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C00 APPROXIMATIONS OF CONVEX,
SUBHARMONIC,

AND PLURISUBHARMONIC FUNCTIONS (1)

BY R. E. GREENE (2) AND H. WU (3)

Introduction

Most methods for the study of the behavior of functions on Riemannian manifolds apply
directly only to functions which have some degree of differentiability. On the other hand,
many functions which arise naturally from the geometry of the manifolds are in general at
best continuous. Thus it is important to have in hand mechanisms of constructing smooth
approximations of continuous functions. The stardard mechanism, the use of partitions of
unity combined with smoothing by convolution in local coordinate systems, tends to
obliterate geometrically meaningful properties and is thus unsatisfactory for many geometric
problems. The purpose of the present paper is to present a mechanism of smooth
approximation which tends to preserve geometric properties and is thus broadly applicable
to geometric questions. Many of the results of this paper were announced by the authors in
[5] (c), and some specific applications of the general methods here presented were discussed in
[5] (b) and [5] (e).

The paper is organized as follows: paragraph 1 contains a discussion of the smoothing
method in terms of smooth approximations of sections ofsubsheaves of the sheaf of germs of
continuous functions on a Riemannian manifold; being able to carry out approximation of
continuous sections by C°° sections of the same subsheaf corresponds to being able to
preserve the geometric structure in the approximation procedure. Paragraph 2 discusses
the specific cases of Lipschitz continuous and convex functions, and paragraph 3 that of
subharmonic functions. Paragraph 4 discusses a method of establishing the hypotheses of
the theorems of paragraph 1 for certain specific subsheaves, in particular, the sheaf of germs
of strictly plurisubharmonic functions on a complex manifold and certain other related
sheaves. A synopsis of the results of this paper is given in a Table at the end of the paper.

The authors are indebted to B. Fuglede for the elegant abstract potential theoretic proof of
Lemma 3 .1; to P. Malliavin for suggesting the role that the heat equation should play; to
J. Ralston, for his numerous helpful suggestions on matters pertaining to partial differential
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48 R. E. GREENE AND H. WU

equations; and to Y.-T. Siu for pointing out the relevance of Richberg's work [11]. We
acknowledge the assistance of all of these with thanks. We also thank S.-T. Yau, who, while
making use of our announced results [5] (c) in his article [12], encouraged us to make
available in published form the proofs presented in this paper. Finally, we thank the referee
of this paper for several very helpful suggestions, which led to a considerable clarification of
the first part of paragraph 3 (on the various concepts of subharmonicity), among other
improvements.

1. Global approximation theorems

It is well known that a continuous real-valued function defined on a C00 Riemannian
manifold can be approximated by C00 functions in the strongest reasonable sense of the word
"approximation": namely, given such a continuous function/and an everywhere positive
continuous function g , there exists a C°° function F such that | / - F ] < g everywhere. The
purpose of the present section of this paper is to state and prove similar approximation results
for certain subsets of the set of all continuous functions. These results will be applied later to
the specific subsets: the set of convex functions, the set of subharmonic functions, and the set
ofplurisubharmonic functions (in case the manifold is a complex manifold). However, it is
convenient to unify the exposition of these approximation results by proving the theorems in
a general setting which incorporates the features common to all these specific cases.

Let y be a subsheafofthe sheaf ^ of germs of continuous real-valued functions on a (fixed)
C°° Riemannian manifold M, i. e. y is to be an open subset of^ such that n \ ̂  : y -^ M is
surjective, where n : ̂  -> M is the standard projection. Note that y is not required to be
closed under the algebraic operations of ( €. The elements of ^ (or of e97) will be denoted by
[f]p where peM and/is a continuous function defined in a neighborhood of p . The set
(7i y}~1 (p) will be denoted by e95p and the set of continuous functions/: U -> R defined on
an open subset U of M with the property that [f]p e ̂ p for every p e U will be denoted by
r(c99, U). This notation is consistent with the usual notation for sections of sheaves since
Y [ y , U) as just defined is naturally identified with the set of all sections of y over U.

DEFINITION 1.1. — y has the v -closure property (read maximum-closure property) if for
any two germs [f]p, [g\p e ̂ p, p e M, the germ [/ v g\p is in ^p, where/ v g at each point is the
maximum of the values of/and of g at that point.

DEFINITION 1.2. — y has the convex composition property if for any [f]p e ̂ p, peM, and
for any function 7 : R -^ R which is convex and (strictly) increasing in a neighborhood of/ (p),
the germ bc°/]p is in ^p.

The next definitions and the proofs of the Theorems of this section will depend on some
standard function space topology concepts, which will now be summarized. For further
details, one can consult [10] or [8] for instance.

Let K be a compact subset of M; let C°° (K) denote the set of function F : U -> R where U
is an open subset of M containing K and/is a C°° function on U. Choose a fixed covering
of K by a finite number of (open) coordinate systems, say x^ : V^ -> R", n=dim M, ^eA,
where A is a finite set. Choose then for each ^eA an open set V^ having compact closure
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C00 APPROXIMATIONS 49

contained in V\ in such a way that Kc (J V^. These choices are possible by the
^eA

compactness of K. Then for each positive integer i and each/eC00 (K) the supremum

sup|~ sup /maximum of the x^-coordinate system partial \~1
?ieA peV.nK I . .

L \ derivatives of order i at p / J

is finite. This supremum will be denoted by | | / |K,( . Define | | / H K , O for/eC°°(K) to be
sup | / (p) |. The function d^ : C00 (K) x C00 (K) -^ R defined by
peK

^(/^)=||/-^||K.O+'Z ^ min(l,||/-^||K,)1=1 z

is a (finite-valued) pseudometric on C00 (K). The topology on C00 (K) that it determines is
independent of the choices made in defining the pseudometric d^ even though d^ itself is not
independent of these choices. In the following discussions, the notation d^ will be used
without explicitly noting the assumption that appropriate choices of { A , \\, Vj,} have to be
made. In all cases, these choices may be made arbitrarily except for the conditions already
given.

DEFINITION 1.3. — y has the C°° stability property if: when U is an open subset of M, K is
a compact subset of U, and /; U -> R is a function such that [f]p e ̂ p for every p e U, then
there exists an e > 0 such that every function g e C°° (K) with d^ (0, g) < s has the property that
[/+^^forallj?eK.

DEFINITION 1.4. — y has the semilocal C°° approximation property if the following
condition holds: Let U be an open subset of M and K be a compact subset of U and / be a
function in F^, U) such that/is C°° in a neighborhood of a (possibly empty) compact
subset KI of K; then there exists an open subset V of U with K c V such that for every 8 > 0
there exists a C°° function Fer(^, V) such that:

(a) sup|/(p)-F(p)|<£;
peK

(b) d^(f,¥)<s.
The following Theorems give circumstances under which the approximations in

neighborhoods of compact sets given by the semilocal approximation property can be
extended to all of M. For the statement of these Theorems recall that the C° fine topology
on the set r(^, M) of continuous functions on M is by definition the topology generated by
the sets

{ F e r ( ^ , M ) | \f(p)-¥(p)\<g(p),peM],

where /eF(^, M), geY(^, M), and g is positive everywhere on M. The C° coarse
topology (or compact-open topology} on F(^, M) is the topology generated by the sets

{ F e F ( ^ , M ) | \f(p)-¥(p)\<e,peK]
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50 R. E. GREENE AND H. WU

where feY(^, M), e is a positive real number and K is a compact subset of M. These
topologies on Y (^, M) induce topologies on F (e^, M), which will again be called the C° fine
and C° coarse (or compact-open) topologies respectively.

The fine C° and coarse C° topologies are special cases of the fine C7 and
coarse (^(O^r ^oo) topologies in the terminology of differential topology (c/. [10]). The
terminology strong 0" (instead of fine C") and weak C'' (instead of coarse C7) is also used
(c/- [8]). It would thus seem logical to replace entirely the phrase "compact-open topology"
and the often used equivalent phrase "compact convergence" by one of the phrases
"coarse C° topology" or "weak C° topology". However, out of deference to strong
tradition, the coarse C°° topology is hereafter in this paper usually called the compact-open
topology. Though consequently unreinforced by suggestive terminology, the contrast
between the fineness of the fine C° topology and the coarseness of the compact-open
topology is nonetheless of great importance throughout and should be carefully noted.

THEOREM 1.1. — If y has the C°° stability property, the v -closure property and the
semilocal approximation property, then the set ofC°° functions in r(e99, M) is dense in
Y ( y , M) in the C° fine topology.

A function feY(^, M) is an exhaustion function if for every real number c the set
{ p e M | / (p) ̂  c ] is a compact subset of M. The set of exhaustion functions in r (^, M) will
be denoted by Y^, M) and the set Fg^, M)n r(^, M) by Y^, M).

THEOREM 1 . 2 . — Ify has the v -closure property, the convex composition property, and the
semilocal approximation property, and i/T(e99, M) is closed in Y^€, M) in the compact-open
topology, then the set ofC°° functions in Y^[y, M) is dense in Y^[y', M) in the compact-open
topology.

Before giving the proofs of Theorems 1.1 and 1.2, we now present three examples with
M = R, which, though perhaps too simple to be intrinsically interesting, nonetheless suffice to
illustrate the crucial aspects of the definitions and the proofs of the theorems which will be
given later:

Let ^i=the sheaf over R which is defined by setting (^i)^ {[/]p|/ is convex in a
neighborhood ofp]. Here a function's being convex on an open subset U of R has the usual
meaning that for each Xi, x^ in U such that (xi, x^) is in U:

/(^+(1-^)X2)^V(^+(1-^)/(X2),

for all X satisfying 0 ̂  X ^ 1. A function/defined on an open subset U of R is convex on U if
and only if it is convex in a neighborhood of each point of U, and a convex function on U is
necessarily continuous. Thus e^i is a subsheaf of %\ and F^i, U)=the set of convex
functions on U for any open subset U of R.

Let y^ be defined by (^)p = { [ / ]p | 3 e > 0 9 /- s ̂ x is convex in a neighborhood of p }.
^2 is a subsheaf of e^i and thus of c€. ^2 may be considered to be the sheaf of germs of
functions which are strictly convex in the sense that they are locally "more convex" than s ex

for sufficiently small s > 0. If/is C°° in a neighborhood of;? e R then [f]p e ̂ 2 if and only if
/"(rt>o.
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C°° APPROXIMATIONS 51

The following properties of e^i and ^2 are easily verified: Both ^i and ^2 have the v -
closure property, the convex composition property, and the semilocal approximation
property (That c^i and ^2 have the semilocal approximation property follows easily from
the application of the standard convolution smoothing process). However, ̂ \ fails to have
the C00 stability property as consideration of the germs of the identity function shows. ^2
on the other hand does have the C°° stability property, as is easily verified. r(^i, R) is
closed in F (^, R) in the compact-open topology but F (^» R) is not. Thus, e9\ satisfies the
hypotheses of Theorem 1.2 but not of Theorem 1.1 while 0^2 satisfies the hypotheses of
Theorem 1.1 but not of Theorem 1.2.

As a final example, let ^3 be the sheaf determined by (^3)? = {[ / ]p e (^2)? | /is Lipschitz
continuous with Lipschitz constant < 2 in a neighborhood ofp}. Then 5^3 has the v-
closure property, the C00 stability property, and the semilocal approximation property (again
by convolution smoothing); thus ^3 satisfies the hypotheses of Theorem 1.1. ^3 fails to
have the convex composition property; and F(^3, R) is not closed in r(^, R) with the
compact-open topology.

We return now to the situation where M is an arbitrary C00 Riemannian manifold. In the
following lemma and throughout the remainder of this section (§ 1), let { K , | i e Z ' ^ } be a
sequence of compact subsets of M such that K^ c= K^+1 for all i e Z'^ and (J K^ = M. The

ieZ+

lemma follows from the Weierstrass theorem that convergence uniformly on each compact
set of a sequence ofC1 functions and of their first derivatives implies that the limit function is
C1 and that the first derivatives of the sequence converge to the corresponding first
derivatives of the limit.

LEMMA 1.1. - If{fi\ieZ+ } is a sequence of functions on M such that ̂ eC00^) for each
ie^ and if for each I'eZ'^ the sequence [fj\j^ 1} is a Cauchy sequence in the d^-
pseudometric, then the sequencer converges on M to a function f: M —> R and f is a C°°
function. Moreover, for each i, the sequence [fj \j ^ i} converges in the d^-pseudometric tof.

