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SOME PROPERTIES AND APPLICATIONS
OF HARMONIC MAPPINGS (*)

BY J. H. SAMPSON

1. Introduction

If /: M —> Y is a C2 mapping of Riemannian manifolds, whose metric tensors we
denote by g^ dx1 dxj (resp. g^ dy" dy^\ then the tensionfieldxfoffis the section of/* T (Y)
defined as follows: In local coordinates x ^ y , df has matrix y^ = Sy^/Sx1; and T/has
components

A^+r^jg17,
where the r^ are the Christoffel symbols on Y and where Ay9 is the Laplacian of the local
function y " (x) on M. The mapping/is called harmonic if it satisfies the elliptic system

(1) T /=O,

which is precisely the Euler-Lagrange equation for a stationary value of the energy integral

(2) ECO=1\, where e,= \\ df\2 = ̂ g^y^g^
«/ M 2 ^ 2 ^

integration being with respect to the Riemannian volume element on M.
Existence of harmonic mappings was established under general circumstances in [9]

by use of the associated parabolic system (heat equation):

o) ,/4
9t

for a family of mappings M —> Y depending on a real parameter t. In [15] some important
simplifications of the conditions required in [9] were given.

(*) Partially supported by National Science Foundation Grant GP-5980.
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212 J. H. SAMPSON

Throughout this papei all ingredients are supposed C°°. Many of the results were
obtained some years ago and have been informally circulated to some extent.

At this point we are very happy to express our indebtedness to Professor James Eells Jr.
for many important comments, and especially his suggestions for great improvements in
paragraph 9. And we are glad once more to record our gratitude to the Mathematics
Institute of the University of Warwick.

In paragraph 2 we apply the Aronszajn-Carleman unique continuation theorem for
elliptic equations to obtain a unique continuation theorem for harmonic mappings In
paragraph 3 we prove a theorem for harmonic mappings analogous to the maximum
principle for harmonic functions.

In paragraph 4 we discuss harmonic mappings into totally geodesic submanifolds, and
we obtain unique continuation results for the differentiable case (i. e. non-analytic), including
generalizations of results of [15]. In paragraph 5 we deal with harmonic immersions and
their relative curvatures, and we obtain extensions of results of [3].

Paragraphs 6 and 7 are concerned with deformations of harmonic mappings M —> Y
associated with variations of the metrics on either manifold. Y being assumed of strictly
negative curvature, we prove the C°° continuity of harmonic mappings for variations of C°°
metrics.

Paragraphs 8 and 9 contain a brief account of our application of harmonic mappings to
compact Riemann surfaces and to the study of their moduli, making use of the fact that a
harmonic mapping of surfaces M -^ Y gives rise to a holomorphic quadratic differential
on M which vanishes if an only if the mapping is (anti-) holomorphic. In this connexion
we have recently learned that Theorem 11 of paragraph 9 has also been obtained by
R. Schoen and S. T. Yau, using the same techniques. Their work will appear in [25].

Finally, in paragraph 10, we mention some simple applications of harmonic mapping
theory to complex submanifolds of a complex manifold of negative curvature. The results
are of interest in connexion with automorphic varieties. We end with a generalization of
Mordell's well-known conjecture for algebraic curves of genus ^ 2.

2. A unique continuation theorem

We recall here, in slightly altered form, Aronszajn's generalization of Carleman's unique
continuation theorem ([I], esp. p. 248): Let A be a linear elliptic second-order differential
operator defined on a domain D ofR". In D let u = (u1, ..., u1') be functions satisfying the
differential inequalities

9u^
|A^Const.{s ^ + ^ 1 ^ 1 1 .

t».p 8x1 p J

Ifu = Oinan open set, then u = 0 throughout D. (The conclusion holds if u =0 to infini-
tely high order at a single point, as explained in [1].)
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HARMONIC MAPPINGS 213

Our main result in this paragraph is the following:

THEOREM 1. — Let /,/' be two harmonic mappings M —> Y. If they agree on an open set
then they are identical (M being assumed connected, naturally); and indeed the conclusion
holds if f and f agree to infinitely high order at some point. In particular, a harmonic
mapping which is constant on an open set is a constant mapping.

Proof. — Let U be a coordinate ball on M such that/ = // in some open subset. We
can take U small enough that both/and/' map U into a coordinate ball on Y. Write
y " (x) for y " (/(x)) and u" (x) for y " (f (x)). We apply the theorem cited above to the
functions M" = y^—v^.

