# Annales scientifiques de l’é.n.S. 

NoLan R. Wallach<br>On the Enright-Varadarajan modules : a construction of the discrete series

Annales scientifiques de l'É.N.S. $4^{e}$ série, tome 9, $\mathrm{n}^{\circ} 1$ (1976), p. 81-101

[http://www.numdam.org/item?id=ASENS_1976_4_9_1_81_0](http://www.numdam.org/item?id=ASENS_1976_4_9_1_81_0)

[^0]
# ON THE ENRIGHT-VaRadaRAJAN MODULES : a CONSTRUCTION 0F THE DISCRETE SERIES 

By Nolan R. WALLACH

## 1. Introduction

Let $\mathfrak{g}$ be a semi-simple Lie algebra over $\mathbf{C}$. Let $g_{0}$ be a real form of $\mathfrak{g}$ with Cartan decomposition $\mathfrak{g}_{0}=\mathfrak{f}_{0} \oplus \mathfrak{p}_{0}$. Let $\mathfrak{f}$ be the complexification of $\mathfrak{f}_{0}$. We assume that there is a Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ so that $\mathfrak{h} \subset \mathfrak{f}$. Fix $P$ a system of positive roots for (g. $\mathfrak{h}$ ). Let $\mathrm{P}_{k} \subset \mathrm{P}$ be the corresponding positive roots for ( $\mathfrak{f}, \mathfrak{h}$ ). Let $\langle$,$\rangle denote the dual of$ the killing form of $\mathfrak{g}$ restricted $\mathfrak{h}$. If $\lambda \in \mathfrak{h}^{*}$ call $\lambda, P_{k}$-dominant integral if

$$
2 \frac{\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbf{Z}^{+}=\{0,1, \ldots, n, \ldots\}
$$

for $\alpha \in \mathrm{P}_{k}$.
In Enright, Varadarajan [4], a construction was given of a $g$-module $W_{P, \lambda}$ for each $\mathrm{P}_{k}$-dominant integral form $\lambda \in \mathfrak{h}^{*}$. These modules have several important properties:
(1) As a $\mathfrak{f}$-module, $\mathrm{W}_{\mathrm{P}, \lambda}=\sum \oplus m_{\lambda}(\mu) \mathrm{V}_{\mu}$, where the sum is over all $\mathrm{P}_{\boldsymbol{k}}$-dominant integral forms, $\mathrm{V}_{\mu}$ is the irreducible finite dimensional $\mathfrak{f}$-module with highest weight $\mu$ and $0 \leqq m_{\lambda}(\mu)<\infty, m_{\lambda}(\mu)$ an integer.
(2) $m_{\lambda}(\lambda)=1$.
(3) If $m_{\lambda}(\mu) \neq 0$ then $\mu=\lambda+\delta$, where $\delta$ is a sum of (not necessarily distinct) elements of $P$.
(4) Let $U=U(\mathfrak{g})$ be the universal enveloping algebra of $\mathfrak{g}$. Then $U(\mathfrak{g}) V_{\lambda}=W_{P, \lambda}$ (here we look at $\mathrm{V}_{\lambda}$ as being imbedded in $\mathrm{W}_{\mathrm{P}, \mathrm{\lambda}}$ ).
(5) Let $\mathrm{U}^{t}$ be the centralizer of $f$ in U . Then $\mathrm{U}^{t}$ acts by scalars on $\mathrm{V}_{\lambda}$ and the corresponding homomorphism $\eta_{\lambda}: \mathbf{U}^{t} \rightarrow \mathbf{C}$ is computed (see Theorem 2.4 for the formula).
By (2) and (4), $\mathrm{W}_{\mathrm{P}, \lambda}$ contains a unique maximal submodule $\mathrm{Z}_{\mathrm{P}, \lambda}$ not containing $\mathrm{V}_{\lambda}$. Set $W_{P, \lambda} / Z_{P, \lambda}=D_{P, \lambda}$. There $D_{P, \lambda}$ is clearly irreducible and inherits the multiplicity properties and $\eta_{\lambda}$.

Let now $G$ be the connected, simply connected Lie group with Lie algebra g. Let $\mathrm{G}_{0} \subset \mathrm{G}$ be the connected subgroup with Lie algebra $\mathfrak{g}_{0}$. If $\lambda \in \mathfrak{h}^{*}$ we call $\lambda$ integral if

$$
\frac{2\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbf{Z}, \quad \alpha \in \Delta
$$

$\Delta$ the root system of $(\mathfrak{g}, \mathfrak{h})$. We call $\lambda \in \mathfrak{h}^{*}$ regular if $\langle\lambda, \alpha\rangle \neq 0$ for all $\alpha \in \Delta$.
To each regular, integral $\lambda \in \mathfrak{h}^{*}$, Harish-Chandra [6] has constructed a central, eigendistribution for the center $z$ of $U, \theta_{\lambda}$, on $G_{0}$ with the following properties :
(i) $\theta_{\lambda}=\theta_{\mu}$ if and only if there is $s \in W_{k}$ [the Weyl group of $\left.(\mathfrak{f}, \mathfrak{b})\right]$ so that $s \lambda=\mu$.
(ii) Each $\theta_{\lambda}$ is the character of an irreducible, square integrable representation of $G_{0}$.
(iii) The $\theta_{\lambda}$ exhaust the characters of the irreducible, square integrable representations of $G_{0}$.

Let $\lambda \in \mathfrak{h}^{*}$ be integral and regular. Let $P=\{\alpha \in \Delta \mid\langle\lambda, \alpha\rangle>0\}$.
One of our results is
Theorem 1.1. - If $\lambda \in \mathfrak{b}^{*}$ is integral and regular and if $\mathrm{P}=\{\alpha \in \Delta \mid\langle\lambda, \alpha\rangle>0\}$. Then $\mathrm{D}_{\mathrm{P}, \lambda-\rho_{k}+\rho_{n}}$ is infinitesimally equivalent with the irreducible representation of $\mathrm{G}_{0}$ with character $\theta_{\lambda}$ (see Theorem 4.5).

Note. - Schmid [14] has also proved this result. Many of the ideas in the proof are due to Schmid and Zuckerman.

In light of this result, the Enright, Varadarajan module becomes very important. A purpose of this paper is to give a more canonical construction of $W_{P, \lambda}$. We actually do a bit more than this. In the Enright, Varadarajan construction there is really no use of the fact that $\mathfrak{f}$ comes from a symmetric pair $\left(\mathfrak{g}_{0}, \mathfrak{f}_{0}\right)$. Thus let $\mathfrak{g}$ be as before a semisimple Lie algebra over $C$. Let $f \subset \mathfrak{g}$ be a reductive subalgebra so that there is a Cartan sulbalgebra of $\mathfrak{g}, \mathfrak{h}$, so that $\mathfrak{h} \subset \mathfrak{f}$. Let $P$ be a system of positive roots for $(\mathfrak{g}, \mathfrak{h})$ and let us use the same terminology as the first part of the introduction. That is, $\mathrm{P}_{k}$-dominant integral, etc. We construct for each $\lambda, \mathrm{P}_{k}$-dominant integral a $\mathfrak{g}$-module, $\mathrm{W}_{\mathrm{P}, \lambda}$ satisfying 1 , $2,3,4,5$ above. The construction is quite analogous to the Verma module construction of the irreducible finite dimensional representations of $\mathfrak{g}$. In fact, if $\mathfrak{g}=\mathfrak{f}$ then $W_{P, \lambda}$ is just the irreducible finite dimensional representation of $g$ with highest weight $\lambda$. If $\mathfrak{p}=\mathfrak{f} \oplus \mathfrak{r}$ is a parabolic subalgebra of $\mathfrak{g}(\mathfrak{r}$ the unipotent radical) and $P$ is system of positive roots for $(\mathfrak{g}, \mathfrak{h})$ contained in the roots of $\mathfrak{p}$ and if $V_{\lambda}$ is the irreducible representation of $\mathfrak{f}$ with highest weight $\lambda$ then $W_{P, \lambda}=U(g) \oplus V_{\lambda}$, where $\overline{\mathfrak{p}}=\mathfrak{f} \oplus \overline{\mathfrak{r}}$, the opposite para$\mathrm{U}(\overline{\mathrm{p}})$
bolic, and $V_{\lambda}$ is a $\overline{\mathfrak{r}}$ module by making $\overline{\mathfrak{r}}$ act trivially $(\mathrm{U}(\mathfrak{p})$ is the universal enveloping algebra of $\overline{\mathfrak{p}}$ ).

Also in this paper we study tensor products of the modules $W_{P, \lambda}$ with finite dimensional $\mathfrak{g}$-modules. We strengthen results of Enright [3]. These results are related to results of Schmid [14]. In section 3 we derive explicit formulae for the tensor products of $D_{P, \lambda}$ and $W_{P, \lambda}$ with finite dimensional $\mathfrak{g}$-modules. We note that Lemma 3.10 contains as a special case a result of Nicole Conze (see Rossi, Vergne [11]).

$$
4^{\text {e }} \text { SÉRIE }- \text { TOME } 9 — 1976-\mathrm{N}^{\circ} 1
$$

We would like to thank W. Schmid for many helpful and stimulating conversations about the discrete series and the role of tensoring with finite dimensional representations. Many of the ideas in $\S 4$ are due to W . Schmid. We feel that the modules $\mathrm{W}_{\mathrm{P}, \lambda}$ are an important discovery and we heartily congratulate Enright and Varadarajan for their discovery.

## 2. The Enright, Varadarajan construction

Let $\mathfrak{g}$ be a semi-simple Lie algebra over $\mathbf{C}$ the complex numbers. Let $\mathfrak{f} \subset \mathfrak{g}$ be a reductive subalgebra so that there is a Cartan subalgebra, $\mathfrak{h}$, of $\mathfrak{g}, \mathfrak{h} \subset \mathfrak{f}$. Let $\Delta$ be the root system of $(\mathfrak{g}, \mathfrak{h}), \Delta_{k} \subset \Delta$ the root system of $(\mathfrak{f}, \mathfrak{h})$.

Let P be a system of positive roots for $\Delta$ and set $\mathrm{P}_{k}=\mathrm{P} \cap \Delta_{k}$. Let $\mathrm{W}_{k}$ denote the Weyl group of $(\mathfrak{f}, \mathfrak{h})$. Let $\mathrm{W}_{k}$ be ordered as in Dixmier [2]. Chapter 7, Section 7. That is if $w_{1}, w_{2} \in \mathrm{~W}_{k}$ then we say $w_{2} \xrightarrow{\alpha} w_{1}$ if $\alpha \in \mathrm{P}_{k}$ and
(a) $w_{1}=s_{\alpha} w_{2}$.
(b) $l\left(w_{1}\right)=l\left(w_{2}\right)+1[l(w)$ is the number of terms in the minimal expression of $w$ as a product of $\mathrm{P}_{k}$-simple reflections].

If $w, w^{\prime} \in \mathrm{W}_{k}$ then $w \leqq w^{\prime}$ if there exist $w_{0}, \ldots, w_{k} \in \mathrm{~W}_{k}$ and $\beta_{1}, \ldots, \beta_{n} \in \mathrm{P}_{k}$ so that $w_{n}=w^{\prime}, w=w_{0}$ and

$$
w_{n} \xrightarrow{\beta_{n}} w_{n-1} \rightarrow \ldots \xrightarrow{\beta_{1}} w_{0} .
$$

Relative to this order $s \leqq 1$ for all $s \in \mathrm{~W}_{k}$ and $s \geqq t_{0}\left(t_{0} \in \mathrm{~W}_{k}\right.$ the unique element so that $t_{0} \mathrm{P}_{k}=-\mathrm{P}_{k}$ ) for all $s \in \mathrm{~W}_{k}$.