The next lemma gives an approximation construction, iteration of which will yield the
proof of Theorem 1.1:

LEMMA 1.2.- Suppose that the sheaf y satisfies the hypotheses of Theorem 1.1 and that
(per(^,M). IfAi,A2, and ̂  are compact subsets oj^M with Ai c: A2 <= A3,l/'cpeCGO(Al),
and i/e is any positive real number, then there exists a function \|/er(^, M) such that:

(a) ^eC^A^;
(b) ^|(M-A3)=(p|(M-A3);
(c) ^(<P-^)<s;
(d) sup|cp(p)-\|/(p)| <£.

pe^

Proof of Lemma 1.2.- Let A4 be a compact set such that A2 <= A4 c= A4 c: A3 c: A3. By
a standard construction, one obtains a C°° function p : M -> R such that p= +1 in a
neighborhood of A2 and p = -1 on M - A4. By virtue of the C°° stability property of ^,
there exists a positive constant r|i such that, for all r|e[0, r|i), [(p+r|p]p£^p for all
peA3. With this r|i fixed, there exists a function TeC°°(A3) such that:
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52 R., E. GREENE AND H. WU

(1) T is greater than (p in a neighborhood of A2 but less than (p in a neighborhood of the
boundary 8A^ of A3
and

(2) [T^e^forallpeAs;
namely, one need only choose T to be a sufficiently good approximation (in the sense of
uniform approximation of functional values) of (p + T| p on A3 which also satisfies (2). This
choice of T is possible because y has the semilocal approximation property. Then the
function \|/ defined by

\|/=max (z, (p) on A3,
v|/=(p on M — A 3

is in r (c99, M): That [\|/]p e ̂ \ for p eA^ follows from the hypothesis that ^ has the v -closure
property. That [\|/]p e ̂ p for p e 8A^ follows from the fact that, in a neighborhood of 8A^,
T < (p so that v|/=(p in that neighborhood and hence [\|/]p = [(p]p e ̂ p for pe8A^. That
[v|/]p e <9% for p e M - A3 is clear from the openness of M - A3. The function \|/ is in C°° (A^)
since T > (p in a neighborhood of A^. If T| e(0, r|i) is chosen sufficiently small and if T is a
sufficiently good approximation of (p in the senses of sup | (p—T and d^(^, r) being

A^
sufficiently small (which is possible in both senses by virtue of the semilocal approximation
property of ^), then the corresponding \(/ will satisfy the approximation requirement of the
lemma.

Proof of Theorem 1 . 1 . — Let/be a function in F(^, M) and g be a continuous function
on M which is everywere positive. Then to prove the theorem one needs to show that there
is a C°° function FeF(^, M) such that |/(p)-F(p)| < g (p) for all peM.

Define 8^= mf g , ieZ+. Then £i > 0 for all ieZ+ and 81 ^ £2 ^ £3 . . . Moreover, if
K;

sup \f— F | < Ci and sup |/—F ^ c^+i for all f e Z + then | / (p )—F(p) | < ^(p) for all
Ki K.+i-K,

p e M. Now define inductively sequences { F^: M -> R | f e Z + } of functions and
{r |^ | i e Z4' } of real numbers as follows: let Fi be any function in C00 (Ki) n F (^, M) with

sup| /—Fi | < £2/2 and Fi =/on M — K ^ , and let r|i be any positive number with r|i ^ £1
K2

and with the property that if GeC^Ki) and ri^ (F^ G) < 2r|i then [G]pe^p for all
p e Ki. The existence of such a function Fi follows from Lemma 1.2; the existence of such
an r|i follows from the C°° stability property of y . Now, to complete the inductive
definitions, suppose that Fi,. . ., F( and r| i , . . ., T .̂ are determined. Then let F( +1 be any
element of C°° (K,+i) n F(^, M) with

I,-, -r7 I £l+2sup |F,+i-F, |< .^- ,
K z.

l+ l

d^(¥^,,¥,)<^ for all j ̂ i,

F f + i = / on M-K.+2.

4e SERIE - TOME 12 - 1979 - N° 1
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And let r|^ +1 be a positive number which is less than min (£1+2,^1) and which has the property
that ifGeC°°(K^i) and ^(F,+i, G) ^ r|,+i then [G^e^ for all peK,+i . Again the
possibility of so choosing F,+1 follows from Lemma 1.2, together with the fact that i f ^ > 0 i s
sufficiently small then d^ (F, +1, F^) < £, implies that d^. (F; +1, F^) < r|^/21 +1 for all 7 ^ i since
Ky c: K^ for 7 < L The possibility of making the required choice ofr|i+i follows from the C00

stability property of y .

Now Lemma 1.1 implies that the sequence {F^i ' eZ '^} converges to a C°° function F.
Clearly sup | F — /1 < EI since

Ki
+00 £ 8

sup F-/| ̂ sup|Fi-/ | + Z sup|F,+i-F, < — + — + . . . =£1.
K, K, J - 1 K, ^ 2

Similarly, for i e Z +:

sup |F-/|^ sup iF^/ l+ ' f sup |F,^-F,| < ̂ -1 + ̂ . . . ̂ ,
K,+i-K, K.+i-K, j= l K.+i-K, z z

because: (a) F^.=/on K^+ i -K^ for j^ f -1 so F^.+i-F^O and (b) for j^i-1,

sup |F,^-F, ^suplF.^-F,^^^^.
K,^-K, K,^ 2 2

Finally, [F]p e e^p for all p e M. To derive this conclusion, note that p e K^ for some f and

^.(F, F,)^ ^^(F^i, F,)< ^ + ^ + . . . ̂ n,
7=i Z Z

Then by the choice of T|,, [P^e^p. Thus F is the C00 function in F(^, M) and
approximating/ which was required.

The next lemma will play a role in the proof of Theorem 1.2 similar to that played by
Lemma 1.2 in the proof of Theorem 1.1 [a construction related to that of the following
lemma but used for a somewhat different purppse is given in [5] (e)].

LEMMA 1.3. — Suppose that y satisfies the hypotheses of Theorem 1.2 and that
(p e FE ( y , M) n C00 (Ai), where Ai is a compact subset of M. Suppose also that c is a real
number with the property that the set A^ = {p e M | (p (p) ̂  c } contains Ai. Then, ifs and ^
are positive numbers c, there exists a function ̂ eY^y, M) such that

(a) ^eC°°(A2);

(b) | v [ / — ( p | < £ o n { p e M | ( p ( ^ ) ^ c + ? i } ;
(c) d^ (\|/, (p) < 8;

(d) ifp e M has the property that (p ( p ) ̂  c + X then \|/ ( p ) ̂  (p (p); also ifp, q e M have the
property that (p(p)=(p(<?) ^ c+^, ^n v|/(p)=v|/(^).
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54 R. E. GREENE AND H. WU

Proof of Lemma 1.3. - For notational convenience, let
A3= { p e M | ( p ( p ) ^ c+X}. Then Ai ,A2, and As are compact, and AI c= A;, cAa. For
any T| > 0 (and 8 > 0), there is a function \|/, in C00 (A3) such that:

H/J^e^ for all peA3,

sup (p—v|/i < r|,
Aa

^A,(^1^)<S.

The existence of such a function \|/i is a consequence of the semilocal approximation property
of^.

For any T| > 0, there exists a convex (strictly) increasing function /: R -> R such that:
5C(r)=^-2ri if t ^ c ,

\r)C(t)-'k\<2r{ if c < X < c + X - ,
7(r)^+2r| if r ^ c + ? i .

Then ^o(peF(y , M) because ^ has the convex composition property. Also,
7 o(p > (p+r| near the boundary of A3 since (p is near c+^ near the boundary of A3; but
% o (p < (p —r| near A 2 since (p ^ c on A:2. Thus the function defined by

\ | / (p)=max{(^o(p)(p) ,v | / i (p)}, ^eA3,

^(P)=(X°<P) (P) . ^eM-A3

is in F(^, M): for peM-A3, [v|/]p=[X°(p]p£^; for peA3, WpC^p by the v-closure
propertyof^;forj?e5A3,^o(p > v[/^ nearp so [\|/]^=[v|/o(p]^e^. Moreover, \|/=\(/i in a
neighborhood of A^ since X° (p<(p - r |< \ | / i on (and hence in a neighborhood
of) A2. Finally, if j?eA3, then v|/i(p) ^ \|/(p) ^ (p(p)+2r|. Hence if 0 < T| < 8/2, the
function \|/ has the properties required by the Lemma. D

If Y > 0, then the function ^ '' R -> R in the proof of Lemma 1.3 can be chosen to the
Lipschitz continuous with Lipschitz constant ^ 1+y, provided that T| > 0 is chosen
sufficiently small. This fact will be used later in deriving a variant (Theorem 1.2') of
Theorem 1.2.

Proof of Theorem 1.2. — To establish the theorem, one needs to show that, for each
compact set K c= M and each real number 8 > 0, there exists a C00 function F in Fg^, M)
such that sup |F-/1 < 8. Letc=sup/. ThenKc {peM\f(p) ̂  c}. Define, for each
feZ 4 ' , K^= {peM\f(p)^c-}-i—l ] . Because/is an exhaustion function, each K .̂ is
compact. Also, for each f eZ^ K; c= K,+i; and (J K,=M. Thus these specific K/s

f£Z +

satisfy the general requirements previously imposed. Now choose successively functions F;,
ieZ+ , £ L S follows: Let Fi be a function in C^K^n F(^, M) as provided by Lemma 1.3
such that sup | Fi — / [ <8/22. Then, to complete the inductive definition, the Fi, . . . , F;

KI
being chosen, let F^+i be a function in C°° (K,+i) n F(^, M) as provided by Lemma 1.3
with

^.(F^.F,^^2,

46 SERIE - TOME 12 - 1979 - N° 1



C00 APPROXIMATIONS 55

for all; ^ L The possibility of so choosing the F^s follows from Lemma 1.3: Lemma 1.3
applies immediately to choosing Fi; and, for each i e Z + , there exist real numbers ?ii, ^2 with
)ii <?i2 such that K,+i= { p e M | F , ( p ) ̂ i} and K,+2= { p e M | F , ( p ) ^ ^2}. Hence
Lemma 1.3 can be applied with (p=Fi, c=^i and ̂ ^"^i to produce F^+i .

The sequence { F, | f eZ 4 ' } converges to a C°° function F by Lemma 1.1, since for each
feZ '^ {¥j\j ^ i'} is clearly a Cauchy sequence in the d^ metric. Moreover,

sup|F-/[ ^sup|F-/| ^sup|Fi-/ | + ^ sup|F,+i-F,.|
K Ki Ki J= 1 Ki

+ oo

^sup |F i - / |+^ sup|F^i-F^.
Ki J = l K,

^sup|Fi-/|+ friK,(F,+i,F,)^+^ ——<£.
K, J = l z J'=l z

That FeF(^, M) follows from the hypothesis that F(^, M) is closed in F(^, M) in the
compact-open topology together with the facts that the sequence { F, f e Z " ^ } converges to
Y{y, M) in that topology and F^eF(^, M) for each ieZ+. The fact that F^/-8
outside Ki implies that F is an exhaustion function. Thus FeFg^, M). D

The methods used to establish Theorems 1.1 and 1.2 can be used to prove other similar
theorems. For instance, the full force of the hypothesis that F (^, M) be closed in F { ( € , M)
was not needed. And a slightly stronger theorem can be obtained (by essentially the same
proof) in which this hypothesis is replaced by the hypothesis that, for any sequence

{F,eF(^, IVOnC^iylfeZ- '}

with the property that for each ieZ+ [¥j \j ^ i} is a Cauchy sequence in the d^ metric, the
limit F of { Fj i e Z'^ } is in F (^, M). Even more generally, these convergence hypotheses
may be expressed in a localized version (i.e., in terms of properties of the individual stalks
^p). We shall not undertake to list exhaustively all the possible variations on these
constructions. However, one variant of Theorem 1.2 plays a role in the applications that
we shall discuss later. To state this variant, an additional definition is needed.

DEFINITION. — y has the Lipschitz semilocal approximation property if it has the
semilocal approximation and when/is Lipschitz continuous on U (in Definition 1.4) with
Lipschitz constant ^ K then the set V can be so chosen that the approximating functions F
can be taken to Lipschitz continuous on V with Lipschitz constant ^ ^+£.

THEOREM 1.2'.- Suppose that y has the v -closure property, the convex composition
property, and the Lipschitz semilocal approximation property. Then for any s > 0, the
closure in F^^, M) with the compact open topology of the set of C'0 functions in Fg^, M)
which are Lipschitz continuous with Lipschitz constant ^ A + c contains the set of functions in
FE^, M) which are Lipschitz continuous with Lipschitz constant A.

