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INDUCED REPRESENTATIONS
OF REDUCTIVE p-ADIC GROUPS II.

ON IRREDUCIBLE REPRESENTATIONS OF GL(n)

BY A. V. ZELEVINSKY

Introduction

This paper is a continuation of that of I. N. Bernstein and the author [I], whose notation
and terminology we will freely use. In [1] we have dealt mainly with non-degenerate
representations of the groups G^ = GL (n, F); the technique developped there is applied here
to the investigation of all irreducible representations of these groups. Our main method is
the same as in [1] and is based on studying the restriction of representations of G^ to the
subgroup P^c=G^ consisting of matrices with last row (0, 0, . . ., 0, 1). This restriction is
described in terms of the derivatives of co (see [I], § 3, 4).

The results of this paper were announced in [14], [15]. The main ones are these:
(1) The classification of all irreducible representations of Gn modulo that of cuspidal

representations (Thm. 6.1).
(2) The generalization of results of I. M. Gelfand and D. A. Kazhdan concerning the

Kirillov model and the Whittaker model (Thm. 8.1, Cor. 8.2 and 8.3).
(3) The description of non-degenerate irreducible representations of G „ in terms of square-

integrable ones (Thm. 9.7).
We give now a more detailed account of the contents. In paragraph 1 general results on

induced representations from [1] are applied to the groups G^. Let ^(GJ be the
Grothendieck group of the category of algebraic G^-modules of finite length and
^ = © ̂  (GJ (n = 0, 1,2, . . . ) . It turns out that the functors IQ ^ and r^ Q of inducing and
localisation (see [I], 2.3) give rise to the structure of a bialgebra on ^ (Prop. 1.7). The
significance of this structure is not yet well understood, but we think it must be of
importance. Two other results of paragraph 1: Theorem 1.9 asserts that the ring ^ is
commutative and Proposition 1.11 gives the complete description of the product of two
irreducible cuspidal representations.

Section 2 is devoted to an investigation of the product 7 i = p i X . . . x p ^ i n the case when all
pi are irreducible, cuspidal, and distinct. In this "regular" case n is multiplicity-free and we
give the complete description of its composition factors and lattice ofsubmodules (Prop. 2.1,
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166 A. V. ZELEVINSKY

Thms. 2.2 and 2.8). Results of paragraphs 1, 2 were obtained by the author together with
I. N. Bernstein; results of paragraph 2 were announced in [3].

In paragraph 3 we introduce and study certain irreducible representations < A > ; one of
our main results is that all irreducible representations of G^ may be expressed in terms of
products of such representations (§6).

Let ̂  be the set of equivalence classes of irreducible cuspidal representations of the groups
Gn ( n = l , 2 , . . . ) . Call a segment in ^ any subset of ^ of the form
A = { p, vp, v2 p, . . . , v^ p = p'} where v is the character v (g) == | det g \ and k is an integer
^0 (we use the notation A==[p, p']). To each segment A=[p, p'] in ^ we associate the
irreducible representation < A > = <[p, p ']> (3.1); it may be defined as the (unique)
irreducible submodule of p x vp x . . . x p'. Note that both cuspidal and one-dimensional
irreducible representations have such a form; cuspidal representations correspond to one-
element segments, one-dimensional ones correspond to segments consisting of characters of
Gi=F* (3.1, 3.2). The representations < A > remain irreducible when restricted to the
subgroup P^c=G^ (3.5, 3.6); in fact they may be characterized by this property (7.9).

In paragraph 4 we establish a criterion of irreducibility of the product
< A i > x . . . x < A , . > where the A^ are segments in ^ (Thm. 4.2). It generalizes
Theorem 4.2 from [1]. Furthermore, for the product < A > x < A ' > the complete
description of its lattice of submodules is given (Prop. 4.6).

In paragraph 5 we discuss the property of homogeneity of representations of P^
and G^. The representation (D of P^ or G^ is called homogeneous if it has no non-
zero P^-submodules more degenerate than (D itself (for the precise definition see 5.1). This
property is closely connected with the generalization of the Kirillov model (5.2); it is used in
paragraph 6.

In paragraph 6 we prove the central result of this paper, Theorem 6.1. Roughly speaking
it asserts that irreducible representations of groups G^ are parametrized by families of
segments. More precisely let (9 be the set consisting of all finite multisets (1)
a= { A i , . . . , A,.}, where each A( is a segment in ( €. Theorem 6.1 says that there exists a
natural bijection a h - ^ < a > = < A i , . . . , A ^ > between (9 and the set of equivalence classes of
all irreducible representations of the groups G^ (n=0, 1, 2, . . . ) .

To construct < a > for a= { A i , . . . , A,.} e(9 one must order Ai , . . . , A,, in a certain way
[precisely described in 6.1. (a)] and consider the representation

7 i ( f l ) = < A i > x . . . x < A , > .

Theorem 6.1 (a) claims that n(a) has a unique irreducible submodule; this is
just < a > . Conversely, the multiset a e(9 may be directly reconstructed from the irreducible
representation co= < a > in terms of the functor r^ Q (6.9).

The proof of Theorem 6.1 is based on results of paragraphs 4, 5 and Theorem 6.2, which
is of independent interest. It gives sufficient conditions for the product

(1) The term "multiset" means that elements of a may be repeated, i. e. each element occurs in a with some finite
multiplicity. This notion will be used throughout the whole paper. The rigorous definitions and necessary
terminology on multisets are collected together after the introduction.
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INDUCED REPRESENTATIONS OF REDUCTIVE R-ADIC GROUPS II 167

< A i > x . . . x < A , . > t o b e homogeneous. Both 6.1 and 6.2 imply that every irreducible
representation of G^ is homogeneous (Cor. 6.8). Note that Corollary 6.8 and
Theorem 6.2 generalize Theorems 4.9 and 4.11 from [1].

To make our classification more explicit one has to express the basic operations on
representations in terms of the set (9. Some results of this kind are collected in
paragraphs 7, 8.

In paragraph 7 we compute composition factors of the product < A i > x . . . x < A , . > ,
where the A^ are segments in ^ (Thm. 7.1). To formulate Theorem 7.1 one needs some
definitions. For a=(Ai, . . . , A,.)ecP set n(a)= < A i > x . . . x < A ^ > ; let m(b; a) be the
multiplicity of < ^ > in the Jordan-Holder series of n(a) (this means that
7t (a) = V m (b; a). < b > in ̂ ). Segments A and A' in ̂  are called linked ifA<^ A', A't- A and

be(9

A u A' is a segment (4.1). Call an elementary operation on the multiset a e (9 replacement of
a pair (A, A') of linked segments by the pair (A u A', A n A') (note that A n A' is either 0 or a
segment in ̂ ; in the first case A n A' is dropped). We write b < a if b may be obtained from a
by a chain of elementary operations. One obtains the structure of a partially ordered set
on (9 (7.1). Theorem 7.1 claims that m (fo; a) -^ 0 if and only if b ̂  a; moreover m (^; a) = 1
for any a e (9. In particular n (a) is irreducible if and only if any two of segments of a are not
linked (this is precisely Theorem 4.2, so Theorem 7.1 is its generalization).

Using 7.1 one can express the contragredient of any irreducible representation of G^ in
terms ofcP (Thm. 7.10). For any representation co denote its contragredient by co. Clearly
for any segment A in ^ the set A = { p / p e A } is also a segment in ^. For any
a=(Ai , . . . , A,)e^set5=(Ai, . . . , A,)ecP. Theorem 7.10 says that <^T> = < 5 > f o r a n y
ae(9.

The other consequence of Theorem 7.1 is that monomials n (a) (a e(9} form a Z-basis of^;
it means that ^ is a polynomial ring in the indeterminates < A > , where A runs over all
segments in ̂  (Cor. 7.5). This result allows one to describe completely the bialgebra ̂  in a
purely algebraic way (7.6). But realizing ^ as a polynomial ring, one may ask: which
elements of ^ are represented by ordinary representations of G^ (i.e. not only by virtual
ones). This important problem is yet unsolved. Clearly it is equivalent to the problem of
explicit evaluation of coefficients m (fc; a). Some partial results in this direction are collected
in paragraph 11.

In paragraph 8 we compute the highest derivative of any irreducible representation
of G^ (Thm. 8.1). For any segment A=[p, p'] in ^ set A ~ = A \ { p ' } ; for any
a=(Ai , . . . , A,)ecP set a~ =(AF, . . . , A,T)ecP (here terms A^~=0 are
dropped). Theorem 8.1 states that for any ae(9 the highest derivative of the irreducible
representation < a > is isomorphic to < a~ > ; in particular it is irreducible. This generalizes
the well-known result of I. M. GelfandandD. A. Kazhdan([8],p. 97, Thm. Cor [2], 5.16).

Combining Theorem 8.1 with Corollary 6.8, one obtains a generalization of the Kirillov
model (Cor. 8.2). In other words, every irreducible representation co of G^ may be realized
on some space of vector-valued functions on P^ (for precise definitions see 5.2).

The another application of Theorem 8.1 is the generalization of the Whittaker model
(Cor. 8.3). For any irreducible representation co of G„ we construct a character 6 of the
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168 A. V. ZELEVINSKY

subgroup U^ c G^ ofunipotent upper triangular matrices such that co may in a unique way be
embedded into the representation of G^, induced by 6 (for non-degenerate (D this was done
in [8], p. 97, Thm. D; see also [2], 5.17).

In the remainder of paragraph 8 we derive from Theorem 8.1 some consequences about
products < f l i > x . . . x < a p > o f general irreducible representations (Prop. 8.4-8.6). In
particular Proposition 8.5 gives a sufficient condition for irreducibility of such a
product. Leta=(Ai, . . . , A^), ^ '==(Ai , . . . , As) e(9 be such that A ^ and Aj; are not linked
for all i, j. Proposition 8.5 says that < a > x < a' > is irreducible and moreover equals
< A i , . . . , A , , A i , . . . , A ; > .

In paragraph 9 we associate to each segment A = [p, p'] in ̂  the irreducible representation
< A y . It may be defined as the (unique) irreducible quotient module of
p xvp x . . . x p'. An example of such a representation is the Steinberg representation
ofG^(9 .2 ) .

The representations < A > t may be characterized as irreducible quasi-square-integrable
representations of G^ (Thm. 9.3) (co e Alg G^ is called quasi-square-integrable if it becomes
square-integrable after multiplying by a suitable character of GJ. This result is due to
I. N. Bernstein. Note that half of it, namely that representations < A y are quasi-square-
integrable follows directly from the criterion for square-integrability obtained by
W. Casselman ([6], Thm. 6.5.1); the converse is based on a refinement of results of his.

It is known that all irreducible representations of semisimple real groups may be obtained
by inducing from square-integrable ones ([12], [11]). It is thus natural to try to classify
irreducible representations of G^ in terms of products < A l > r x . . . x < A ^ > t . The first
result in this direction is Theorem 9.7, classifying non-degenerate irreducible
representations of G^. It consists of two parts:

(a) Each product < A l > t x . . . x < A ^ > t i s non-degenerate. It is irreducible if and only if
any two of segments Ai , . . . , Ay. are not linked.

(b) Any irreducible non-degenerate representation co of G^ decomposes into the product
co= < A i y x . . . x <A,.y where any two of segments A i , . . . , A ^ are not
linked. Moreover the multiset a=(Ai , . . . , A^)e^ is uniquely determined by co.

Further results are concerned with the remarkable duality between representations < A >
and < A y . Since ^ is a polynomial ring in indeterminates < A > , the map-
ping < A > i — ) - < A y is uniquely extended to the endomorphism coi-^co^ of the ring ^.
Proposition 9.12 claims that this endomorphism is an involutive automorphism of ^.
In fact it may be defined in a purely algebraic way in terms of the bialgebra structure on ̂
(Prop. 9.16). We conjecture (9.17) that the automorphism coi-^co^ carries irreducible
representations into irreducible ones. There is much evidence for this (e.g. Thms. 4.2
and 9.7); we also mention the interesting analogies with groups over finite fields (see [15]).

In paragraph 10 we discuss relationships between our results and the (hypothetical)
reciprocity law of Langlands. Roughly speaking our results allow one to extend the
reciprocity law from cuspidal to all irreducible representations of G^.

The final section 11 contains some partial results about coefficients m (fo; a). We mention
here Proposition 11.4, which describes irreducible components of p x v p x v p x v 2 ? for
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INDUCED REPRESENTATIONS OF REDUCTIVE R-ADIC GROUPS II 169

pe^. It provides counter-examples for many possible general conjectures about
coefficients m(b; a), derivatives of irreducible representations, and so on. I. N. Bernstein
communicated to me that an analogous example (playing a similar "destructive" role) exists
in the theory of Verma modules {see [4], p. 9, Remark).

I am glad to express my deep gratitude to I. N. Bernstein for invaluable discussions and
help and for allowing me to include here some of his results. I would like to thank
V. G. Drinfeld, who called my attention to relationships between the present results and the
reciprocity law. I am also indebted to the referee for some useful remarks and suggestions.

Notation related to multisets

Fix a set Q. A multiset on Q is by definition a function ^ : Q -^ Z + (the set of non-
negative integers). Since subsets of Q may be represented by their characteristic functions
the notion of a multiset on Q generalizes that of a subset of Q. It is often convenient to
extend the set theoretic language to multisets. So we write down the multiset 7 : Q -^ Z + as
a= [ . . . , x, . . . , x, y , . . . , y , . . . } where each element xeQ. is repeated /(x) times. The
function ^ is called the characteristic function of a and is denoted by 7^; the value ^(x) is
called a multiplicity of x in a. We write x e a if /„ (x) > 0, a c= b if /„ (x) ̂  ̂  (x) for all x e Q;
the empty multiset a=0 corresponds to ^=0. A multiset a is called finite if /„ has finite
support; in this paper we need only finite multisets.

The sum a-\-b of two multisets is defined by')ia+b=ta+tb- Note that the sum of two
subsets of Q is itself a subset iff these subsets have an empty intersection; in this case the sum
coincides with the (disjoint) union.

If the multiset a occurs in expressions such as ^ f(x) one must take into account the
multiplicities, i.e. one has xea

E/M= ExaM./M
xea xeQ

In particular for any finite multiset a put

| a | = ^ l = ^ U x ) .
xea xeQ,

Let a be a finite multiset and | a \ =N. Define an ordering of a as a map ^ : [1, N] -> Q
such that l^"1^)] =x^M for X(=Q (here [1, N]= { 1 , 2, . . . , N}). We will sometimes
write down orderings as sequences (^(1), ^(2), . . . , ^(N)).

Example. — Let n e Alg G be a representation of finite length. Then its composition series
^H°(7i) is a finite multiset on Irr G. If n is glued together from n i, . . . , 7 ^ then
^HO(7^)=^HO(7Il)+ . . . +^H°(7r,)(^[l], 1.11).