If $\mu \in \mathfrak{h}^{*}$ let $V^{\mu}$ denote the $\mathfrak{f}$-Verma module with highest weight $\mu$ relative to $P_{k}$. $V^{\mu}$ is defined as follows: let $\mathfrak{n}_{k}^{+}=\sum_{\alpha \in \mathbf{P}_{k}} \mathfrak{g}_{\alpha}$,

$$
\mathfrak{g}_{x}=\{\mathbf{X} \in \mathfrak{g} \mid[h, x]=\alpha(h) \mathbf{X} \text { for } h \in \mathfrak{h}\} .
$$

Set $\mathfrak{b}_{k}=\mathfrak{h}+\mathfrak{n}_{k}^{+} . \quad$ Let $\mathbf{C}_{\boldsymbol{\mu}}$ be the $\mathfrak{b}_{k}$-module $\mathbf{C}$ with $(h+Z) .1=\mu(h) 1$ for $h \in \mathfrak{h}, Z \in \mathfrak{n}_{k}^{+}$. Then $\mathrm{V}_{\mu}=\mathrm{U}(\mathfrak{f}) \underset{\mathbf{U}\left(\mathfrak{b}_{k}\right)}{\oplus} \mathbf{C}_{\lambda}$, where $\mathrm{U}(\mathfrak{f})$ and $\mathrm{U}\left(\mathfrak{b}_{k}\right)$ are respectively the universal enveloping algebras of $\mathfrak{f}$ and $\mathfrak{b}_{k}$.

The theory of Verma modules (due to Verma, Bernstein, Gelfand and Gelfand, cf. Dixmier [2], Chapter 7) implies the following results
(1) If $\mu_{1}, \mu_{2} \in \mathfrak{b}^{*}$ then $\operatorname{dim} \operatorname{Hom}_{\mathfrak{t}}\left(V^{\mu_{1}}, V^{\mu_{2}}\right) \leqq 1\left[\operatorname{Hom}_{\mathfrak{t}}(.,\right.$.$) denotes the space of$ $\mathfrak{f}$-module homomorphisms]. If $\mathrm{A} \in \operatorname{Hom}_{\mathfrak{y}}\left(\mathrm{V}^{\mu_{1}}, \mathrm{~V}^{\mu_{2}}\right)$ and $\mathrm{A} \neq 0$ then A is injective.
(2) Let $\mathfrak{n}_{k}^{-}=\sum_{\alpha \in \mathbf{P}_{k}} \mathfrak{g}_{-\alpha}$ if $\mathrm{X} \in \mathfrak{n}_{k}^{-}$and $v \in \mathrm{~V}^{\mu}$ then $\mathrm{X} v=0$ implies $\mathrm{X}=0$ or $v=0$.
(3) If $\operatorname{Hom}_{\mathrm{t}}\left(\mathrm{V}^{\mu_{1}}, \mathrm{~V}^{\mu_{2}}\right) \neq 0$ we say $\mathrm{V}^{\mu_{1}} \subset \mathrm{~V}^{\mu_{2}}$. If $\lambda$ is $\mathrm{P}_{k}$-dominant integral (see the introduction), if $\rho_{k}=(1 / 2) \sum_{\alpha \in \mathbf{P}_{k}} \alpha$ and if $s, \tau \in \mathrm{~W}_{k}$ then $\mathrm{V}^{s\left(\lambda+\rho_{k}\right)-\rho_{k}} \subset \mathrm{~V}^{\tau\left(\lambda+\rho_{k}\right)-\rho_{k}}$ if and only if $s \leqq \tau$.

The theory of Verma modules is much richer than the results described above. However, we will only need the above three properties.

We begin the construction of a family of $\mathfrak{g}$-modules one for each $s \in \mathbf{W}_{k} ; \quad$ Fix $\lambda \in \mathfrak{h}^{*}$, $\mathrm{P}_{k}$-dominant integral. Then if $s, \tau \in \mathrm{~W}_{k}, s \leqq \tau$ we clearly have

$$
\begin{equation*}
\mathrm{U}(\mathfrak{g}) \underset{\mathrm{U}(\mathrm{f})}{\otimes} \mathrm{V}^{s\left(\lambda+\rho_{k}\right)-\rho_{k}} \subset \mathrm{U}(\mathfrak{g}) \underset{\mathrm{U}(\mathrm{t})}{\otimes} \mathrm{V}^{\tau\left(\lambda+\rho_{k}\right)-\rho_{k}} \tag{I}
\end{equation*}
$$

Let $\mathrm{W}_{t_{0}, \lambda}$ denote the Verma module for $g$ with highest weight $t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}$ relative to $-t_{0} \mathrm{P}\left(t_{0} \mathrm{P}_{k}=-\mathrm{P}_{k}, t_{0} \in \mathrm{~W}_{k}\right)$. That is if $\tilde{\mathfrak{b}}=\mathfrak{h}+\sum_{\alpha \in-t_{0} \mathrm{P}} \mathfrak{g}_{\alpha}$ and $\mathrm{C}_{t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}}$ is the $\tilde{\mathfrak{b}}$-module $C$ with $\mathfrak{h}$ acting by the linear form $t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}$ then

$$
\mathrm{W}_{t_{0}, \lambda}=\mathrm{U}(\mathfrak{g}) \underset{\mathrm{U}(\tilde{\mathfrak{b}})}{\otimes} \mathbf{C}_{t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}}
$$

Let $w_{t_{0}, \lambda}=1 \otimes 1$ in $\mathrm{W}_{t_{0}, \lambda}$. Then $\mathrm{U}(\mathrm{f}) w_{t_{0}, \lambda}$ is f -isomorphic with $\mathrm{V}^{t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}}$. We therefore have a surjective $\mathfrak{g}$-module homomorphism

$$
\mathrm{U}(\mathrm{~g}) \underset{\mathrm{U}(\mathrm{t})}{\otimes} \mathrm{V}^{t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}} \rightarrow \mathrm{~W}_{t_{0}, \lambda}
$$

Let $I_{\lambda}$ denote the kernel of this $\mathfrak{g}$-homomorphism.
Then $\mathrm{I}_{\lambda} \subset \mathrm{U} \underset{\mathbf{U}(\mathrm{g})}{(\mathrm{t})} \boldsymbol{\mathrm { V } ^ { s ( \lambda + \rho _ { k } ) - \rho _ { k } }}$ for all $s \in \mathrm{~W}_{k}$.
(II) If $s \in \mathrm{~W}_{k}$ define $\mathrm{M}_{s, \lambda}=\mathrm{U}(\mathfrak{g}) \underset{\mathrm{U}(\mathrm{t})}{\otimes} \mathrm{V}^{s\left(\lambda+\rho_{k}\right)-\rho_{k}} / \mathrm{I}_{\lambda}$.

Clearly $\mathbf{M}_{t_{0}, \lambda}=W_{t_{0}, \lambda} . \mathbf{M}_{s, \lambda} \subset \mathbf{M}_{\tau, \lambda}$ if $s \leqq \tau$.
Let $\tilde{\mu}_{s, \lambda}: \mathbf{U}(\mathfrak{g}) \underset{\mathbf{U}(\mathbf{t})}{\otimes} \mathrm{V}^{s\left(\lambda+\rho_{k}\right)-\rho_{k}} \rightarrow \mathrm{M}_{s, \lambda}$ be the natural map. Let $v_{s, \lambda}$ be the fundamental generator of $\mathrm{V}^{\stackrel{\left(\lambda+\rho_{k}\right)}{(\boldsymbol{f})}-\rho_{k}}(1 \otimes 1)$. Then

$$
\begin{equation*}
\tilde{\mu}_{s, \lambda}: \quad \mathrm{U}(\mathfrak{f}) \cdot\left(1 \otimes v_{s, \lambda}\right) \rightarrow \mathbf{M}_{s, \lambda} \tag{III}
\end{equation*}
$$

is injective. Set $m_{s, \lambda}=\tilde{\mu}_{s, \lambda}\left(1 \otimes v_{s, \lambda}\right)$ then $\mathrm{M}_{s, \lambda}=\mathrm{U}(\mathrm{g}) . m_{s, \lambda}$.
(III) is clear from the definitions.

We now come to the "strange" part of the Enright, Varadarajan construction. We phrase it as a lemma.

Lemma 2.1. - Let M be a $\mathfrak{g}$-module. Suppose that $\mathrm{M}=\mathrm{U}(\mathrm{g}) m$ and that the map $\mathrm{U}\left(\mathrm{n}_{k}^{-}\right) \rightarrow \mathrm{M}, x \mapsto x . m$ is injective. Then there exists a $\mathfrak{g}$-submodule $\mathrm{M}_{1}$ of M so that $\mathrm{U}\left(\mathfrak{n}_{k}^{-}\right) \cdot m \cap \mathrm{M}_{1}=(0)$ and
(1) If $v \in \mathrm{M} / \mathrm{M}_{1}$, if $\mathrm{X} \in \mathrm{n}_{k}^{-}$and if $\mathrm{X} v=0$ then $\mathrm{X}=0$ or $v=0$.
(2) If U is a $\mathfrak{g}$-module such that if $\mathrm{X} \in \mathfrak{n}_{k}^{-}, u \in \mathrm{U}$ and if $\mathrm{X} u=0$ then $\mathrm{X}=0$ or $u=0$ then if $\psi: \mathrm{M} \rightarrow \mathrm{U}$ is a g -module homomorphism, $\operatorname{Ker} \psi \supset \mathrm{M}_{1}$.

Proof. - Let for each $\mathrm{X} \in \mathfrak{n}_{k}^{-}, \mathrm{X} \neq 0$,

$$
\mathbf{J}_{\mathbf{X}, 0}=\left\{v \in \mathbf{M} \mid \mathbf{X}^{k} v=0 \text { for some } k\right\} .
$$

$4^{e}$ série - tome $9 — 1976-\mathrm{N}^{\circ} 1$

If $\mathrm{Y} \in \mathrm{g}$ and $v \in \mathrm{~J}_{\mathrm{X}, 0}$ then $\mathrm{X}^{k} \mathrm{Y} v=\sum_{j=0}^{k}\binom{k}{j}(\mathrm{ad} \mathrm{X})^{j} . \mathrm{Y} \mathrm{X}^{k-j} . v . \quad$ Hence if $(\operatorname{ad} \mathrm{X})^{l} . \mathrm{Y}=0$, $\mathrm{X}^{r} . v=0$ then $\mathrm{X}^{l+r}(\mathrm{Y} . v)=0$. Thus $\mathrm{g} . \mathrm{J}_{\mathrm{X}, 0} \subset \mathrm{~J}_{\mathrm{X}, 0}$. Define $\mathrm{J}_{0}=\sum_{\substack{\mathbf{X} \neq 0 \\ \mathbf{X} \in n_{k}^{-}}} \mathrm{J}_{\mathrm{X}, 0}$. Suppose that $J_{i}$ has been defined. $J_{i}$ a $g$-submodule of $M$. Let for $X \in \mathfrak{n}_{k}^{-}, X \neq 0$,

$$
\mathrm{J}_{\mathrm{X}, i+1}=\left\{v \in \mathrm{M} \mid \mathrm{X}^{n} . v \in \mathrm{~J}_{i} \text { for some } n\right\} .
$$

Then as above $J_{\mathbf{X}, \boldsymbol{i + 1}}$ is a $\mathfrak{g}$-submodule of $\mathbf{M}$. Set

$$
\mathbf{J}_{i+1}=\sum_{\substack{\mathbf{X} \in \mathbf{n}_{k}^{-} \\ \mathbf{x} \neq \mathbf{0}}} \mathbf{J}_{\mathbf{X}, i+1}
$$