From equation (1) we have

Au" = A^-AI;" = -rp^P^g^+rp^P^g17.
Here P^ stands for Fp^ (y). Rewrite the night-hand side as

-rp^^-^^+^g^+cr^-r^^^g^
In U, slightly shrunk if necessary, the derivatives yj, Vj are bounded; and F^—F^ can be
estimated by the mean-value theorem. It is easy to see that we have then:

lA^I^Const.^KI+EI^I}
»,P P

in U. As the M" vanish in an open set, we have u == 0 throughout the neighbourhood U.
Our conclusion follows from the connectedness of M.

Q.E.D.

In particular, if a harmonic mapping/has rank 0 in an open set, i. e. is constant in an
open set, it must have rank 0 everywhere. In the case of a harmonic mapping of analytic
Riemannian manifolds, the mapping is also analytic ([9], p. 117), and it follows that, if it
has rank r in an open set, then it has rank r in an open, dense set.

It is natural to think that the Aronszajn theorem, applied to the minors of degree r+1
of dffor a harmonic/, might yield the same conclusion in the differentiable case. However
we have been able to obtain only very incomplete results along this line, except for the
case r = 0 and r = 1, which is treated in a different manner in paragraph 4 below.

For unique continuation results pertinent to the parabolic system (3), see for example [22].

3. A maximum principle

Here we consider a harmonic mapping /: M —> Y in the vicinity of a point p e M and
its image ^=/(/?). We prove:

THEOREM 2. — Let S be apiece ofC2 hyper surf ace in X passing through q, at which point
we assume that the second fundamental form is definite. Iffis not a constant mapping, then
no neighbourhood of p is mapped entirely to the concave side of S.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



214 J. H. SAMPSON

Proof. — Fix a geodesic coordinate system (^a) at q, and let (x1) be a coordinate system
at p. We may assume that S is defined by an equation u (y) = 0, the concave side being
that for which u ^ 0. Putting U (x) = u (f(x)), we have

AU=^^^g l J+^A^

where Uy = S u / S y " , y^ == Qy^/Qx1, etc. By our assumption on S, the matrix (u^) is positive
definite in the tangent hyperplane to S at Q (</. [II], § 43). Moreover, Ay" = 0 there,
by (1), since the j^-system is geodesic at q. If dfp ^= 0, i. e. if some y^ + 0 at p, then we
have AU > 0 at p, hence in a neighbourhood of p.

On the other hand, if/maps a neighbourhood ofp to the concave side of S, then U (x)
has a maximum at p, contradicting the maximum principle for A ([2], Part II, Chap. II).

If dfp = 0, we let S' be a piece of ^-sphere tangent to S at q and chosen so that S lies on
the concave side of S' (near q). Then S' is given by an equation u' (y) = 0, analogous to
that for S; and if/maps a neighbourhood of p to the concave side of S, hence also of S',
then the function U' (x) = u' (f(x)) has a maximum at p. As with U we have

AU^^^^g^+^A^,

where ̂  = S u ' / S y ^ and u^ = 82 u ' / S y ^ 8y^. We claim that AU' ^ 0 near/?. For otherwise
we could find a sequence of points x^ —» 0 (= p) with

u^y^g^u^yh]^' atx,,

using equation (1). But F^ (y (x^)) —> 0, since F^ = 0 at q, whereas the matrix (u^) is
positive definite at p (and not merely in the tangent hyperplane), in virtue of our choice
of S'. The contradiction here is evident, and so we must have AU' ^ 0 near/?. From the
maximum principle for A we deduce that U' (x) is constant near p. By varying the choice
of the sphere S' we then conclude that in fact f(x) is constant near p. We may now apply
Theorem 1 to complete the proof.

Q.E.D.

Remark 1. — A similar theorem holds for the parabolic system (3), by the maximum
principle for A— 8/9t, see [23].

Remark 2. — The "concave" hypothesis cannot be greatly weakened. A beautiful
example due to T. Smith gives a harmonic mapping of a 2-torus, with flat metric, to the
2-sphere, in such a way that the image is the region between the Tropic of Cancer and the
Tropic of Capricorn, see [28].

4. Mappings into totally geodesic submanifolds

We first prove a C°° version of a theorem related to [15], (Th. H and Cor.) for the
analytic case. Applications are given in Theorems 4, 5. In Theorem 6 below, we prove
an extension of Theorem 3 to higher rank.
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HARMONIC MAPPINGS 215

THEOREM 3. — Iff : M —> Y is harmonic and M connected, and ifdfhas rank 1 in an open
set, then f maps M into a geodesic arc in Y, and df has rank 1 in an open, dense set. If M
is compact, then the geodesic arc is closed.

We note the following immediate corollary:

COROLLARY. — IfM has dimension 2 and iff : M —> Y has rank 2 in an open set, then it
has rank 2 in an open, dense set.