1. The functors f^ p and r? ^

In this section the results of [I], paragraph 2 are applied to the case G=GL(n).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



170 A. V. ZELEVINSKY

1.1. Fix from now on a local nonarchimedean field F and set G»=GL(n, F) for n>0,
Go= [ e ] . For each ordered partition a=(ni , . . . , n,) of n let G,, be the subgroup
G^ x . . . xG^ of G^, embedded in G^ as the subgroup of block-diagonal matrices. By
blocks of oc we mean the sets of indices

I i = { l , 2 , . . . , ^ } , I ^ = { n ^ + l , . . ., n ^ + n ^ } , . . ., I,= { HI + . . . +^z,..i + 1, . . ., n} .

The partition p is called a subpartition of a if every block of P is contained in some block of
oc (notation:?^ a). If p^a then G pis a standard subgroup of G;, (see [I], 2.1). Thusthere
are defined functors

^,G^ AlgGp^AIgG^ and r^o^ AlgG^AlgGp

(see [I], 2.3). We will write i^ p and r^ „ instead of i^ ^p and ^Gp, G, • Let us ^ate in these
notations Proposition 2.3 of [1].

PROPOSITION. — (a) The functors i^ p and rp „ ar^ exact.
(b) The functor r?^ fs ^/t adjoint to i^ p .
(c) 7/y^p^a ^n

^,PO^,y=^,Y, ^,P°^,a=^.a.

(^) ^a, p(p)= la,p(p)/o r ^y peAlgGp(/?^re p is the contragredient representation to p).

1.2. Let P, y^(n). We will compute the composition of functors

I ( , ) , P : AlgGp-^AIgG^ and r^ : AlgG^AIgG^.

Consider the group W=W^ofal l permutations of the set [1, n\. We will identify an element
w e W with the matrix w = (§ ̂  ̂ ) e G^. So W is a subgroup of G = G^; it is called the Weyl
group of G. For any weW denote by the same symbol w the corresponding inner
automorphism of G, i.e. w(g)=wgw~1.

Let Ii, . . . , I,, and / ^ , .. . , / ^ be blocks of P and y respectively. Set

W^'^ {weW\w(k)<w(l) if ^c<J

and both k and / belong to the same I;;

w~1 (k) < w~1 (1) if k < I and both k and I belong to the same /j} .

Let weW^7 . It is clear that all sets w(I^) r\/j are blocks. They induce the subpartition
y '^y (notation: y^ynu^P)). Similarly the sets \i^\w~l(fj} are the blocks of the
partition P '=P n w~ 1 (y)^p. It is clear that w(Gp,)=Gy, . Define the functor
F^ : AlgGp->AlgG,, by

^w=i,,Y^wor^ p

(here w is considered as a functor AlgGg, -> AIgG^, see [I], 1.7).
THEOREM . - The functor F = r^ ̂  o f^ p : Alg Gp -> Alg Gy ?5 glued together from the F ̂ ,

u^r^ weW^' 7 .
r^i'5 is a particular case of Lemma 2.12 /rom [1].
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INDUCED REPRESENTATIONS OF REDUCTIVE R-ADIC GROUPS II 171

1.3. Let us give a more detailed formulation of Theorem 1.2. It claims that there exists
an ordering Wi, . . . , Wj, of elements of W13'7 satisfying the following condition: for any
peAlgGp the representation F(p) has a filtration 0=1:0^1 c • . • c=Tfe=F(p) such that
T( /T; - I is isomorphic to Fy, (p).

Denote by Pp the parabolic subgroup of G^ corresponding to P, i.e. Pp is a sub-
group of upper block-triangular matrices. By Theorem 5.2 from [I], to choose a
sequence W i , . . . , w^ as above it is sufficient to require all sets
( P p w r ^ u P p W ^ P ^ u . . . u P p W ^ P ^ ) to be open in G^ ( i=l , 2, . . . , ^c). In
particular one can set w^=e and we derive.

COROLLARY. — For any p e Alg Gp the representation r^ ^ o f^ p (p) /zas a quotient module
isomorphic to f^p or^p (p).

1.4. PROPOSITION. — 77^ functors i^ p an6? rp ^ ta^ representations of finite length into
ones of finite length.

Proof. — Let y ̂  p ̂  a be partitions and co e Alg Gp be of finite length. We must prove
that r^ p (co) and i^ p (co) are of finite length. Since r^ p and i^ p are exact it suffices to consider
the case when co is irreducible. By [I], 2.5 one can embed co into some representation i^ § (p)
where p is irreducible and cuspidal. So it suffices to prove that

^p^p^P) and ^,p^'p,§(p)

are of finite length. By 1.1 (c) i^ p o i p 5 (p) = ̂  5 (p); this representation has finite length by
Theorem 2.8 from [1]. The statement that r^ po!p ,§ (p ) has finite length follows directly
from [I], 2.8 and 2.12.

1.5. Let a=(ni, . . . , n^} be an ordered partition. Consider the functor

®: A l g G ^ x . . . xAlgG^AlgG,((pi, . . . , p,)^pi ® . . . ® p,)

of tensor product. Since any irreducible representation ofG^ is admissible (see [I], 2.5), this
functor induces a bijection ® : Irr G^ x . . . x Irr G^ ^> Irr G,, (see [I], 1.2, 1.6). Let us
write functors i^ p and r? „ in this "coordinate form". Let P^oc; denote by Pi, . . . , P^ the
partitions induced by P on blocks of a. It is clear that Gp=Gp^ x . . . x Gp .

PROPOSITION. - (a) Let Ti^.eAIgG^., f = l , . . . , r. Then

rp, jjii ® . . . (x) 71,)=^ ̂  Oii) (x). . . (x) r^ ̂  (7i,);

(b) Let p.eAlgGp , f = l , . . . , r. Then

^, p (Pi ® . • . 0 Pr) = ̂ ), p, (Pi) ® • • . ® ^), p, (Pr).

TTu's follows immediately from [I], 1 .9 (c), (^f).

1.6. We give now the "coordinate form" of Theorem 1.2. One can use it to compute
composition factors of the representation r^ ̂  o f^ p (p) where p e Alg Gp is of finite length.
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172 A. V. ZELEVINSKY

Let|3=(ni, . . . , n ,) ,y=(mi, . . . , mj.letli, . . . , I,and / ^ , . . . , /, be blocksof P and y
respectively, so n;= | l f , m^= [ ̂  . To each w e W ^ 7 there corresponds the rectangular
rxs-matrix B(w)=(^-), where ^= l l ^ n w " 1 { /j)\. It is clear that the correspondence
wi-^B(w) is the bijection o f W ^ 7 with the set M13'7 of matrices B=(b^.) such that:

(1) All bij are integers ^0.

(2) ^bij^Hi for any f = l , . . ., r; ^ f c f j = m ^ for any 7=!, . . ., 5.
j i

Let p ^ e I r r G ^ , p=p i ( x ) . . . (x) p ^ e I r r G p , w e W ^ 7 . We will compute composition
factors of Fy,(p) (s^ 1.2) in terms of the matrix B^^^eM13'7. Denote by R ^ the
partition (b^, . . ., ^;J of n^ and by y^- the partition (b^j, . . ., ^^-) of nij. By 1.4 the
representations ^^(pi) have finite length. Let ^H°(r^ , ( ^ , ) ( P ; ) = { cri^, al2^ . . . }*(s^
[I], 1.2), where

aW==a^ ® . . . ® CT^, ayeIrrG,^,

For each k^, . . . , ky put
(^l) ^ (/C2) ^ .-. (^r) T ^a,=(7i, (x)a2, ® . . . ®a,, eIrrG

and

(7(^1, . . . , Jc,)=^^(ai)® ^^(a^)® . . . ®f(^ ^(crjEAIgG^.

PROPOSITION. — F^(p) is ^JM^ together from the representations a(k^, . . . , ky).
This follows immediately from definition of F^, the exactness of r? ^ and f^ p and 1.5.

1.7. Denote by ̂  (GJ the Grothendieck group of the category of algebraic G^-modules ol
finite length. By definition ̂  (GJ is a free abelian group with basis Irr G^. We will denote
by the same symbol the representation n e Alg G^ of finite length and its image in ̂  (GJ, i. e.
in ^(Gy} one has

71= ^co, coe^H°(7r).

Let a=(ni , . . . , n^). Using tensor products one can identify Irr G,,
with Irr G^ x . . . x Irr G^ ; hence ^(GJ may be identified
with ^(G^)(x). . .(x)^(GJ. By 1.1 (a) and 1.4 the functors f ^ p and r?^ induce
homomorphisms

i\,p: ^(Gp)-^^(GJ and r?^: ^(GJ->^(Gp).

By 1.1 (c) and 1.5 to compute all such homomorphisms one needs only to know maps

^),(fe,o: WJ(x)^(G,)-^(GJ;

^,o,(n): ^(GJ^^(GJ®^(G,).
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To give a more condensed form of this put ^= © ̂ (GJ (n=0, 1, 2, . . .) and define the
multiplication m: ̂  00 ̂  -> ̂  and comultiplication c: ̂  -^ (x) ̂  by

m(pi (x) p2)=^),(k,o(Pi ® P2)- pie^(GJ, p^e^G;), n=k+l,

c(n)= ^ r^_^(7i), 7ie^(GJ.
O^fe^n

Using m, one obtains the structure of a Z-algebra on ̂  [put pi x p2 = m (pi (x) p2)]; similarly c
determines the structure of coalgebra on ^.

PROPOSITION. — By means of m and c, the group ^ becomes a graded bialgebra over Z.
I t is called the representation bialgebra of groups GJ for definitions see [5], Chapt. I l l , §11;

nevertheless they are explained in the proof below).
Proof. — We must prove the following properties.
(a) Associativity. This means that both diagrams

w(x)id ^^^7» ^ C ^^^

[d®m \m c id®c

are commutative. Let pi e ̂  (GJ, p^ e ̂  (Gj), ps e ̂  (G^), n = k +1 + m. One can easily
derive from 1.1 (c) and 1.5 that

mo(m(x)id)(pi 00 p2 00 ps)=mo(id (x) m)(pi ® pi ® Ps)^^),^^?! ® P2 ® Ps)

[in other words

(Pi X P2) X P3 = Pi X (P2 X Ps) = ̂ (n), (k, I, m) (Pi ® ?2 ® Ps)]

For the second diagram the arguments are similar.
(b) The map c:^-^®^isa homomorphism of rings (the multiplication in ̂  ® ̂  is

defined as usual:

(pi 00p2)x(pi ®p2)=(pi x pi) (x) (pi x p;)).

This follows directly from 1.6. Note that this statement is a condensed form of
Theorem 1.2.

(c) Other properties are of less importance. There exist a unit 1 e ̂  (Go) (it is represented
by a trivial representation of Go = { e }) and counit y : ̂  -> Z [y = 0 on © ̂  (GJ, y (1) = 1]

n>0

with the usual properties {see [5], Chapt. Ill, § 11, No. 2,4). In conclusion, ̂  and ̂  (x) ̂  are
graded by

^=^(GJ, (^(x)^),= © (^,(x)^)
k+l=n

and m and c are homogeneous of degree 0.
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1.8. Remark. — If p, e Alg G^ not be required to have finite length (i = 1, . . . , r), we will
still use the notation

Pi X . . . X Pr=i(n).(n,. ...,n,)(Pl ® . . . ® ?,) £ Alg GJn == HI + . . . + H,)

and call this representation the product of p i , . . . , p,..

1.9. THEOREM. — The ring ^ is commutative. In other words ifn^ eAlg G^, 71^ e Alg G(
ar^ of finite length then n^xn^ and n^xn^ have the same composition factors [i.e.
/ H O ( K , x n , ) = / H O ( n , x K , ) ] .

Proof. — For each n define the matrix s^eG^ and the automorphism s : G,, -> G,, by

(^.——(-l)^,^!-,, 5(^=^/-l.^-l

(here ^ / is the matrix transpose to g). One obtains thus the functor

s: AlgG^AIgG,.

LEMMA. — (a) s(7Ti x 712) ̂ 5(712) xs(TTi) yor ^flch Tii cAIgG^, 7i2£AlgGj.
(^) J/ TT e Alg Gn is of finite length then so is s(n) and

/H°(s(n))=/H°(n).

Part (a) follows immediately from definitions. To prove (b) it suffices to consider the case
when TT is irreducible. In this case our statement is due to Gelfand and Kazhdan (see [8] or
[2],7.3).

Now one has

./H°(K, xn,)= /H°(s^T^2))

=/H° (S^)XS(K',))= /H°(s(n,)x^))= /H°(^x n,)

[use in consecutive order part (b), (a), 1.1 (d) and again part (b)]. The Theorem is done.

1.10. The representation peAIgG^ is called quasicuspidal if r ^ ^ ( p ) = Q for all
P < a, P^a. Admissible quasicuspidal representations are called cuspidal. If
a=(ni , . . . , Ur), pi e Alg G^ , 0^p=p i ( x ) . . . ® p^eAIgG^ then by 1.5 p is quasicuspidal
iff all p; are quasicuspidal. Note that the representation peAlg G^ of finite length is
cuspidal iff c(p)=l O O p + p O O l(see 1.7); it means that p is a primitive element of the
coalgebra^(5^ [5],Chapt. Ill, § 11, No. 8, Remark 2). Denote by ̂  the set of equivalence
classes of irreducible cuspidal representations of groups G^ (n= 1, 2, . . .).

PROPOSITION. — Let coe I r rG^ . There exists a partition ( n ^ , . . . , n,) of n and c u s p i d a l
representations p,e!rrG,, such that coe^ H(pi x . . . x p,.). The m u l t i s e t } p i , . . . , p,. { on
% (cf. list of notations) is determined by co; it is called the support of co (notation
suppco=={p i , . . . , p ^ } ) . One can choose an ordering (p ,^ , . . ., p, ) o/supp co si^ch thatwcan
be embedded into p^ x . . . x p; (see [I], 2.5, 2.9).
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One can define suppco in an another way. Choose (3=(ni, . . ., Uy) such that
p=rp^(co)eAlgGp is a non-zero cuspidal representation. Let pi ® . . . ® p^ be a
composition factor of p. Then co can be embedded into pi x . . . x p,. hence
suppco={pi , . . ., p r ] [tms follows from 1.1 {b) and [I], 2.4 (b)].

1.11. In conclusion we describe the product of two irreducible cuspidal
representations, Denote by v the character of G^ defined by v (g) = \ det g \ where | | is the
standard norm of F.

PROPOSITION. - Let pe I r rGfe , p'eIrrG; be cuspidal:
(a) If p '^vp and p^vp' (in particular if k^l) then p x p' is irreducible.
(b) Suppose that k=l and either p'^vp or p^vp'. Then the representation p x p' has

length 2. I t has a unique proper submodule CD; the quotient co' =(p x p')/(o is irreducible and
one has

^ , fe ) , (2k) (co)=P®P^ r^,k),(2k)(^f)=Pf®P'

Proof. - It follows immediately from [I], 2.16 (1) that any product p x p ' is either
irreducible or satisfies the conclusions of part (b). Part (a) is a particular case of
[1]. Theorem 4.2. It remains only to prove that the representation p x v p is
reducible. This statement was announced in [I], Remark 4.2 (2). Here we will only sketch
the proof.