Clearly $\mathrm{J}_{0} \subset \mathrm{~J}_{1} \subset \ldots$ Let $\mathrm{J}=\bigcup_{j=0}^{\infty} \mathrm{J}_{i}$. Then J is a $\mathfrak{g}$-submodule of M . Set $\mathbf{M}_{1}=\mathrm{J}$ We assert that $\mathbf{U}\left(\mathfrak{n}_{k}^{-}\right) m \cap \mathbf{M}_{1}=(0)$. Indeed, if $v \in \mathbf{U}\left(\mathfrak{n}_{k}^{-}\right) m \cap \mathbf{M}_{1}, v \neq 0$ then $v \in \mathbf{J}_{i}$ for some $i$. Hence there are elements $X_{1}, \ldots, X_{k} \in \mathfrak{n}_{k}^{-}$so that, $X_{j} \neq 0$ and $v_{j} \in \mathrm{~J}_{\mathbf{X}_{j}, i}$ so that $v=\sum_{j=1}^{k} v_{j}$. Now there is $k_{1} \geqq 0, k_{1} \in \mathbf{Z}$ so that $\mathrm{X}_{1}^{k_{1}} v_{1} \in \mathrm{~J}_{i-1}$. Hence

$$
\mathrm{X}_{1}^{k_{1}} v+\mathrm{J}_{i-1}=\sum_{j=2}^{k} \mathrm{X}_{1}^{k_{1}} v_{j}+\mathrm{J}_{i-1}
$$

There is $k_{2} \geqq 0, k_{2} \in \mathbf{Z}$ so that

$$
\mathrm{X}_{2}^{k_{2}} \mathrm{X}_{1}^{k_{1}} v+\mathrm{J}_{i-1}=\sum_{j=3}^{k} \mathrm{X}_{2}^{k_{2}} \mathrm{X}_{1}^{k_{1}} v_{j}+\mathrm{J}_{i-1}
$$

Continuing in this way we have $0 \neq v^{\prime} \in \mathrm{U}\left(\mathfrak{n}_{k}^{-}\right) m \cap \mathrm{~J}_{i-1}$. . Thus by recursion we find $\mathbf{U}\left(\mathfrak{n}_{k}^{-}\right) m \cap J_{0} \neq 0$. But this is impossible by hypothesis. Hence $U\left(\mathfrak{n}_{k}^{-}\right) m \cap M_{1}=(0)$.

Let $U$ and $\psi$ be as in (2). Then if $v \in M$ and $X \neq 0, X \in \mathfrak{n}_{k}^{-}$and $X^{k} . v=0$ then if $k>0, \mathrm{X} . \mathrm{X}^{k-1} v=0$. Thus $\psi\left(\mathrm{X}^{k-1} v\right)=0$. But then $\mathrm{X} . \psi^{\prime}\left(\mathrm{X}^{k-2} v\right)=0$ hence $\psi\left(\mathrm{X}^{k-2} v\right)=0$.

Continuing in this way we see $\psi(v)=0$. Hence $\operatorname{Ker} \psi \supset \mathrm{J}_{0}$. Suppose that we have shown that $\operatorname{ker} \psi \supset \mathbf{J}_{i}$. Then the above argument shows that ker $\psi \supset \mathrm{J}_{i+1}$. Hence $\operatorname{ker} \psi \supset \mathbf{M}_{1}$. The last assertion is also clear.

> Q. E. D.

Now the pair $\mathbf{M}_{s, \lambda}$ and $m_{s, \lambda}$ satisfy the hypothesis of lemma 2.1. Hence there is a minimal submodule $\mathrm{J}_{s, \lambda} \subset \mathrm{M}_{s, \lambda}$ so that $\mathrm{U}\left(\mathfrak{n}_{k}^{-}\right) \cdot m_{s, \lambda} \cap \mathrm{~J}_{s, \lambda}=(0)$ and if $v \in \mathrm{M}_{s, \lambda} \quad \mathrm{X} \in \mathfrak{n}_{k}^{-}$, $\mathrm{X} \neq 0$ if then $\mathrm{X} v \in \mathrm{~J}_{s, \lambda}, v \in \mathrm{~J}_{s, \lambda}$. We note that $\mathrm{U}\left(\mathfrak{n}_{k}^{-}\right) m_{s, \lambda}=\mathrm{U}(\mathfrak{f}) m_{s, \lambda}$.

Set $W_{s, \lambda}=M_{s, \lambda} / J_{s, \lambda}$. We note that $J_{t_{0}, \lambda}=(0)$. Thus the notation is consistent. (IV) If $\tau \geqq s$ then $J_{\tau, \lambda} \cap \mathbf{M}_{s, \lambda}=J_{s, \lambda}$. Clearly, lemma 2.1 implies that $J_{s, \lambda} \subset J_{\tau, \lambda} \cap M_{s, \lambda}$.
(a) $J_{s, \lambda} \supset\left(J_{\tau, \lambda}\right)_{0} \cap M_{s, \lambda}$. This is clear from the definition [here we use the notation $\left(J_{\tau, \lambda}\right)_{i}$ for the $J_{i}$ for $\left.M_{\tau, \lambda}\right]$. Suppose that we have shown that $J_{s, \lambda} \supset\left(J_{\tau, \lambda}\right)_{i} \cap M_{s, \lambda}$. If $v \in\left(\mathrm{~J}_{\tau, \lambda}\right)_{i+1} \cap \mathbf{M}_{s, \lambda}$ then there exists $\mathbf{X}_{1}, \ldots, \mathbf{X}_{k} \in \mathfrak{n}_{k}^{-}, \mathbf{X}_{1} \neq 0$ and $l_{1}, \ldots, l_{k} \in \mathbf{Z}, l_{i} \geqq 0$ so that $X_{1}^{l_{1}} \ldots X_{k}^{l_{k}} \cdot v \in\left(\mathrm{~J}_{\tau, \lambda}\right)_{i} \cap M_{s, \lambda}$.

Hence $X_{1}^{l_{1}} \ldots X_{k}^{l_{k}} \cdot v \in J_{s, \lambda}$. But then arguing as above we can "peel off" the $X_{i}$ 's to find $v \in \mathrm{~J}_{\mathrm{s}, \lambda}$.

We therefore have
(V) If $s, \tau \in \mathrm{~W}_{k}$ and $s \leqq \tau$ then $\mathrm{W}_{s, \lambda} \subset \mathrm{~W}_{\tau, \lambda}$.

Let $\hat{\mu}_{s, \lambda}: \mathrm{M}_{s, \lambda} \rightarrow \mathrm{~W}_{s, \lambda}$ be the canonical g -module-homomorphism. Set $w_{s, \lambda}=\hat{\mu}_{s, \lambda}\left(m_{s, \lambda}\right)$. (VI) U (f) $w_{s, \lambda}$ is isomorphic as a $\mathfrak{f}$-module with $\mathrm{V}^{s\left(\lambda+\rho_{k}\right)-\rho_{k}}$ and if $\tau \leqq s$ then $w_{\tau, \lambda} \in U(\mathfrak{f}) w_{s, \lambda}$.
This is clear from Lemma 2.1 and the preceding constructions.
Lemma 2.2. - If $s \xrightarrow{\gamma} \tau$ and $\gamma \in \mathrm{P}_{k}$ is $\mathrm{P}_{\boldsymbol{k}}$-simple then

$$
2\left\langle s\left(\lambda+\rho_{k}\right), \gamma\right\rangle \mid\langle\gamma, \gamma\rangle=n>0 \quad n \in \mathbf{Z}
$$

and if $\mathrm{X} \in \mathfrak{g}_{-\gamma}, \mathrm{X} \neq 0, \mathrm{X}^{n} w_{s, \lambda}=c w_{\tau, \lambda}$ with $c \neq 0$.
Proof. - It is easily checked that $n>0$ (cf. Dixmier [2], Chapter 7, Section 7) and if $\mathrm{Y} \in \mathfrak{n}_{k}^{+}, \mathrm{YX}^{\boldsymbol{n}} w_{\mathrm{s}, \lambda}=0$ and if $h \in \mathfrak{h}$ then

$$
h \mathrm{X}^{n} w_{s, \lambda}=\left(\tau\left(\lambda+\rho_{k}\right)-\rho_{k}\right)(h) \mathrm{X}^{n} w_{s, \lambda} .
$$

Since $w_{\tau, \lambda} \in \mathrm{U}$ (f) $w_{s, \lambda}$ by (3) above and $w_{s, \lambda} \neq 0$ by construction the result follows from (1) above.
Q. E. D.

Lemma 2.3. - Let $s \xrightarrow{\gamma} \tau, \gamma \in \mathrm{P}_{k}, \gamma$ simple relative to $\mathrm{P}_{k}$. Let $\mathrm{X} \in \mathrm{g}_{-\gamma}, \mathrm{X} \neq 0$. If $v \in \mathrm{~W}_{s, \lambda}$ then there is $k \geqq 0, k \in \mathbf{Z}$ so that $\mathrm{X}^{k} v \in \mathrm{~W}_{s, \lambda}$. If $v \in \mathrm{~W}_{s, \lambda}$ and h.v $=\mu(h) v, \mathfrak{n}_{k}^{+} . v=0$ and if $v \notin \mathrm{~W}_{\tau, \lambda}$ then $2\langle\mu, \gamma\rangle\left\langle\langle\gamma, \gamma\rangle=k \geqq 0\right.$ and $\mathrm{X}^{k+1} v \in \mathrm{~W}_{\tau, \lambda}, \mathfrak{n}_{k}^{+} . \mathrm{X}^{k+1} v=0$ and $h . \mathrm{X}^{k+1} . v=\left(s_{\gamma}\left(\mu+\rho_{k}\right)-\rho_{k}\right)(h) \mathrm{X}^{k+1} . v, h \in \mathfrak{h}$.

Proof. - By lemma 2.2, if $n=2\left\langle s\left(\lambda+\rho_{k}\right), \gamma\right\rangle \mid\langle\gamma, \gamma\rangle$ then $\mathrm{X}^{n} . w_{s, \lambda}=c w_{\tau, \lambda}, c \neq 0$. Hence if $\mathrm{U}=\mathrm{W}_{s, \lambda} / \mathrm{W}_{\tau, \lambda}$ and $\bar{v}$ denotes the projection of $v \in \mathrm{~W}_{s, \lambda}$ onto U then $\mathrm{X}^{n} w_{s, \lambda}=0$. But then by the arguments proving Lemma 2.1 if $\bar{v} \in \mathrm{U}$ then there is $l \geqq 0$ so that $\mathrm{X}^{l} v=0$. This follows since $\mathrm{U}=\mathrm{U}(\mathrm{g}) \bar{w}_{s, \lambda}$.

Let $\mathrm{Y} \in \mathfrak{g}_{\gamma}$ and $\mathrm{H} \in \mathfrak{h}$ be so that $[\mathrm{Y}, \mathrm{X}]=\mathrm{H},[\mathrm{H}, \mathrm{Y}]=2 \mathrm{Y},[\mathrm{H}, \mathrm{X}]=-2 \mathrm{X}$. Suppose that $v \in \mathrm{~W}_{s, \lambda}$ satisfies the hypothesis of the second assertion of the lemma. Then $\mathrm{H} v=k v$ with $k=2\langle\mu, \gamma\rangle\langle\langle\gamma, \gamma\rangle$. Hence $\mathrm{H} \bar{v}=k \bar{v}$. Also $\mathrm{Y} \bar{v}=0$. Hence if $\mathrm{X}^{l} \bar{v}=0$ for some $l$. Then we would have $\operatorname{dim} \mathbf{U}(\mathfrak{r}) \bar{v}<\infty, \mathfrak{r}=\mathbf{R} \mathbf{X}+\mathbf{R} \mathbf{H}+\mathbf{R} \mathbf{Y}$. Thus $k \geqq 0$. But then $\mathrm{X}^{k+1} \bar{v}=0$. The rest of the lemma is even more standard.
Q. E. D.

