L(13: l ,2 2 ,2 4 ) (2, 23, 25) 1

where (q,, q^ q^}=w ((r01, r02, r03)).
By Proposition 1.7 and 2.6, the lens spaces L (13: 1, 2, 22) and L(13: 1, 22, 23) are

isospectral to each other, and also the lens spaces L(13: 1, 2, 23), L(13: 1, 22, 24) are
isospectral. But these isospectral lens spaces are non-homotopy equivalent to each
other. This fact follows easily from the facts r"==23 =E=8 (mod 13) and (23)2 = -1 (mod 13),
and Theorem 2.2.

(II) A 7-dimensional example (n==4).
Case ^=13.
Then qo=6, k=2 and r==2.

{ C i , C 2 , C 3 , C 4 } L^r-,^,^,^)

{ 1 , 1 , 1 , 3 } , L(13: l^^2^3)
{ 1 , 1 ,2 ,2} ' L(13: l^^2^4)
{ 1 , 2 , 1,2} L(13: l ,2 ,2 3 ,2 4 )

In this case we see these lens spaces are mutually isospectral but non-homotopy equivalent
to each other.
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