Suppose that p xvp is irreducible; by 1.9 so is vp x p. Multiplying by the appropriate
power of v, one may assume p=v - l / 2 po where po is unitary (see [9], prop. 5.1). Set

T^V'po xv'po (seR).

According to Part (a) and our supposition 71 s is irreducible for each setR. Using the
restriction of 7is to the maximal compact subgroup of G2k, one can realize all n son tne same

space E. It is easy to see that for each s e tR there exists an Hermitian Tis-invariant form B^
on E. Moreover B^ is unique up to a scalar multiple and one can choose B^ analytically
depending on s (see e.g. [13], §4).

The representation no is unitary (see [9], p. 22) so one can assume Bo to be positive and non-
degenerate. It follows from irreducibility of 71 s that all Bs are non-degenerate. One can
derive from these facts that all B, are positive hence all n^ a^ unitary.

On the other hand the matrix coefficients of^sm^ be computed directly and one obtains
that for large |s| there exists a non-bounded matrix coefficient of TT^. Therefore such n^
cannot be unitary and we obtain a contradiction.

1.12. Remarks. - (a) Stated appropriately. Theorem 1.9 may be generalized to all
reductive groups (see e. g. [I], Remark 2.10). One may prove it by a direct computation of
characters but one meets with some technical difficulties. The present proof for GL(n) is
perhaps the simplest possible. For cuspidal representations the statement is proved e.g.
in [I], 2.9.

(b) We will explicitly compute the bialgebra ^ in paragraph 7 (see 7.6). Already now
one may see that it is not cocommutative: for CD defined in 1 .11 (b) one has

^ (o^ l^co+p^p '+co®!
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so c (o) is not stable under the transposition

a: ^(g)^-^®^ (o(x®y}=y(Sx}.

2. Representations of multiplicity-free support

Fix until the end of this section a finite subset R = { pi, . . . , p,.} c= ̂  (see 1.10). We will
describe irreducible representations whose support is R, with multiplicities equal to 1, i.e.
composition factors of the product pi x . . . x p^ (see 1.10). Moreover we will give the
complete description of the lattice of submodules of pi x . . . x p^.

2.1. I f7ieAlgG^,putn(7c)=n;f ixnown= ^ n(p). DenotebySthesetoforderingsofR
peR

i. e. bijections ' k : [1, r] -> R (see the summary of notation). Assign to each 'ke S the partition
P(X-)=(no^( l ) , . . . , no^(r)) and representations

p(^)^(l) (g) ^(2) ® . . . ® ?i(r)eIrrGp^,
7 i (? i )=? i ( i )x . . . xX(r)eAlgG^.

Denote by P the set of partitions of the form P(X),? ieS:e .g . i fa l ln(p) ,peRarethe same then
P consists of one element. Denote by Q the set { p (k} | ̂  e S} c [j Irr Gp; clearly the map

'k\—> p ( k ) is a bijection S ^> Q. For each rceAIgG^ define the multiset Q.(n) on (J Irr Gp to
pep

be V /^°(r^(n)W)' 1{ follows from the exactness of r?^ that the map K\-^Q.(K) is
peP

additive i.e. if n is glued together from n i, . . . , nj, tllen

Q(7l)=Q(7Ti)+. . .+Q(7lfe) .

By Theorem 1.9 (or [I], 2.9) the multiset /H° (n (k)) on Irr G^ does not depend on ?i; denote
it by / .

PROPOSITION . — (a) For each ̂  e S the multiset Q (TT (k)) equals Q (in particular it is a set, i.e.
all multiplicities are equal to 1).

(!?) For each we/ one has Q(co)^ 0 and ^ Q(co)=Q (see list of notations).
ae/

(c) The representation K (k) is multiplicity-free, i. e. each composition factor of n (k) occurs
in / with multiplicity 1.

Proof. - (a) follows immediately from [I], 2.13 (c) or from 1.6; (b) from 1.10, (a) and
additivity of (n\—>^l(n))', (c) from (a) and (b).

2.2. By 2.1 any oo e/ is uniquely determined by the subset Q (co) of Q. So to compute /
one has only to describe the partition:

Q= U 0(0).
we/
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Define the (non-oriented) graph F in a following way. The set of vertices of F is
r °={ pi, . . . , p,.}. Two vertices p and p' define an edge if either p '^vp or p^vp' (see
1.11). Call an orientation of F the choice of a direction on each edge of F. To each ^keS
there corresponds an orientation F(k) of F: the edge { p , p'} is oriented from p to p' if
^(pK^-V).

Evidently any orientation F of F has the form r=r(^) for some ^eS.

THEOREM . — There exists a bijection F \—> co (T) between the set of all orientations of F and
the set f such that

<y

Q(co(r))={p(^)|r(^)=r}.
2.3. COROLLARY. — The length of K (k) is 2^ where k is the number of pairs of the form

{ p , v p } c R .

2.4. We will simultaneously prove Theorem 2.2 and describe the lattice of submodules of
7i (^). We begin with a general result about multiplicity-free modules.

PROPOSITION. — Let K be a multiplicity-free module and / =/}^(n). Then the map

n^/(n')=/W)^/

is the embedding of the lattice of submodules ofn into the lattice of subsets of/ (this means that

/(^^n^=/(K^^/(K^,/(n^K^=/(K^^/(n^).

Proof. - (1) Let Tii , 7i 2 c ^ and / ( n ^ ) <= / ( ^ z ) . Since n is multiplicity-free, one has
Hon^Ti^Tt/T^^soTCi c= 7C2. Therefore / (n i) =/ (n^) => K i =712, so no^/(^o} is an
embedding.

(2) The submodule Tii +71:2 is glued together from Tii and

(Tli +71:2)/Tti ^71:2/(TTi n 71:2).

Hence / ( n ^ +712) cz / (^ \}^ / ( ^ i ) - The inverse inequality J ( T i i +71:2)=^ ( 7 i i ) u / ( T I ^ )

is trivial. So
/(n,+n^=/(n,)u/(K^

(for this statement the fact that n is multiplicity-free is not needed).

(3) Evidently

/ (7i i n 712) ̂ / (TT 1)0^(712).

Suppose there exists co e,/(711) 0^(712), w ^ / ( n ^ K ^ . Then w(=/(n^ and
co 6 / (^ 2 I (^ i ̂  712)) hence by (2) co occurs in / H ° (711 + TT 2) with multiplicity at least 2 and
we obtain a contradiction.
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2.5. Return to the notation of 2.1-2.2. From 2.1 and 2.4 one derives:
LEMMA. — For each 'keS the map 71' \—>^l(n') is an isomorphism of the lattice ofsubmodules

ofn(k) with the sublattice of the lattice of all subsets ofQ..
2.6. BASIC LEMMA. — Let X-, u,eS and 71' be a submodule of n(k} such that

p(a)e0(7i'). Let p=[i(j), p '=a0'+l) be two neighbour elements of the ordering a,
satisfying one of the two following conditions:

(1) { p , p'} is not the edge ofF, i.e. p^vp' and p'^vp.
(2) ^(p^-^p).
Then Q(7l /)^p(a /), where (^=ao(7 ,^+l )eS is obtained from [i by the transposition ofp

and p'.
Proof. - ( l )Le tao=^l i f^ - l (p )<^ - l (p ' )and^ lo = ^ i^~ l (P / )<^ - l (p ) • Le tp=PM

and y be obtained from P(uo) by tne union of its 7-th and (;+l)-th blocks into a single
block. Put a==fy p(^(p(ao))eAlgG^. We shall prove that CT is a subquotient of
^y,(n)(^))-

We note that r^^(n(k))=r^^)°hn) ,p(P(^)) and BPP^ Theorem 1.2. Consider the
permutation w e W^ which transfers f-th block of P to po 1 ° ̂  (l )-th block of P (po)- Clearly
w e W p ' Y and a == F ̂  (p (^)) (s^ 1.2). So our statement follows directly from Theorem 1.2.

(2) Now we shall prove that r^^n)W has a non-zero subquotient which is a submodule
of CT.

By step (1) r^^(n(k)) is glued together from a and some other modules
ori, CT^, . . . , Ofe. Using 1.1 (a) and (c), one obtains that

^(3 (n), (n) (7t (^)) = ̂ p (p), y ° ̂ y, (n) (TT (^))

is glued together from rp^^(a) and rp (^y(a , ) ( f = l , . . . , /c). Evaluating
rp^.y(a) as in 1.6, we obtain that p(n)e^ H°(rp^)^(CT)). Since Q(7i(^)) is
multiplicity-free [s^ 2.1 (a)] it follows that p ^ t / H°(rp^^(cTi)) for f = l , . . . , k.

The exactness of r^ ̂  implies that r^ („) (71') is a submodule of r^ ̂  (n (?i)). So r^ ̂  (n') is
glued from some submodules CT'CZO and c '̂ c:a, (f== 1, . . . , k). It remains only to prove
that or'^0. By assumption p(^)e0(7i'). Since p(n)^\/ H°(rp^y(a0) it follows that
p(u)e^ H°(rp^^(cT')) so a'^0 and our statement is proved.

(3) Now take into account conditions (1) and (2). By 1.11 if one of them holds then
either a is irreducible or it has the unique proper submodule a' and
^(P) v^^P^) ' ^n eacn case P^)6^ ^(^PO^Y^)) f01" ^y non-zero submodule a'
of a. By step (2) pd^e^Ti') and our Lemma is proved.

2.7. Call an elementary transposition of an ordering X-eS the transposition of two
neighbours in X- which don't belong to the same edge of F.

LEMMA. — (a) Let 'k , [ieS. Then the following conditions are equivalent:
(1) r(?i)=r(n)(see2.2).
(2) p, may be obtained from 'k by a chain of elementary transpositions.
{b} For each orientation YofY define the subset Q(r)c:Q by

Q(r)={pp.) | rw=r}.
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Then for each we/ the set Q(co) is the union of such subsets.
(c) J/r(?i)=r(u) then K(k)^n([i).
Proof. — The easy combinatorial proof of (a) is omitted. Part (b) follows immediately

from (a) and 2.6 since co may be embedded into some n (k) (see 1.10).
(c) By (a) it suffices to consider the case when ^ is obtained from |LI by an elementary

transposition. In this case our statement follows immediately from associativity and
commutativity of product (see 1.7, 1.9) and 1.11 (a).

2.8. Denote by (9 (T) the set of all orientations of F. By 2.7 (b) for each submodule 71' of
some n (k) one has

Q(7i')=Q(i\)u . . . u0(l\) (fi, . . . , I\e^(r)).

Denote the set { f i , . . . , F^by^'). By 2.5 the map K ' ^ ( 9 ( n ' } is an isomorphism of the
lattice of submodules of n (k) with some sublattice ̂  (k) of the lattice of all subsets of (9 (F).

Denote by ^(k) the lattice consisting of all subsets (9ci(9(Y) satisfying the following
condition:
(*) If F e (9 and the edge y of F has different orientations in F and F (k) then the orientation
F', obtained from F by the inversion of the direction on y, also belongs to (9.

For each edge y of F and ^ e S consider the subset (9 (k, y) = { F | y has the same directions
in F and f(k)} c=^(r). Denote by ^(k) the lattice of subsets of (9(Y} generated by the
(9(k, y), where y ranges over all edges of F.

THEOREM. - ^(k)^^(k)=^(k).

Proof. - (1) The equality ̂  (k) = ̂  (k) is of combinatorial nature and it holds for each finite
graph F. Obviously each 0(k, y) satisfies (*) so ^(k)^^(k). Let (PeH(k). Consider
the orientation f1 obtained from f(k) by inversion of the direction on all edges of F. If
1^(9 then by (*) (9=(9(Y}. If P<^ CO then ^c=J^,y) so (9= u(9, where

Y

(9 ̂ =(9 r\ (9 (k, y). Using obvious induction on the number of edges of F, one may assume
each (9^ to belong to ^(k). It follows that (9 e^(k).

(2) For each reG)(T) and p, p 'eR there exists ^eS such that r(?i)=r and p and p' are
neighbours in ^. The simple combinatorial proof of this statement is omitted.

(3) ^(k)ciWw: it follows immediately from (2) and 2.6 (2).
(4) To prove ^(X-)c^(^) one has only to construct the submodule n (k, y) of n(k) such

that (9 (TT (k, y)) =(9 (k, y). Let y = { p, p'}. By (2) and 2.7 (c) one may assume that p and
p' are neighbours in ^ so

n(k)=^(l)x .. . x? i ( f - l )xpxp 'x? i ( f+2)x . . . x^(r).

By 1.11 the representation p x p' has the unique proper submodule co and we set

7t(^, y )=^( l )x . . . x ? i ( f - l ) x c o x ? i ( f + 2 ) x . . . x^(r).
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Using 1.6 and 1.11 one can easily compute Q(7i(^, y)) and obtain the desired
G)(n(^, y))=^(^, y). The Theorem is done.

2.9. COROLLARY. — The lattice ofsubmodules ofn(k) is generated by submodules n (^, y)
where y ranges over all edges ofY.

2.10. PROPOSITION. — The representation n(k) has the unique irreducible submodule co(?i)
and the unique irreducible factor-module ©(^V. Moreover

Q(co(?i))=Q(r(^)), Q^^^Q^) (see 2.7)
where Y1 is obtained from Y^k) by the inversion of the direction on each edge ofY.

Proof. - By 2.9 TT (?i) has the unique minimal and maximal proper submodules name ly

Fl 7i (k, y) and ^ n (k, y) respectively. By 2.8 (4) one has
Y Y (5(n7i(x,Y))=n^,Y)={rM},

Y Y

(?(^TC(X, y))= U^(X, Y)=(P(r)\{r'}.
Y Y

So co(?i)= FiTipi, y), copi^Ti^V^Trpi, y) and the Proposition is proven.
Y Y

Note that Theorem 2.2 follows immediately from this proposition.

2.11. COROLLARY. — The following conditions are equivalent:
(i) r(^)=r(u).
(2) 71 (^TT (a).
(3) co (^ co 00.

This follows immediately from 2.7 (c), 2.10 and 2.2.

3. Segments and corresponding representations

In this section we introduce and study a class of irreducible representations of the groups
G^ which plays the main role in our classification of irreducible representations.

3.1. Recall that we denote by ^ the set of equivalence classes of irreducible cuspidal
representations of groups G ^ ( n = l , 2 , . . . ) . Call a segment in ̂  a subset A c ̂  of the form
A= { p, vp, . . . , v f c p = p / } (k is an integer ^0);wewriteA=[p, p']. The element pis called
the beginning of A and p' the end of A.

Let A=[p, p'] be a segment in ^. Denote by < A > the irreducible representation with
support { p , vp, . . . , p '} , which corresponds to the orientation

p -> vp ->v2 p -> . . . -> p' {see 2.2).

Let peIrrG^, p^v^^? so < A > e I r r G ^ , where n=km. Let P=(m, m, . . . , m) be a
partition of n. Then by definition

rp^)«A»=p(g)vp®. . . O O p '
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and < A > may be defined by this property. Another way to define < A > is to say that < A > is
the unique irreducible submodule of p x vp x . . . x p' (or the unique irreducible quotient
module of p ' x v ~ 1 p ' x . . . x p), see 2.10.