Theorem 2.4. - Define $\mathrm{W}_{\mathrm{P}, \lambda}=\mathrm{W}_{1, \lambda} / \sum_{s<1} \mathrm{~W}_{s, \lambda}$. Then $\mathrm{W}_{\mathrm{P}, \lambda} \neq 0$ and
(1) As a $\mathfrak{f}$-module, $\mathrm{W}_{\mathrm{P}, \lambda}=\sum \oplus m_{\gamma}(\mu) \mathrm{V}_{\mu}$ the sum taken over $\mu \in \mathfrak{b}{ }^{*}, \mu, \mathrm{P}_{k}$-dominant integral and $0 \leqq m_{\lambda}(\mu)<\infty$ is an integer, $\mathrm{V}_{\mu}$ is the irreducible, finite dimensional $\mathfrak{f}$-module with highest weight $\mu$.

$$
4^{\circ} \text { série }- \text { tome } 9-1976-\text { No}^{\circ} 1
$$

(2) Set $w_{\mathrm{P}, \lambda}$ equal to the image of $w_{\mathrm{P}, \lambda}$ in $\mathrm{W}_{\mathrm{P}, \lambda}$. Then $\mathrm{U}(\mathrm{f}) w_{\mathrm{P}, \lambda}$ is equivalent with $\mathrm{V}_{\lambda}$ as a f -module, Furthermore, $m_{\lambda}(\lambda)=1$.
(3) If $m_{\lambda}(\mu) \neq 0$ then $\mu=\lambda+\delta, \delta$ a sum of elements of P .
(4) Let $U^{\mathfrak{h}}$ be the centralizer of $\mathfrak{h}$ in U . Let $\tilde{\mathfrak{n}}^{+}=\sum_{\alpha \in-t_{0} \mathrm{P}} \mathfrak{g}_{\alpha}$. If $z \in \mathrm{U}^{\mathfrak{h}}$ then

$$
z \equiv z_{0} \bmod U \tilde{\mathfrak{n}}^{+}, \quad z_{0} \in \mathrm{U}(\mathfrak{h}) .
$$

If $z, z^{\prime} \in \mathrm{U}^{\mathfrak{h}}$ then $z z^{\prime} \equiv z_{0} z_{0}^{\prime} \bmod U \tilde{\mathfrak{n}}^{+}$. Define

$$
\eta_{\mathrm{P}, \lambda}(z)=\left(t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}\right)\left(z_{0}\right) \quad \text { for } \quad z \in \mathrm{U}^{\mathrm{t}} .
$$

Then if $z \in \mathrm{U}^{\mathfrak{h}} \cap \mathrm{U}^{\mathfrak{h}}$ and $v \in \mathrm{U}(\mathrm{f}) w_{\mathrm{P}, \lambda}$ then $z . v=\eta_{\mathrm{P}, \lambda}(z) . v$.
The proof of this theorem rests on the following lemma of Enright, Varadarajan [4] which we prove for the sake of completeness.

Lemma 2.5. - Let M be $a \mathfrak{f}$-module such that if $m \in \mathrm{M}$ then $\operatorname{dim} \mathrm{U}\left(\mathrm{b}_{k}\right) . m<\infty$ $\left(\mathfrak{b}_{k}=\mathfrak{b}+\mathfrak{n}_{k}^{+}\right)$and such that M splits into a direct sum of weight spaces relative to $\mathfrak{h}$.

Let $\mathrm{N} \subset \mathrm{M}$ be a f -submodule. Suppose that $\bar{v} \in \mathrm{M} / \mathrm{N}$ and $\mathfrak{n}_{k}^{+} \cdot \bar{v}=0, h \cdot \bar{v}=\mu(h) v$, $h \in \mathfrak{h}$ with $\mu, \mathrm{P}_{k}$-dominant integral. Then there is $v \in \mathrm{M}$ so that $\mathfrak{n}_{k}^{+} v=0$ and $h . v=\mu(h) v$ for $h \in \mathfrak{h}$ so that $v+\mathrm{N}=\bar{v}$.

Proof. - Since for every $m \in \mathrm{M}, m=\sum_{\xi \in \mathfrak{\sigma}^{*}} m_{\xi}, h . m_{\xi}=\xi(h) m_{\xi}, h \in \mathfrak{h}$ we see that if $3_{k}$ is the center of $\mathrm{U}(\mathrm{f})$ and if for $\chi: \boldsymbol{z}_{k} \rightarrow \mathrm{C}$ a homomorphism of $\boldsymbol{z}_{k}$,

$$
\mathrm{M}_{\mathrm{x}}=\left\{m \in \mathrm{M} \mid(z-\chi(z))^{k} m=0, z \in \hat{3}_{k} \text { for some } k\right\}
$$

then $\mathrm{M}=\sum \oplus \mathrm{M}_{\chi}$. Now if $z \in \hat{j}_{k}$ then $z \cdot \bar{v}=\chi(z) \bar{v}$ with $\chi=\chi_{\mu}$ defined by

$$
z \equiv z_{0} \bmod U(\mathfrak{f}) \mathfrak{n}_{k}^{+}, \quad z_{0} \in U(\mathfrak{h}) \quad \text { and } \quad \chi_{\mu}(z)=\mu\left(z_{0}\right) .
$$

Now $\chi_{\mu}=\chi_{\mu^{\prime}}$ if and only if $\mu^{\prime}=s\left(\mu+\rho_{k}\right)-\rho_{k}$ for some $s \in \mathrm{~W}_{k}$ (cf. Dixmier [2], Chapter 7). Now $\mathrm{M} / \mathrm{N}=\sum \oplus(\mathrm{M} / \mathrm{N})_{x}$ and let $\mathrm{P}_{\mathrm{x}}: \mathrm{M} / \mathrm{N} \rightarrow(\mathrm{M} / \mathrm{N})_{x}$ be the f-invariant projection. Then $\mathrm{P}_{\chi}(\bar{v})=0$ if $\chi \neq \chi_{\mu}$. Thus there is $v_{1} \in \mathrm{M}$ so that $z . v_{1}=\chi_{\mu}(z) v_{1}$ for $z \in \mathcal{J}_{k}$ and $v_{1}+\mathrm{N}=v$. Arguing similarly for the action of $\mathfrak{h}$, we may assume $h . v_{1}=\mu(h) v_{1}$ for $h \in \mathfrak{h}$.

Now $\operatorname{dim} \mathrm{U}\left(\mathfrak{n}_{k}^{+}\right) v_{1}<\infty$. The weights of $\mathrm{U}\left(\mathfrak{n}_{k}^{+}\right) v_{1}$ are of the form $\mu+\delta$ with $\delta$ a sum of elements of $\mathrm{P}_{k}$. Let $\delta$ be maximal such that there is $v \neq 0, v \in \mathrm{U}\left(\mathfrak{n}_{k}^{+}\right) v_{1}$ and $h . v=(\mu+\delta)(h) . v$. Then $\mathfrak{n}_{k}^{+} \cdot v=0$. Hence if $z \in 3_{k}, z \cdot v=\chi_{\mu+\delta}(z) v$. But

$$
\mathrm{U}\left(\mathfrak{n}_{k}^{+}\right) v_{1} \subset(\mathrm{M})_{x_{\mu}} .
$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Hence $\chi_{\mu+\delta}=\chi_{\mu}$. But then there is $s \in \mathrm{~W}_{k}$ so that $s\left(\mu+\rho_{k}\right)=\mu+\delta+\rho_{k}$. But this is possible ( $\mu$ is $\mathrm{P}_{k}$-dominant integral) only if $\delta=0$ and $s=1$. Thus $v=v_{1}$.
Q. E. D.

Proof of Theorem 2.4. - (i) $w_{1, \lambda} \notin \sum_{s<1} \mathrm{~W}_{s, \lambda} . \quad$ Indeed, if $\mathrm{M}=\sum_{s<1} \oplus \mathrm{~W}_{s, \lambda}$ let $\mathrm{M} \xrightarrow{\psi} \mathrm{W}_{1}$, under $\sum_{s<1} \oplus w_{s} \rightarrow \sum w_{s}$. Let $\mathrm{N}=\operatorname{ker} \psi$. If $w_{1, \lambda} \in \psi(\mathrm{M})$ then since $\lambda$ is $\mathrm{P}_{k}$-dominant integral we see that $w_{1, \lambda}=\psi\left(\sum_{s<1} \oplus w_{s}\right)$ with $h . w_{s}=\lambda(h) w_{s}, \mathfrak{n}_{k}^{+} \cdot w_{s}=0$. We show that this is impossible. Suppose that $s<1$ and there is $w_{s} \in \mathrm{~W}_{s, \lambda}$ so that $\mathfrak{n}_{k}^{+} w_{s}=0$ and $h . w_{s}=\lambda(h) w_{s}, h \in \mathfrak{h}$. Let

$$
s=s_{0} \xrightarrow{\gamma_{1}} s_{1} \xrightarrow{\gamma_{2}} \ldots \xrightarrow{\gamma_{p}} s_{p}=t_{0} \quad \text { with } \quad \gamma_{i} \in \mathrm{P}_{k},
$$

$\gamma_{i}$ simple (this is always possible, $c f$. Dixmier [2], Chapter 7). Defining

$$
\begin{array}{cc}
\lambda_{0}=\lambda, & v_{1}=2\left\langle\lambda+\rho_{k}, \gamma_{1}\right\rangle /\left\langle\gamma_{1}, \gamma_{1}\right\rangle, \\
\lambda_{1}=s_{\gamma_{1}}\left(\lambda+\rho_{k}\right)-\rho_{k}, & v_{2}=2\left\langle\lambda_{1}+\rho_{k}, \gamma_{2}\right\rangle /\left\langle\gamma_{2}, \gamma_{2}\right\rangle, \quad \ldots
\end{array}
$$

and applying Lemma 2.3 we find that if $X_{i} \in \mathfrak{g}_{-\gamma_{i}}, X_{i} \neq 0$ then

$$
\tilde{w}=\mathrm{X}_{p}^{v_{p}} \ldots \mathrm{X}_{1}^{v_{1}} \cdot w_{s} \in \mathrm{~W}_{t_{0}, \lambda}
$$

and
(a) $h . \tilde{w}=\left(\left(t_{0} s^{-1}\right)\left(\lambda+\rho_{k}\right)-\rho_{k}\right)(h) \tilde{w}$ and $\mathfrak{n}_{k}^{+} \tilde{w}=0$. If $s \neq 1$ then $t_{0} s^{-1}>t_{0}$. But then

$$
\left(t_{0} s^{-1}\right)\left(\lambda+\rho_{k}\right)-\rho_{k}=t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}+\delta,
$$

$\delta$ a sum of elements of $\mathrm{P}_{k}$. But $\mathrm{W}_{t_{o}, \lambda}$ is the $g$-Verma module with highest weight $t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}$ relative to $-t_{0} P$. Hence we bave a contradiction.
We have shown that $W_{P, \lambda} \neq 0$.
(b) U (f) $w_{\mathrm{P}, \lambda}$ is equivalent with $\mathrm{V}_{\lambda}$. In fact, we have a map

$$
\mathrm{U}(\mathfrak{f}) w_{1, \lambda} / \sum_{s<1} \mathrm{U}(\mathfrak{f}) w_{s, \lambda} \rightarrow \mathrm{U}(\mathrm{f}) w_{\mathrm{P}, \lambda} .
$$

Using Lemma 7.2.4 (p. 224) of Dixmier [2] we find $U(f) w_{\mathrm{P}, \lambda}$ is irreducible and finite dimensional.
Since $\mathrm{W}_{\mathrm{P}, \lambda}=\mathrm{U}(\mathrm{g}) . w_{\mathrm{P}, \lambda}$ we see that if $v \in \mathrm{~W}_{\mathrm{P}, \lambda}, \operatorname{dim} \mathrm{U}(\mathfrak{f}) v<\infty$. Let for $\mu \in \mathfrak{h}^{*}$,

$$
\mathrm{W}_{s, \lambda}^{\mu}=\left\{v \in \mathrm{~W}_{s, \lambda} \mid h \cdot v=\mu(h) v, h \in \mathfrak{h} \text { and } \mathfrak{n}_{k}^{+} \cdot v=0\right\} .
$$