Proof. — If df has rank < 1 in an open set, then / is constant, in consequence of
Theorem 1. Suppose now that dfhas rank 1 in an open set U. Then every pe\J has
a neighbourhood which is mapped into a regular arc c in Y. As usual, let x resp. y denote
local coordinates at/? [resp./(/?)]. Since c is regular, we may assume that the ^-system is
chosen so that c is the coordinate curve defined by y " = 0 for a > 1. Accordingly we
have y9 (x) = 0 for a > 1, x near/?. The harmonic equation (1) then shows that P^ = 0
along c near / (p) for a > 1. Now it is quickly seen that an appropriate change of variable
of the form y1 —>yfl=^ (y1) yields a coordinate system of the same type as before, but
with r'i\ = 0 along the curve c. Therefore c is a geodesic arc, which can be prolonged to a
maximal geodesic. Our coordinates are in fact Fermi coordinates along c.

Fixing the maximal geodesic c, along any simple portion of it we can introduce Fermi
coordinates, still called y. Let V be a connected open set ofM which is mapped by/into
the Fermi system. Suppose that in some part of V we have Ay1 = 0 and y^ = 0 (a > 1),
as for the system just considered. Now the mapping x—>(y1, 0, ..., 0) is a harmonic
mapping of V into Y, agreeing with / in an open set. From the Aronszajn-Carleman
theorem (see 2) we conclude that the two mappings coincide on V. We can then reason
from the connectedness of M to conclude that / maps M into the maximal geodesic arc c.

Now assume that M is closed. The image is a connected and compact piece of c. If c
were not closed, there would be a point q e c in the image of/such that a part of c on one
side of q contains no image points. But we then easily draw a contradiction from
Theorem 2 above. Hence we conclude that c is closed and that/(M) = c.

Q.E.D.

We shall apply the foregoing to prove a sharpened form of a result of Hartmann
(cf. [15], Th. H, Cor. 2).

THEOREM 4. — Letf : M —> Y be a harmonic mapping, where M is assumed to be compact
and Y of non-positive sectional curvature. Iff(M) contains a point q at which the sectional
curvatures of Y are all < 0, and ;//(M) is not contained in a geodesic on Y, then f is the
only harmonic mapping in its homotopy class.

Proof. — Of course, the sectional curvature of Y will be strictly negative in some
neighbourhood of q. Leif(p) = q. If dfhsis rank ^ 1 in a neighbourhood of p, then
/(M) will surely be contained in a geodesic of Y, in virtue of our theorems 1 and 3. Our
assumption therefore implies that df has rank > 1 at points arbitrarily near top. We may
then apply Corollary 1 of Hartman's Theorem H to obtain our conclusion.

Q.E.D.
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216 J. H. SAMPSON

Of course, the essential new feature of our result is that the assumption of analyticity
in not required.

The following is an application of the foregoing theorem (a similar application was
noticed by Hartman).

THEOREM 5. — Let M be compact and of non-positive sectional curvature which is strictly
negative at some point. Then the group of isometrics ofM is finite, and no two of its elements
are homotopic.

For the isometrics are harmonic mappings and are therefore unique in their homotopy
classes. The finiteness of the group of isometrics is known from Bochner [5]; but it is
also an immediate consequence of the present argument, since obviously the group must
be compact and discrete.

The conclusion of the theorem above is well known for the group of complex auto-
morphisms of a compact Riemann surface of genus > 1 (cf. [18]). In the present context
that can be deduced from Theorem 5 and the fact that complex automorphisms are iso-
metries for a conformal metric. (For genus > 1 there is always a conformal metric of
constant negative curvature, cf. § 8.)

We now prove a result similar to Theorem 3, but in the case of higher rank.

THEOREM 6. — Let f : M —> Y be a harmonic mapping, and let V be a complete, totally
geodesic submanifold ofY. If an open set ofM is mapped into V, then all ofM is mapped
into V.

Proof. — At qe\ choose a local coordinate system y1, ..., y"1 such that V near q is
the locus ^r+l = ... = y"1 = 0. The Christoffel symbols will then have F^ == 0 for
a > r and P, y ^ r along V, because of the assumption that V is totally geodesic.

Let U be a connected open set of M mapped by / into the coordinate neighbourhood
of the ̂ a, and assume that/maps an open subset Uo of U into V. The harmonic equation
(1) in Uo takes the form

A^+ E rp^g^O (oc^r)
P.Y^r

and
y^^.. =^=o.

Now the same equations give a solution of (1) throughout U, as is quickly seen, and the
Aronszajn-Carleman unique continuation theorem then allows us to conclude that there
is no other solution with the given form in Uo. The theorem follows readily from the
connectedness of M.