In particular any pe^ is expressed as < [p, p] >; it is convenient to denote by < 0 > the
identity representation of the group Go = { e } .

3.2. Example. — Let p e Irr G i. Since G i = F * is abelian p is one-dimensional, i. e. it is a
multiplicative character of F. If p^v^p and A=[p, p'] then oo== < A > e I r r G f e + i is one-
dimensional:

w{g)=vk/2(g}.p(detg), geG^,.

The easiest way to check it is to compute ^i, i,..., i ) , ( fe+i ) (co) directly by definition
(see [I], 1.8).

3.3. For each segment A = [p, p'] in ̂  set A = { p | p e A} (p is contragredient to p). It is
clear that A is a segment in ^ with the beginning p' and the end p.

PROPOSITION . — < A > = < A > .

Proof. — Since < A > is a submodule of p x vp x . . . x p' one has < A > to be a quotient of
(p x . . . x p ' ) = p x v p x . . . x p ' . So ^3^ = < A > , see 3.1.

3.4. PROPOSITION. — Let A=[p, p'] be a segment in ^, peIr rG^, p^v^"1? so
< A ) £ l r r G ^ , n=km. If I is not divisible by m then r^ ^ _ ^ (^«A))==O. Ifl=mp then

^n-O^KA^^P.V^p])®^?,?']).

In other words

c«A»=<<Z)> (x )<A>+p(x )< [vp, p'] > + < [p, vp] >
®<[v 2 p, p ' ]>+ . . .+< [p,v-1 p'] > ( x ) p ' + < A > (x)<0> (see 1.7).

Proof. - Let 7i=p xvp x . . . x p\ P=(m, . . ., m)<(n). By [I], 2.13 (a) (or 1.6)
^(n^)^ if P ^ Y - I11 particular F(; „_;) ^)(TT)=O if I is not divisible by m so
^,n-0,(n)«A»=0.

Let now I = mp and y = (J, n — I ) < n. It follows easily from 1.10 that r p ̂  (a) 7^ 0 for each
composition factor a of r^ ^ « A ». Since

^ y o ^ ( n ) ( < A > ) = r p ^ ( < A > ) = p ® v p ( x ) . . . ( x ) p / [see 1.1 (c), 3.1]

is irreducible, one obtains that r^)«A» is irreducible so

r^)«A»=<7i 00(J2, c j i e I r rGf , c^eIrrG,,-;.

Moreover
r p,y(cTl®a2)=r^ , ,^^(a l )®r^. . .^^„_^(a2) [see 1.5 (a)]
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hence

^m,...^),^^®^®- • • 00 V^"1 P,

^...m), ̂ -0(^2)=^? 00 . . . 00 ?'.

By 3.1 a i== <[p, v^^p] ) , <j2= ^v^p, p']> and the Proposition is proven.

3.5. Now we compute the derivatives of the representation < A > e I r r G ^ , i.e. its
restriction to the subgroup P»c=G^ (see [I], 4.3). For each segment A=[p, p'] in ^ set
A~ = A\ { p'} (in particular if A = { p} then A ~ = 0).

THEOREM . - Let Abe a segment in ̂ . Then exactly one of derivatives < A > ( k } for k > 0 is
non-zero and this derivative equals < A~ >. In other words

^ « A » = < A > + < A - > (see [I], 4.5).

3.6. Remark. - Theorem 3.5 means that the restriction of < A > to the subgroup ?„
remains irreducible and is isomorphic to^^^o^F^A")) (where elements of A belong
to IrrG^), see [I], 3.5. In fact representations of the form < A > may be characterized as
those irreducible representations ofG^ that remain irreducible, when restricted to P^ (this
will be proven in paragraph 7).

3.7. The rest of this section is devoted to the proof of Theorem 3.5. We begin with
connections between derivatives and functors r^^^.

Let k, m be integer ^0. We will define the functor

8 : Alg G^ ^) -> Alg Gfc (partial derivative).

Let U be the subgroup of unipotent upper triangular matrices in

G^{e] xG,cG,xG,=G^.

Define the character 0 of U by

Q((^^))== ( E Uk+i^+i+i)'
l ^ i^m- l

(here^F is the additive character of the field F, which was used in definition of derivatives,
see [I], § 3). Set

B = r u , e : AlgG^-^AlgGfc (see [I], 1.8).

PROPOSITION. - (a) J/aeAlgGfe, reAIgG^ then

^(gi^c^T^eA^GfeXGt^AlgGfe.

(b) Ifn=k-\-m then the functor of m-th derivative Alg G^-> Alg G^ is isomorphic to the
composition o o r ^ , m ) , ( n ) '

The Proposition follows immediately from the definition of m-th derivative and m
1.9(c),(^).
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3.8. Let us reformulate Proposition 3.7 in terms of the representation bialgebra ^
(see 1.7). Consider the Z-linear form

8 : ^->^(Go)=Z,

defined by 8(7I;)=/^;(") for TieAIgG^. Lemma 4.5 from [1] implies that § is a ring
homomorphism. Note that

(0 §(p)=l for any pe^ (see [I], 4.4).

This deep result of Gelfand-Kazhdan is a corner-stone of our theory.

PROPOSITION. — The homomorphism Q) : ̂  -> ̂  (see [I], 4.5) equals the composition
c id®§

01 -^ ^ 00 ^——^ 00 Z ̂  ̂  (se^ 1.7).

This follows immediately from the definitions and 3.7.

3.9. LEMMA. — Let A=[p, p'] be a segment in ̂  and p^p'. Then the representation
<A>eIrrG^ is degenerate (this means (A^^O or 8«A»=0).

Proof. — (1) Consider the case p '=vp. Let peIrrG^ hence n=2m. B y l . l l ( ^ )
^ H ° ( p x p ' ) = {co, co'} ( co=<A» where

r(m, m), (n) (co) = p ® ?', F^, ̂  ̂  (CO') = ?' (g) p.

By [I], 2.13 (a) r^_^i^^(w)=r^_^^^(^)=0 if J^O, m, n. Applying 3.7 and 3.8 one
obtains

co(0 = co^ =0 for J ̂  0, m, n; co^ = p, co^ = p'.

Moreover 5(co)+5(co /)=5(p x p ' )=5(p) .6(p /)=l so exactly one of co and co' is non-
degenerate. Suppose co is non-degenerate. Then co' is degenerate so its highest derivative
equals p'. But this contradicts [I], Lemma 4.7 (b). Therefore co= < A ) is degenerate.

(2) General case. Set A'=[p, vp], A"=A\A'. Then

^ A ' ^ c p x v p , <( A" ) <=v2 p x ... x p'

hence < A' > x < A" > <= p x vp x . . . x p'. Since < A > is the unique irreducible submodule
of p x . . . x p', < A > c= < A' > x < A" > (another way to prove it is to use 1.1 and 3.4). It is
clear that

O^SKA))^^) x < A " » .
But by step (I):

5«A'> x<A / /»=8«A /».5«A' /»=0

and our Lemma is proven.

3.10. Theorem 3.5 follows immediately from 3.8, 3.4 and 3.9.
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4. Criterion for irreducibility of the product

<A i> x . . . x < A , > .

In this section we establish a criterion for irreducibility of the product
< A i > x . . . x < A , . > , where the A; are segments in ̂  (Thm. 4.2). Furthermore we give a
complete description of the lattice of submodules of the product < A ) x < A') (Prop. 4.6).

4.1. Let A 1= [pi, p i ] , A 2 = [ p 2 » p 2 ] be segments in ^?. We say that A i and A 2 are linked
i f A i ^ A 2 , A 2 < ^ A i andAi u A 2 is also a segment. I fAi and A 2 are linked and A i n A 2 = 0
then we say that A i and A 2 are juxtaposed (this means that either p 2 = v p i or p i = = v p 2 ) . If
AI and A 2 are linked and p 2 = = v f c P l where k>Q then we say that A i precedes A 2:

A2 A2

P2 P2 P2 Pz

Ai A,
1————————————I———1 L-

Pi Pi Pi Pi

(a) (b)

[in figure (a) A i and A2 are linked, in (b) A i and A2 are linked and juxtaposed, in both figures
AI precedes A 2].

We mention one trivial but useful property of these notions. I f p i 7 ^ p i , p 2 7 ^ P 2 ^en the
following conditions are equivalent:

(1) The segments Af and A 2" are linked (see 3.5).
(2) The segments Ai and A 2 are linked but not juxtaposed.

4.2. THEOREM. — Let Ai, . . . , A ^ be segments in ^ ' . The following conditions are
equivalent:

(1) The representation < Ai > x . . . x < A^ > is irreducible.
(2) For each i, j= 1, . . ., r the segments A; and A^- are not linked.

4.3. Let n e Alg G^ or n e Alg P^. The maximal number k such that 71w 7^ 0 is called the
level (of non-degeneracy) of n [notation k='k(n)}. In other words n^^ is the highest
derivative of n (see [I], 4.3).

PROPOSITION. — Let Ai, . . . , A^ be segments in ̂  and 7 i = < A i ) x . . . x < ( A ^ ) . Suppose
that A; and A^- are not juxtaposed for any 1,7=1, . . . , r. Then for each co e^ H (n) one has
Uo))=n7i).

First we derive the implication (2) ==> (1) in 4.2 from this proposition. In condition 4.2 (2)
let 7i = < Ai > x . . . x < A,. > e Alg G^. By 3.5 and [I], 4.6 the highest derivative of n equals

^^(A^x^^A,-).

By 4.1 no Af" and A^ are linked. Using induction on n one may assume that n^ is
irreducible. So exactly one element of/H°(n) has the same level as 71. On the other hand
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our proposition implies that each element of ^ H (n) has the same level as n. So / H ° (71)
contains only one element, i.e. n is irreducible.

4.4. For each co e Irr G^ denote by (p^ : ̂  -^ Z + the characteristic function of supp co (see
1.10 and the summary of notation). The correspondence co^q)^ has the following
properties:

(a) suppco'csuppcooq^-cp^O.
(b) I f c o e ^ H ( c o i X . . . xco,)then (p^=(p^ + . . . +(p^.
(c) If A is a segment in ̂  then (p<A> =XA ls ̂ e characteristic function of the subset Ac ̂ .
(d) If coeIrrG^, fe=^(co), and a is an irreducible submodule of co00 then vq^-cp^O

where vcp (p) = (p (vp) (5^ [I], 4.7 (b)).

4.5. Proo/ o/ Proposition 4.3. - By 3.5 and [I], 4.6 all derivatives ofn are glued together
from representations of the form < A i > x . . . x < A ^ > where each A^' is either A, or A;~. Let
coe^ H(7i), /c=^(co), and a be an irreducible submodule of co^. Then
ae/ H « A i > x . . . x < A ; » for some Ai, . . . , A;. One has

^Pco ^XA, + • • • +XA^ (Pa ^XAI + • • • +XA; [see 4.4 (b), (c)].

By 4.4 (d) vq^-cp^O. Let A,=[p^ , p,']. It is clear that

^(0-90= Z X{v- lp.}-Ex{p,} .
l^i'^r j

where; ranges over such indices that A} = A^. Therefore if A} = A^. for somej then pj equals
one of the representations v"1?^. This means that A; and A^. are juxtaposed, which
contradicts the condition of 4.3. So A;' =Ai~ for f = 1, . . . , r and our proposition follows.

4.6. To prove the implication (1)=>(2) in 4.2 it suffices to check the reducibility of
< A > x < A' > where A and A' are linked segments. We get the more precise information
about this representation. Set

A^AuA', A^AnA'.

By definition A" is a segment in ̂ ; A° is a segment if A and A' are not juxtaposed otherwise
A°=0. Set (O^A^ > x < A ° >. By the implication (2)=>(1) in 4.2 which is already
proved, co is irreducible.

PROPOSITION . — Suppose A' precedes A (see 4.1) and set n = ( A N - Y ( A' >. Then n has the
unique irreducible submodule (OQ. Moreover CDo^co and Ti/coo ̂  ^>-

Proof. — (1) Suppose A and A' are juxtaposed. Let

A'=[p, v^7"1 p], A^v^p, v^1 p] where 0<p<r

and peIrrG^. Apply the results of paragraph 2 to the case p^v1"1?
(i= 1, . . . , r). Using 1.6 and 3.1 one may easily compute the set

0 (7i) =/ H° (r^. ,^) o f^_^^ «-A > ® < A' »).
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One obtains

^H°(7i)={co(ri),co(r2)}
where r\ and f^ are orientations

Pi -^ Pi -^. • . ̂  P. and pi ̂  p2 ̂  • ^ Pp ̂  P p + 1 -^ • . • -^ P.

(s^e 2.2). By 2.10 n has the unique irreducible submodule (DO and coo^c^r^). By
definition (l)(^l)==<AU >==co so in this case the Proposition is proven.

(2) Suppose now that A and A' are linked but not juxtaposed. Let us prove that 71 has a
quotient isomorphic to co i.e. Horn (71, co)^0.

Let
A'=[p, v^p], A^v^p.v^p] (Q<q<p<r)

and p e Irr G^. Then n, 00 e Alg G^ where n = (p + r — q) m. Let

P=((r-^)m, pm), y=(rm, {p-q)m),

be partitions of n. By definition

7 r = ^ p « A > ( g ) < A ' » , co^^KA-XxXA0)).

So by 1.1 (^):

Horn (7i, ©) = Horn (a, < A^ > (x) < A° »
where

a = r^ („) o i^ p« A > ® < A' ».

One must prove that <j has a quotient isomorphic to < A" > (x) < A^ >. Now use Corollary
1.3. One obtains that cr has the quotient a^ty ^ ^ p o r ^ ^ p p « A > ® (A')). Using 3.4
and 1.5 one can show that

a / =«A>x<A' \A n »(x)<A n >.

Segments A and A'\A0 are juxtaposed and A^A" precedes A; so by step (1)
< A > x < A'\^ > has a quotient isomorphic to < A u (A^A") > = < A" >. It follows that
a' (and so a) has a quotient isomorphic to < A^ > (x) < ̂  >, hence Horn (71, 00)^0.

(3) In the situation of (2) consider the highest derivative TI^ of7c. By 3.5 and [I], 4.5 one
has 7i ̂ ^^ A~ ) x ^ A ' " ). The segments A~ and A'~ are linked (see 4.1); induction on n
allows us to assume that the statements of our Proposition hold for them. Since A and A'
are not juxtaposed, Proposition 4.3 implies that the map it—^i^ induces the embedding
of the lattice of submodules of n into the lattice of submodules of n^. Therefore to prove
our Proposition it remains only to check that n is reducible. By step (2) it suffices to prove
that TT^CO. One has CD^=( (A^)" ) x ^(A0)" ). Using induction on n, one may assume
TT^^OD^. Consequently TT^CO and our Proposition is done.

The remaining part of Theorem 4.2 follows immediately from this Proposition.
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5. Homogeneous and strongly indecomposable representations of P^

In this section we discuss some properties of representations of ?n concerning the
degenerate Kirillov model.