The modifications of the proof of Theorem 1.2 needed to prove Theorem 1.2' are as
follows: One needs to show that given a compact set K and a positive number s, that there is a
C00 function F e Fg^, M) which is Lipschitz continuous with constant ^A+e and which
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satisfies sup | F -/1 < e. Such an F is obtained by a construction almost identical to that
K

used to produce the corresponding function F in the proof of Theorem 1.2. It suffices to
impose the additional condition that each F^, f e Z4', be Lipschitz continuous with Lipschitz
constant ^ A + e (1 -1 /2i). If the F, be so chosen, then the limit F of the F, is Lipschitz
continuous with Lipschitz constant ^ A + e. That the F, can be so chosen is a consequence
of the following variant of Lemma 1.3:

LEMMA 1.3'. - Suppose that y satisfies the hypotheses of Theorem 1.2 and that
(peFg^, IVOnC^Ai), where Ai is a compact subset of M. Suppose also that (p is
Lipschitz continuous with Lipschitz constant ^£; and that c is a real number with the
property that the set A^= {peM\ (p(p)^c} contains Ai. Then, if e and X are positive
real numbers, there exists a function \|/eF(//, M) such that:

(a) v|/eC°°(A2);
(b) |\|/-(p| <s on { p e M | ( p ( p ) ^c+^};
(c) d^ (v|/, (p) < e;
(d) ifp e M has the property that (p ( p ) ̂  c + ?i, then \|/ ( p ) ̂  (p (p); also ifp and q e M to6?

r^ property that (p(p)=(p(<?) ^ c+?i, r/i^n \|/ (p) = \|/ (^);
(^) \|/ is Lipschitz continuous with Lipschitz constant ^ Z+s.
The proof of Lemma 1.3' follows the pattern of the proof of Lemma 1.3 exactly except

that one makes use of the remark immediately following the proof of Lemma 1.3 (that for
y > 0, ̂  can be made ^ 1 +y) together with the following observations: (a) If ^ is a Lipschitz
continuous function (on any metric space) with Lipschitz constant ^ S and ^ : R -^ R is
Lipschitz continuous with Lipschitz constant ^ 1+y then ^ o ^ has Lipschitz constant
^ (1 +Y)^; (b) If ̂  and ^2 are Lipschitz continuous functions (on any metric space) with
Lipschitz constants ^ £, then max(^i, ^2) is Lipschitz continuous with Lipschitz constant
^Z. D

2. Smooth approximation of Lipschitz continuous functions
and convex functions on Riemannian manifolds

The purpose of this section is to discuss a method of approximation of continuous
functions by C00 ones on Riemannian manifolds which can be used to establish the semilocal
approximation property (defined in paragraph 1) for certain geometrically significant
sheaves. The usual method for constructing such approximations is as follows (see for
instance [10] for a more detailed discussion): If/: M -» R is a continuous function, then by a
partition-of-unity procedure one may express/as a locally finite sum ^ /^, where each/^ has

XeA
compact support inside some coordinate open set: specifically, for this procedure, one
chooses a locally finite cover of M by coordinate open sets and takes a partition of unity
subordinate to this cover. Then each/,, can be considered to be a function with compact
support on a euclidean space, and thus each/,, can be approximated by a family (A)e, s -> 0+ ,
of C°° functions by the convolution smoothing process. Moreover, the approximating
functions (/^ can be chosen to have support in the image of the ?ith coordinate open set so
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that these functions can be considered (by extension by 0) to be defined (and C°°) on all of
M. The sum ^ (/^ will again be a locally finite sum and thus this sum defines a C^

?ieA

function on M. If the convolution smoothing parameters e^ > 0 are correctly chosen, then
the sum ^ (/^ will be in any preassigned C° fine neighborhood of/. This method of

XeA

showing the density of the C00 functions in the continuous functions on M in the C° fine
topology suffers from the disavantage that it ignores the Riemannian metric structure of the
manifold M, so that the geometric behavior of the approximating functions is not closely
related to the geometric behavior of the function being approximated. The approximation
process to be discussed in this section, called Riemannian convolution smoothing, behaves
better in terms of preserving geometric properties than does the coordinate system smoothing
process just outlined. A detailed discussion of the Riemannian convolution smoothing
process was given by the authors in [5] (a, b and e)\ only the definition of the process and a
summary of its properties which are relevant to the application of paragraph 1 will be given
here.

To define Riemannian convolution smoothing on a Riemannian manifold M of dimension
n, let x : R -> R be a nonnegative C°° function that has its support contained in [— 1,1], is

r
constant in a neighborhood of 0, and has the property that x ( | | y | | )= l . If K is a

JueR"

compact subset ofM then there is a positive number e^ such that, for all p in K and all v e TMp
(= the tangent space of M at p) with || v || < s^, expp v is defined. Now given a continuous
function T : M -> R define for each positive 8 less than s^/3 the function Tg by

f ,(M),
JveTM, \ e /

T^——f xfM^(exp^),
8 JueTM, \ £

where the integral is taken relative to the Lebesgue measure on TM^ determined by the
Riemannian metric at q. The notation Tg will be used in this sense throughout the
remainder of this section. Then there is a neighborhood UofKon which the functions Tg are
all defined; if U is chosen, as it may always be, to have compact closure in M, then for all
sufficiently small positive s, the functions Tg will be C00 on U. Also Tg -> T uniformly on U as
s -> 0+ , and if T is C00 in a neighborhood of a subset Ki of K then d^ (r, Tg) -> 0 as e -> 0'^ (the
notation d^ was introduced in paragraph 1). These two properties of the Riemannian
convolution process are essentially standard facts about convolution smoothing with a
kernel [see [5] (a)]. It follows that the approximation estimates (a) and (b) in the definition
1.4 in paragraph 1 of the semilocal approximation property hold if the Tg are used as
approximations. Whether or not Tg will be, for all sufficiently small 8, a section of a subsheaf
y of the sheaf of germs of continuous functions when T is a section of y depends of course on
which subsheaf y is. This property does hold for some geometrically interesting
subsheaves y\ some of these will be discussed in the following paragraphs.

The first of these subsheaves to be considered is the sheaf of germs of functions which are
locally Lipschitz continuous with Lipschitz constant less than B. To make a precise
definition, let/be a function defined in a neighborhood of p ; fis by definition Lipschitz
continuous at p with Lipschitz constant less than B if there are positive numbers r and By.,
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B^ < B, such that/is defined on the open ball about p of radius r and for every q^, q^ in that
open ball |/(<?i)-/(<?2)| ^ B,. dis^i, qz). Here dis^ is the Riemannian distance
function. Then the subsheaf 5^ c B to be considered is the sheaf of germs { [ / }p : p e M and/
is Lipschitz continuous at p with Lipschitz constant less than B}. The relevance of this
subsheaf to standard ideas of Lipschitz continuity is explained in the following lemma [cf. [5]
(e)].

LEMMA 2.1. — A continuous function /: M-> R is a section of J^LcB if and only if
for each compact set K in M there is a number B^<B such that, for all p , qeK,
|/(p)-/(^)|<BKdisM(p^).

Proof. — Suppose/satisfies the latter condition. For each peM there is an open ball
around p with compact closure K. Then for any q^, q^ in this open ball
\f(q\)~f{qi)\ ̂  BK dis^^i, qi)' Hence [/ l^e^LcB ^or eacrl P^M and/is a section of
^LCB- Conversely, suppose/is a section of c^ce ̂ d suppose that K is a compact subset of
M for which no constant B^ having the property required exists. Then there are sequences
{ pi] and { q,} of points in K and {Bj of real numbers such that lim infB, ^ B and p, + q^ for
any i and | / (pi) — / (^) | ̂  B( dis^ (p i , q^. By passing to a subsequence if necessary assume
pi —> p and q^ —> q, p , q e K. Two cases might arise: p = q or ̂  =7^ q. lip = q, then choose r > 0
and B^ > 0 as in the definition of Lipschitz continuity with constant less than B at p. If i is
then so large that

diSM(p, qi) < r and dis(p, p,) < r, \f(pi)-f(qi)\ ̂  B, dis^(pi, q,)

contradicting the facts that lim inf B; ^ B and | / (p i ) - f (<^) | ̂  B( dis ( p i , q^. So it must be
that p 4- q. By continuity considerations | / ( p ) - f (q) \ ^ B dis^ ( p , <?). Let C : [0,1] -> M
be a rectifiable curve of length / (C) less than e + dis^ ( p , q) with C (0) = p and C (1) = q: such a
curve exists for any positive number s. Choose r and B^(< B) as in the definition of
Lipschitz continuity at p with constant less than B. Assume as is always possible that
r < the length of C. Now choose § e [0,1] such that C ([0,5]) is contained in the open ball of
radius r around p and dis^(p, C(5))=r/2. For instance

8=inf{re[0 , 1] : dis^p, C(t))^r/2]

would do. Let Ci : [5, 1]-> M be C|[8, 1]. Note that a standard Lebesgue number
argument shows that there is a partition S=t^< . . . <^==1 of [5, 1] such that the
Ci-image Ci ([^, ^+1]) is contained in an open ball on which/is Lipschitz continuous with
Lipschitz constant less than B so that

| / (C(^))- / (C(^i)) | ^ B dis^C^), C^.+J) ^ B; (Ci |[r, ^J).

Adding these inequalities yields

Thus
|/(C(5))-/(C(l))|^B/(Ci).

\f(p)-f(q)\ ̂  |/(p)-/(C(§))| + |/(C(5))- f(q)\ ̂ B,+BJ(Ci).
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Clearly J(C)^ (r/2)+!(Ci) so

8+disM(p,^^+4Ci)

and

^B,+B;(Ci)^^B,+B('8+disM(p^)-^y

But

\Y ( r\\ r
lim -B,+B c+dis^p, ^—— =B dis (p, ^)--(B-B,)<B dis^(p, q)
e-O^2 \ ^/J z

so !/(?)—/O?) | <B dis^O?, q)' This contradiction of the previously obtained estimate
| / (p) — f (q) | ̂  B dis^ (p, q) completes the proof.

The sheaf ^cB nas tne semilocal approximation property: it was shown in [5] (b) that
if T is a section of ^LcB ln a neighborhood of a compact set K then the Tg obtained from the
Riemannian convolution smoothing process are, for all sufficiently small (positive) 8, also
sections of ^ce m a neighborhood of K. That 5^cB nas tne maximum closure and C00

stability properties is clear from the definition. Thus one obtains from Theorem 1.1 the
following proposition directly by noting that the C00 sections of ^cB are precisely those C00

functions/such that ||grad/|| < B everywhere.

PROPOSITION 2 .1 . - The C00 function f : M -> R such that \\ grad/1| < B everywhere on M
are dense in the C° fine topology in the set of all sections o/^cB' L e'tne set rf^ continuous
functions on M which are locally Lipschitz continuous on M with local Lipschitz constants less
than B.

COROLLARY [4]. — There is a C^ function f on a Riemannian manifold M with || grad/1] < 1
everywhere on M and withf'1 ((— oo, a]) compact for all cue R if and only ifM is complete.

Proof of the Corollary. - If such a function/: M -^ R exists, then, for any peM and any
r ^0, the set {qeM\dis(p, q) ̂  r} is a closed subset of the set {qeM\\f(p)-f(q)\ ̂  r}
and hence of the compact set /^((-oo.l/^l+r)). Thus {qeM\dis(p, q ) ^ r ] is
compact so M is complete by the Hopf-Rinow Theorem. Conversely, if M is any
Riemannian manifold and p is a point of M then the function q -> (1 /2) dis ( p , q) is a section of
^Lcr There is a C00 function/such that 1 1 grad/|| < 1 and | /(<?)- (1/2) dis ( p , q)\ < 1 for
all qeM, according to the Proposition. Then /^((-oo, oc]) is a closed subset of
{ ^ e M | ( l / 2 ) dis ( p , q) ̂  1+oc}. If M is complete, the latter set is compact and hence
/"1 ((— oo, a]) is also compact. D

The second class of geometrically significant subsheaves y for which the semilocal
approximation property can be established using the Riemannian convolution smoothing
process is the class of sheaves of germs of functions satisfying a particular local lower bound
on their convexity. To describe these precisely, the following definitions are useful.
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DEFINITION. - Let/: M -^ R be a continuous function on a Riemannian manifold M;/is
convex if, for any geodesic C : [-?i, X] -^ M, 2/(C (0))^/(C (-?i))+/(C(?i)).

Convexity is a local property: a function/: M -> R is convex if and only if it is convex in a
neighborhood of each point of M. This fact follows immediately from the elementary
observation that a function on an interval in R is convex if and only if it is locally
convex. Thus if ̂  = the sheaf on M of germs of locally convex functions, then the sections
of y^ are exactly the convex functions on M.

DEFINITION. - Let/: M -> R be a continuous function on a Riemannian manifold M and ^
be a real number. The function/is ̂ -convex at a point p e M if there is a positive constant 8
such that the function q -^/(^)-(1/2)(^+5) dis2(p, q) is convex in a neighborhood of
p. (Here dis = Riemannian distance.) If T| : M-^R is a continuous function, then/is
r\-convex on M if, for each peM,/is T| (p) convex at p.

The property of being T| -convex is a local property from its very definition. Thus if e9^ c is
the sheaf of germs of locally T|-con vex functions, then the sections of y^ on M are precisely
the T|-con vex functions on M.