Define $W_{P, \lambda}^{\mu}$ in the same way. Of course, $W_{P, \lambda}^{\mu} \neq 0$ implies $\mu$ is $P_{k}$-dominant integral. Now Lemma 2.5 implies that if $\varepsilon: \mathrm{W}_{1, \lambda} \rightarrow \mathrm{~W}_{\mathrm{P}, \lambda}$ is the canonical map then

$$
\varepsilon\left(\mathrm{W}_{1, \lambda}^{\mu}\right)=\mathrm{W}_{\mathrm{P}, \lambda}^{\mu},
$$

$\mu, \mathrm{P}_{k}$-dominant integral.

$$
4^{\text {e }} \text { série }- \text { tome } 9-1976-\mathrm{N}^{\circ} 1
$$

Let $\gamma_{1}, \ldots, \gamma_{n}$ be simple in $\mathrm{P}_{k}$ so that

$$
1 \xrightarrow{\gamma_{1}} s_{\gamma_{1}} \xrightarrow{\gamma_{2}} s_{\gamma_{2}} s_{\gamma_{1}} \xrightarrow{\gamma_{3}} \ldots \xrightarrow{\gamma_{n}} s_{\gamma_{n}} \ldots s_{\gamma_{1}}=t_{0} .
$$

Define $\mu_{0}=\mu$,

$$
\mu_{i}=\left(s_{\gamma_{n}} \ldots s_{\gamma_{1}}\right)\left(\mu+\rho_{k}\right)-\rho_{k} \quad \text { and } \quad v_{i}=2\left\langle\mu_{i-1}+\rho_{k}, \gamma_{i}\right\rangle \mid\left\langle\gamma_{i}, \gamma_{i}\right\rangle .
$$

Let $\mathrm{X}_{i} \in \mathrm{~g}_{-\gamma_{i}}, \mathrm{X}_{i} \neq 0$. Then Lemma 2.3 implies that

$$
\mathrm{X}_{i}^{\mathrm{v}_{i}} \ldots \mathrm{X}_{1}^{\mathrm{v}_{1}}\left(\mathrm{~W}_{1, \lambda}^{\mu}\right) \subset \mathrm{W}_{s_{r_{i}} \ldots, s_{\gamma_{1}}}^{\mu_{i}}
$$

In particular if $d_{t_{0}}(\mu)=X_{n}^{v_{n}} \ldots \mathrm{X}_{1}^{\nu_{1}}$ then $d_{t_{0}}(\mu): \mathrm{W}_{1, \lambda}^{\mu} \rightarrow \mathrm{W}_{t_{0}, \lambda}^{t_{0}\left(\mu+\rho_{k}\right)-\rho_{k}}$. Now $d_{t_{0}}(\mu)$ is injective by the construction of the $W_{s, \lambda}$. Hence we see
(c) $\operatorname{dim} \mathrm{W}_{\mathrm{P}, \lambda}^{\mu} \leqq \operatorname{dim} \mathrm{W}_{t_{0}, \lambda}^{t_{0}\left(\mu+\rho_{k}\right)-\rho_{k}}<\infty$, This implies (1) since $m_{\lambda}(\mu)=\operatorname{dim} \mathrm{W}_{\mathrm{P}, \lambda}^{\mu}$ by the theorem of the highest weight.
To see (2) we note $\operatorname{dim} \mathrm{W}_{t_{0}, \lambda}^{t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}}=1$ since $\mathrm{W}_{t_{0}, \lambda}$ is a Verma module with highest weight $t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}$. To prove (3) we note that if $W_{P, \lambda}^{\mu} \neq 0$ then $W_{t_{0}, \lambda}^{t_{0}\left(\mu+\rho_{k}\right)-\rho_{k}} \neq 0$. But then

$$
t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}=t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}+t_{0} \delta
$$

with $\delta$ a sum of elements of P . (Every weight of $\mathrm{W}_{t_{0}, \lambda}$ is of the form $t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}-\delta$ with $\delta$ a sum of elements in $-t_{0}$ P.) Hence $\mu+\rho_{k}=\lambda+\rho_{k}+\delta$. Thus $\mu=\lambda+\delta$.
Finally let $z \in \mathrm{U}^{\mathrm{t}}$. Then $z \cdot w_{\mathrm{P}, \lambda}=\chi(z) w_{\mathrm{P}, \lambda}$ by (2). By the proof above

$$
\varepsilon: \quad \mathrm{W}_{1, \lambda}^{\lambda} \rightarrow \mathrm{C} w_{\mathrm{P}, \lambda}
$$

is bijective. Since $\varepsilon\left(z \cdot w_{1, \lambda}\right)=\chi(z) w_{\mathrm{P}, \lambda}$, we have $z . w_{1, \lambda}=\chi(z) w_{1, \lambda}$. But if $d_{t_{0}}(\lambda)$ is as above then

$$
d_{t_{0}}(\lambda) z w_{1, \lambda}=z d_{t_{0}}(\lambda) w_{1, \lambda} \quad\left(z \in \mathrm{U}^{\mathrm{t}}, d_{t_{0}}(\lambda) \in \mathrm{U}(\mathrm{f})\right) .
$$

But $d_{t_{0}}(\lambda) w_{1, \lambda}=c w_{t_{0}, \lambda}, c \neq 0 . \quad$ Now $z \cdot w_{t_{0}, \lambda}=\eta_{P, \lambda}(z) w_{t 0, \lambda}$ for $z \in \mathrm{U}^{t}$.
Q. E. D.

The next result expresses the essential uniqueness of the family $W_{s, 2}$. We note that it is clear from the above results that if $\mathrm{Z}_{s}=\mathrm{W}_{s, \lambda}$ then the conditions of Theorem 2.6 are satisfied.

Theorem 2.6. - Suppose that to each $s \in \mathrm{~W}_{k}$ we have assigned a $\mathfrak{g}$-module $\mathrm{Z}_{s}$ so that:
(1) $Z_{t_{0}}$ is the Verma module for $\mathfrak{g},-t_{0} \mathrm{P}$ with highest weight $t_{0}\left(\lambda+\rho_{k}\right)-\rho_{k}$.
(2) If $t \leqq s, t, s \in \mathrm{~W}_{k}, \mathrm{Z}_{t} \subset \mathrm{Z}_{s}$.
(3) If $\mathrm{X} \in \mathfrak{n}_{k}^{-}$and $v \in \mathrm{Z}_{t}$ satisfies $\mathrm{X} . v=0$ then $v=0$ or $\mathrm{X}=0$.
(4) $\mathrm{Z}_{s}=\mathrm{U}(\mathrm{g}) z_{s}$ with $\mathfrak{n}_{k}^{+} . z_{s}=0, h . z_{s}=\left(s\left(\lambda+\rho_{k}\right)-\rho_{k}\right)(h) z_{s}$.
annales scientifioues de l'école normale supérieure
(5) If $s \rightarrow s_{\gamma} s$, if $\gamma$ is simple relative to $\mathrm{P}_{k}$ and if $n=2\left\langle s\left(\lambda+\rho_{k}\right), \gamma\right\rangle /\langle\gamma, \gamma\rangle$ then $n>0$ and

$$
z_{s_{\gamma} s}=c \mathrm{E}_{-\gamma}^{n} z_{s}, \quad c \neq 0\left(\mathrm{E}_{-\gamma} \in \mathfrak{g}_{-\gamma}-\{0\}\right)
$$

Then there exists for each $s \in \mathrm{~W}_{k}$ a bijective $\mathfrak{g}$-module isomorphism $\xi_{s}: \mathrm{W}_{s, \lambda} \rightarrow \mathrm{Z}_{s}$ commuting with the inclusions. Furthermore if $\xi_{s}^{\prime}$ is another family of $\mathfrak{g}$-module isomorphisms commuting with the inclusions of the $\mathrm{W}_{s, \lambda}$ and the $\mathrm{Z}_{s}^{\prime}$ s then $\xi_{s}^{\prime}=c \xi_{s}$ with $c$ independent of $s$.

Proof. - (1), (3), (4), (5), imply that $\mathrm{U}(\mathfrak{f}) . z_{s}$ is isomorphic with the Verma module for $\mathfrak{f}, \mathrm{P}_{k}$ with highest weight $s\left(\lambda+\rho_{k}\right)-\rho_{k}$. (4) also implies that if $\mathrm{U}_{s}=\mathrm{U}(\mathfrak{f}) z_{s}$ then $\mathrm{Z}_{s}=\mathrm{U}(\mathrm{g}) . \mathrm{U}_{s}$. Hence we have

$$
\check{\xi}_{s}: \quad \underset{U(\mathrm{t})}{\mathrm{U}(\mathrm{~g}) \otimes} \mathrm{V}^{s\left(\lambda+\rho_{k}\right)-\rho_{k}} \rightarrow \mathrm{Z}_{s}
$$

a surjective $\mathfrak{g}$-module homomorphism. Now $Z_{t_{0}}=W_{t_{0}, \lambda}$. Thus ker $\tilde{\xi}_{t_{0}}=I_{\lambda}$.
(a) If $s \in \mathrm{~W}_{k}$ and $s>t_{0}$ there is a collection of elements $\gamma_{1}, \ldots, \gamma_{p}$ simple so that

$$
s \rightarrow s_{\gamma_{1}} s \rightarrow s_{\gamma_{2}} s_{\gamma_{1}} s \rightarrow \ldots \rightarrow s_{\gamma_{p}} \ldots s_{\gamma_{1}} s=t_{0}
$$

This is easily proved by induction on the order and Lemmas 7.7.2, 7.7.5 of Dixmier [2].
(b) In particular implies that

commutes. Thus $\operatorname{Ker} \tilde{\xi}_{s} \supset \mathrm{I}_{\lambda}$ for each $s \in \mathrm{~W}_{k}$.
This implies that $\tilde{\xi}_{s}$ induces $\tilde{\xi}_{s}: M_{s, \lambda} \rightarrow Z_{s}$ a surjective $\mathfrak{g}$-module homomorphism.
(3) Implies that ker $\hat{\xi}_{s} \supset \mathrm{~J}_{s, \mathrm{X}, 0}\left(\mathrm{~J}_{s, \mathrm{X}, i}\right.$ and $\mathrm{J}_{s, i}$ are the $\mathrm{J}_{\mathbf{x}, i}$ and $\mathrm{J}_{i}$ of the proof of Lemma 2.5 for $\mathrm{M}_{s, \lambda}$ ) for $\mathrm{X} \in \mathfrak{r}_{k}^{-}, \mathrm{X} \neq 0$ hence ker $\hat{\xi}_{s} \supset \mathrm{~J}_{s, 0}$ for $s \in \mathrm{~W}_{k}$. But is is also clear that if ker $\hat{\xi}_{s} \supset \mathrm{~J}_{s, i}$ then ker $\hat{\xi}_{s} \supset \mathrm{~J}_{s, i+1}$. Hence ker $\hat{\xi}_{s} \supset \mathrm{~J}_{s}$. We therefore have $\hat{\xi}_{s}$ induces $\xi_{s}: \mathrm{W}_{s, \lambda} \rightarrow \mathrm{Z}_{s}$ a surjective $\mathfrak{g}$-module homomorphism.