5.1. Let P=Pn (see [1L 3-1)- A representation reAlgP is called homogeneous if
^((j)=^(r) for each non-zero submodule (JCT (see 4.3).

PROPOSITION. - Let reAlgP, X,(T)=fc. The following conditions are equivalent:
(1) T is homogeneous.
(2) Any non-zero submodule of T has non-zero intersection with the submodule

^^((!)+)k-lo^+(^)c:x(see[l],3.5).
(3) T may be embedded into (^+)k~loxV+ (r^).
Proof. -(!)<=> (2). Letac=T,a^O. Let (7,,= an T^. It follows easily from [I], 3.5 that

(0/0^)^=0 so 0^=0^. Furthermore by [I], 3.3 (a) (7^=0^0^=0. Hence
^w=0<=>afe=0.

(1)^(3). By [I], 3.2 W and (c):

(*) Hom(a, (a)+) f c- lo^+(T ( k )))=Hom(a ( k ) , T^)

for any a e Alg P. If (3) holds and 0 7^ a c= T then the left part of(*) is non-zero hence a00 ̂  0;
this proves (1).

Now consider the morphism A:T-^(O^"1 o^ (r^) corresponding by (*) to the
identical morphism T^ ->• T^. It follows from [I], 3.2 (/) that the functor T h-> T00 carries A
into the identical morphism T^ -^ T^. Therefore (Ker A)^ = 0. If(l) holds it follows that
KerA=0 i.e. A is an embedding; this proves (3).

5.2. A representation ne Alg G^ is called homogeneous if so is its restriction
to P. Suppose that:

(1) TT is homogeneous.
(2) The highest derivative TT^ ofTi is irreducible. Then 5.1 (*) and Schur's Lemma imply

that Horn (n P, (O^"1 o^ (71^)) is one-dimensional. So by 5.1 (3) 7i|P may be
embedded into (d)^"1 o ̂  (ji^) in a unique (up to a scalar multiple) way. Let L be the
space of the representation (O'^)^"1 o ̂ + (71^); it is a space of certain vector-valued functions
on P (see [I], 1.8). We have proved that there exists a unique realization of n on the
subspace V^ c L such that P acts by right translations. Call this realization the degenerate
Kirillov model of n (cf. [2], 5.19).

5.3. PROPOSITION. — Let reAlgP^ be homogeneous and peAIgG^. Then the
representation p x reAlgP^+^ 15 homogeneous (for the definition of p X T see [I], 4.12).

Proof. - Let p^O. By [I], 4.14 (a) (p XT^P X T ^ for i^l so ^(pXT)=?i ( r )
(see 4.3). Let ^(p XT)=MT)=^ By 5.1 (3) T may be embedded into (O^-1 o^ (z^)
hence

p x T c , px^^o^TW).
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Note now that
pxO^o)^ (^(pxa)

for each aeAlgPN (the proof of this is straightforward). It follows that

P X(^+)k~lo^+(^w)^(^+)k-lo^+(p X^:w)=(S>+)k-lox¥+((p XT)W).

Therefore p x r may be embedded into (6+) f c~ l o lp+((p XT)^) and it remains only to
use 5.1.

5.4. Let G be an J-group (see [I], 1.1). Call TT £ Alg G strongly indecomposable if each
two non-zero submodules of n have non-zero intersection. Clearly if n has finite length then
it is strongly indecomposable iff it has a unique non-zero irreducible submodule.

PROPOSITION . - Let T e Alg ?„ and k = ̂  (r) be the level of T. The following are equivalent:
(1) T is strongly indecomposable.
(2) T LS homogeneous and ^(k) is strongly indecomposable.

Proof. - Consider the submodule -^((D^-1 o^ (r^cr. By [I], 3.3 (a) the lattices
of submodules of T^ and T^ are isomorphic. Hence T^ is strongly indecomposable iff T^
is. Therefore (2) means that T ̂  is strongly indecomposable and has the non-zero intersection
with each non-zero submodule of T [see 5.1 (2)]. Equivalence of that and (1) is trivial.

6. Classification of irreducible non-cuspidal representations of G^

This section contains the first main result of the paper.
6.1. THEOREM . - (a) Let Ai, . . ., A^be segments in %\ Suppose for each pair of indices

i, j such that i<j, A; does not precede A^- (see 4.1). Then the representation
( A ] > x . . . x ( A, > has a unique irreducible submodule; denote it by < Ai, . . ., A^ >.

(b) The representations < Ai, . . ., A, > and < Ai, . . ., A, > are isomorphic iff the sequences
(Ai, . . ., A,.) and (Ai, . . ., As) are equal up to a rearrangement.

(c) Any irreducible representation of G^ is isomorphic to some representation of the form
<Ai, . . . ,A,>.

6.2. THEOREM. - LetAi=[p,, p i] be segments in ̂ ( f = l , . . ., r). Suppose for each pair
of indices i,j such that i<j, pj^vpi (in other words if i<j and A; and A^. are juxtaposed then
Aj precedes A;). Then the representation < Ai > x . . . x < A, > is homogeneous (see § 5).

We first derive Part (a) of 6.1 from this Theorem. Let Ai , . . ., A, satisfy the conditions of
6.1 (a) (thus also the conditions of 6.2); let TT = < Ai > x . . . x < A, > e Alg G^. By [I], 4.6
and 3.5 the highest derivative of n equals <Af > x . . . x<A,~ >. Using 6.2, 5.4 and
proceeding by induction on n, one sees that the restriction of TT to P^ is strongly
indecomposable. This proves a result which is stronger than 6.1 (a): n has a unique
irreducible P^-submodule.

6.3. Theorem 6.2 generalizes Theorem 4.11 of [1]. One can prove it by arguments
similar to those in [I], 4.15. Let us indicate necessary modifications:
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(1) Everywhere in [I], 4.15 one has to replace p^ by < A ^ > and references to [I], 4.4 by
references to 3.5.

(2) Reasoning as in [I], 4.15, Case 1, one concludes now that < A F > xji0 P is not
homogeneous (n° = < A;, > x . . . x < A,». By 5.3 n° is not homogeneous, which as in [I],
4.15 contradicts the inductive assumption.

(3) In Case 2 of [I], 4.15 one has to use the reasoning of 4.5 which leads to the equality
p^vpi. This contradicts the assumptions of 6.2.

Theorem 6.2 and the claim 6.1 (a) are proven.

6.4. We now prove half of 6.1 {b).
PROPOSITION. - Let (Ai, . . ., A,) and (Ai, . . . , A;) be ordered sequences of segments

in ^ ' . Suppose one of the following conditions holds:
(1) (Ai, . . ., A^) differs from (Ai, . . . . A^) only by a transposition of two neighbours which

are not linked.
(2) Both (Ai, . . ., A,) and (Ai, . . ., A;) satisfy the condition of 6 A (a) and are equal up to a

rearrangement.
Then < A i > x . . . x < A , > ^ < A ' i > x . . . x <A; >. Therefore in condition (2)

< A i , . . . , A , > ^ < A i , . . . , A ; > .
proof. - Part (1) follows immediately from associativity and commutativity of the

multiplication (see 1.7,1.9) and 4.2. Note now that ordered sequences (Ai, . . . , A,) and
(Ai, . . . , A;) satisfying (2) may be obtained each from other by a chain of transpositions as
in (1) (the easy combinatorial proof of this fact is omitted). So (2) follows from (1).

6.5. Introduce some useful notations. Denote by y the set of all segments in ̂  and by (9
the set of all finite multisets on y (see the summary notation). For each a e (9, a ̂  0 one can
choose an ordering (Ai, . . . , A,) of a, satisfying 6.1 (a). By 6.4 the representations
< Ai > x . . . x < A, > and < Ai , . . . . A, > depend only on a; denote them by n(a) and < a >
respectively. For the empty multiset 0e (9 define n (0) = < 0 > to be the identity
representation of the group Go = { e ] .

Using this notation, one may state the remaining part of Theorem 6.1 as follows:

THEOREM . - The map a \—^ < a > is a bijection between (9 and the set of equivalence classes of
irreducible representations of all the G^ (n=0, 1, 2, . . .).

6.6. For each a = { A i , . . . , A ^ } e ^ denote by a~~ e(9 the multiset { A ^ , . . . , A^~ }
{see 3.5; here the empty parts A(~ are dropped).

LEMMA. - The highest derivative of K (a) equals n (a~). The highest derivative of ( a ) has
a unique irreducible submodule, which is isomorphic to (a~ >.

The first statement follows immediately from 3.5,4.1 and [I], 4.6; the second part follows
from the first one and 6.1 (a), 6.2.

Now derive from this Lemma the remaining part of 6.1 (b) (or in other words, the
injectivity of ^h^<a» . Let a={^, . . . , A,}(E(^, co=< f l>e I r rG^ . We want to
reconstruct a from (D. Use induction on n. Without loss of generality one may assume that
A i contains more than one element when l^i^s and exactly one element p, when
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s < i ̂  r. By our Lemma and the inductive assumption one can reconstruct a ~ from co so the
multiset { A i , . . . , As} may be reconstructed from co. One has

^= E XA. [see4A(b),(c)].
l^i^r

Therefore ^ X { p , } =<PO)-XA, - • • • -XA, so representations p,, p ,+i , . . . , p , also are
s < i ̂  r

determined by co.

6.7. Now prove 6.1 (c) (or, in other words, the surjectivity of f lh-^<a». Let
coeIrrG^. Consider the set (9=(9{w) consisting of ordered sequences '?=(Ai, . . . , A^) of
segments such that co may be embedded into < Ai > x . . . x < A,. >. By 1. lOc^is non-empty;
furthermore if ~ct= (A i, . . . , A,)G?then^ + • • • +XA,= (Pco (see 4 A) so c^is finite. Call an
inversion of ?=(Ai, . . . , AjecP a pair of indices (i, /') such that i<j and A,
precedes A^-. We must prove that there exists an element 71^(9 which has no inversions.

Choose the element ~ct= (A i, . . . , A^e^with the least number of inversions. Suppose"^
has some inversions. Applying to Ttsome transpositions as in 6.4 (1) one can obtain the
element with the inversion of the form (f, i+1). Clearly such transpositions don't change
the number of inversions and carry elements of^ into ones of ̂  {see 6.4). So one may
assume that"? has the inversion (i, i+l) , i.e. A^- precedes A ^ + i . Set A^A', A ; + i = = A .

By 4.6, 1.9 and 6.1 (a) < A ' > x < A > is glued together from < A , A ' > and
<A", A°> = <A" > x <A° > . Therefore < A ^ > x . . . x < A , > is glued together from

a i = < A i > x . . . x < A , - i > x < A , A ' > x < A ^ > x . . . x < A , >
and

0 2 = < A i > x . . . x < A , - i > x < A " > x < A " > x < A ^ > x . . . x < A , > .

So one may embed co in either ai or 02.

Case 1. — cocai. Since < A , A ' ) c < A > x < A ' > [see 6.1 (a)], one has

c o c = < A i > x . . . x < A , _ i > x < A > x < A ' > x < A , ^ > x . . . x < A , > .

This means that the sequence b=(A^, . . . , A ^ - i , A, A', A ;+2 , . . . , A^) obtained from7?by
the transposition of A and A' also belongs to (9. Evidently b has fewer inversions than
71. This contradicts the choice of at

Case 2. — cocc^. This means that 7= (A i, . . . , A ; _ i , A^ A^ A i + 2 , . . . , A,.) belongs
to (9. Apply the following trivial.

LEMMA. — Let A and A' be linked segments, A^ =A u A', A^ =A n A'. If a segment A°
precedes one o/A^, A° then A° precedes one o/A, A'; i/A0 precedes both o/A^ A" then A°
precedes both o/A, A\ Similarly if one of^ , A^ precedes A° then one of A, A' precedes A°; if
both A^ A^ precede A° then both A, A' precede A°.

By this Lemma ?has fewer inversions than ^and one again obtains a contradiction.
Theorem 6.1 is completely proven.
6.8. COROLLARY. — Any irreducible representation ofG^ is homogeneous.
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This follows immediately from 6.1 and 6.2.

6.9. Now we show that the element ae(9 may be explicitly reconstructed from the
irreducible representation < a > in terms of functors r? ^. Consider a certain structure of a
totally ordered set on ^, satisfying the following condition: for any p e^ elements p and vp
are neighbour in ̂  and p < vp. Let us order finite sequences (p i, . . . , py) of elements of ̂
lexicographically.

For any TieAIgG^ consider the set Q(7i), consisting of all sequences (pi , . . . , p,.) of
elements of ^ such that pi ( x ) . . . (x) p,.e^ H(rp^(7i)) (P=(ni , . . . , n^} where
pt-eIrrG^). By 1. lOifcoeIrrG^then { pi , . . . , pr} =suppcoforany(pi , . . . , p^)eQ(co)
so elements of Q(co) differ from one another only order.

PROPOSITION. — Let coeIrrG^ and (pi, . .., p,.) be the (lexicographically} highest term of
Q(co). Divide the sequence (pi, . . ., p^) into segments Ai, . . ., A^ (with the least possible
number k) so that elements of each segment Af=[pii, p^] follow in a natural order
Pfi. vpn, . .., p,2; in other words (pi, . . ., p,)=(pn, vpn, . . ., pi2, p2i, • • ., Pki) and
Pi+i, i T^Pi, 2 - 7 î segments Ai, . . . , A ^ satisfy the conditions of6A(a) and
co^<Ai , . . . , A f e > .

Proof. — (1) According to Theorem 6.1 (D== < A i , .. ., A; > for some segments
^^[pn, pi'i] m ^- Choose the ordering ( A i , . . . , A ^ ) such that the sequence
^ = ( P i i 5 Y p n ^ • • • . P i 2 ? P2 i . • • • ^ P ^ ) ls tne lexicographically highest of all possible
ones. Evidently this ordering (Ai, . . . , A ^ ) satisfies the conditions of 6.1 (a) and is
obtained from ^ in the way described above. It remains to prove that ^ is the highest term
in Q(©).

(2) By 6.1 (a) (D embeds into < A i > x . . . x < A ; > . Therefore by 1.1 (b)
< A i > 00 . . . (x) < A^ > e/ H (r^ („) (co)) (for the appropriate y). Applying 1.1 (c), 1.5 (a)
and 3.1, one concludes that ^eQ(co).

(3) Using 1.6 and 3.4 one may easily find the set Q « A [ > x .. . x < A j ». It consists of
all sequences, obtained from 'k by "shuffling" permutations, i.e. preserving the order of
elements on each A ^ . Easy combinatorial reasoning shows that ^ is the highest term of
Q « A I > X . . . X < A ^ » . For all the more reason, 'k is the highest term of Q(co) and the
Proposition is proven.

6.10. Compare Theorem 6.1 with results of paragraph 2. Let r°= { pi , . . . , p^} c^
(all p; are different). By 6.1 any irreducible representation with support F0 is of the form
( O = = < A I , . . . , A f c ) where F0 is a disjoint union

r °=A iU. . .uAfe .