The ^-convexity of a C2 function/at a point p means exactly that the second derivative of/
at p along every are length parameterized geodesic issuing from p is greater than ^
at p. Similarly, T|-convexity means that those second derivatives at p are greater than T| ( p )
for each p in M. A function is strictly convex [c/. [5] (<?)] if it is locally the sum of a convex
function and a C00 function which has positive second derivatives along geodesies. It is easy
to see that a (continuous) function/on M is strictly convex if and only if it is 0-convex on M in
the sense of the previous definition. The notation y^ will be used for the sheaf of germs of
strictly convex functions; as noted, ^sc= ̂ oc. where 0 : M -> R is the zero function.

It was shown in [5] {a and e) that if T is a strictly convex function on M and K is a compact
subset of M then there is a neighborhood of K and a positive number 80 such that, for all
se(0, So), Tg is (C°° and) strictly convex on a fixed neighborhood of K where T^ is the
function obtained from T by Riemannian convolution, as defined at the beginning of this
section. The same proof applies to show that if T| is a continuous function on M, if T is an
T|-convex function on M, and if K is again a compact subset of M, then there is a
neighborhood of K and an So such that for all ce(0, 80), Tg is r|-convex on the
ceighborhood. As an alternative to rephrasing the entire proof, one could deduce the T|-
convexity statement from the strict convexity one as follows: An T|-con vex function is, for
each p e M, the sum in a neighborhood of p of a strictly convex function TI and a C00 function
T2 namely

T(^=(Tte)-^(r|(p)+15)dis2(p, ^+ l^n(p)+ l§)dis2(p, q).
\ z \ ^ / / z \ z y

Here 5 is as in the definition of T| (p)-convexity at p , and the function

^^)-^(r|(p)+^5) dis2^, ^)
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is strictly convex near p because it is the sum of the convex function

q -^ T (q) — (T| (p) + 5) dis2 ( p , q)

and the C00 function

^G5)^52^^
which has positive second derivatives along geodesies near p . For sufficiently small s, (Ti)g
is strictly convex in a fixed neighborhood of p. Since 12 is C00 near p, the second derivatives
along geodesies of (r^g converge uniformly in a fixed neighborhood of p to those of T^ as
e^O^ The second derivatives of x^ along (arc-length parameterized) geodesies are
ri(p)+(l/2)5 at p and so in some neighborhood ofp they are greater than r|(p)+(l/4)8.
Thus in some (slightly smaller) neighborhood of p , the second derivatives of (T2)e are
greater than T| (p)+(l/4)5 for all sufficiently small 8. Since Te=(Ti)g+(T2)e, one concludes
that there is a neighborhood ofp such that for all sufficiently small c, Tg is [(1/4)8 +T|( p)]-
convex at every point of the neighborhood. But (1 /4) 8 4- T| ( p ) > T| (q) for all q sufficiently
near p. Hence, on some neighborhood ofp.Te is T|-convex for all sufficiently small £. The
required conclusion about Tg in a neighborhood of K now follows by covering K with finitely
many such neighborhoods of points psK.

Since the approximation properties of the Tg relative to T are, as observed earlier in this
section, automatic, it follows that each e9^c an(! m particular y^c has tne semilocal
approximation property. It is easy to check that y^c has the C°° stability and maximum
closure properties so the hypotheses of Theorem 1.1 are satisfied and the following
Proposition follows. The second statement was established in [5] {e), where numerous
geometric applications are also given.

PROPOSITION 2 . 2 . — For any continuous function r\ : M -^ R, the C°° sections of y^c are

dense in the C° fine topology in the set of all sections. In particular, the C00 strictly convex
functions on any Riemannian manifold M are dense in the C° fine topology in the set of
continuous strictly convex functions.

If e99! and ^2 are two subsheaves of the sheaf of germs of continuous functions on a
manifold M each of which has the maximum closure property then c^i n ^2 also has the
maximum closure property: this fact is an immediate consequence of the definition of the
property. Also, if e^i and ^2 have the C°° stability property, then ̂ \ n ̂ 2 does; this is
also obtainable immediately from the definition. But if ^\ and ^2 has the semilocal
approximation property then a priori the C°° approximations for ^\ sections might be
obtained by an entirely different process from that used for the ^2 sections so that no
conclusion could be drawn about whether or not ^i n ^2 would also have the semilocal
approximation property. If, however, the semilocal approximations for both ^i and ^2
sections are obtainable by the Riemannian convolution smoothing process, then it is again
immediate that ̂ \ n ^2 has the semilocal approximation property. In particular, if ̂  c B
is denned to be ^LcB n ̂ c (r! : M -^ R a continuous function, B a positive number) then
y^cB has the semilocal approximation property, as well as the maximum closure and C°°
stability properties. From Theorem 1.1, one then obtains a proposition of a by-now
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familiar form. (In [5] (b), a special case of this proposition is established, and some
differential geometric applications are discussed.)

PROPOSITION 2 . 3 . — The C00 sections of'^LcB n ̂  car^ dense in the C° fine topology in the
set of all sections of y^^r\ y^c-

3. Subharmonic Functions

AC 0 0 function / on a Riemannian manifold M is subharmonic by definition if A/ is
nonnegative everywhere on M. If Vi , . . . , ¥ „ is an orthonormal frame in the tangent space

n

TMp of M at a point p , then A/| p = ^ D^ (V^, V,) where D^ (V,, V,) = the second derivative of
1=1

/ at p along the geodesic through p having tangent Vf Thus a C°° convex function is
necessarily subharmonic. But of course the class of subharmonic functions is in general
much larger than that of convex functions.

It is natural to try to extend the definition ofsubharmonicity to continuous, not necessarily
C°° functions. Unfortunately, to do so in terms of the behavior of the function along
geodesies is difficult. What is needed is a characterizing property of C°° subharmonic
functions that is easily extended to the case of continuous functions. One such property is
that of being a subsolution of Dirichlet problems in the sense of the following definition:

DEFINITION. — A continuous function /: M -> R on a Riemannian manifold M is a
subsolution of the Dirichlet problem determined by its boundary values for an open set U in M
with compact closure, if/has the following property: ifh is any function harmonic on U and
continuous on U with h(q) ̂ f(q) for all qeV -\J then h(q) ̂ f(q) for all qe\3.

A C°0 function is subharmonic if and only if it is a subsolution of the Dirichlet problems
determined by its boundary values for all compact closure open sets U in M: this fact is well
known and follows in any case from results later in this section.

A second characterizing property ofsubharmonicity ofC°° functions, which also extends
immediately to continuous functions, is the satisfying of suitable local maximum principle.

DEFINITION. — A continuous function /: M —> R satisfies the local harmonic maximum
principle if for any point peM and any (C00) function h defined and harmonic in a
neighborhood ofp the function/—/! has a local maximum at p only iff—h is constant in a
neighborhood of p .

A C°° function is subharmonic if and only if it satisfies the local harmonic maximum
principle. This fact is again well known and also is a special case of results proved later.

That a continuous function /: M -> R which satisfies the local harmonic maximum
principle is a subsolution of the Dirichlet problems determined by its boundary values for all
compact closure open sets U is well known and easily established by elementary
considerations (see e.g., [I], pp. 135-137) for a proof in case M=R2 , which proof is easily
extended to the general case). The converse holds, but a stronger result than the direct
converse also holds: If a continuous function/: M -> R is a subsolution of the Dirichlet
problems for all a collection of compact closure open sets U which together form a basis for
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the topology of M then/satisfies the local harmonic maximum principle. (The proof of this
essentially standard fact is again a straightforward extension of the proof for M=R 2

in [1].)
Harmonic functions on a Riemannian manifold can be treated from the viewpoint of the

axiomatic potential theory ofBrelot (see [3]; also [6]): the "harmonic functions" of the theory
are just to be the harmonic functions in the usual sense of solutions of A = 0, and the "regular
open sets" of the theory to be (sufficiently small) open balls B(x; e), 0 < s < e(x), xeM,
where s : M -> R is an arbitrary positive function. It is immediate that the axioms are
satisfied. The theory then provides a definition of subharmonicity of a continuous function:
/: M-)-R is subharmonic if and only if, for all regular open sets U and points xeU,

/ (x) ̂  \fdp^, where p^ is the harmonic measure determined by U and x. ( More generally,

a not necessarily continuous function/: M-^Ru{-oo} i s defined to be subharmonic if it is

upper semicontinuous, not = — oo on any component of M, and satisfies/(x) ^ fdp^ for

all regular open sets U and x e U, as before. ) Since the function x -> fdp^ is the solution of
/ v

the Dirichlet problem determined by the boundary values of (the continuous function)/, it is
clear that a continuous function/is subharmonic in the sense of this definition if and only if/is
a subsolution of the Dirichlet problems determined by its boundary values for all regular
open sets forms U. Since the set of regular open sets forms a basis, it follows that all three
concepts of subharmonicity - the subsolution property, the local harmonic maximum
principle property, and the axiomatic theory definition-are equivalent (for continuous
functions).

The following definition/lemma summarizes these considerations:
DEFINITION. — A continuous function /: M -> R on a Riemannian manifold M is

subharmonic if it has any (and hence all) of the following three properties:
(i) It is a subsolution of the Dirichlet problems determined by its boundary values for all

compact closure open sets U <= M.
(ii) It satisfies the local harmonic maximum principle.

(iii) It is subharmonic in the sense of axiomatic potential theory with "harmonic
functions" being solutions of A=0 and "regular open sets" being sufficiently small balls
around each point.

Clearly subharmonicity in the sense of this definition is a local property: (ii), for instance, is
obviously a local condition, and (iii) is shown to be local in the development in [3]. Set
^sh = fhe sheaf of germs of continuous, locally subharmonic functions. Then a continuous
function/: M -> R is subharmonic if and only if it is a section of e9 .̂

If/is a C°° function on M and g is a C°° function of compact support on M, then
r r(A/) g = /(A g). Thus one is led to define the Laplacian of a continuous function/on

JM J
M as a distribution by r

(A/)^= /A^,
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for ^, C00 compact support. One says that A/is nonnegative if (A/) g is nonnegative for all
nonnegative C00 functions g of compact support on M; if/is a C00 subharmonic function on

f
M then (A/)^= ^(A/) so A/is nonnegative in the distribution sense. Moreover,

JM
it follows from the definition that if/is any function (not necessarily C00) which is a limit
uniformly on compact sets of functions with nonnegative distribution Laplacian then/has a
nonnegative distribution Laplacian. Thus in investigating the approximation properties of
^sh i1 ls reasonable to consider first the distribution Laplacian of the section of y^h-

LEMMA 3 . 1 . — A continuous function /: M -> R LS subharmonic if and only if the distribution
Laplacian A/is nonnegative.

It is possible to prove this result by direct argument: the fact that nonnegativity of the
distribution Laplacian implies subharmonicity is proved directly in [9] and a direct proof of
the converse can also be given. However, if one takes for granted the machinery of
axiomatic potential theory, in particular the results of [7], then a very short proof of the
lemma becomes possible: For a discussion of this and other, related results (in the more
general context of not necessarily continuous functions) see, for instance, ([6] pp, 1-13); the
results there are for M = an open subset ofR", but the proofs are essentially in the context of
the axiomatic theory so that they apply in the present situation. For the convenience of the
reader, an outline of the proof is given here:

Outline of Proof of Lemma 3.1. — Since both properties — subharmonicity and non-
negativity of the distribution Laplacian — are local, it is sufficient to consider the question of
their equivalence locally. Let p be any point in M and B be an open ball about p of radius so
small that B is compact and that (B, B) is diffeomorphic to (open unit ball, closed unit ball) in
R". There exists a Green's function g : B x B -> (0, + oo], with the property that g (x, y) is
for each fixed y e B asymptotically equal to (1 /oej (dis (x, y))2 ~" as x -> y where a« is Poisson's
constant (for n ̂  2; for n == 2, the asymptotic behavior is (2 n)~1 log dis (x, y)). Then g is a
fundamental solution of Laplace's equation, i.e. :

f
\g{x, }OA(prix=-cp(}0
J

r
for any C2 function (p with compact support in B, where dx is integration relative to the

J
Riemannian volume measure for the point x. If ^ is a nonnegative Radon measure of

def P
compact support on B with the property that G ̂  = \g ( . , y) d\i (y) is not = + oo, then by

J
Fubini's theorem

f fG|.iA(p^x=— (p^n,
J J

for all C2 functions of compact support in B. With these notations in mind, suppose that
/: M -> R is a continuous subharmonic function. Then the results of [7] applied to the
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"harmonic space" in the Brelot sense determined by taking as "harmonic functions" the
solutions ofA==0 and as "regular open sets" sufficiently small balls, as before, yield that /1 B
may be written as — p + h, where is harmonic and p = G u, for some nonnegative [i (this is the
generalized Riesz decomposition theorem). Then A/==A^i—Ap== —Ap and

(A/)cp=(-Ap)(p=l(p^O,

for any C2 compact-support-in-B function (p so that A/ is a nonnegative distribution
(on B). Conversely, suppose that /is a continuous function with nonnegative distribution
Laplacian M=A/. Let D be any open set with compact closure in B and set
u^=u x characteristic function of D. Then A(Guo)» m tne distribution sense, is equal to
—u^ since as noted earlier (with (p as then):

r r(Gi^)(A(p)=- (pMo-
J v

Thus A (/ + G u^) is zero on D as a distribution. By the ellipticity of A,/ + G u^ is equal
almost everywhere to a (C°°) harmonic function on D. Since -Gu^ is subharmonic and
since the sum of a subharmonic and a harmonic function is by trivial considerations
subharmonic, it follows that / is equal a. e. to a subharmonic functions. But a continuous
function which is equal almost everywhere to a subharmonic function is itself
subharmonic. D

The sheaf y^ has the maximum closure property: this follows easily from the (subsolution-
property) definition of subharmonicity. It will be shown shortly that 5^ also has the
semilocal and convex composition properties. But ̂  does not have the C°° stability
property, e. g., 0 is a section of y^ but obviously there are arbitrarily small (in the C00 sense)
perturbations o fO that are not subharmonic. Definitions of strict subharmonicity, and,
more generally, TI -subharmonicity, analogous to the definitions of strict convexity and
T|-convexity, lead to sheaves having the C^ stability property in addition to the maximum
closure and semilocal approximation properties.