Clearly $\xi_{t_{0}}$ is injective. Suppose that we have shown $\xi_{t}$ is injective for $t_{0} \leqq t<s$. Let $\gamma$ be simple in $\mathrm{P}_{k}$ so that $s \rightarrow s_{\gamma} s$. Then $\mathrm{W}_{s, \lambda} / \mathrm{W}_{s_{\gamma} s, \lambda}$ is $\mathfrak{f}^{\gamma}$ finite $\left(\mathfrak{f}^{\gamma}=\mathfrak{g}_{\gamma}+\mathfrak{g}_{-\gamma}+\left[\mathfrak{g}_{\gamma}, \mathfrak{g}_{-\gamma}\right]\right)$. If $v \in W_{s, \lambda}, \xi_{s}(v)=0$ then since

commutes $v \notin \mathrm{~W}_{s_{\gamma} s, \lambda}$. There is therefore $p>0$ so that $\mathrm{E}_{-\gamma}^{p} v \in \mathrm{~W}_{s_{\gamma} s, \lambda}$. But then

$$
\xi_{s_{\gamma} s}\left(\mathrm{E}_{-\gamma}^{p} v\right)=\mathrm{E}_{-\gamma}^{p} \xi_{s}(v)=0
$$

Hence $\xi_{s_{\gamma} s}\left(\mathrm{E}_{-\gamma}^{p} v\right)=0$. Thus $\mathrm{E}_{-\gamma}^{p} v=0$. But then $v=0$ by (3).

```
4e série - tome 9 - 1976 - No 1
```

If $\xi_{s}^{\prime}: \mathrm{W}_{s, \lambda} \rightarrow \mathrm{Z}_{s}$ is another such family of homomorphisms. Then clearly $\xi_{t_{0}}^{\prime}=c \xi_{t_{0}}$ for some $c$. Suppose we have shown $\xi_{t}^{\prime}=c \xi_{t}$ for $t_{0} \leqq t<s$. Then again supposing $\gamma$ is simple in $\mathrm{P}_{k}$ and $s>s_{\gamma} s$ then if $v \in \mathrm{~W}_{s, \lambda}$ there is $p \geqq 0$ so that $\mathrm{E}_{-\gamma}^{p} v \in \mathrm{~W}_{s_{\gamma} s, \lambda}$. Hence $\xi_{s}^{\prime}\left(\mathrm{E}_{-\gamma}^{p} v\right)=c \xi_{s_{\gamma} s}\left(\mathrm{E}_{-\gamma}^{p} v\right)$. Hence $\mathrm{E}_{-\gamma}^{p} \xi_{s}^{\prime}(\mathrm{v})=c \xi_{s_{\gamma} s}\left(\mathrm{E}_{-\gamma}^{p} v\right)$. But then

$$
\mathrm{E}_{-\gamma}^{p}\left(\xi_{s}^{\prime}(v)-c \xi_{s}(v)\right)=0
$$

Hence $\xi_{s}^{\prime}(v)=c \xi_{s}(v)$.

> Q. E. D.

## 3. Tensor products of $W_{P, \lambda}$ with finite dimensional $\mathfrak{g}$-modules

In Enright [3] the tensor product of the module $D_{p, \lambda}$ with finite dimensional representations was studied. We give a proof of a sharpening of the main result on tensor products in Enright [3] our techniques are, of course, quite similar to Enright's.

Let F be an irreducible finite dimensional representation of $\mathfrak{g}$. We use the notation of Section 2. Let $\lambda \in \mathfrak{h}^{*}$ be $\mathrm{P}_{k}$-dominant integral. Then we have the inclusions $\mathrm{W}_{s, \lambda} \otimes \mathrm{~F} \subset \mathrm{~W}_{\tau, \lambda} \otimes \mathrm{F}$ if $s \leqq \tau$.

Lemma 3.1. - If $\tau \xrightarrow{\gamma} s$ and $\gamma \in \mathrm{P}_{k}$ is simple for $\mathrm{P}_{k}$, if $\mathrm{X} \in \mathfrak{g}_{-\gamma}$ and if $v \in \mathrm{~W}_{\tau, \lambda} \otimes \mathrm{F}$ then there is $k \geqq 0, k \in \mathbf{Z}$ so that $\mathbf{X}^{k} . v \in \mathrm{~W}_{s, \lambda} \otimes \mathrm{~F}$.

Proof. - It is enough to prove the result for $v$ of the form $w \otimes f, w \in \mathrm{~W}_{\tau, \lambda}, f \in \mathrm{~F}$. Now there is $l$ so that $\mathrm{X}^{l} . f=0$. There is $k$ so that $\mathrm{X}^{k} . w \in \mathrm{~W}_{s, \lambda}$. Now

$$
\mathrm{X}^{k+l}(w \otimes f)=\sum_{j=0}^{k+l}\binom{k+l}{j} \mathrm{X}^{k+l-j} w \otimes \mathrm{X}^{j} f=\sum_{j=0}^{l-1}\binom{k+l}{j} \mathrm{X}^{k+l-j} w \otimes \mathrm{X}^{j} f
$$

But if $j \leqq l-1, k+l-j \geqq k$.
Hence the lemma.
Lemma 3.2. - If $\mathrm{X} \in \mathfrak{n}_{k}^{-}, \mathrm{X} \neq 0$ and $w \in \mathrm{~W}_{s, \lambda} \otimes \mathrm{~F}, \mathrm{X} w=0$, then $w=0$.
Proof. - Let $\mathrm{F}=\mathrm{F}_{d} \supset \mathrm{~F}_{d-1} \supset \ldots \supset \mathrm{~F}_{1} \supset(0)$ be such that $\operatorname{dim} \mathrm{F}_{i}=i$ and

$$
\mathfrak{n}_{k}^{+} \mathrm{F}_{i} \subset \mathrm{~F}_{i-1}
$$

Let $f_{1}, \ldots, f_{d}$ be a basis of F so that $\mathrm{F}_{i}=\sum_{j=1}^{i} \mathbf{C} f_{j} . \quad$ Then $w=\sum w_{i} \otimes f_{i}, w_{i} \in \mathrm{~W}_{s, \lambda}$,

$$
0=\mathbf{X} w=\sum \mathbf{X} w_{i} \otimes f_{i}+\sum w_{i} \otimes \mathbf{X} f_{i}
$$

Since $\mathrm{X} f_{i} \in \mathrm{~F}_{i-1}$ for all $i=1, \ldots, d$. We see that $\mathrm{X} w_{d}=0$. But then $w_{d}=0$. But then $\mathrm{X} f_{i} \in \mathrm{~F}_{d-2}$ if $w_{i} \neq 0$ hence $w_{d-1}=0$, etc.

Lemma 3.3. - If $v \in \mathrm{~W}_{s, \lambda} \otimes \mathrm{~F}$ and 3 is the center of the universal enveloping algebra of $\mathfrak{g}$ then $\operatorname{dim} 3 . v<\infty$.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Proof. - By Lemma 3.1 there exist $\mathrm{X}_{1}, \ldots, \mathrm{X}_{k} \in \mathrm{n}_{k}^{-}, \mathrm{X}_{i} \neq 0$ so that $\mathrm{X}_{1}^{\mathrm{v}_{1}} \ldots \mathrm{X}_{k}^{\mathrm{v}_{k}}$, $v \in \mathrm{~W}_{t_{0}, \lambda} \otimes \mathrm{~F}$. Set $u=\mathrm{X}_{1}^{\mathrm{v}_{1}} \ldots \mathrm{X}_{k}^{v_{k}}$. Then

$$
u: \quad \mathfrak{j} \cdot v \rightarrow \mathfrak{j} u . v \subset \mathrm{~W}_{t_{0}, \lambda} \otimes \mathrm{~F}
$$

By lemma 3.2, $\operatorname{dim} \mathfrak{z} u . v=\operatorname{dim} 3 . v$. Thus it is enough to prove the result for $s=t_{0}$. But $\mathrm{W}_{t_{0}, \lambda}$ is a Verma module relative to $-t_{0} \mathrm{P}$ hence $\mathrm{W}_{t_{0}, \lambda} \otimes \mathrm{~F}$ has a finite composition series by Verma modules. Hence the result is true for $W_{t_{0}, \lambda} \otimes F$ and therefore for $\mathrm{W}_{s, \lambda} \otimes \mathrm{~F}$ for any $s \in \mathrm{~W}_{k}$.

Let for $\lambda \in \mathfrak{h}^{*}, \chi_{\lambda}$ be the infinitesimal character of the $\mathfrak{g}$-Verma module $\mathbf{M}^{t_{0},\left(\lambda+2 \rho_{k}\right)}$ with highest weight $t_{0}\left(\lambda+2 \rho_{k}\right)$ relative to $-t_{0} \mathrm{P}$.

Lemma 3.4. - Let $\xi_{1}, \ldots, \xi_{q}$ be the distinct weights of F . Let for $\chi: \mathfrak{3} \rightarrow \mathrm{C}$ a homomorphism
$\left(\mathbf{W}_{\mathbf{P}, \lambda} \otimes \mathrm{F}\right)=\left\{v \in \mathrm{~W}_{\mathbf{P}, \lambda} \otimes \mathrm{F} \mid\right.$ there is $k>0, k \in \mathbf{Z}$ so that $(z-\chi(z))^{k} v=0$ for $\left.z \in \mathfrak{z}\right\}$.
Then $\mathrm{W}_{\mathrm{P}, \lambda} \otimes \mathrm{F}=\sum\left(\mathrm{W}_{\mathrm{P}, \lambda} \otimes \mathrm{F}\right)_{\chi_{\lambda+}+\xi_{i}}$
Proof. - It is enough to prove the statement for $W_{1, \lambda} \otimes F$. The argument of Lemma 3.3 reduces this to proving the result for $W_{t_{0}, \lambda} \otimes F$. To prove the result for $W_{t_{0}, \lambda} \otimes F$ we note that Lemma 7.6.14 of Dixmier [2] implies

$$
\mathrm{W}_{t_{0}, \lambda} \otimes \mathrm{~F}=\mathrm{M}_{d} \supset \mathrm{M}_{d-1} \supset \ldots \supset \mathrm{M}_{1} \supset \mathrm{M}_{0}=(0)
$$

with $M_{i}$ a $\mathfrak{g}$-submodule and $\mathrm{M}_{i} / \mathrm{M}_{i-1}$ is $\mathfrak{g}$-isomorphic with $\mathrm{M}^{t_{0},\left(\lambda+2 \rho_{k}+\xi_{t}\right)}$ here the weights of F are $\xi_{1}, \ldots, \xi_{d}$ counting multiplicity in a prescribed order. But now the result follows for $W_{t_{0}, \lambda} \otimes F$.
Q. E. D.

Lemma 3.5. - Let $\lambda \in \mathfrak{h}^{*}$ be P -dominant (that is $\langle\lambda, \alpha\rangle \geqq 0, \alpha \in \mathrm{P}$ ). If $s \in \mathrm{~W}(\nabla)$ and $s \lambda$ is P -dominant then $s \lambda=\lambda$.

Proof. - Let $\alpha_{1}, \ldots, \alpha_{l}$ be the simple roots in P. Let $\lambda_{1}, \ldots, \lambda_{l}$ in $\mathfrak{h}^{*}$ be defined by $2\left\langle\lambda_{i}, \alpha_{j}\right\rangle /\left\langle\alpha_{j}, \alpha_{j}\right\rangle=\delta_{i j}$. The hypotheses imply that $\lambda=\sum r_{i} \lambda_{i}, r_{i} \in \mathbf{R}$, $r_{i} \geqq 0$. Now

$$
s \lambda_{i}=\lambda_{i}-\mathrm{Q}_{i, s}, \quad \mathrm{Q}_{i, s}=\sum_{j=1}^{l} n_{i, s, j} \alpha_{j}, \quad n_{i, s, j} \in \mathbf{Z}, \quad n_{i, s, j} \geqq 0
$$

Hence

$$
s \lambda=\lambda-\sum_{j=1, i=1}^{l} r_{i} n_{i, s, j} \alpha_{j}=\lambda-\sum m_{j} \alpha_{j}
$$

Set $\lambda-s \lambda=u$. Then since $\lambda_{i}=\sum r_{j i} \alpha_{j}, r_{j i} \geqq 0$ we see

$$
\langle\lambda, \lambda\rangle=\langle s \lambda+u, s \lambda+u\rangle=\langle s \lambda, s \lambda\rangle+2\langle s \lambda, u\rangle+\langle u, u\rangle .
$$

Since $s \lambda$ is P-dominant $\langle s \lambda, u\rangle \geqq 0$. But $\langle s \lambda, s \lambda\rangle=\langle\lambda, \lambda\rangle$. Hence

$$
\langle s \lambda, u\rangle=\langle u, u\rangle=0 .
$$

But then $u=0$.
Q. E. D.

```
4* SÉRIE - tome 9 - 1976 - No 1
```

The following result (and its corollary) are useful in the problem of imbedding discrete series into (non-unitary) principal series.