On the other hand CD = co (F) for some orientation F of the graph F constructed in 2.2
(see Thm. 2.2).

PROPOSITION . — The edge { p, vp } ofY is oriented in Yfrom p to vp iff? and vp belong to the
same segment A(.

This follows immediately from definitions and 2.10.
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7. Decomposition of the product < A i > x . . . x < A ^ > and some applications

In this section we compute ^ H « A i > x . . . x <A,» (Thm. 7.1) and obtain some
corollaries.

7.1. For each a, be (9 denote by m(fc; a) the multiplicity, with which < ^ > occurs in
^H°(7i(fl))(s^6.5).

Another definition of m(b, a) may be given in terms of the representation bialgebra ^
(see 1.7). By 6.5 the set {^b')\be(9} is the basis of ^; multiplicities m(b; a) are the
coefficients of the decomposition of n (a) with respect to this basis so in ^ one has

n(a)=^m(b; a). < ^ > , be(9.

Let a = { A i, . . ., A,.} e (9. Call an elementary operation on a the replacement in it of the
pair { A , A'} of linked segments by the pair {A" =A u A', A° =A n A'}. We write b < aifb
may be obtained from a by a chain of elementary operations. By Lemma 6.7 lib < a then
the number of pairs of linked segments of the multiset b is less than that of a. It follows that
the relation "b < a" defines the structure of partially ordered set on (9.

THEOREM. — The coefficient m(b; a) is non-zero iffb^a. Moreover m(a; a) = 1 for any
ae(9.

7.2. First of all prove the equality m(a ;a)=l . The inequality m(a; a)>0 follows
immediately from 6.1 (a). By 6.6 and the exactness of derivatives one has

m(a; d)-^m(a~\ a~).

So to prove m(a; a)^l it suffices to use the obvious induction.

7.3. PROPOSITION. - If a, b, ce(9 and b^a then m(c; fc)^m(c; a). In particular one
obtains

l=m(fc ; b)^m{b, a).

Proof. — It suffices to consider the case when b may be obtained from a by an elementary
operation (A, A^i-^A", A"). In this case our statement follows from the fact that
< A^ > x < A° > is a composition factor of < A > x < A' > (see 4.6).

7.4. To finish the proof of Theorem 7.1 it remains only to check the implication

m(fc ;a )^0 => b^a.

Let a, a ' e(9. The multiset a' is called subordinate to a if it may be obtained from a by the
replacement of some segments A by A~ (notation a'— a). In particular a~ —\a.

Let < a > , < b > e I r r G ^ and m (b', a) ̂  0. Prove that b ̂  a using induction on n. By 6.6
the highest derivative of < b > has a submodule isomorphic to <^~ >. Reasoning as in 4.5
one obtains m(b~; a')^0 for some a'—| a. By the inductive assumption b~ ^ a ' .
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For any a= { A i , . . . , A,}e^ set

<P.=(P<.> =XA. + • • • +XA, (see 4.4).

Clearly i fm(fc ; a)^0 then (p^=(p^.
Summarizing the above arguments one concludes that it suffices to prove the following:

(*) If a, be(9, (pa=(p& and b~ ^a' for some a'— a then b^a.
Divide this statement into two parts:
(a) If a, a', c'eG, a'-^a and c'^a' then there exists ce(9 such that c'—\c and c^a:

? ^a
T T
c ' ^ a '

(b} If b, ce(9, (pb=cpc and b~— c then b^c.
The easy, purely combinatorial, proof of these facts is omitted. Theorem 7.1 follows.

7.5. COROLLARY. - The ring ^ is a polynomial ring in inde terminates < A > over Z (A e y\
see 6.5).

Proof. - One has to prove that monomials n(d), ae(P form a Z-basis of ^. More
precisely, for any function (p :^ -> Z+ with finite support set

^P((p)= {^e^ (p^=(p}, ^((p)= @ Z . < a > .
fl£^((p)

Evidently, ^= @^((p) and the relation b^a implies that a and b belong to the same
q>

<P((p). We prove that monomials n(a), ae^((p) form a Z-basis of ^((p).
Choose an ordering (b^, . . ., b^) of^P((p) such that

bi^b, => f^7.

By 7.1 the matrix (m(^; ^^)) ( f , 7 = l , . . . , k) is triangular and unipotent. Hence it is
invertible and the inverse matrix is also integer. Our statement follows.

7.6. Remark. - Corollary 7.5 and Proposition 3.4 give an explicit description of the
bialgebra ^. It may be useful to translate these results into the language of algebraic
groups (2). Let s^ be the formal power series algebra generated by (non-commuting)
indeterminates Xp (pe^), with the relations Xp.Xp, =0 if p '^vp. For A=[p, p'je^ put
X A = X p . X ^ p . . . . .Xp,ej^; clearly elements of ^ are the linear combinations
mo+ ^ m^ X^ (mo, m^ e Z). It is easy to check that the set G of elements of the form

Aey

1+ Z ̂ ^ is a multiplicative subgroup of ^. By 7.5 and 3.4 ^ is the bialgebra
Ae^

corresponding to the algebraic group G. This means that ̂  is identified with the affme ring
o f G ( t o < A > corresponds the function m^ on G) and the comultiplication on ̂  is induced by
the group law on G.

(2) The following elegant construction was suggested by the referee.
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Note that the linear form 5 : ̂  -> Z and the homomorphism Q) : ̂  -> ̂  also have a nice
interpretation in terms of G. Identifying ^ with Z[G] and reformulating 3.8, 3.9, one

obtains that S(f)=f(g) and ^f(x)=f(xg) where g=l-}- ^ XpeG.
pe^

7.7. PROPOSITION. — Let b', ae(9. Then the following are equivalent:
(1) < ^ ' ) is a composition factor of some derivative of the representation n(a).
(2) b1^a' for some a' subordinate to a.
(3) b' is subordinate to some b^a.
Proof. - The equivalence (l)o(2) follows immediately from 7.1, 3.5 and [I], 4.6;

implication (2)=>(3) is the statement (a) from 7.4. Although surely one can prove (3)=>(2)
in a purely combinatorial way, we give another proof of the implication (3) => (1).

Apply the already proved implication (2) => (1) to b' and b. One obtains that < b ' > is a
composition factor of some derivative of some representation < c > such that
m(c;b)^0. By 7.1 c^b. Since b^a one has c^a. Therefore m(c; a)^0 and (1)
follows.

7.8. An important unsolved problem is to find necessary and sufficient conditions on
a, a ' e ( 9 in order that < ^ > be a composition factor of some derivative of < a > . The
following sufficient condition follows immediately from 7.7.

COROLLARY. - If a, a' e(9, a'—\ a and a' is not subordinate to any b<a then (a') is a <
composition factor of some derivative of <( a ).

7.9. COROLLARY. — If the representation coeIrrG^ is irreducible as P^-module then
co = <( A ) for some segment A in ̂ .

Proof. — By 6.1,7.8 and [I], 3.5 it suffices to prove the following statement: if the multiset
aecP contains more than one segment then there exist at least two elements a ' ^ a satisfying
the condition of 7.8. By 7.4 (b) one such element is a".

Suppose
a={A i , . . . ,A , } , r^2

and
v. (end of A^) ̂  supp « a ».

One can easily check that the element a'= { A i ~ , . . . , A^_i , A^} also satisfies 7.8.

7.10. Foranya= { A i , . . . , A,}ecP set a= { & i , . . . , A,}e^ (see 3.3).

THEOREM. — The contragredient representation to (a) equals < ( a ) .

Proof. — Since < a > is irreducible, one has <^> = < a > for some a^(9. The mappings
a ̂ —>3 and a\—^a have the following properties:

(1) S=a, a=a.
(2) lfb<a then]?<5.
(3) d^S for any ae(9.
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Properties (1) and (2) follow immediately from definitions. To prove (3): Let
a= { A i , . . . , A , } a n d 7 i ( a ) = < A i > x . . . x <A,>(s^6 .5) . Since < a > e/ H (n {a)) one
has

<a>=<^>e^H(7cIS) )=JH«Ai> x . . . x < A , »

[see 1.1 (d) and 3.3]. By 1.9 <a>e^ R(n(a)). Therefore by 7.1 a^S.
We derive from (1), (2), (3) that a = a for any a e (9. Suppose a i- a. By (3) a < a. Using

(1), (3), (2) and again (1) one obtains

a==a'^a<a=a.

This contradiction proves that a =a. The Theorem is proven.

8. Evaluation of the highest derivative and some applications

In this section we evaluate the highest derivative of any irreducible representation of G^
(Thm.8.1). This allows one to generalize the models of Kirillov and Whittaker
(Cor. 8.2, 8.3). Furthermore we obtain some results about products of irreducible
representations (Prop. 8.4-8.6).

8 . 1 . THEOREM. — The highest derivative of any irreducible representation ofG^ is also
irreducible. Moreover/or any a E (9 the highest derivative o/< a > equals < a~ > (see 6.5,6.6).

Proof. - Leta= { A i , . . . , A,}e^,co= < a > . Seta=vco. By 7.10a= <v5> ,where
v5= { v A i , . . ., vA,.}ecP. Let CD' and a' be highest derivatives of CD and o-
respectively. Reasoning as in [I], 4.8, one obtains that there exists a 1-pairing ofco' with a',
non-degenerate w. r. t. CD' so co' may be embedded into a'. Similarly a' may be embedded
into co'. Since CD' and a' have finite length one obtains

CD'^CT'.

By 6.6. a' has a unique irreducible submodule and it is isomorphic to < ( v a ) ~ >; by
definitions and 7.10 one has <(v5)~ > = <o^ > = ̂ 7^5. It follows that co'^a' has a
unique irreducible quotient and it is isomorphic to < a~ > . On the other hand applying
again 6.6 one obtains that CD' has a unique irreducible submodule which is also isomorphic
to < a" > . It follows that either CD' equals ̂ ^or^") occurs in / H° (co') with multipli-
city ^2. The latter possibility contradicts Theorem 7.1 so our Theorem is done.

8.2. COROLLARY. — Any irreducible representation of G^ has a degenerate Kirillov model
(see 5.2, 6.8).

8.3. LetcoeIrrG^. Define representations CD o, CD i, CD 2, . . . , and numbers K^, \^, . . . ,
inductively by ©0 = co, ̂ . = ̂  (co,-1) (see 4.3), CD, = CD^ i for i^ 1. Let k be the least number
such that co^eAlgGo, i.e. Xi + . . . +^=n. Let Uc=G^ be the subgroup of all unipotent
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upper triangular matrices. Define the character 9 of U by Q((Uij))=^¥(^u^i+^) where i
runs over all indices 1,2, . . . , n— 1 except

n—^i, n—/ l i—X,2 , . . ., M—^ i —^-2 — • • • ~^k- i-

Set T(6)=Iu e (G^, { ^ } , 1) (s^ [I], 1.8); this means that T(9)eAlgG^ is induced by the
character 6 of U^.

COROLLARY. — co may be in a unique way realized as a submodule 0/1(6).
We call this realization a {degenerate) Whittaker model of co (cf. [8], p. 97, Thm. 2,

or [2], 5.17).

Proof. — By 8.1 all co i are irreducible. Inpar t icularcOfc£lrrGo, i .e .cOfc= < 0 > . Using
the definition of derivatives ([I], 4.3) and [I], 1.9 (c), one obtains that 00^=^9(00).

Horn (CO,T (9))= Horn ( co , Iu , e (<0>) )= Horn (r^e (co), <0»

is one-dimensional [see [I], 1.9 (b)}. Since co is irreducible each non-zero element of
Hom(co, 1(6)) is an embedding.

8.4. PROPOSITION. — For each a i, a^, . . . , Ope(9 the representation < a^ +(22+ • • • +^p)
occurs in / H° « a^ > x < a^ > x . . . x < Op » with multiplicity 1 (see the summary of notation).

Proof. - By 8.1 and [I], 4.6 the highest derivatives of <<3i > x . . . x < a ^ > and
< Oi + . . . +ap > equal respectively < a'[ > x . . . x < Op > and < of + . . . -\-a~p >. Note now
that each b e(9 is uniquely determined by op,, and b~ (see 6.6). So Theorem 8.1 implies that
the multiplicity of < < 3 i + . . . + f l p > in / H ° «ai > x . . . x < a ^ » is equal to that of
< a l - + . . . + a p - ) i n ^ H O « f l i - ) x . . . x < a ^ ) . It remains to use the obvious induction.

8.5. PROPOSITION. — Let a^, . . . , a p E ( 9 . Suppose for i^ j each segments A e a ^ , A ' e a j
are not linked. Then

< ^ i > x . . . x < a p > = < f l i + . . . +a^> .

Proof. — It suffices to consider the case p=2. The hypotheses imply that

7i (^i) x 7i (a^) = 7i (ai + ̂ 2) (s^ 6.5).
By 6.1 (a) for each a e (9 the representation n (a) has a unique irreducible submodule, which

is isomorphic to <( a ). Applying this to a = ay, a^ anc! ̂ 1+^2 one obtains that ^ i ) x < ^ 2 )
has a unique irreducible submodule, which is isomorphic to < a^ +^2 ). Apply now this
statement to a^ and a^ instead of a^ and a^ and use that < ^i ) x < a^ ) is contragredient to
< 5i > x < <?2 ) [s^ 1-1 (^) a^ 7.10]. One obtains that < a^ > x < a^ > has a unique
irreducible quotient, which is also isomorphic to ^ O i + a ^ ) . It follows that either
<a i > x <^2 > = < a i + ^ 2 ) or < ^ i + a 2 > occurs in ^ H ^ K a^ > x (02 )) with multipli-
city ^2. The latter possibility contradicts 8.4.

8.6. Consider the subsets II c=^ of the form I I ^ v ^ p I p e ^ is fixed, k ranges
over Z}. Call such subsets straight lines in ^. Set

^(n)= j ^(cp); ^(n)= © ^((p)= © z . < a > (5^7.5).
supp(pc=n supp(pc:n ae(t)(Yl)
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Evidently each ae(9 decomposes uniquely up to a permutation as

a=a^-\-a2+ .. . +cip

where the a, belong to different ^(11,).

PROPOSITION. - If Hi, . . . , T l p are different straight lines in ^, ^e(P(n,) and
a=a^-\-.. . +0p, then

< a > = < a i > x . . . x < f l p > .

In other words any irreducible representation of G^ decomposes (uniquely up to a
permutation) as the product of irreducible representations with supports belonging to
different straight lines in ^.

This follows immediately from 8.5.

8.7. Remark. - It is easy to see that each ̂  (II) is a sub-bialgebra of ̂ , stable under Q),
and that ̂  decomposes as the tensor product of^(II), where I"! ranges over all straight lines
in ( € . Proposition 8.6 reduces the problem of the computation of all coefficients m (fc; a) (see
7.1) to the case when a and b belong to the same ^(Fl).

All our computations (see e. g. § 11 below) lead to the conjecture that coefficients m(b; a)
when a and b belong to the same (9(I\), depend only on mutual relationships between
segments of a and b and don't depend on n.

9. Representations < A y and duality

In this section we introduce and study another important class of irreducible
representations parametrized by segments in ^.