5. Harmonic immersions

Here we shall generalize some results of Bochner [3] concerning the curvature of harmonic
immersions.
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HARMONIC MAPPINGS 217

/: M —> Y being any differentiable mapping of Riemannian manifolds, fix local coordi-
nates (x1) sit p e M and (y^ at /(P) e Y. We set

^^O^-^yj and ^ifc=:^+C^.

The latter are the components of the covariant derivative D2/of the section

df = y^ dx1 ® (91'Qy^ of T* (M) ® /* T (Y)

relative to the induced connection. D^is sometimes called the second fundamental form
of/. Set

<P*w = g^W\ k^i 1-^1 iy^\ k\

the relative curvature of /. If / is harmonic, then we have

gjl{?ijkl=-g^gjlyai\ly^k.
and the matrix with coefficients a^ = g31 ^ijki is negative (and indeed < 0 unless all y , , ,
vanish, i. e. D2/ = 0).

THEOREM 7. - Let dim M = 2 and let f : M —> Y be a harmonic immersion. Denoting
the image by V, we assume that the metric carriedbyffrom M to V is conformally equivalent
to the metric induced on Vfrom Y. Then the curvature o/V at any points is ^ the Rieman-
nian curvature o/Y at that point on the 1-dimensional section defined by V.

Proof. - Our assertion being purely local, we can simply assume that/is an embedding.
Since dim M = 2, the metric g^ dx1 dx3 can be replaced by any conformally equivalent
metric without destroying the harmonicity of/. We may therefore suppose that /is a
Riemannian embedding.

(We recall that/is then a minimal embedding [9], p. 119.)
We choose local coordinates (x1) at p e M and (y9) at f(p) e V such that (^,) = (8,.)

and (^p) = (8,p) at p and f(p). We can use the x1 as coordinates on V at f(p), of course.
From Gauss's equation ([II], § 43) the curvature of V for the metric g^ dx1 dxj is

RW = ̂ pys y^i y^j yl y'i + <PW »
(p as above. Then the Gaussian curvature at p [or /(/?)] is R^n^ and on the right side
we have the sectional curvature of Y along V plus (pi2i2? which is ^ 0.

Q.E.D.

For higher dimensions we have:

THEOREM 8. — Letf : M —> Y be a harmonic Riemannian embedding (or immersion), and
again call the image V. IfY has Riemannian curvature ^ 0 in all directions at a point o/V,
then V has Ricci curvature ^ 0 at that point.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



218 J. H. SAMPSON

Proof. — From the Gauss equation, the negative of the Ricci tensor on M (or V) is
R^ = g J 1 R^g y^ y^ y^ y^+a^. We have already observed that (a^) ^ 0. At p
[resp. f(p)\ we can assume that (̂ .) = (8^), (g^) = (5,p) and y^ = 5? for ;, a = 1, ...,
n (= dim M), y? = 0 otherwise. The first term in R^ above is then

Lj RW
J=l

which is clearly ^ 0 (i. e. as matrix.)
Q.E.D.

As an application, let V be a complex submanifold of a Kahler manifold Y with negative
sectional curvature. Since the identity map V <= Y is harmonic, we conclude that V has
Ricci curvature ^ 0 (that is, for the unduced metric on V). We mention that V also has
non-positive holomorphic sectional curvature (see [4], Th. 12).

6. Deformations

We now consider the effects of a variation of the metric on M or Y, as regards harmonic
mappings. We shall work things out only for variations of the Y metric; a similar analysis
can be given for the other case.

J. Eells and L. Lemaire have announced similar results by another method. I take
this opportunity to thank L. Lemaire for having pointed out a great error in the original
manuscript.

Simple examples of geodesies on surfaces of revolution show that one cannot expect
a reasonable deformation theory without negative curvature restrictions. And one can
give examples of non-compact Y with variable metric gy of strictly negative curvature
for all parameter value s and such that a given homotopy class of maps M —> Y contains
a harmonic map for some values of s but not for others.

We suppose then that M and Y are compact and that Y has a metric g^ depending
smoothly (i. e. C°°) on a real parameter s, 0 ^ s ^ 1, and in such a way that Y is of sec-
tional curvature ^ 0 for all s. There is no difficulty in extending our results to the case
of a parameter varying in some Rk.

Fix a non-trivial homotopy class H of C2 maps of M to Y. According to the general
theory of [9], for all parameter values s there is a harmonic map fs in H for the gy metric
on Y. We now assume that the curvature of this metric is strictly negative at some point
of the image offs, whereupon we are assured by Theorem H of [15] (cf. also Theorem 4
above), that fy is unique in H unless /^(JM) is a closed ^-geodesic in Y, in which case it
is unique up to a ,,rotation" along the geodesic (cf. [15], Theorem I, where it is assumed
that the curvature is < 0 all along the image). We shall henceforth exclude this situation
unless M is a circle, and then of course all the fs (M) are closed geodesies.