DEFINITION. — If TI : M->R and f:M->R are continuous functions, then / is
r\-subharmonic if for each point p in M there is a positive number 8 such that the function

q^f(q)-^^(p)\dis2(p,q)

is subharmonic in a neighborhood of p . A continuous function /: M -> R is strictly
subharmonic if it is 0-subharmonic.

Strict subharmonicity and more generally r|-subharmonicity are obviously local
properties. Set .9^= the sheaf of germs of (continuous) r|-subharmonic functions and
y^= ̂ osh==the sheaf of germs of (continuous) strictly subharmonic functions. Then of
course a continuous function/: M-^R is a section of ^^sh^ssh) ^ SLn(^ ^ly ^ / ls

T|-subharmonic (resp., strictly suharmonic).
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A C°° function f:M->R is r|-subharmonic if and only if (A/) (p) > T| (p) for all
peM. This fact is an immediate consequence of the elementary formula
A dis2 ( . , p) | p = 2 n. Lemma 3 .1 implies immediately that a continuous function
/: M -> R is r|-subharmonic if and only if (in the notation of the definition of
T|-subharmonicity) A/-(5+r|(p)) is a nonnegative distribution in a neighborhood of
p . From this one concludes by a standard argument the following Lemma:

LEMMA 3 .2. - A continuous function f : M -> R is r[-subharmonic on M if and only if there
is a C°° function r|i : M -»R4^ such that everywhere A/^r|i (in the sense that A/-(r|i) is a
nonnegative distribution on M) and such that r|i >T| on M.

It is evident from Lemma 3.2 (or in fact directly from the definition) that y^ and in
particular y^ have the C°° stability property. It is also easy to see that each y^ has the
maximum closure property: if

/i-^i+^Ti^ndis^ , p ) and /2-(§2+ ̂ (P)) ̂  - P )

are subharmonic in a neighborhood of p, then one checks easily using the maximum closure
property for subharmonic functions that

max(/l,^)-(min(6l,82)+—r|(p))dis2( , p )
\ 2n / .

is subharmonic in a neighborhood of p. It remains to investigate the semilocal
approximation property for y^h and y^'

THEOREM 3 .1. - (i) For any continuous T| : M -> R, y^h has the semilocal approximation
property, (ii) y^ has the semilocal approximation property.

COROLLARY 1. - The C°° sections of y^h are dense in the sections of y^h ̂  the C° fine
topology. The C°° sections of ̂  are dense in the section of ̂  in the compact-
open topology.

The first statement follows from the present theorem combined with Theorem 1.1 and the
observations of the paragraph preceding the present theorem. The second statement is
trivial if M is compact for then any section of y^h is constant by the maximum
principle. If M is noncompact, there exists a C°° function g : M -> R such that A^= 1
on M. The existence of such a function g is a consequence of the local solvability of elliptic
equations together with the Lax-Malgrange theorem on approximation of local solutions by
global ones in the case of second order elliptic equations (or more generally arbitrary order
with adjoint having the unique continuation property: see [5] (d) for details and the original
references). If / is a section of ̂  and K a compact subset of M, then/+^ with K a
sufficiently small positive number approximates / in the C° sense near K. Now / + K g is a
section of y^sh so f -\-\g can be approximated in the C° sense near K (in fact, globally) by
a C°° strictly subharmonic function, which is necessarily a section of ̂ .
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COROLLARY 2. - y^h n^ tne convex composition property, and the C°° subharmonic
exhaustion functions are dense in the compact-open topology in the continuous subharmonic
exhaustion functions.

The second part follows from Theorem 1.2, the first part, and the maximum closure
property of c9 .̂ For the first part, note that if/is a section of e9^ in a neighborhood of
p e M, then by the theorem there is a sequence { / } of C00 subharmonic functions defined in a
neighborhood of p with / ->f uniformly. If ^ : R -> R is an increasing convex function,
then there exists a sequence of 0°° functions { ̂  } defined and convex in a neighborhood of
/ ( p ) and converging uniformly on a neighborhood of/ (p) to 7. Direct computation shows
that A(^o/) is nonnegative in a neighborhood of p . Since ^ o / -> ̂  of uniformly on a
neighborhood ofp and since the uniform limit of subharmonic functions is subharmonic, ̂  o /
is subharmonic in a neighborhood of p.

The corollary just established shows that ^sh satisfies the hypotheses of
Theorem 1.2. The corollary holds also for y^ in place of c^. But, in terms of
construction of approximations, this fact is not needed since ^ssh nas tne C00 stability
property and so Theorem 1.1 applies, whereas for ̂  one has only the weaker
approximation conclusion of Theorem 1.2.

Proof of Theorem 3.1.- Part (ii) follows from part (i) by an argument similar to the
deduction of the second statement of Corollary 1; namely, suppose that / is a continuous
subharmonic function defined on an open neighborhood U of a compact set K in M. If U
is compact (i. e. if M is compact and U = M), then / is constant by the maximum principle and
there is nothing to prove. If U is noncompact, there exists a C°° function g : U -> R such
that A^f = 1 on U (the existence of g is obtained by applying the argument already given to the
noncompact manifold U). The function/ + 7. g , with a sufficiently small positive number ?i,
approximates / in the C° sense near K and in the C°° sense on that part of K on which /
is C°°, and /+^ is strictly subharmonic. Assuming part (i) for the moment, one
concludes that / +^g may be approximated by a C°° strictly subharmonic function near K in
the required C° and C°° senses and thus that there is a C°° (strictly) subharmonic
approximation of / of the required sort.

Before undertaking the proof of part (i) of Theorem 3.1, note that the deduction of part (ii)
from part (i) depends in an essential way upon the existence of a strictly subharmonic
function defined in a whole neighborhood of K, not just in neighborhoods of different points
of K. As noted, such strictly subharmonic functions always exist (except in the trivial case
of U compact). But given a compact set K it may very well be the case that no strictly
convex function exists on any neighborhood of K. This is the case if, for instance, K
contains a closed geodesic. It is for this reason that the sheaf of germs of convex functions
cannot be shown by the pressent methods to have the semilocal approximation property even
though it was shown in paragraph 2 that the sheaf of germs of strictly convex functions
does. It is at present unknown to the authors whether or not the sheaf of germs of convex
functions has in general the semilocal approximation property.

Returning now to the proof of part (i) of Theorem 3.1, suppose that K is a compact subset,
that U is a neighborhood of K, and that / is a continuous T|-subharmonic function
on U. The case K = U = M, which can occur if M is compact and T| is negative somewhere
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on M, requires special consideration and will be dealt with later. Suppose now that K ̂  M
so that, by choosing a smaller U if necessary, U may be taken to be noncompact. Choose
an open set V with C00 boundary and with KcVcVcU. Set N be the double ofV;
N = V u V i where V n V i = t h e boundary ofV. By standard extension theorems, there
exists a Riemannian metric on N with the property that in a neighborhood W of K,
with Wc:V, this metric equals the Riemannian metric of M restricted to W. Also there
exists a continuous function /: N -> R such that /1 W = /. Choose any such /. Then / is
rj-subharmonic on W, but not of course on all of N in general (indeed, r|-subharmonicity is
not at the moment and need not ever be defined on N as a whole).

Now consider the function F(x, t) : N x { r e R | r ^ O } ^ R obtained by solving the heat
equation

^-AF
9t

on N with the initial condition F(x, 0)=/(x), xeN. By standard theorems there is a
function F which is such a solution in the sense that: (1) F is continuous on
N X { r e R | r ^ O } (2) F is C00 on N X { r e R | r > 0 } and 9¥/9t=A¥ on that set and (3)
F(x, 0)=/(x). Moreover, F has the property that (4) if / is C°° in a neighborhood of a
compact set KI c= N then the derivatives of all orders of F ( , t) : N -> R converge uniformly
on KI as r-^O'^ to the corresponding derivatives of/ Thus, the functions
F( , r) : N-^R, ?->•()+ , form a family that when restricted to a neighborhood of K
approximate / in the sense of the definition of the semilocal approximation property. To
check that F( , t) is r|-subharmonic in a neighborhood of K, some further properties of the
heat equation need to be used.

For notational convenience, write H(/: N —> R for F( , ^) : N — > R. It is again a
standard result that even if g is only a distribution, rather than a continuous function, H( g is
still defined in the sense that there is a unique 0°° function G : N x { r e R | r > 0 } - ^ R
satisfying 9G/Bt=AG and having the property that G( , t ) - > g as t->0+, where
convergence of G ( , t) is in the sense of distributions. In fact, it is known [2] that the heat
operator is given by convolution with a kernel, in the sense that there is a C°° function
k : N x N x { r e R ^>0}-^R such that

f
(H^)(x)= h ( y ) k ( x , y ^ t )dy , t>0,

J^eN

for any continuous function h : N -> R; more generally, if h is a distribution on N then
(H( h) (x) is h operating on k (x, y , t) with respect to the y variable. Also, k has the properties
that, as r^O^ k(x, y , t) converges to 0 uniformly in the C°° topology on any compact
subset of N x N — {(x , x) | x e N} and that there exists a neighborhood of {(x, x) | x e N } in
N x N such that, for all sufficiently small positive t, k(x, y , t) is positive for all (x, y) in the
neighborhood. Finally, it is known that H^ commutes with A^, i. e. for any distribution h:

A (H( h) = H, (Ah) for all t > 0.
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From this fact, one can deduce that H( /is r|-subharmonic on some neighborhood of K for all
sufficiently small t, in the following way.

First, choose 5 > 0 so small that /is rj-subharmonic on the set { x e N | dis (x, K) < 4 §} and
that for all x, y e N with dis (x, y) < 2 5, k (x, y , t) is positive for all sufficiently small r. By a
partition of unity on N x N, k may be expressed as k^ +k^ where /q and k^ are C^ functions
o n N x N x { t e R | r > 0 } with the properties that

support of / q c = { ( x , ^)eNxN|dis(x , y)<28} x { r e R | ? > 0 }

and support of k^^{{x, }QeN xN|dis(x, y)>5} x { r e R | r > 0 } .

Then k^ ( , , 0 converges to 0 in the C°° topology on N x N as t -> ̂ +, and k^ ̂  0 for small t.
Now let g=^f (the distribution Laplacian) and let r|i be a C00 function on the

neighborhood W of K such that g>r\^ on W and r|i>ri on W; the existence ofr|i is
guaranteed by Lemma 3.2. As would in fact be the case for any distribution,
g(y)k^{x, y , t)->0 as t-^04^ uniformly on N, where g ( y ) k ^ ( x , y , t) is the function of x
resulting from applying the distribution g to the y variable ofk^ (x, y , t) for each fixed t. On
the other hand, ifr^isaC00 function on N agreeing with T| i on { x e N | dis (x, K) < 3 5}, then
for all xeN such that dis (x, K)^8:

f
g ( y } k ^ ( x , y , t)^ ^(y)k^(x, y , t ) d y ,

j

since fei (x, y , t) = 0 if dis (x, y) ̂  2 8 and g (y) > T[ i (y) for all y with dis ( y , K) < 3 8. Now

U^OO^iO^ ^ t)dy->V[^(x) uniformly on any compact subset of N as t-^^ since

r r\r[2(y)k(x, y , t)dy=H^2-^^2 uniformly and r^OO^x, y , t) -^0 uniformly as
J •/
t -> ̂ +. In particular, for all sufficiently small t :

f 1 1\^2(y)^(x, y , 0^>-p(x)+-.r|i(x),

for all x such that dis(x, K)^8. So

g ( y ) k ^ ( x , y , 0>^r|(x)+^r|i(x),

for those t and x. Since
g(y)k(x, y , t)=g(y)k^(x, y , t)+g(y)k^(x, y , r),

and since g (y) k^ (x, y , t) -> 0 uniformly on N as t -> ̂ +, there is a positive number IQ such
th^t for all te(0, to) and all x such that dis(x, K)<8 :

g { y ) k ( x , y , 0> , r | (x)+ . r | i (x) .
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Now the facts that g ( y ) k ( x , y , 0=H,(A/)(x)=A(H,/)(x) and that r|i(x)>r|(x) for
the points x in question imply that, for te(0, to), H(/ is r|-subharmonic on
{ x e N | d i s ( x , K)<5}.