9.1. Let A=[p, p'] be a segment in ( €. Denote by < A y the irreducible representation
with support { p , vp, . . . , p'} which corresponds to the orientation

p <- vp <- . . .<- v~ 1 p' <- p' (see 2.2).

Using notations of 3.1, one may define < A y by the property

(*) r^ ̂  « A V) = p' ® v-1 p' ® . . . ® p.

Another way to define < A y is to say that < A y is the unique irreducible submodule of
p' x v ~ 1 p' x . . . x p (or the unique irreducible quotient of p xvp x . . . x p'), see 2.10.

Applying 6.10 [or, more directly, 6.1 (a)] one obtains

< A > t = < { A } f > ,

where { A YE (9 is the family of one-element segments { { p ^ v p } , . . . ^ ? ' } } .
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9.2. Example. - Let A==[p, p'] be the segment in ^ such that < A > is the identity
representation ofG^ (by 3.2 p =v~(n~l)/2, p' = v^"1)/2 e Irr Gi). Then < A > is the Steinberg
representation (see [6], §8).

9.3. Representations < A ̂  may be characterized in terms of the asymptotic behavior of
matrix coefficients. Call the representation n e Alg G^ quasi-square-integrable if its matrix
coefficients become square-integrable modulo the centre Z^ of G^ after multiplying by a
suitable character of G^.

THEOREM (I. N. Bernstein). — The representation co e Irr G^ 15 quasi-square-integrable iff it
is isomorphic to < A y for some segment A in ( € .

The claim that representations < A y are quasi-square-integrable, follows directly from the
criterion for square-integrability, given by W. Casselman (see [6], Theorem 6.5.1). One
has only to reformulate this criterion in terms of functors r? ̂  (i.e. to take into account
multiples of the form mod^/2(g), which are included in the definition of rp^) and then
apply9.1(*).

The converse is due to Bernstein and is based on a refinement of results of
Casselman. The proof is omitted.

9.4. PROPOSITION. - ̂ 7y=<Ay(see 3.3).
The proof is the same as that of 3.3.

9.5. PROPOSITION. — Under the hypotheses of 3.4, if I is not divisible by m then
r(n-i,i),(n)«^y}=Q' If l=mp then

^-U),(n)«A> t)=<[v^p,p']> t(x)<[p,v^- lp]> t .

In other words,

c«A> t )=<0>®<A> t +p / ®<[p , v - l p / ] > t +< [v - l p / , p ' ] > t

® < [ P , v - 2 p / ] > t + . . . + < [ v p , p / ] > t ® p + < A > r ®

The proof is the same as that of 3.4.

9.6. PROPOSITION. — Under the hypotheses of 3.4, if I is not divisible by m then the l-th
derivative of (Ay is 0. If l=mp then

((Ay^^p.p']/ ( p = 0 , l , . . . , f e - l ) ;

KAY^^O).

In other words
^«A> t )=<A> t+<[vp,p / ]> t+. . .+p '+L

Proof. - B y 8 . 1 « A > l ) ( " ) = < 0 > so S^)^! (see 3.8). Apply 3.8 and 9.5.

9.7. Now we classify all the irreducible non-degenerate representations of G^ in terms of
the representations < A y.
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THEOREM. — (a) For each < 2 = { A i , . . . , A ^ } e ( ^ the representation
7 i = = < A i y x . . . x<A, .y is non-degenerate. I t is irreducible if and only if no two of
segments Ai, . . ., A^ are linked.

(b) Any non-degenerate coeIrrG^ decomposes as the product co=<Ai y x . . . x<(A,.y,
where Ai, . . ., A^ are segments in ^ no two of which are linked. Moreover the multiset
a= [ Ai, . . . , A^} e(9 is uniquely determined by co.

Part (a) is proved in 9.8-9.9, part (fo) in 9.10.

9.8. By 9.6 and [I], 4.6 5(7i)=l {see 3.8). In particular n is non-degenerate. Now
suppose that no two of segments Ai, . . . , A^ are linked. We must prove that n is
irreducible.

Since 8 (71) = 1, exactly one element of / H° (71) is non-degenerate. So it suffices to prove
that n has no degenerate composition factors. We introduce some notation. Let
A=[p, p'] be a segment in ^. Write A' <—iA if either A'=0 or A' is a segment such that
p 'eA'cA; write A'^A if either A"=(Z) or A" is a segment such that peA"<=A. Using
these notations one may rewrite Proposition 9.6 as follows:

^«Ay)= S <A'y.
A ' ^ A

Suppose there exists a degenerate co ej H (re). Let <j be the highest derivative ofco;by8.1a
is irreducible. By 9.6 and [I], 4.6 one has

^{n)= ̂  < Ai / x ... x < A; /, A; ̂ A,

Therefore <J(E/ H« A'i / x . . . x < A; /) for some A,' <MA,. It follows that

( P O = X A , + — + X A ; (see 4.4).

Note that some of A,' are non-empty since co is degenerate.
By 1.1 (d) and 9.4, the contragredient representation to < A l > t x . . . x < A ^ > t is

< A i y x . . . x<A,y . Therefore ©ej H«Ai > t x . . . x < A , > t ) . By 8.1 the highest
derivative of co is v~ 1 a. Reasoning as above, one obtains

( P v - l o = X A , + • • • + X A for some A ^ < - » A , .

It follows that

< P v o = X A r + • • • + X A ; ' -

where A ^ = A ; ; clearly A ^ i — ^ A i . Since supp(p^= (jAi', supp(p^= (JA^ one has:

U A — U ^ - ^ ) -

It remains to use the following combinatorial:

LEMMA. — Let Ai, . . . , A,, be segments in ̂  and A^ ^A^, A^h-^A^ fo^ chosen such that

(*) u^^^-U^^^o^^-
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Then there exist two linked segments among Ai, . . ., A^.
Proof. — Suppose no two of Ai, . . . , A,. are linked. Choose pe^ such that pe (J A; ,

vp^ljA,'. Let peAi'. Then p is the end of A;, hence the end of A^. By (*)
vp e [j A/. Let vp e A/ c= A^; clearly A^ A,. Since A; and A^- are not linked, one obtains
that A;c=A^. Let pi be the beginning of A^-; since A/ i-^A^- it is also the beginning of A/.
By(*)v~ 1 p i e l j A ^ l e t v " 1 p i e A f c c: Afe. Clearly Afe^A^; the condition that A^ and A^.
not be linked, implies A^. <= A^. In particular v p e A ^ . Since A^^-iA,,, one obtains that
v p e A f c . This contradicts the choice of p.

Illustrate this proof by the following figure.

A;

A,

A/
Pi vp

A;

A.
Y~ Pi vp

A.

9.9. Prove now the statement converse to 9.8: if there exist two linked segments among
Ai, . . . , A^ , then < A l > t x . . . x < A ^ > t i s reducible. It suffices to prove the reducibility of
< A i y x < A ^ y where Ai and ̂  are linked. Set A^ =Ai uA^, A0 =Ai nA^.

By 8.4 and 9.1 one has

({A^^A^^e^HKA^^A^V).

Clearly by definition { A i } ( + { A 2 }(= { A u }(+ { A ° }f. Applying 8.4,9.1, and the already
proven irreducibility of < Au > t x < A"^ > t , one obtains

< A U > t x < A n > t E ^ H « A l > t x < A , > t ) .

So it suffices to prove that < A i / x < A ^ > t ^ < A U / x < A ° > t . One has

^ « A l > ( x < A 2 > t ) = S < A l > ( x < A 2 > ^ Ai^Ai, A^A^,

^ « A" y x < A" >o = ̂  < A"' y x < A"' y;
A^^A", A ^ ^ A 0 (5^ 9.8).
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Suppose AI to precede ^, and consider the segment A^Ainv^A^ . Clearly
AI <-iAi. It is easy to see that ̂  may not be represented in the form ^ ^ +7 ^ where
A^ -MA^ A0' ^- A°. It follows that < Ai / occurs in ^« Ai / x < A^ >^) audioes not
occur in^« A" y x < A" V). So < Ai / x < ̂  y and < A- / x < A" Yarenotisomorphic.

9.10. By 8.1 the representation < a > is non-degenerate iff the multiset a e (9 consists only
of one-element segments. Clearly any set (9 ((p) (see 7.5) contains exactly one such element,
say a ((p) (it is the maximal element of ^P((p), see 7.1). Let b = {A i, . . . , A^} be a minimal
element of (9 ((p), i. e. no two of A i, . . . , A, are linked. Then by 9.8 and 8.4 one has

< A l > t x . . . x < A , > t = < { A l } t + . . . + { A , } t > = < a ( ( p ) > .

The uniqueness of such a decomposition follows from the uniqueness of the minimal element
in (9 ((p). The following lemma establishes this uniqueness; moreover it gives the algorithm
which allows one to construct this minimal element.

LEMMA. — Let (p be any function on ^ with non-negative integral values and finite
support. Define the sequence (Ao, A i, . . .) by induction in the following way: Ao = 0 and for
i^l. A; is a maximal segment, containing in supp((p—^ — ^ " • • • " X A )• ^et

fc= { A I , A ^ , . . . } . Then b^afor each ae^P((p).
The easy combinatorial proof is omitted. The proof of Theorem 9.7 is concluded.

9.11. Corollary to 9.3 and 9.7. — Any irreducible non-degenerate representation ofGn
decomposes into the product of irreducible quasi-square-integrable representations.

9.12. The comparison between 9.1-9.7 and the results of paragraphs 3, 4 shows that
there exists a certain duality between representations < A > and < A y. To formalize this
consider the mapping < A > ̂  < A y. According to 7.5 it may be extended uniquely to an
endomorphism coi—^co^ of the ring ^.

PROPOSITION . — The endomorphism co i-> co^ 15 an involutive automorphism of^, i. e. (co^ = co
for any coe^.

It suffices to check that « A y^ = < A > for any segment A in ̂ . We give two proofs of
this fact.

9.13. PROPOSITION. — Let a e (9 be such that any two of its segments have an empty
intersection. Then in ̂  one has

^)= E < f c > , < ^ > = ^(-l)^-^.n(b)
b-^a b^a

(for the meaning of\a\ see the summary of notation).

Proof. — By hypothesis the function cp=(p^ is the characteristic function of some subset
r°c:^ (5^7.4). If ae^((p) {see 7.5) then < a > has multiplicity-free support Y°. It
follows from 2.1 (c) that the representation n(a) is multiplicity-free, so m(fc; a)^l for any
be(9 {see 7.1). Combining this with Theorem 7.1, one obtains

n(a)= ^ < f c > .
b^a
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Now consider the Mobius function [i(b, a) of the partially ordered set (9 ((p)
(see [10], 2.2). By Theorem 2.2.1 of [10] one has

< a > = ^[i(b,a).K(b).
b^a

Using 6.9, one may identify (^((p) with the set (9{T) of all orientations of the graph Y
constructed in 2.2. Furthermore consider the set F1 of all edges of F. There is a natural
bijection between (9(Y} and the set ̂  of all subsets of F1 (the subset corresponding to the
orientation t consists of all edges { p , vp} which are oriented in t from vp to p). One
obtains the bijection i : (9(^}^^. It is easy to see that i is an isomorphism of partially
ordered sets (^ is naturally ordered by inclusions). The Mobius function of^is well-known
(see e.g. [10], (2.2.10)). Applying this one obtains

^^(-l^l-l^l.

The proof is done.

9.14. We now derive, the equality « A W = < A > from 9.13. By 9.13 one has

< A y = ^ (-1)1^^1-^1.71^)
^{A} '

SO

((^yy= ^ (-l^l'l-^l. n(by.
^ {A}

Elements b^ {A}( are of the form b == { A i , . . . , A ̂ } , where A, precedes A ,+i and A is the
disjoint union ofA; . One has n(bY= < A i / x . . . x (A,,/. Again apply 9.13:

((^yY== ^ ( _ l ) l { A } - | - f c

Ai , . . . , A ,

x ^ (-l)^l^•} t l- l&•l).7^(bl+...+^J
&,^ {A , } '

== ^ TlW. ^ ( -1 )1^ -^
^{A} ' &i, . . . , & k

(here b i + . . . + b^ = b and (p^ = ̂  where the A^ are as above). Clearly if b = { A } , i. e.
\b\ =1, then the inner sum equals 1. Easy combinatorial arguments, similar to those
of 9.13, show that the inner sum is 0 when | b \ > 1. Therefore « A y^ = < A > .

Q.E.D.

9.15. The equality « A > t ) t = < A > i s a particular case of the following.

PROPOSITION. - Let r°c:^ and let co=co(r) be the irreducible representation with
multiplicity-free support F0 corresponding to the orientation f (see 2.2). Then ©^©(r^),
where f^ 15 the opposite orientation to f (see 2.7).

Proof. — Let (p = ̂ po so co e ̂  ((p) (see 7.5). Consider the free abelian group ̂  generated
by the set 0, and extend the mapping n\->Q(n) to the Z-linear operator s : ^((p)-^ ̂
(see 2.1). Clearly elements s (co (F)) are linearly independent so s is an embedding. Define
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the involutive automorphism t : ̂  ̂  ̂  by t (p (?i)) = p (^) where p is an ordering opposite to
^ (5^ 2.1). By definition (t o 5) (co (f)) = s (co (f^)). Therefore our proposition follows from
the commutativity of the diagram

^((p)^^(cp)
^ , s [

M ——>Ji

It suffices to check that t {s (n (a))) = 5 (n (a)1) for a e(D ((p) (see 7.5) Using 1.6,3.1 and 9.1,
one may directly compute the sets 0(7i(a)) and 0(71(0)'). One obtains that 0 (71 (a))
[respectively 0(71(0)')] consists of all p(k) such that for any p and vp belonging to the same
segment of a K~1 (p) <^~1 (vp) [respectively ' k - 1 (vp) <^~1 (p)]. It follows that
t(s(K(a)))=s(n(a)t) so the Proposition is proven.

9.16. The automorphism co ^—> co' may be described in terms of the structure of a bialgebra
on ̂  (see 1.7). For each function (p on ^ set

H= E (p(p).
peV

Define the Z-linear map i : ̂  -> ̂  by

^TO^-l^l.Tr' for 7re^((p) (5^7.5).

As n^n1 is an involutive automorphism, so is f.

PROPOSITION . - The map i is an inversion of the bialgebra ̂  (for the definition of an inversion
see [5], chapt. Ill, § 11, ex. 4; we recall it below).

Proof. — We must check that each of the compositions

c i d ® ( m

^-^00^3^®^-^
(® id

is the identity on ^o and 0 on © ̂  (see 1.7). Clearly
n>0

m o ( i d ® i ) o c « ( Z ) » = = m o ( f ® i d ) o c « 0 » = < 0 > .