Theorem 3.6. - Let $\lambda \in \mathfrak{b}^{*}$ be $\mathrm{P}_{k}$-dominant integral and suppose that $\lambda+\rho_{k}-\rho_{n}$ is P -dominant and regular (that is $\left\langle\lambda+\rho_{k}-\rho_{n}, \alpha\right\rangle>0$ for $\alpha \in \mathrm{P}$ ). Let F be the finite dimensional irreducible representation of $\mathfrak{g}$ with the highest weight $\mu$ relative to P . Then $\left(\mathrm{W}_{\mathrm{P}, \lambda} \otimes \mathrm{F}\right)_{\chi_{\lambda+\mu}}$ is $\mathfrak{g}$-isomorphic with $\mathrm{W}_{\mathrm{P}, \lambda+\mu}$.

Proof. - As we have observed in the proof of Lemma 3.4 :

$$
\mathrm{W}_{t_{0}, \lambda} \otimes \mathrm{~F}=\mathrm{M}_{d} \supset \mathrm{M}_{d-1} \supset \ldots \supset \mathrm{M}_{1} \supset \mathrm{M}_{0}=(0)
$$

with $M_{i} / M_{i-1}=M^{t_{0}\left(\lambda+\xi_{i}+2 \rho_{k}\right)}$ and $\xi_{1}, \ldots, \xi_{d}$ are the weights of F in a "certain order". Let us describe the order. It is any labeling of the $\xi_{i}$ so that if $t_{0} \xi_{j}=t_{0} \xi_{i}-t_{0} \mathrm{Q}, \mathrm{Q} \neq 0$ ( Q a sum of not necessarily distinct elements of P ) then $i>j$. Hence

$$
\frac{\mathbf{M}_{d}}{\mathbf{M}_{d-1}}=\mathbf{M}^{t_{0}\left(\lambda+\mu+2 \rho_{k}\right)}
$$

(1) If $\chi_{\lambda+\xi_{i}}=\chi_{\lambda+\mu}$ then $\xi_{i}=\mu$. Indeed if $\chi_{\lambda+\xi_{i}}=\chi_{\lambda+\mu}$ then there is $s \in W(\Delta)$ so that

$$
s\left(t_{0}\left(\lambda+\mu+2 \rho_{k}\right)-t_{0} \rho\right)=t_{0}\left(\lambda+\xi_{i}+2 \rho_{k}\right)-t_{0} \rho
$$

That is

$$
t_{0} s^{-1} t_{0}\left(\lambda+\rho_{k}-\rho_{n}\right)+t_{0} s^{-1} t_{0} \xi_{i}=\lambda+\rho_{k}-\rho_{n}+\mu
$$

If $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ are the simple roots in P . Then

$$
t_{0} s^{-1} t_{0}\left(\lambda+\rho_{k}-\rho_{n}\right)=\lambda+\rho_{k}-\rho_{n}-\sum_{i=1}^{l} r_{i} \alpha_{i}
$$

$r_{i} \geqq 0, r_{i} \in \mathbf{R}$ (see the proof of Lemma 3.5).

$$
t_{0} s^{-1} t_{0} \xi_{i}=\mu-\sum_{i=1}^{l} m_{i} \alpha_{i}, \quad m_{i} \geqq 0, \quad m_{i} \in \mathbf{Z}
$$

( $t_{0} s^{-1} t_{0} \xi_{i}$ is a weight of F ).
But then $\sum_{i=1}^{l}\left(r_{i}+m_{i}\right) \alpha_{i}=0$. This implies $r_{i}+m_{i}=0$. Since $r_{i} \geqq 0, m_{i} \geqq 0$ we see $r_{i}=0$ and $m_{i}=0$. Thus

$$
t_{0} s^{-1} t_{0}\left(\lambda+\rho_{k}-\rho_{n}\right)=\lambda+\rho_{k}-\rho_{n}
$$

But $\lambda+\rho_{k}-\rho_{n}$ is P-dominant and regular. Hence $s=1$. Since $t_{0} s^{-1} t_{0} \xi_{i}=\mu$. This proves (1).

Using (1) it is easy to see that
(2) $\left(W_{t_{0}, \lambda} \otimes F\right)_{\chi_{\lambda+\mu}} \equiv M^{t_{0},\left(\lambda+\mu+2 \rho_{k}\right)}=W_{t_{0}, \lambda+\mu}$.

Let $\mathrm{P}_{\mu}: \mathrm{W}_{t_{0}, \lambda} \otimes \mathrm{~F} \rightarrow\left(\mathrm{~W}_{t_{0}, \lambda} \otimes \mathrm{~F}\right)_{\lambda_{\lambda+\mu}}$ be the corresponding projection.
annales scientifiques de l'école normale supérieure

Let $3_{k}$ be the center of the universal enveloping algebra of $\mathfrak{f}$. Let for $\lambda \in \mathfrak{h}^{*}, \eta_{\lambda}$ be the infinitesimal character of $\mathrm{V}^{\lambda}$, the $\mathfrak{f}$-Verma module with highest,weight $\lambda$ relative to $\mathrm{P}_{\boldsymbol{k}}$.

$$
\mathrm{U}(\mathfrak{f}) w_{t_{0}, \lambda} \otimes \mathrm{~F}=\mathrm{V}_{d} \supset \mathrm{~V}_{d-1} \supset \ldots \mathrm{~V}_{1} \supset \mathrm{~V}_{0}=(0)
$$

with $V_{i} / V_{i-1}=V^{t_{0}\left(\lambda+\xi_{i}+2 \rho_{k}\right)}\left(\xi_{1}, \ldots, \xi_{d}\right.$ ordered as above). Arguing as above we find
(3) $\left(\mathrm{U}(\mathfrak{f}) w_{t_{0}, \lambda} \otimes \mathrm{~F}\right)_{\eta_{\lambda+\mu}} \equiv \mathrm{V}^{t_{0}\left(\lambda+\mu+2 \rho_{k}\right)}$.
(4) $P_{\mu}\left(V_{d-1}\right)=0$.

First of all we show $P_{\mu} V_{1}=0$. Indeed if $P_{\mu} V_{1} \neq 0$ then $P_{\mu}\left(W_{t_{0}, \lambda} \otimes F\right)$ must have the weight $t_{0}\left(\lambda+\xi_{1}+2 \rho_{k}\right)$ with positive multiplicity. Since $\xi_{1} \neq \mu, \xi_{1}=\mu-\delta, \delta$ a sum of elements of $P$. Hence

$$
t_{0}\left(\lambda+\xi_{1}+2 \rho_{k}\right)=t_{0}\left(\lambda+\mu+2 \rho_{k}\right)-t_{0} \delta
$$

But every weight of $\mathrm{M}^{t_{0}\left(\lambda+\mu+2 \rho_{k}\right)}$ is of the form $t_{0}\left(\lambda+\mu+2 \rho_{k}\right)+t_{0} \delta^{\prime}, \delta^{\prime}$ a sum of positive roots. Hence $\mathrm{P}_{\mu} \mathrm{V}_{1}=0$. Suppose $\mathrm{P}_{\mu} \mathrm{V}_{i}=0$, and $i \leqq d-2$. Then, arguing as above, we find $P_{\mu} V_{i+1}=0$. This proves (4).

We note that $\mathrm{P}_{\mu}\left(\mathrm{U}(\mathfrak{f}) w_{t_{0}, \lambda} \otimes F\right) \neq 0$ since $\mathrm{P}_{\mu}\left(\mathrm{W}_{t_{0}, \lambda} \otimes \mathrm{~F}\right)=\mathrm{U}(\mathfrak{g}) . \mathrm{P}_{\mu}\left(\mathrm{U}(\mathfrak{f}) w_{t_{0}, \lambda} \otimes F\right)$.
We therefore have
(5) $\left.P_{\mu}(U(f))_{t_{0}, \lambda} \otimes F\right) \equiv V^{t_{0}\left(\lambda+\mu+2 \rho_{k}\right)}$.

We extend $P_{\mu}$ to $W_{1, \lambda} \otimes F$ by noting that

$$
W_{1, \lambda} \otimes F=\left(W_{1, \lambda} \otimes F\right)_{\chi_{\lambda+\mu}}+\sum_{x_{8} \neq x_{\lambda+\mu}}\left(W_{1, \lambda} \otimes F\right)_{x}
$$

(6) If $w \in\left(\mathrm{~W}_{1, \lambda} \otimes \mathrm{~F}\right)_{\chi_{\lambda+\mu}}$ then $z w=\chi_{\lambda+\mu}(z) w$ for all $z \in \mathcal{3}$.

This follows since there exist $X_{1}, \ldots, X_{n} \in \mathfrak{n}_{k}^{-}, X_{i} \neq 0$ so that if $u=X_{1} \ldots X_{n}$ then $u . w \in \mathrm{~W}_{t_{0}, \lambda} \otimes \mathrm{~F}$. Hence in $u . w \in\left(\mathrm{~W}_{t_{0}, \lambda} \otimes \mathrm{~F}\right)_{\chi_{\lambda+\mu}}$. But then z.u. $w=\chi_{\lambda+\mu}(z) u . w$, $z \in \jmath$. Hence $u .\left(z-\chi_{\lambda+\mu} .(z)\right) w=0$. This implies $z . w=\chi_{\lambda+\mu}(z) w_{0}$
(7) $P_{\mu}\left(U(\mathfrak{f}) W_{s, \lambda} \otimes F\right) \equiv V^{s\left(\lambda+\mu+\rho_{k}\right)-\rho_{k}}$. To prove this we note that if $\eta \neq \eta_{\lambda+\mu}$ then $\mathrm{P}_{\mu}\left(\left(\mathrm{U}(\mathfrak{f}) w_{s, \lambda} \otimes \mathrm{~F}\right)_{\eta}\right)=0$. Indeed if $v \in\left(\mathrm{U}(\mathfrak{f}) w_{s, \lambda} \otimes \mathrm{~F}\right)_{\eta}$ then there are $\mathrm{X}_{1} \ldots, \mathrm{X}_{m} \in \mathfrak{n}_{k}^{-}-\{0\}$ so that if $\mathrm{X}_{1} \ldots \mathrm{X}_{m}=u$ then $u . v \in\left(\mathrm{U}(\mathfrak{f}) w_{t_{0}, \lambda} \otimes \mathrm{~F}\right)_{\eta}$. But $\eta \neq \eta_{\lambda+\mu}$ Hence $P_{\mu}(u . v)=0$. Hence $P_{\mu} v=0$.

Since $P_{\mu}\left(W_{s, \lambda} \otimes F\right)=U(g) \quad P_{\mu}\left(U(\mathfrak{f}) w_{s, \lambda} \otimes F\right)$ we see $P_{\mu}\left(U(k) w_{s, \lambda} \otimes F\right) \neq 0$. Hence (7). Using these observations we see that if $Z_{s}=P_{\mu}\left(W_{s, \lambda} \otimes F\right)$.
(8) $\mathrm{Z}_{s}, s \in \mathrm{~W}_{k}$ satisfy (1)-(5) of Theorem 2.6.