The special case K = U = M, consideration of which was postponed at the beginning of the
proof, can also be treated by the heat equation method just discussed. One omits the
passage to the double N of V and uses instead the family H( /obtained by operating on /by
the heat operator H, of the compact manifold M itself. The remainder of the proof is very
similar to that just given and is omitted for brevity.

In geometric applications, Lipschitz continuous subharmonic functions play a special role
[see [5] (b, e)]. So it is natural to inquire whether the semilocal approximation property
holds for y^hn ^LCB- I11 ^ct' ^ does, and this fact can be established by the same
.constructions used to establish the semilocal approximation for ̂  itself. A similar
situation occurs in the cases of c9^ ̂  ^LCB a^ ^^sh ̂  ^LCB- In certain special applications
(see [12]) it is useful to have a more refined version of these facts which allows for variation of
the local Lipschitz constant. To formulate this refinement, an additional definition is
useful :

DEFINITION. — I f ? : M -> R is a positive continuous function, then a function /: M -> R is
locally Lipschitz continuous with variable local Lipschitz constant P if for each xeM/is a
section of ^^(x) m a neighborhood of x.

The sheaf of germs of such functions will be denoted by ^cp-
THEOREM 3.2. — If p : M -> R is a positive continuous function and T| ; M -> R is a

continuous function on a Riemannian manifold M, then ̂  n ^cp cind y^h ̂  ^up h^ve the
semilocal approximation property. In particular, y^sh ̂  <^Lcp ^ the semilocal
approximation property.

COROLLARY 1. - The C°° sections of^^h ̂  ^Lcp (in particular, of^^sh ̂  ^Lcp) are dense in
the C° fine topology in the sections of ^^h ̂  ^Lcp (respectively of y^sh ̂  ^Lcp)-

COROLLARY 2. — For any positive constants B and £, the C^ subharmonic exhaustion
functions with gradient everywhere of length less than B+£ are dense in the compact-open
topology in the subharmonic exhaustion functions with local Lipschitz constant less than B.

As in previous cases. Corollary 1 follows by combining the present theorem with
Theorem 1.1. Corollary 2 follows from the present theorem combined with Theorem 1.2'
and the convex combination property of ̂  (Corollary 2 of Theorem 3.1).

Proof of Theorem 3.2.- Postpone consideration of the case K = U == M. In case K + M,
perform the construction used in the proof of Theorem 3 .1 of the double N of the closure of
the neighborhood V ofK. Choose the extensions/ and Q to N of / |W and the
Riemannian metric G of W so that / is a section of y^ for some positive continuous
function J3 : N -> R such that J31 W = P, W c= V. These choices are possible for elementary
reasons. In either of the cases, K = U = M o r K ^ M , i t becomes sufficient to prove that if
P : N -> R is a positive continuous function on a compact Riemannian manifold and
/: N -^ R is a section of ^cp then H( /is a section of ^cp for all sufficiently small t. (That
H^/will be a section of y^h near K was established in the proof of Theorem 3.1.)
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Now let p be a point of N; there exists a finite set Xi, . . ., X^ of vector fields each with
length ^ 1 everywhere on N and length = 1 in a neighborhood of p such that, on some fixed
neighborhood ofp, any C°° function h with | X,h \ < p(p), i = 1, . . ., n, is a section of ^cp on
that neighborhood. Specifically, choose Xi, . . ., X^ to be an orthonormal basis at p and
in a neighborhood of p and (for later purposes) to have DX^ = 0 at p for all i. Such a choice
is possible by standard constructions. For instance, the X^ near p can be determined by
Gram-Schmidt orthonormalization of the coordinate vector fields of a Riemannian normal
coordinate system centered at p. The conclusion that h is a section of ^cp ^ar p under
the circumstances indicated follows from estimating the derivative ofh along any smooth arc
near p. A standard compactness argument now shows that to complete the proof it is
enough to establish the following: Suppose that X is a vector field of length ̂  1 on N
satisfying DX(p)==0 for some peN and that/is a section on N of ^cp. Then there is a
positive number to and a neighborhood U ofp such that i f t e ( 0 , t o ) then
|X(IV)(x) |<P(p)fora l lxGU.

The estimate to be established is of course equivalent to

^(H,/)((p,(x))|^o<P(p),

where (ps : N x R —>• N, s e R, is the one parameter group ofdiffeomorphism of N determined
by the vector field X. In these terms, it is enough to show that there is a constant Pi, less
than P(p), such that, for all te(0, to) and xeU, | (H, /) ((p, (x)) - (H, /) (x) | <spi for all
sufficiently small s. For notational simplicity, write sH(=the heat operator at "time" t for
the metric (p? Q on N, i. e. the metric induced on N from G by the map (ps : N -> N. Then
(H( /) (x) = (sH( ((p? /)) (x) since the heat equation is invariant under isometry of N. Hence

(*) |(H,/)((p,(x))-(H,/)(x)|^|,H,((p?/)(x)-H,((p?/)(x)|+|H,((p?/)(x)-H,/(x)|.

Now there is a constant ?2 < P ( p ) such that / is a section of ̂ ^ in a neighborhood of p,
in particular on { x e N | dis (x, p) < 5 } for some positive number 5. Then, for x in the set
{xeN]d i s (x ,p )<5 /2} and for any (positive) s<5/2, | ((p?/) (x) - / (x) | <^s. Thus
(l/s)|((p?/)M-/M| <?2. Now (l/s)|((p?/)(x)-/(x)| is for all s bounded on N by
supP; and, as observed, near p it is, for all sufficiently small s, bounded by P^. A

N

straighthorward application of the argument used previously in which the heat kernel k is
written as ^1+^2 shows that for 5<5/2 and for all t sufficiently small

Htl^[((p?/)M-/MM <?2 for all x with dis(x, p)^5/4,
V s /I

the smallness of t required being uniform in 5 as s-)^. To estimate

^|(H,/)((p,(x))-(H,/)(x)|,s

it remains to estimate the first term |sH(((p?/)(x)-H^((ps*/)(x)| of the
right hand side of the inequality (*).
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To obtain the required estimate it is necessary to use more detailed information about the
heat kernel k than has been used up to now. Specifically, the existence of an asymptotic
expansion for k(x, y , t) in the following form is needed [2] :

k(x, y , t)=(4Kt)~n/2[exp(-r2(x, y)/4t)](uo(x, y)+tu,(x, y , t)).

Here n= dimension N, r=the Riemannian distance function on N xN (previously denoted
by dis), UQ is a C00 function on N x N , and MI is a continuous function on
N x N x { ^ e R | ^ > 0 } which is bounded on N x N uniformly in t as t -> 0 +. For notational
convenience, write fes, r^, ̂ o, and ̂ i for the functions corresponding to k, r, UQ, and u^ when
the Riemannian metric G of N is replaced by (ps* G. Also, let ̂  : N -> R be the positive C00

function which is the ratio of the n-dimensional measure determined by (p? G on N to that
determined by G; then for any function (or distribution) h : N -^ R :

f
(A h) (x) = k, (x, y , t) h (y) v, (y) dy,

JN

where the integral is taken relative to the measure determined by G.
To estimate | A ((p?/) (x) - H( ((p?/) (x) | is to estimate

MX, y , t)Wf)(y)v,(y)dy- k(x, y , t)(^f)(y)dy
JN JN

Now

U^ y , t)(^f)(y)v,(y)dy- f fe(x, y , t)(^f)(y)dy
JN JN

r
^Tir)-"/2 [exp(-r^x,y)/4t)](^(x,y)+t,u,{x,y, t}) ((p? /) (y) v, (y) dy

JN

r
- [exp^r^x, y ) / 4 t ) ] ( u o ( x , y)+tu,(x, y , t))(^f)(y)dy

JN
f r

^(47TO-"/2^ [exp(-r,2(x,};)/40]((p?/)^)(^o(x,^)+^^(x,^ t))(v,(y)-l)dy
I JN

r
+ [exp(-r,2(x,^)/40-exp(-r2(x,^)/4r)]((p?/)(^(^o(x,^)+^^l(x,^, t))dy

JN
r

+ [^p(-r2(x,y)/4t](^f)(y)(,Uo(x,y)-UQ(x,y))dy
JN

f
+ [exp (- r2 (x, y»/4 Q] ((p? /) (y) t (,u, (x, y , t) - u, (x, y , t)) dy

JN

This last (four term) sum will be referred to as (^). It will now be shown that for suitable
choice of to and neighborhood ofp each of the terms in the four term sum (^) is < (s/4)s if
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^ e (0, to)» it -^ and ^ are in the neighborhood, and if s is sufficiently small. To do this for the
first term, let ( x ^ , . . . , x^) be a local coordinate system around peN. Then

f;^\P) =||LxCo||=||^G))
\flS / 5=0

Z Da/^Ox^ ̂
1=1

Z^^,XCOJA^,||=0,

where CD == the volume form ofN determined by G and D^/^ X = 0 at p because DX = 0 at p by
choice ofX. (Since the calculation is local, it is valid even ifN is nonorientable so that co is
not globally definable.) Hence there is a neighborhood, say { xeN | r(x, p) < §}, of p in
which | ( d / d s ) v^ \ s=o \ < ̂ » where ^ is a (small) positive constant to be specified later. Let
C=2 sup | ( d / d s } V s | s=o I - Then the first term of the sum (^) is, for small enough s and for x

N

with r ( x , p} < 5/2, less than or equal to

sri [ | (47l0- n / 2 exp(-r?(x ,y) /40((p?/ ) (^
J y 3 r ( x , y) < 8

x(,uo(x, y)-\-t,u^(x, y , t))\dy

+C5 f ^TcO-^exp^r^x.jQM r)(cp?/)(^)
J y 3 r ( x , y ) ^ 6

x(,Uo(x, y}-{-t,u^(x, y , t))\dy.

Now | (p?/| is bounded uniformly on N independently of s. Thus the second of the two
integrals here goes to 0 uniformly in s and x at t -> 0+ in view of the properties ofk(x,y,t),as
discussed earlier. Also, when 8 is chosen sufficiently small, the first integral is bounded
uniformly for all x and sufficiently small s as t -> 0+ . That is because, if 5 is so small that
ks(x, y , t) ̂  0 for all x, y with r(x, y) < 5 for all t sufficiently small, then

[ \kAx,y,t)\dy=( k , ( x , y , t ) d y =[A(l)](x) -^ (1) (x)=l as^O^
J y 3 r ( x , y ) < 6 J y 3 r ( x , y ) < S

so that

^Tir)-^2 exp^r,2^, y ) / t (,Uo(x, y)+t,u,(x, y , t))\v,(y)dy^ 1

as t —> 0+; but Vs ^ 2 everywhere on N if s is small enough so

hm [|(4
t^0+ J
lim K4710-"/2 exp(-^(x, y ) / t ) ((p?/) {y)

< (s^o (^. y) + 1 s^i (^. y. 0) | ̂  (y) dy

^2sup | ( (p?/ ) |^2sup | /
N N
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It now follows by choosing T| sufficiently small that for to sufficiently small the first term of(t)
is ^ (e/4)s for all te(0, to) and all x sufficiently close to p .

The argument establishing the required estimate for the third and fourth terms of (T) is
quite similar to that just given and will be only briefly indicated. The estimation of the
second term requires a different procedure; consideration of that term is being deferred for the
moment. For the third term estimate, note [2] that sUo (x, x} == 1 for all s and all x e N so that
( d / d s ) ^UQ (x, x) = 0. The function stio (x, y) being C00 in all three of variables, it follows that,
given a positive number E. (to be specified later), there is a 5 > 0 such that for x and y with r
(x, y)<8 and for sufficiently small s, \(d/ds)sUo(x, y)\ <^. In particular, for x and y
near p and s small

|^o(x, y)-UQ(x, y)\ < ̂ s.

Also, \(d/ds)sUo(x, y)\ is bounded uniformly for s small over N xN so that for some Ci:

\sUo(x,y)-Uo(x,y)\ ̂ C^s

for all x, y e N and s sufficiently small. The required estimate on the third term of(f) is now
obtainable by the same procedure as before (splitting the integral into two parts, one over
y3r(x, y) < 8, one over y 3 r ( x , y) ̂  5). For the estimation of the fourth term of(f), note
that there is a constant C^ such that

\sU,(x,y, t)-u,(x,y, t)\ ̂ C^s,

for all x, }/eN and s sufficiently small; this fact follows from the determination of Ui
in [2]. Then the fourth term is less than or equal to

C,st f|(47it)-"/2 exp^r2^, y)/t)^f f)(y)\ dy.
J

The integral is uniformly bounded as t -> O4' so that for t and s sufficiently small the fourth
term is less than or equal to (C^ t) s, where C^ is independent ofs, t, and x. Since, for small t,
C^ t < s/4, the required estimate follows.