By 7.5 it remains only to prove

m o ( i d ® f ) o c ( < A > ) = m o ( f 0 i d ) o c ( < A > ) = 0

for any segment A in ( € . One has

(*) m o ( i d ® O o c « A » = < A > + ^ ( - l ) I X A ' l < A l > x < A ' > t + ( - l ) I X A I . < A y

(here the sum is over all pairs of segments (A i, A') such that A i n A ' ^ . A ^ u A ^ A a n d A i
precedes A'). By 9.13

< A ' y = ^(-1)1^1-^-1). < A , > X . . . X < A , >
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(the sum is over all families of segments (A 2, . . • , AJ such that A; precedes A ^ + 1 and A' is the
disjoint union of A^). Substitute this into (*) and use that | ̂  | = | { A ' ]1 . One obtains

< A > + ^ (-l^'^Ai) x < A / > t

A i , A'

= < A > + ^ (-^-^Ai) x < A , > x . . . x<A, ,>
Ai, ..., Ak

=(-1)1{A}' | -1^ ^ (-l)!^!-^.^)^-!)!^'!-1^/.

^ { A } '

Therefore the right side of (*) is 0. The equality m o ( f (x) Id)oc«A»=0 is proved
similarly.

9.17. Duality conjecture (3). The automorphism co h-> o^ carries irreducible representa-
tions into irreducible ones. In other words for any ae(9 there exists d ^(9 such that
<ay=<^>.

This conjecture is confirmed by 9.15 and both 4.2 and 9.7. More evidence is provided
by the analogy with groups over finite fields (see [15]).

10. The relationships with the Langlands reciprocity law

In this section we show that our results are in good accordance with the (hypothetical)
reciprocity law of Langlands.

10.1. Let W be the Well group of the field F (see [7], 3.1.1); supplied with the usual
topology, it becomes an J-group countable at infinity.

By local class field theory there exists a natural bijection between the characters of W and
those of F*=Gi (we normalize this bijection as in [7], 3.1.1). The reciprocity law
generalizes this statement: it connects irreducible representations ofG^ with n-dimensional
representations of W. More precisely, let v' be the character of W corresponding to the
norm character of F*. Denote by i^ the category of pairs (a, N) where a is a finite-
dimensional algebraic completely reducible representation of W on the space V and
N : V -> V belongs to Horn (v' a, a); morphisms in i^ are defined naturally (see [7], 3.1.1).

The reciprocity law claims that for any n= l , 2, . . . there exists a natural bijection
coi-^(a(co), N(co)) between Irr Gn and the set of isomorphism classes of objects (a, N)e^T
such that dim CT = n. This bijection is supposed to satisfy certain conditions (see [7], 3.2.3);
moreover one expects that these conditions determine the bijection uniquely. The case n = 2
is considered in [7]. Using analogies one may expect that in the general case the mapping
coi—>((7(co), N(co)) has following properties:

(1) To vco there corresponds the pair (v'c^o)), N(co)).
(2) co is cuspidal if and only if a(co) is irreducible (clearly in this case N(co)=0).
(3) Ifsuppco= { p i , . . . , p,} then a(co)^a(pi) © . . . ©a(p,).

(3) Added in proof: this conjecture has recently been proved by I. N. Bernstein by means ofhomological methods;
the idea to apply such methods is due to V. G. Drinfeld.
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10.2. Now we obtain the classification of objects of i^\ it is quite similar to that of
irreducible representations of G^. To indicate this it is useful to introduce some
terminology. Denote by ( € ' the set of equivalence classes of irreducible finite dimensional
representations of W. Call a segment in ^' any subset A'=[cr, o'jc:^' of the form
A'= { o r , v'a, v^a, . . . , v^ a = <7'} (keZ +); denote by 9" the set consisting of all segments
in^'.

Assign to each segment A'=[a, a']ey the object

^(^)=(o(^),^(^))ei^.

Put a(^)=a ©v'a © . . . © a'. Let V; be the space of the representation v^a
(i'=0, 1, . . . , k); clearly all V^ may be identified with the same space V. Let N(A') |y^ =0
and N(A') : V^ -> V^- i be the obvious (identity) isomorphism for f== 1, . . . , k.

PROPOSITION. — (a) The objects T(A') (A'e^) are indecomposable and mutually non-
isomorphic, and each indecomposable object ofit^ is of this form.

{b) Each object of 'W decomposes into the direct sum T (Ai ) © . . . ©T(A^) . This
decomposition is unique up to permutation.

Proof. — Claim {a) is proved in [7], 3.1.3 (ii). Claim (b) follows from (a) and the theorem
of Krull-Remak-Schmidt: in any abelian category where objects are of finite length, the
decomposition into the sum of indecomposable objects is unique up to automorphisms (see
e. g. I. Bucur and A. Deleanu, "Introduction to the theory of categories and functors"); it is
also easy to prove directly.

Let us reformulate this Proposition to look like 6.5. Denote by ( 9 ' the set consisting of all
finite multisets on y (see list of notations). To each a' e ( 9 ' assign the object

T(^)= ^ T(A')e-r.
A'ea'

Our Proposition means that the map a'\—>x(a') is a bijection between ( 9 ' and the set of
isomorphism classes of objects of " W ' .

10.3. We suppose now the reciprocity law to be established for cuspidal representations of
G^, i.e. that the natural bijection ̂  -> H ) ' has been constructed [see 10.1 (2)]. By 10.1 (1)
this bijection maps segments in ̂  into segments in ̂ / so it induces the bijections y -> y ' and
( 9 ^ ( 9 ' .

We want to extend the reciprocity law to all irreducible representations of G^. One must
take into account the restrictive condition 10.1 (3). For this define for each T = (a, N) e i^
its support suppT as ^ H°(c3-); it is a finite multiset on ^ ' . Then 10.1 (3) means that the
irreducible representations © of G^ with support (p : ̂  -> Z+ must correspond to objects
T e i^ with support (p' : ̂ ' -» Z+ corresponding to (p under the bijection ̂  -> ( € ' . By our
classification irreducible representations with support (p are of the form < a > where a e(9 ((p)
(see 7.5). On the other hand put ^'(cp')= [ a ' E ( 9 ' I ^ ^, =(p'}; then by 10.2 objects of

A'ea'

i^ with support cp' are just T (a ' ) , a ' e ( 9 ' ((p'). Since (9 ((p) and ( 9 ' ((p') have the same number of
elements the desired bijection exists. In this sense our classification is compatible with the
reciprocity law.
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To make the Langlands correspondence more explicit one needs some additional
conditions. By analogy with the case n = 2 (see [7], 3.2.3 (B)) the indecomposable objects
of ^ must correspond to quasi-square-integrable irreducible representations of G^.
Combining 9.3 and 10.2 (a) one concludes that the Langlands correspondence turns < A y
into r(A') where Ae^ and A'e^' correspond to each other under the bijection y -> y.
This makes natural the following:

CONJECTURE. — Ifae(9 anda' e ( 9 ' correspond to each other under the bijection (9 ->(?' then
the object x(a')ei^ corresponds to the representation (aY (it is irreducible by
Conjecture 9.17).

11. Examples

In this section we collect some partial results about coefficients m(b; a) and derivatives of
irreducible representations of G^.

11.1. By7.1m(^;a )^0 i f f^^a ; moreover m(a\ a) = 1. So the only interesting is the case
when b<a. Clearly in this case representations < a > and < b > have the same support; in
other words a and b belong to the same (9 (cp) (see 7.5). By 9.13 m (fo; a) = 1 if b < a and
supp <( a ) is multiplicity-free. Consider now the first non-trivial case, when the support is
not multiplicity-free.

11.2. Example. — Representations with support { p, vp, vp}. In other words, consider
(^((p), where supp ( p = { p, vp}, (p(p)=l , (p(vp)==2. The set ^((p) consists of two elements OQ
and^i where O o = { { p}, { v p } , { v p } } , a i = = { [ p , vp], vp}. Clearly O^<OQ. Intone has

7i(ao)=vp x v p x p = v p x « A > + < A y ) = v p x < A > + v p x < A > t

where A=[p, vp]. By 4.2 and 9.7

v p x < A > = < ^ i > , vpx<A> t =< f l o> ,

so m(ai; ao)= 1. Give the interpretation of this fact in terms of representations. Consider
the module n = vp x p x vp. By definitions < A > and < A > ( are submodules of p x vp and
vp x p respectively. It follows that 71 has submodules KQ = < A > ( x vp ̂  < OQ ) an(^
7 i i = v p x < A > ^ < a i > .

By commutativity o f^ ,^H°(7 i )={<ao> , < a^ > } and we conclude that n is a direct sum
of submodules KQ and n i. This phenomenon shows the difference between our case and the
case of multiplicity-free support (see §2).

11.3. Example. — Representations with support { p , p, . . . , p, vp, . . . , vp} (multipli-
cities of p and vp equal ^o and k^). Let k^ ̂  ^o (tn^ case ^o > ̂ i may be reduced to this one by
passing to contragredient representations). The set ^P((p) consists of elements OQ,
O i , . . . , a,, where1 ) ' KQ

^={A_A. . . . , A, {p } , . . . , {p } , {vp} , . . . . {vp}(A=[p,vp]).
(A,)-! ') times ( A : i - f ) times

Clearly OQ > a^ > . .. > a^.
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PROPOSITION. — {d):

< a ; > = < A > x . . . x < A > x < A > ( x . . . x < A / x v p x . . . xvp.
( t imes (A-,,-;) times (k^ - k y ) times

(b) In ^ one has
n(a,)= ^ C^.<^>,

i^J^ko

so m(aj; ̂ )=C^. for j^i.
(c) ^y^a^.X^O,!, ...,4).

Proof. - (a) Denote the right side of (a) by CD. By 8.4 < ^ > occurs in ^H°(co) with
multiplicity 1. One has

(*) ^(co)=^«A» l^«A> t^- i^(vp) fcl- fco

=(p+<A» l.(l+vp+<A> t^- i.(l+vp^- feo

(s^3.5,9.6).

In particular the highest derivative of CD equals p x p x . . . x p (i times). By 8.1 and 8.5
the highest derivative of < a , > is the same. Suppose co'e^H(co), co '^<a,>. Then
^(wf)<'k(w) (see 4.3). The highest derivative a of co' is the composition factor of some
derivative of co. Using (*) one obtains that vpe supper. It follows from 4.4 (d) that
suppco'9 v2?. This yields a contradiction, so o ) ^ < a ^ > .

(b) One has

7^(a, )=<A> ixp / c o - lxvp f e l - l==<A> ix(pxvp) f e o - ixvp / c l - f e o

=<A> f x«A>+<A> t ) f c o - ^ xvp f e l - 4 .

Apply the binomial formula for « A > + < A y^0"1 and use (a).
(c) Follows immediately from (d).
Note that (c) gives one more confirmation of Conjecture 9.17.

11.4. Example. — Representations with support { p, vp, vp, v2?}. The set (9 ((p) in this
case consists of 5 elements a^, ai, a^, OQ, a^, where

^max= { {p } - {VP} , {Vp} , {V2?}'} , 0,={[p, Vp], {vp}, { v 2 ? } } ,

a,={{p}, {vp^tvpVp]}, ^-{[P.vpUvp.v2?]}, f l^={[p,v2p],vp}.

One has

^
°\^̂a^
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PROPOSITION. — (a) One has m(ao; a^)=2. ^ other coefficients m{b; a), where a,
be(9{^), b<a, equal 1.

(b) One has

^«^n»=<[P-Vp]>+<[p,Vp],{vp}>+<[p,V2p]>+<^>;

^((^^{pMvp^+^pMvpVpD+^o);

^(^^P+^pUv^^+^vp^+^pVp])

+ 2 . < [ p , v p ] , { v 2 p } > + < { p } , { v p } , { v 2 p } > + < ^ > ;

^«a,»=vp+<{vp}, {vp^+dvp^pD+^vpjJvpVp])

+ < { P } - { V P } - { V P } > + < ^ > - •

^«^ax» = <0>+VP+V 2 P+2<{vp } , { v 2 p}>+< [vp ,V 2 p ]>

+ < { v p } , { v p } , { v 2 p } > + < { p } , { v p } , { v 2 p } > + < ^ > .

(c) One has
<^y-<^>, <^>^<^>, <a^=(a^,

< OQ V= < flo >- < ̂ min >'= < ^max >•

So Conjecture 9.17 /io!^5 for our <P((p).

Proof. — First of all

^min)^^)^^ v 2 p ]>xvp {see e.g. 8.5).

To compute ^«a^^ » one has only to apply 3.5 and the fact that 2 is the ring
homomorphism.

By 4.6 and 7.1 one has

7C(ao)=<^o>+<^nin> so m (̂ min ̂ o) = 1 •

One may easily compute 2 « OQ » using that

^ (< ^0 >) = ̂  OT(^)) - ̂  (̂ mm )).

Furthermore

^ (ai) = < [p, vp] > x vp x v2 p = < [p, vp] > x «[vp, v2 p] >

+<[vp,v2p] t»=7^(ao)+<[p,vp]>x<[vp,v2p]> t .

Setco=<[p, vp]> x<[vp , v2?])^ By 8.4 < a ; > occurs in ^H°(co) with multiplicity 1. By
7.1 / H (co) may contain only < a; >, < ao > and < a^ >. On the other hand one may easily
compute 2 (co) using 3.5 and 9.6 and check that Q)« OQ » and 2 « a^ >, which we have
already computed, are not contained in Q) (co). We conclude that < a ; > = = c o , so
m{a^\ ai)=m(aQ; ^)=L Similarly it is proved that

^^([p.vpiyx^vp^p]).
This allows one to compute ^«a^» and to conclude that m(a^', ay)=m(aQ\ a^)=l .
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By 9.7 and 8.4 <a^ > = < [p, v2 p]V xvp. This allows one to compute
^«^ax». By 9.13:

<[p,V 2 p]> t =7l ( {p} , {vp} , {v 2 p}) -7^( {p} , [vp ,V 2 p] ) -7T( [p ,Vp] , {v 2 p})+7T( [p ,V 2 p] ) .

Multiply this equality by vp:

< ^max > = ̂  (a^ ) - 7T (a,) - K (^) + 71 (fl̂  ).

Therefore

(*) ^ (^max ) = 71 (O,) + 71 (^) - 71 (a ,̂ ) + < fl̂  >

==«^>+<ao>+<^»+«^>+<ao>+<a^»-<^>+<a^>

=<^nax>+<^>+<^>+2.<^o>+<^nm>-

Parts (a) and (b) are proven. All equalities in (c) besides < OQ >' = < flo > follow immediately
from the already proven equalities

<a^>=<[P^2P]>t^Vp, <a^y=([p,V2p]^XVp,

< a l y = ( [ p , v p ] ) x ( [ v p , v 2 p ] y , <a,>=<[p,vp]> tx<[vp,v 2p]>.

Evidently, n (a^Y = n (a^J. Thus one may deduce < a^ > ( == < OQ > from (*).

11.5. Remark. — Example 11.4 is included here for two reasons. The first that the proof
of Proposition 11.4 is a good illustration of the technique developped in this work. The
second is that this example gives counter-examples to many possible general conjectures
about coefficients m{b; a), derivatives of irreducible representation, and so
on. I. N. Bernstein has pointed out to me that a similar example exists in the theory of
Verma modules for GL(4) (see [4], p. 9).
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