It is not difficult to see that fs, as function of s, is continuous in the C1 topology for
maps, provided in the case M = circle that suitable "rotations" are first effected. That
follows simply from the derivative bounds of [9]. And those bounds, by standard
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HARMONIC MAPPINGS 219

theory, imply similar bounds on derivatives of all orders, from which the continuity ofy,
in the C°° topology follows. But in order to obtain smooth dependence on s we turn
to another method.

7. Smoothness

Suppose that/, depends smoothly on s in the sense that, referred as usual to local coor-
dinates (x1) and (y2), the functions y2 (x, s) and their first- and second-order partial deri-
vatives with respect to x are C1 functions of s. Denote by ^ the deformation vector
with components y = Sy^/Ss. It can be shown by straightforward calculation that !;
satisfies the linear equation

(4) W+^yh^^'^+^yh]^ == o,
where we put (cf. paragraph 5):

(5)

(DO—^-J^+rp^^i,

^j-^^^Wy}.
;5p'a

(A^-Y — o1-7?? - A" — —PY
v/^/ ~~ S S »j? ^BY — ~~—•

8s

We note that this last is a tensor field on Y.
We now work backwards. Equation (4) is defined for any C2 map /: M —> Y. The

associated homogeneous equation is

(6) (A^+R^^^jg^^O.

For a solution ^ of (6) let us take the g^ inner product of (6) with ^ and integrate by parts.
We get

(7) -f W+f R^^^P^^g^O.
J M J M

By our curvature hypothesis, the second term is ^ 0, and so both terms vanish, whence
D ^ = 0. Therefore rf | ^ | = 0; i. e., ^ has constant length. If there is a point in the
image of/where the rank of rf/is greater than unity and where the curvature is strictly
negative, then the second integrand above is < 0 there, if § ̂  0, which contradicts (7).

For the case M = circle and for the family fy under consideration above, assumed
differentiable, let M be parametrized by the angle t. Then (6) becomes

(8) (D^+R^T^^O,

D( being the covariant derivative with respect to t, and T" = Sy^/St being the tangent
vector. This equation is satisfied by ^ = T; and that is the only solution, up to a constant
factor, provided the curvature of g^ is strictly negative somewhere along the geodesic

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



220 J. H. SAMPSON

Cs = fs (M). For the argument above shows that ^ and T must be parallel where the
curvature is strictly negative, and then from (8) we see that ^ is a constant multiple of T
in such a region, hence on all of M, by uniqueness of solutions of the system (8).

Referring now to (4), in the case M = circle the last term is the vector field

,,« — A" r^r"1

1 ~~ "PY" - •

If we take the inner product of (4) with T and integrate, we obtain

(9) f (T,TI),A=O.
J M

By standard theory, (9) is the necessary and sufficient condition for the solvability of (4),
since in our circumstances T is the only solution of (8), apart from constant factors.

We now show that (9) is in fact automatically satisfied. To do so, fix s and let (y)
be a system of Fermi coordinates along a portion of the geodesic Cs = fs (M), where we
take y1 to be the arclength from some point. For the components g^ of the metric g^
we shall have g[^ = 1 and g'^ = 0 along Cs for a > 1. Furthermore, P^ = 0 along Cs
for all a; and T1 = 1, T" = 0 for a > 1. Then (T, T|), = g^ T" r^ = r|1 = A^. Here:

Al ° /-,'laT-^ \ / ^'la^T^ -i^'101 r"
11=—(g ^ll^^ [ - S jFna+g —In,.

9s \9s ) os

Since T[^ = 0 along c, for all a, we have along Cy:

, _ 9 ^ 1 9 8g\,
A 1 1 ^ l l l " " • 2 3 5 ^ ^ •

Writing:
1 9 ,

^^

we obtain, integrating round an arc of the circle M,

(\ii)^= F^ 8yi.dt=^(b))^(JsW).
Ja J a 9 y 1 9t

Adding up round M we obtain (9).
Hence (4) can be solved for ^, and the solution can be made unique by the condition

f (i;,T)^=0.
J M

We henceforth assume that the metric gy has sectional curvature < 0 for each s, except
perhaps at isolated points. If/eH is any C^ map, we can then apply general elliptic
theory to solve (4) for fixed s, obtaining a unique C? vector field !;, (/) along / (bearing
in mind the preceding normalization in case M = circle). Thus ^ can be considered
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HARMONIC MAPPINGS 221

as a vector field defined on H, which is a Banach-type manifold when equipped with
the C2 topology. We are going to consider solutions of the non-autonomous equation

(10) ^=W
8s

in H, starting at s = 0 with the initial condition /?o =/o, i. e. the harmonic map in H
for the go metric on Y.