It remains to estimate the second term. For this purpose, a preliminary estimate is
needed on the behavior ofr^ (x, y) for x and y near p . Namely, given a positive number ^ (to
be specified later), there is a neighborhood of p such that for all sufficiently small s:

|^(^ y}-r(x, y)\ <^sr(x, y),

for all x and y in the neighborhood. To verify that this is so, let x and y be points near p and
let c : [0, r(x, y)] -> N be an arc length parameter minimizing geodesic from x to y . Every
point of c if near p is x and y are sufficiently near p . Now let Cs be the variation of c defined by
cs(u)=^>s(c(u))' ue[Q, r(x, y)]. The first-variation-of-arc-length formula gives (letting
l(c,)= length ofc(s)):

^(^) .=0= \G(X(y), c(r(x, ^)))-G(X(x), c(0))|.
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Now

^G(X(c(0),c(t))=G(D^X,c(r)),

so the right hand side of the first variation formula is

^ r(x, y| sup G(D^X, c(0) ^ r(x, ̂  sup||D^X||.
( t

Since DX=0 at p , for x and y and hence c near enough to p , sup || D^X || can be made
t

arbitrarily small, in particular < ^/2. Then | ( d / d s } l(Cs) \ < (^/2) r(x, y). It follows that,
for small s, \ l(Cs}-l(c)\ < (^/2)sr(x, y). But l(c^) ̂  r,(x, y) and !(c)==r(x, ^) so that

r,{x, y } ^ r ( x , y)-\--^sr(x, y).

A symmetric argument using the flow of — X shows that

r ( x , y ) ^ r , ( x ^ y ) + - ^ s r , ( x , y }

and hence
^ ^2

r(x, y) ̂  r,(x, y ) - { - , s r ( x , ̂ —sr2^, y}.

If E, is chosen small enough that £,r(x, y) < 1 for all x, y then

r (x, y) ̂  r, (x, y) + ̂  sr (x, ^) and | r, (x, ^) - r (x, ^) | < ^ sr (x, ^).

It is easy to check by similar reasoning that there exists a constant €3 such that for all x, y e N:

|r,(x, }Q-r(x, y)[ <C3S,

for all 5 sufficiently small. Now, since | e2 — 11 ^ 21 z | for real numbers z near 0, it follows
that, for s small

^-r^x.y)/t_^(..y)/t\ ̂  ^(.,y)/t z^^ y)-r2(x, y))

Since

|^"(^. y)-r2(x, y)\ = |r,(x, y)+r(x, y)\.\r,(x, y)-r{x, y)\,

for all x, y :

y-r^x.t)/! -(r^x, y)-r2(x, y)) ^ e-^'v^-C,sr(x, y ) . 3 r ( x , y);
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here the estimate | ̂  ( x , y ) - r (x, y) | < €3 s has been combined with its consequence that, for
sufficiently small s, r^(x, y) < 2r(x, y) so that

^(^ y)+r(x, y) < 3r(x, ^).

Moreover for x and ^ sufficiently near p:

e-r^y}/t ̂ (x, y)-r2(x, y)) ^ e - r 2 ( x ' y ) / t 2 ^ s r ( x , y ) . 3 r ( x , y).

The required estimate of the second term can now be established: Using the fact that (p^ /is
uniformly bounded on N and that ,UQ (x, y) +1 ,u^ (x, y , t) is uniformly bounded on N x N and
5 near 0 as t ->• O^ it now suffices to show that for any positive constant ^:

r
^ntrn/2{exp(-r2(x,y)/t)-exp(-r2{x,y)/t)}\dy^^s,
J

for all t and s sufficiently small. To estimate this last integral, it is convenient to express it in
terms of integration in geodesic coordinates as follows: Consider the exponential map
Exp^ : TN^N. Exp^ maps a starshaped (relative to 0) bounded region U of TN^
diffeomorphically onto a region ofN the complement of which has measure zero. Thus one
can express integration over N by integration over the bounded region U of
TN^. Specifically

r rh(y)dy= h(Exp^v)[i(v)dv,
JN JveV

where u (v) is a nonnegative function on U and dv denotes the measure induced on TN^ by the
inner product on TN^ determined by the Riemannian metric ofN. Using polar coordinates
on TN^, r= distance from 0, 9eS"~1 c: TN^, gives

r r\ h (y) dy == h (exp^ (r, 9)) v (r, 9) r^-1 dr dQ,
JN J(r,9)eU

where dQ = the standard measure on S"~1 and v (r, 9) is again a nonnegative function. Then
v (r, 9) is a bounded function on U. To see this, note that v (r, 9) is the (n - l)-dimensional
volume multiplication factor of(ExpJ^ at (r, 9)eTN^ on the orthogonal complement of the
radial direction. Thus v (r, 9) is bounded by 1 /r""1 x the (n -1) st power of the supremum at
distance r of the length of Jacobi fields J along geodesies emanating from x and having
J(x)=0, ||J(x)||=l, and J(x) perpendicular to the geodesic. The quantity l/r""1 xthis
supremum is uniformly bounded for r e [0, ro] for any YQ, and since N has bounded diameter.
the boundedness of v (r, 9) on U follows. Explicitly, a bound on v (r, 9) can be obtained by
comparison ofN with a constant negative curvature manifold of curvature-max (| sectional
curvature of N |). This comparison shows that v (r, 9) is in fact bounded on U by a bound
which may be chosen to be independent of the choice of x. Now let s be sufficiently
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small. It follows from all these observations that there is a constant €4 independent of x
such that

^nt)-n/2{exp(-r2(x,y)/t-exp(-r2(x,y)/t)}\dy

r 2
^C4 (47^0-"/26?-'•2/t sup - { r 2 ( x , y ) - r 2 ( x , y ) } r"-1^

J r(;c,y)=r t

F r2

^6^45 (47^0-n/2^- r2/ t—r"- ldr
Jo t

f+oo 2

+6sC3C4 (47^0-n/2^-r2/ t—r"- l^, (fp

where 8 is chosen such that r (x, y) < 8 implies | ̂  (x, }Q - r (x, }Q | < s ̂  r (x, y). Now it can be
shown directly that

r8 r2
(4nt)~n/2e-r2/t—rn~ldt

0 t

is bounded uniformly as t -> O^ namely, make the change of variable a=r/^/7. Then

^8 y.2 ^l^t /*+00

(47^0-"/2^- r2 / t—rn- l^= ^oc2^^ ^a2 <+00.
Jo t Jo Jo

r poo ^ -1-1
Thus, if ^ is chosen ^ 6 €4 ^a2^ e/8, the first term of ( T T ) is less

L J o J
than (e/8)5.

The same change of variable shows that

f ^TiO-^-^^r"-1^ | ^-^a2^.
r2 ^

^!_,n-lrf,=
r Ja/.1 8 r J5/^

Now ^-a2 a2 rfoc ̂  0 faster than any power of t as t -> 04'. Thus the second term
J 8/^

of(^ f) is less than (s/8) s for all r sufficiently small. The required estimate on the fourth term
of (^) is thus established, and the proof of Theorem 3 .2 is complete. D

For certain purposes (cf. [12]), it is useful to be able to carry out approximation of
subharmonic functions which are Lipschitz continuous in a neighborhood of a closed
set—but not, perhaps, elsewhere—by C°° such functions. To formulate a refinement of
Theorem 3 .2 appropriate for this purpose, define, for any closed set L in M and any subsheaf
y of germs of continuous functions on a neighborhood ofL, the sheaf y \ L to be the sheaf on
M the stalk of which is, for each p e L, the corresponding stalk of e99 and is, for each p e M — L,
the set of all germs of continuous functions at p. The desired refinement of Theorem 3 .2 is
the following:
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THEOREM 3.2'. — LetLbe a closed subset ofM and (3 a positive continuous function on a
neighborhood ofL. Then:

(a) y^h n (^Lcp | L) has the semilocal approximation property;
(b) y^sh^(^Lcft\^) nas' /or ^y continuous function r\ : M -> R, the semilocal

approximation property.
^Tish^(^Lcp|L) clearly has the maximum closure and C00 stability properties. Thus

from the present theorem combined with Theorem 1.1 follows the usual corollary that the
C°° sections of c9^^n(e9^p|L) are dense in the C° fine topology in the continuous
sections. Also the same reasoning that led to Corollary 1 of Theorem 3.1 from that
theorem yields in the present case that the C°° sections of ^^ n (^Lcp L) are dense in the
compact-open topology in the continuous sections.

Proof of Theorem 3 . T. — As in Theorems 3 .1 and 3 .2, it suffices to establish the semilocal
approximation property for ̂  sh n (^cp | L)- Let/be a section there of in a neighborhood
of a compact set K which section is C00 in a neighborhood of a (perhaps empty) compact set
KI . Set K2 = KI u (L n K). Clearly there is a positive continuous function ?2 defined in a
neighborhood of K^ and having the properties that P = ?2 ln a neighborhood of K n L and
that/is a section of e^j^ in a neighborhood of K2. By Theorem 3 .2, there is a C°° section/i
°f ^x\ sh n (^Lcpa I ^2)m a neighborhood ofK^ which approximates/in the C° sense near K^
and in the C°° sense near Ki. An application of the technique used in the proof of Lemma
1.1 combines/i and/to yield a section/2 of^^sh on a neighborhood ofK such that/2 is an
approximation of/on K,/2 is C00 near K^, and/2 is an approximation in the C°° sense of/i on
K2. The two approximation requirements are consistent because/i is a C° approximation
of/near K2.

An application of Theorem 3 .1 yields a C30 section/3 of <9^ sh on a neighborhood ofK such
that/3 is an approximation in the C ° sense 01/2 in a neighborhood ofK and an approximation
in the C°° sense 01/2 in a neighborhood of K2. Since/2 is a C°° section of ̂  sh ̂  (^Lcp | L)
near KnL, /3 is by C°° stability a section of ^^n^Lcpl1-) near K n L if the C00

approximation 01/2 by/3 near K2 is sufficiently good. Thus if all approximations are chosen
to be sufficiently good,/3 will approximate/in the C° sense on K and in the C00 sense on Ki,
and/3 will be a section of^^cp | L) in a neighborhood o f L n K and a section ofK. Hence/3
will be a section of e9^ sh n (^Lcp | L) in a neighborhood of K approximating/in the senses
required in the definition of the semilocal approximation property.

4. Obtaining Semi-local Approximations from Local Ones

To apply Theorem 1.1 it is necessary to have a method of constructing smooth
approximations of sections of the sheaf e99 in neighborhoods of arbitrary compact subsets of
the manifold. Since it is not generally possible to engulf an arbitrary compact subset in a
single coordinate system, one is thus, at least at first sight, restrained from using smoothing
processes which are defined in such a way as to depend upon coordinate choice. In some
cases, the only obvious candidate for a smoothing process does depend upon a coordinate
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system choice; for instance, the approximation of (continuous) strictly plurisubharmonic
functions on a complex manifold by smooth strictly plurisubharmonic functions is
obtainable easily only within a given complex coordinate system, in which the usual
convolution process may be used. Thus it would be advantageous to obtain a version of
Theorem 1.1 in which one needed smooth approximation only in neighborhoods of given
points, not of given compact sets. Such a result for the specific case of global smooth
approximation of strictly plurisubharmonic functions was obtained by Richberg [11]. The
purpose of this section is to formulate and prove a theorem closely related to that of [11] but
general in character dealing with the passage from local to global approximations. To state
the theorem, one needs first to make precise the type of local approximations needed.

DEFINITION. — Let y be a subsheaf of the sheaf of germs of continuous functions on a
manifold M. y has the local approximation property if for each point p of M there is an
open neighrohood Up of p with the property that ^ \ Up considered as a subsheaf of the sheaf
of germs of continuous functions on Up (Up being considered as a manifold) has the semilocal
approximation property.

Note that the local approximation property just described is obtained when a suitable
convolution smoothing process is available in coordinate systems. For instance, the sheaf
of germs of continuous plurisubharmonic functions on a complex manifold has the local
approximation property: the neighborhood Up can be taken to be the domain of a complex
coordinate system containing p and the required approximations in a neighborhood of a
given compact subset of Up are obtained by convolution smoothing in the coordinate system
using kernels of small support as usual.