Let )/, h [2 be a distance function on H giving the C2 topology; and let j ^, T| [2 be such
a function on the space C2 (M, TY). We shall then have

(11) \W^Ah)\^C(\f\,+\h\,).\f,h\,,

where \f\^ is the maximum of the first and second partial derivatives of/with respect
to some fixed, finite covering of M and Y by charts; C is a constant independent of/, A,
s, s\ The bound here is a simple consequence of the uniform ellipticity of (4). See the
Remark below.

We can then solve (10), starting at s = 0, at least for a small ^-interval. A simple
calculation show that the derivative with respect to s of the tension field T, (AJ vanishes
(T, being calculated with the metric g^ of course). Since TO (ho) = 0, we conclude that
the hy are harmonic, hence must coincide with the / (apart from rotations in the case
M = circle). Derivative bounds from [9] can therefore be invoked to show that the
bounds (11) do not deteriorate along the solution path, so that the latter can be continued
for 0 ^ s ^ 1.

We can repeat the same procedure for any Ck topology, k = 2, 3, ... and therefore
obtain the following result:

THEOREM 9. — The space derivatives o// of all orders are of class C1 in s.
Here we understand that we take / = ̂  in the case M = circle.
If we differentiate (4) with respect to s, we obtain a new equation for the derivative

i;' = D^; and the first two terms are the same except that!; is replaced by i;'. It follows
that y is C°° in the space variables. The foregoing analysis can be repeated, with only
minor changes. In this way it is not difficult to show that/ is in fact of class C°° in all
arguments. We omit the details.

Remark. — To solve (4) we can use the techniques of paragraph 7 of [9] to obtain
global equations on M, by embedding Y in some Euclidean space R4. One finds easily
that the deformation vector ^ is given by a ^r-tuple (^, ..., ^) of global functions on M
which satisfy a system

(4 bis) A^ = U^W^W^^^+V^W^^^+A^W^W^17,

where the coefficients are C°° functions of the coordinates W° of/ (p), and of s. It is
quite simple to obtain bounds of the type (11) for any C^ topology from this system.
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222 J. H. SAMPSON

8. On moduli of Riemann surfaces

Here we shall sketch our original applications of harmonic mappings to Teichmliller
theory. An extensive development of the topic is given in [7] along rather different lines.

We fix a closed, oriented surface X of genus ^ 2, and we denote by Xg that surface with
a C°° metric g. By the theorem of Kom-Lichtenstein, a metric g on X determines a
complex structure on Xg, given locally by any coordinate system z = x^-^-ix2 such that
(x1, x2) is a positive coordinate system for the orientation of X, and for which the matrix
ofg is diagonal, say = p. I. In that case, gij dx1 dxj = p (dx1)2 + p (dx2)2 = p dz dz. z is
then called a local uniformizing parameter.

Although we shall require a more controlled situation, we observe in passing that X,
given a conformal structure, can always be equipped with a conformal metric of negative
curvature. Namely, if (Oi, . . . , o)p (p = genus) is a basis for the differentials of first kind
on X, then ̂  co, co, defines such a metric. That this is a true-blue metric follows from the
Riemann-Roch theorem. Indeed, from that theorem it is not hard to see that one can
always choose two differentials of first kind, say (p, 9, such that (p(p+96 is a conformal
metric on M.

As for the curvature, if z is a local uniformizing parameter, let o)y = fj dz, so that
^ (Oy cô . = p dz dz, with p = ̂ fjfj. The curvature x is then:

2 d2 ,% = — _ ——=logp
p d z d z

--^[S^SAA'-E/^E^],

which is ^ 0, by Holder's inequality (cf. also [4]). x can vanish at only a finite number
of points, namely at certain Weierstrass points of X.

Metrics of the above type have certain advantages, since they can be constructed rationally
from an equation /(z, w) = 0 defining X as an algebraic curve. We note that from
Cartan's theorem ([17]. Chap. 1, § 13) and the negative curvature of our metrics, that the
universal covering surface X of X is a cell.

In fact, of course X is conformally equivalent to the upper half-plane H, and the Poincare
metric on H induces on X a metric of constant curvature — 1. This metric is of particular
importance to us. It is however highly transcendental. The following result shows that
the curvature determines the metric.

THEOREM 10. — Let p dz dz and p' dz dz be two conformal metrics on the compact Riemann
surface X, and suppose that they have the same curvature x ^ 0 (x ^ 0). Then they are
equal.

Proof. — From standard calculations A log p = — x/2 and A' log p' = — x/2, where

A=4p-1-^ and A' = 4p'-l-a2^ = -BA.
Sz 8z 8z 8z p'
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Thus, with c = -v.1'2,

Alogp—Alogp' = c — ' - c ,

i. e.:

.Wl-P'VAlog-^cfl-^-
P \ P/

Set/ = log (p/p') (this is a globally defined function on X, although p and p' are only local
functions). We have

A/^l-^-O.