On a Hermitian manifold M with Hermitian metric given in local coordinate form by
{^1°^ P = l » • • • » dim^ M}, one can define a concept of r|-plurisubharmonicity analogous
to the T|-convexity introduced in paragraph 2, T| being as before a continuous function
on M. Namely, a continuous function cp is said to be r\-plurisuhliaf'momc if for each p in M
there exists a C°° function T defined in a neighborhood o f p such that ( p — T is
plurisubharmonic in that neighborhood and such that the eigenvalues of the form

" r^T
^ g^°—— d^,

a , P = l OZ^OZ^

are greater than r\ (p) at p , where (z^, . . ., zj is a complex coordinate system defined in a
neighborhood of p. A continuous function is strictly plurisubharmonic if it is 0-pluri-
subharmonic. It is easy to check that the strict plurisubharmonicity property is actually
independent of the choice of Hermitian metric g , in particular, a function is strictly
plurisubharmonic if and only if it is strictly plurisubharmonic in each local coordinate
system. By contrast, T|-plurisubharmonicity, T|^O depends on g .

The, convolution smoothing process already discussed can be used to show that the
definitions just given coincide with the obvious definitions in terms of Oka's modulus of
plurisubharmonicity, namely, that the modulus be greater than T| or greater than some
positive continuous function, respectively [cf. [5] (/)]. More to the present purpose, the
application of the convolution smoothing process yields immediately that for each
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continuous function T| : M -> R the sheaf of germs ofr|-plurisubharmonic functions has the
local approximation property. In particular, the sheaf of germs of strictly plurisubharmo-
nic functions has the local approximation property. These observations illustrate the
relevance of the following theorem to the construction of smooth approximations of
plurisubharmonic functions.

THEOREM 4.1. — If y is a subsheaf of the sheaf of germs of continuous functions on a
manifold M and if y has the local approximation, the C00 stability, and the maximum closure
properties, then y has the semi-local approximation property also.

COROLLARY 1. — If y has the local approximation, C°° stability, and maximum closure
properties then the global sections of^ which are C00 are dense in the global sections of y in
the C° fine topology.

COROLLARY 2. — J/M is a complex manifold then the C°° strictly plurisubharmonic functions
are dense in the continuous strictly plurisubharmonic functions in the C°fine topology. If M
is an Hermitian manifold then for any continuous function r\ : M -> R the C00

r\-plurisubharmonic functions are dense in the (continuous) V[-plurisubharmonic functions in the
C° fine topology.

Corollary 1 follows directly from combining Theorems 1.1 and 4.1. Corollary 2 follows
from Corollary 1 and the remarks preceding the statement of Theorem 4.1. The first half of
Corollary 2 is given in [11].

The following lemma will be used to establish Theorem 4.1:

LEMMA 4 . 1 . — Let y be a subsheaf of the sheaf of germs of continuous functions on a
manifold M, and suppose that y has the maximum closure, C°° stability and local
approximation properties. Suppose also that Li and L^ are compact subsets of M, that f is a
section of y on some neighborhood W ofL^ u L^, that f is C°° in a neighborhood Wi ofL^,
and that there is a neighborhood W^ ofL^ such that y \ W2 has the semilocal approximation
property. Then there exists a section /i of y \ W such that f approximates /i everywhere
on W in the C°-fine sense, such thatf^ approximates f in a neighborhood ofL^ in the C°° sense,
and such that /i is C00 in a neighborhood o/Li u L^.

Proof. — Choose open sets W3 and W4 having compact closures and having
Li c: Wa c= Wi, L^ c V^ c V^. Let pi be a C°° function which is identically 1 on Ws and
which has its support contained in Wi. Let g be a continuous function on W which: (a) is a
C°° section of y in a neighborhood of W4; (b) approximates / in the C° sense on W4; (c)
approximates /in the C°° sense on a neighborhood of the intersection of W4 and the support
of pi. The existence of g follows from the semilocal approximation property of ^ on W2
and standard extension properties of continuous functions. Set h = (1 — pi) g + pi /. This
function h is C°° in a neighborhood ofW3 u W4 and approximates / there. Also if g was a
sufficiently good approximation of / in the C°° sense on the neighborhood of the intersection
of W4 n the support of pi, then by the C°° stability property, h will be a section of y on a
neighborhood of W3 u W4. Finally h = f on W3.
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Now choose a C00 function p2 which is identically 0 in a neighborhood of Li u L^ and
which is identically 1 in a neighborhood of M-(Ws u W4). Let ^ be a (small) positive
number, and let /i be defined as follows: /i = /on W - (Wa u W4); /i = max (/, h + ̂  —2 ̂ p^)
on (W3 u W4) — (Li u L2) and /i = h on Li u L2. By the maximum closure property, /i is a
(continuous) section of y on W provided that h is a sufficiently good approximation of/ on
W3 u W4. By choosing E, sufficiently small and h such a sufficiently good approximation,
one obtains that /i has the properties required.

Proof of Theorem 4 . 1 . — Let K be a compact subset of M and / a section of y in a
neighborhood U of K. To construct a C°° section of y defined in a neighborhood of K
and approximating / on K in the senses of the definition of the semilocal approximation

i
property, chose open subsets Ui, . . ., U^ of U such that K c= (J U^ and y \ U, has the

j = i
semilocal approximation property for each 7 = 1, . . ., 1. This choice is possible since y has
the local approximation property. Let Vi, . . . , Vj be open subsets of M each with

_ i
compact closures V;c:U- and with K <= |j V^. The existence of such Vy is a standard

j-i
fact. Now repeatedly apply Lemma 4.1: first with Li =the compact subset Ki cK in a
neighborhood of which / is C°° (see the definition of the semilocal approximation property in
paragraph 1: Ki may be empty), with W=U and with L^ =Vi; then with Li =Ki u Vi and
L2=V2, and W=U still; then with L i ^ K i u V i u V ^ and L2=Vs and still
W=U. Continuing in this fashion, one obtains after I steps, a C°° section of y in a
neighborhood u V^ and so in a neighborhood of K, which will approximate / near K in the
sense of the semilocal approximation property provided that at each of the I steps the
approximation of the immediately previous step was chosen to be sufficiently good. D

Being defined independently of the choice of a metric on the manifold, the coordinate
system smoothing process used to construct C00 strictly plurisubharmonic local
approximations to continuous strictly plurisubharmonic functions (or C°° T|-pluri-
subharmonic approximations to continuous T|-plurisubharmonic functions) naturally does
not bear any relationship to the metric properties of the manifold when a metric is
chosen. However, it is sometimes important to know that the approximations so obtained
do in fact preserve certain metric-related properties of the functions being
approximated. The case of Lipschitz continuity is disposed of by the following lemma:

LEMMA. — Let (zi, . . ., zj be a complex coordinate system defined on an open subset U of
an Hermitian manifold M, K be a compact subset of U and f : U -> R be a continuous function
on U which is locally Lipschitz on U with local Lipschitz constants less than B, i.e. f is a
section on U of ^LCB | U (in the notation of paragraph 2). Let /g, s e (0, So), be the family of
functions, defined and C°° in a fixed neighborhood V o/K, obtained by coordinate convolution
smoothing with kernels relative to the (z^, . . ., z^) coordinate system. Then, for all
sufficiently small s, ||(grad/e)(j?)|| <Bfor all peK.

Proof. — Choose a neighborhood W of K such that W is a compact subset of V. W is
covered by a finite number of open subsets U^ of U such that there are constants B( < B with
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|/(^i)-/(^2)| <Bf dis (<^, q^) for all q^, ^2 e Bf. It follows that there
is a number B^ such that B^ < B and /1 W is locally Lipschitz continuous with local
Lipschitz constant less than B^, i.e./ |W is a section of ^LcBw on ^ ' Choose now a
neighborhood W\ of K with WiC=W. By paragraph 2, with T there being taken to be
/1 W, there exists a family T§ : Wi -> R of C00 functions such that T§ converges uniformly to /
on Wi as 5->>0+ and such that, for all sufficiently small o, T§ is a section of y LCB^
on Wi. Of course, the T§ are necessarily closely related to the/g obtained from coordinate
convolution smoothing.

Now let p be any point of K and V be a vector in TMp with || V || = 1. There exists a
unique C°° vector field V on U such that V has constant coefficients in the real coordinate
system associated to the complex coordinate system (z^, . . ., zj and such that
V(;?)=V. As usual

(V/eM^——V f y,(M.\f(p^^
8 JIMI^ V s /

where addition of vectors means addition relative to the (real) coordinate
structure. Since T^ -^/uniformly on compact sets as 5 -> O^

?VJ..,J>l(M)/b'+°)]=."m.?VJll.ll.•<(IK)l•(p+°)
.tolf vf«fJHI),.(^J.^^f ,(IM)(V,.)(,+,),

6 - 0 - s J l l . H ^ L \ £ 7 J S-0- 8 JIHI^ \ - 8 /

where the V and V differentiate the p variable. Now

-U xf^l\VT5)(^+y)^SUp|(VT,)(p+r)|.
£ JIMI^ \ E / IMÎ

Asc-^O^ sup | |V(p+y) | |^ l . Moreover, this convergence is uniform in variation of the
^ I M I ^

direction (at p ) of the unit vector VeTMp. Since B^<B, it follows that for e sufficiently
small, the smallness required being uniform in p and VeTMp with || V || = 1, that

|(V/,)(p)|<B.

If(grad/J(p)^0, take V=(grad/,)/1| grad/, || to obtain || grad/, || <B. Ifgrad/,=0, then
||grad/J| <B trivially, and the proof is complete.

Tabular Summary of Results

NOTATION:
sheaf of germs of:
convex functions.
strictly convex functions..

^c

SLilL/liy L/U11VCA lim^tlUllS.. . . . . . . . . . . . . . . . . . . . . . . . . . • . . • • • . • • • • • • ^ SC

r|-convex functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ^c
subharmonic functions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ^sh
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strictly subharmonic functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y^
plurisubharmonic functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y ^
strictly plurisubharmonic f u n c t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ^spsh
T|-plurisubharmonic functions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y ^
Lipschitz continuous functions with local Lipschitz constant <B (B constant). . ^CB
Lipschitz continuous functions with local Lipschitz constant <P (P possibly
v a r i a b l e ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y^

Preliminary remarks on the table:
(1) In the cases where the entries involving y^ would be the same whether P is constant

or variable the two cases have not been listed separately. In the one case where they differ
(^sh ̂  ^LCB vs- ^sh ̂  ^Lcp)tnev nave been given separate listing.

(2) The entries for the sheaves y^, y^, and y^ and for their intersections with ^cp
would be the same as the corresponding entries for, respectively, ̂ , y^ and y^psh and
their intersections with ^cp- These duplicated sets of entries are omitted for brevity.

(3) Certain results (e.g. Theorem 3.2' and its corollaries) which did not fit conveniently in
the table are omitted.

(4) Blank spaces represent cases which are to the authors' knowledge unsettled.

Properties

a c a § <u ^3 o o
I I I S I S § ^ § i » I5 ^ ^ .° M ° ^3 '^ '? '^ ° •ti S2 2 2 ° ' ^ o ' - s ' r s ' a ' r ; o -a c - > ,s .§ ^ .§ g .§ -5 § ^ i § § § & s s ^/ h x c x h x ^ . ^ c . S c S o S c ' " o < u

31-131^ . II|I I ^ II
^ • s " ! g - i g - s " g

Sheaf of functions germs <J U U '̂ S 3 ° oQ ^
P-Lipschitz (^Ycp).. . . . . . . . . . . . . . . Yes Yes Yes
Convex [y,).. . . . . . . . . . . . . . . . . . .
Strictly convex ( ^ , ) . . . . . . . . . . . . . . Yes Yes Yes
Convex, P-Lipschitz (^ n ^Lcp). • • • •
Strictly convex, P-Lipschitz

(^cp n ̂ Lcp). . . . . . . . . . . . . . . . . Yes Yes Yes
Subharmonic ( ^ J . . . . . . . . . . . . . . . Yes Yes
Subharmonic, B-Lipschitz, B constant
(^,n^).................. Yes

Subharmonic, P-Lipschitz (^ n ^Lcp).
Strictly subharmonic (^ssh)- . . . . . . . . Yes Yes Yes
Strictly subharmonic, P-Lipschitz

(̂ h n ̂ Lcp). . . . . . . . . . . . . . . . . Yes Yes Yes
Plurisubharmonic (^ps/,). . . . . . . . . . .
Plurisubharmonic, P-Lipschitz

(^n^Lcp). . . . . . . . . . . . . . . . .
Strictly plurisubharmonic {^sps^- • • • • Yes Yes Yes
Strictly plurisubharmonic, P-Lipschitz

(y.psh r\ ^ L c p ) . . . . . . . . . . . . . . . . . Yes Yes Yes

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE

Yes Yes Yes No Yes Yes
Yes Yes No Yes
Yes Yes Yes Yes Yes Yes
Yes No No Yes

Yes Yes Yes No Yes Yes
Yes Yes Yes Yes No Yes

Yes Yes Yes No No Yes
Yes Yes Yes No No Yes
Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes
Yes Yes No Yes

Yes No No Yes
Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes
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Added in proof: R. L. Bishop has informed us in a letter that considerations akin to the
convex composition property were taken up in his joint paper with S. ALEXANDER, Convex-
Supporting Domains on Spheres ( I I I . J . Math., 18, 1974, pp. 31-47).
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