If/is not constant, then it has an absolute maximum at some point p, and A/ ̂  0 at p.
The right member must also have an absolute maximum at p, and consequently A/ ̂  0
everywhere, whence/ = Const. But then A/ = 0, and so/ = 0 if c + 0.

Q.E.D.

Thus, in particular, the conformal metric of curvature -1 on a Riemann surface X is
uniquely determined by the conformal structure.

9. Quadratic differentials

For the present we consider harmonic mappings/: X —> Y of any two compact Riemann
surfaces with C°° conformal metrics. If our metrics are p dz dz (resp. ̂  dw dw) near a point
p e X [resp. f(p) e Y], then the harmonic equation (1) takes the form

(13) ^+^^-=0.
A

We note that the harmonic property is not altered if the metric on X is replaced by any
conformally equivalent metric. But that is not so for Y (except when/is holomorphic or
antiholomorphic).

With any C2 mapping/: X —> Y we associate the quadratic differential

(14) Q = (pdz2 = 'kw,w,dz2

on X. If/is harmonic, one shows easily from (13) that Q is holomorphic (c/ [24] and [27]).
It vanishes only when / is holomorphic or anti-holomorphic. Observe that Q is just
the (2,0) part of the form /* (k dw dw) on X.

Conversely, assume that Q is holomorphic. Then Q^ = 0, which is

^w-^w^w^+^w^w^w^^w^w^+Kw^w^=0,

t^P+u^P=0,
whence
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where P is the left member of (13). If P + 0 near a point p, then we have
[ w^ | = | u^ | = | w^ 1. The Jacobian of z —> w is equal to | w^ | 2— | w^ |2, and we see that
the Jacobian vanishes near p.

We now require some computations. For a harmonic / set

(15) H=Xw^, L=^M^, J=H-L.

These are of course local functions on X. But the quantities

(16) .^p^H, ^=p~lL, ^p-'J

are globally defined functions, and / is the Jacobian of /.
The curvature of Y is computed from

(log^,=- X.

i. e.:

(17) ^ _ _ x ^ 2 .^w^w
•^ww — — — A» T" ————— •

2 ^

Using this in conjunction with (13), one finds:

(18)

where

H,

H»

==(^

x
2

<P

w^+X

H^

= Kw

^zz)^z

X -
^(p(p+

z^z»

»

H^H
H

as in (14). Note that cp(p = HL. Since (p is holomorphic, if it is not zero we conclude
that e^f and o$f can have only isolated zeroes of finite order (see Bells-Wood [10]).

We have also
( 4 ==(^M^+^;t^)t^,

(19) x - 2 ^ - Lz L-
^-^i^-l-

On X the Laplace operator is A = 4 p~1 82/9z 8z. We compute A^f where ^f is defined
in (16). The result is

lA^=yH+pzpH-p-3(p,H,+p,H,)+p-2H,„
4 2 p3

where y = curvature of X. A similar equation holds for ,Sf. We obtain:

(20) Alog^=-2x^.
aZf
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Now let / be a harmonic mapping of topological degree 1. Then Jf cannot vanish
identically, since otherwise we would have / ^ 0 everywhere. Consequently either ^ = 0
(holomorphic case), and then^f has only a finite number of zeroes, each of finite multiplicity,
since w^ in (15) is holomorphic, or else HL = <p(p ^ 0, and the same conclusion obtains,
since (p is holomorphic. We are going to prove:

PROPOSITION 1. — IfX and Y have the same genus, and if deg/= 1, then ^f > 0
everywhere.

Our original proof was restricted to x < 0. The fundamental step here is the index
theorem of Eells-Wood [10]: Let Jf have zeroes at p ^ , ..., /?,.. Then there are integers
n, > 0 such that zf^Jf + 0 at p^ (i = 1, ..., r), z, being a local uniformizing parameter
at p^ According to [10], Proposition 1, n^ + ... +n, = 0. Hence r = 0.

Q.E.D.

We now look at the Jacobian / . If f ^ 0 in a region, i. e. 50 ^ Jf, then also JSf > 0
there, and so log (^f/J^) is finite. We prove:

PROPOSITION 2. - Under the hypotheses of Proposition 1, ifK ^ 0, ^A^ ^ ^ 0 wz X.
Proo/ - By (20), A log (H/L) ^ 0 wherever / ^ 0, and so log (^f/J^f) is superharmonic

in any region where / ^ 0. Therefore it is not possible to have / < 0 at a point of X.
Q.E.D.

Combining our results, we shall obtain:

THEOREM 11. — Iff : X —» Y is a harmonic mapping of degree 1 of compact surfaces of the
same genus, and if the curvature ofY is ^ 0, then fis a diffeomorphism.

This follows directly from Proposition 2 and from fundamental local results of Wood [29].
Let us turn briefly to the situation when X has genus 1. Then on X, up to a constant

multiple, there is but one holomorphic quadratic differential, and it vanishes nowhere.
Thus, if/: X -^ Y is harmonic (Y of any genus), then either/is ± holomorphic, or else H
and L never vanish. In the latter case we have (20) in force over all of X. Integration
and Stokes's theorem give

0= x J = C x=C.27i5c,
Jx JY

1= x J = C
Jx JY

C being a constant which is non-zero if deg/ + 0, and % being the Euler-Poincare characte-
ristic of Y (Gauss-Bonnet theorem). Thus either % = 0 or else J vanishes, whence / is
constant or else maps X onto a closed geodesic of Y (cf. Th. 3). This is a special case of a
result of [10], see also [30].

We now revert to the notation of paragraph 8. Namely, Xg denotes the fixed compact
surface with the metric g and the consequent conformal structure, go is a fixed reference
metric. The main result of this paragraph is:

THEOREM 12. - Let g andg' be two metrics on X of curvature -1. Iff: X —> X and
"0 "

^X^y -» X^, are harmonic mappings of degree 1 which induce the same quadratic differen-
tial on Xg , then Xg and Xg, are conformally equivalent.
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Proof. - Consider the functions ^f, ^ (resp. e^T, ^?/) of (10) for g and ^/. By Propo-
sition 1, ^f and ^" do not vanish. We have Jf ^f = e^f' J$f', from our hypotheses, and
from (14) or (20) it is easily seen that

Mos^=/'~/^^'~^){l+^)•
Suppose now that ^" > ̂  at some point. Then at a maximum of ^'\^ the function
log (^ 7^) ̂ so has a maximum, and the left side of the equation there is ^ 0, whereas
the right side is > 0, an evident contradiction. Thus we must have ^ ' ^ ^f, and simi-
larly ^ ^ ^f. Therefore ^ = ^ ' . Now (p(p = p2 J^^f = p2 J^f' ^f', and we find
that ^ = £". It follows at once that the diffeomorphism fg'fg~1 '- Xg—>Xg, is an iso-
metry, which proves our assertion.

Harmonic mappings Xg —> Xg homotopic to the identity therefore yield an injective
mapping of the set of surfaces Xg with curvature — 1 into the space of quadratic differentials
on X, . We shall develop this further elsewhere.

»o

10. An application to automorphic varieties

We first mention an easy consequence of [15] (cf. the Theorem of Borel and Narsimhan
in [20], Theorem 8.11).

THEOREM 12. — Let Y be a Kdhler manifold of sectional curvature < 0 everywhere; and
let V, V be compact complex submanifolds ofY of dimension > 0. Suppose that there is a
holomorphic mapping f : V —> V which is homotopic in Y to the identity mapping V —> Y.
Then V = V andf = identity.

Proof. — f is harmonic as mapping of V into Y, relative to the induced Kahler metric
on V ([9], p. 118), and the assertion follows from [15], Theorem B.

We note the following adaptation:
If there are only a finite number k ofhomotopy classes containing holomorphic mappings

V —> Y, then there are at most k— 1 analytic submanifolds V of X which are holomorphically
equivalent to V. The assumption is true for compact Y, by [8], paragraph 9.13.

For i f / : V — > V is holomorphic, then it is the only one in its class (i. e. as mapping
V—»-Y). We of course exiude the constant mapping, whence k—\ instead of k. The
curvature assumptions can be weakened.

These considerations have a certain bearing on a conjecture which we shall now state,
considerably generalizing the well-known conjecture of Mordell (see [21] and [21 a]).

Let D be a domain in C" equivalent to a bounded domain, and let G be a discontinuous
group of rational mappings of C" which are automorphisms of D without fixed points
(except the identity, of course). Then M = D mod G is a complex manifold, which we
assume compact; and it is known that M can be embedded analytically in a complex
projective space P1^ (cf. [6], [26]). Therefore M is an algebraic variety, by Chow's
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theorem. We assume further that D admits a Kahler metric of strictly negative curvature
which is invariant under the transformations of G. Our conditions are those of the
classical automorphic varieties, when D is an irreducible symmetric domain.

Now suppose that the transformations of the group and the subvariety M c: P^ are
defined over some number field K. Our conjecture is that there are only finitely many
subvarieties o/M of given degree which are defined over K.

For M of complex dimension 1 (the subvarieties are then points), this is MordelFs
conjecture.
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