Let $\varepsilon: \mathrm{W}_{1, \lambda} \rightarrow \mathrm{~W}_{\mathrm{P}, \lambda}$ be the natural projection. $\quad$ Then $(\varepsilon \otimes \mathrm{I})\left(\mathrm{W}_{1, \lambda} \otimes \mathrm{~F}\right)=\mathrm{W}_{\mathrm{P}, \lambda} \otimes \mathrm{F}$. Hence $(\varepsilon \otimes I)\left(\mathrm{Z}_{1}\right)=\left(\mathrm{W}_{\mathrm{P}, \lambda} \otimes \mathrm{F}\right)_{\chi_{\lambda+\mu}} \quad$ But

$$
\left.\operatorname{Ker}(\varepsilon \otimes \mathrm{I})\right|_{\mathrm{Z}_{1}}=\left(\sum_{s<1} \mathrm{~W}_{s, \lambda} \otimes \mathrm{~F}\right) \cap \mathrm{Z}_{1}=\sum_{s<1} \mathrm{Z}_{s}
$$

[^1]Hence $\mathrm{Z}_{1} / \sum_{s<1} \mathrm{Z}_{s}$ is $\mathfrak{g}$-isomorphic with $\left(\mathrm{W}_{\mathrm{P}, \lambda} \otimes \mathrm{F}\right)_{\chi_{\lambda+\mu}}$. Theorem 2.6 now implies our theorem.

> Q. E. D.

Corollary 3.7. - Let the hypotheses be as in Theorem 3.6. Let $\mathrm{D}_{\mathrm{P}, \lambda}$ be the non-zero irreducible quotient of $\mathrm{W}_{\mathbf{P}, \lambda}$. Then $\left(\mathrm{D}_{\mathbf{P}, \lambda} \otimes \mathrm{F}\right)_{\chi_{\lambda+\mu}} \equiv \mathrm{D}_{\mathbf{P}, \lambda+\mu}$.

Proof. - Let $\operatorname{Hom}_{\mathfrak{t}}\left(\mathrm{U}(\mathfrak{g}), \mathrm{V}_{\lambda}\right)$ denote the space of all $f: \mathrm{U}(\mathfrak{g}) \rightarrow \mathrm{V}_{\lambda}$ such that $f(k g)=k .(f(g)), k \in U(\mathfrak{f}), g \in U(\mathfrak{g})$. Define $(g . f)(x)=f(x g), g \in U(\mathfrak{g}), x \in U(\mathfrak{g})$ Then $\operatorname{Hom}_{\mathfrak{t}}\left(\mathrm{U}(\mathfrak{g}), \mathrm{V}_{\lambda}\right)$ is a $\mathfrak{g}$-module.

Let $\mathrm{A}: \mathrm{W}_{\mathrm{P}, \lambda} \rightarrow \mathrm{V}_{\lambda}$ be a non-zero $\mathfrak{l}$-module homomorphism. We note that since $m_{\lambda}(\lambda)=1, \mathrm{~A}$ is unique up to scalar multiple. Let

$$
\psi_{\mathrm{P}, \lambda}: \quad \mathrm{W}_{\mathrm{P}, \lambda} \rightarrow \operatorname{Hom}_{\mathfrak{t}}\left(\mathrm{U}(\mathfrak{g}), \mathrm{V}_{\lambda}\right)
$$

be defined as follows: $\psi_{\mathrm{P}, \lambda}(w)(g)=\mathrm{A}(g . w) . \quad$ Clearly $\psi_{\mathrm{P}, \lambda}\left(\mathrm{W}_{\mathrm{P}, \lambda}\right) \subset \operatorname{Hom}_{\mathfrak{t}}\left(\mathrm{U}(\mathrm{g}), \mathrm{V}_{\lambda}\right)$ If $x \in U(\mathfrak{g})$ then

$$
\psi_{\mathbf{P}, \lambda}(x . w)(g)=\mathrm{A}(g x \cdot w)=\psi_{\mathbf{P}, \lambda}(w)(g x)=\left(x \cdot \psi_{\mathbf{P}, \lambda}(w)\right)(g)
$$

Hence $\psi_{P, \lambda}: W_{P, \lambda} \rightarrow \operatorname{Hom}_{\mathfrak{t}}\left(\mathbf{U}(\mathfrak{g}), V_{\mathfrak{q}}\right)$ is a $\mathfrak{g}$-module homomorphism.
(1) Let $\mathrm{Q}_{\mathrm{P}, \lambda} \subset \mathrm{W}_{\mathrm{P}, \lambda}$ be the $g$-module so that $\mathrm{W}_{\mathrm{P}, \lambda} / \mathrm{Q}_{\mathrm{P}, \lambda}=\mathrm{D}_{\mathrm{P}, \lambda}$. Then ker $\psi_{\mathrm{P}, \lambda}=\mathrm{Q}_{\mathrm{P}, \lambda}$. In fact, let $\eta: W_{P, \lambda} \rightarrow D_{P, \lambda}$ be the $\mathfrak{g}$-module projection. Let $\tilde{A}: D_{P, \lambda} \rightarrow V_{\lambda}$ be a nonzero $\mathfrak{f}$-module homomorphism (again $\tilde{\mathrm{A}}$ is unique up to scalar multiple and $\tilde{\mathrm{A}}$ exists). By the above observations about $\mathrm{A}, \mathrm{A}=c \tilde{\mathrm{~A}} \circ \eta, c \neq 0$. (1) is now clear.

Let now

$$
h: \quad \operatorname{Hom}_{\mathfrak{t}}\left(\mathrm{U}(\mathfrak{g}), \mathrm{V}_{\lambda}\right) \otimes \mathrm{F} \rightarrow \operatorname{Hom}_{\mathfrak{t}}\left(\mathrm{U}(\mathfrak{g}), \mathrm{V}_{\lambda} \otimes F\right)
$$

be defined by $h(f \otimes v)(g)=(\delta \otimes \mathrm{I})(g .(f \otimes v))$, where $\delta(f)=f(1)$. Then $h$ is clearly a $\mathfrak{g}$-module homomorphism.
(2) $h$ is injective.

Let $v_{1}, \ldots, v_{d}$ be a basis of F. Suppose $h\left(\sum f_{i} \otimes v_{i}\right)=0$. If $h\left(\sum f_{i} \otimes v_{i}\right)=0$ then clearly $h\left(\sum f_{i} \otimes v_{i}\right)(1)=\sum f_{i}(1) \otimes v_{i}=0$. Thus $f_{i}(1)=0, i=1, \ldots$, d. Let $\mathrm{U}^{j}(\mathfrak{g}) \subset \mathrm{U}^{j+1}(\mathfrak{g})$ be the standard filtration of $\mathrm{U}(\mathrm{g})$. Suppose that we have shown that $f_{i}(g)=0$ for $g \in \mathrm{U}^{j}(\mathrm{~g})$. If $g \in \mathrm{U}^{j+1}(\mathrm{~g})$ then

$$
0=h\left(\sum f_{i} \otimes v_{i}\right)(g)=\sum_{i} f_{i}(g) \otimes v_{i}
$$

by the inductive hypothesis. Thus $f_{i}(g)=0, i=1, \ldots, d$. (2) is now proved.
Now $\left(V_{\lambda} \otimes F\right)_{\eta_{\lambda+\mu}} V_{\lambda+p^{*}}$. Let $Q$ be the projection of $V_{\lambda} \otimes F$ into $V_{\lambda+\mu}$ Set $\psi=h \circ\left(\psi_{\mathrm{P}, \lambda} \otimes \mathrm{I}\right) . \quad$ Define for $f \in \operatorname{Hom}_{\mathfrak{t}}\left(\mathrm{U}(\mathfrak{g}), \mathrm{V}_{\lambda} \otimes \mathrm{F}\right),(\mathrm{Q} f)(g)=\mathrm{Q}(f(g))$. Then $\mathrm{Q} \circ \psi: \mathrm{W}_{\mathrm{P}, \lambda} \otimes \mathrm{F} \rightarrow \operatorname{Hom}_{\mathrm{t}}\left(\mathrm{U}(\mathrm{g}), \mathrm{V}_{\lambda+\mu}\right)$

Now $W_{P, \lambda} \otimes F=W_{P, \lambda+\mu} \oplus H, H$ a $g$-submodule with $(H)_{\chi_{\mu+\lambda}}=0$
anNales scientifiques de l'école normale supérieure
(3) $\quad((\mathrm{I}-\mathrm{Q}) \circ \psi)\left(\mathrm{W}_{\mathrm{P}, \lambda+\mu}{ }^{\frac{1}{2}}\right)=0$. Indeed, $\quad \mathrm{W}_{\mathrm{P}, \lambda+\mu}$ contains only $\mathfrak{l}$-types of the form $V_{\lambda+\mu+\delta}, \delta$ a sum of elements of $P$. On the other hand $(I-Q)\left(V_{\lambda} \otimes F\right)$ contains only $\mathfrak{f}$-types of the form $V_{\lambda+\mu-\delta^{\prime}}, \delta^{\prime}$ a non zero sum elements of $P$.
(3) Implies that $\psi\left(\mathrm{W}_{\mathrm{P}, \lambda+\mu}\right)=\mathrm{Q}\left(\psi\left(\mathrm{W}_{\mathrm{P}, \lambda+\mu}\right)\right)$. Now $\mid w \mapsto(\mathrm{Q} \circ \psi)(w)(1)$ maps $\mathrm{W}_{\mathrm{P}, \lambda+\mu}$ to $\mathrm{V}_{\lambda+\mu^{\cdot}}$ Hence (1) implies $\psi\left(\mathrm{W}_{\mathrm{P}, \lambda+\mu}\right)=\mathrm{D}_{\mathrm{P}, \lambda+\mu^{*}}$. Now

$$
\psi\left(\mathrm{W}_{\mathbf{P}, \lambda} \otimes \mathrm{F}\right)=h \circ\left(\psi_{\mathbf{P}, \lambda} \otimes \mathrm{I}\right)\left(\mathrm{W}_{\mathbf{P}, \lambda} \otimes \mathrm{F}\right)=h\left(\mathrm{D}_{\mathbf{P}, \lambda} \otimes \mathrm{F}\right)
$$

Thus

$$
\left(D_{P, \lambda} \otimes F\right)_{x_{\lambda+\mu}} \equiv \dot{\psi}\left(\left(W_{P}, \lambda \otimes F\right)_{x_{\lambda+\mu}}\right)=D_{P, \lambda+\mu}
$$

Q. E. D.

Actually Theorem 3.6 is not especially useful in applications to the realization of discrete series. We actually need.

Theorem 3.8. - Suppose that $\lambda$ is $\mathrm{P}_{k}$-dominant integral. Let $\mu$ be P -dominant integral and let F be the irreducible g -module with lowest weight $-\mu$. Then:
(1) $\mathrm{W}_{\mathrm{P}, \lambda+\mu} \otimes \mathrm{F}$ contains the f -submodule $\mathrm{V}_{\lambda}$ with multiplicity 1.
(2) There is a surjective g -module homomorphism of $\mathrm{W}_{\mathrm{P}, \lambda}$ onto the cyclic space for $\mathbf{V}_{\lambda} \subset \mathbf{W}_{\mathbf{P}, \lambda+\mu} \otimes \mathrm{F}$.

Proof. - We note that $-t_{0} \mu$ is the highest weight of F relative to $-t_{0} \mathrm{P}$. Hence the highest weight of $\mathrm{W}_{t_{0}, \lambda+\mu} \otimes \mathrm{F}$ relative to $-t_{0} \mathrm{P}$ is $t_{0}\left(\lambda+2 \rho_{k}\right)$. Further more, this weight space is one dimensional. Let $v_{0}$ be a non-zero element of the $t_{0}\left(\lambda+2 \rho_{k}\right)$ weight space of $W_{t_{0}, \lambda+\mu} \otimes F$.

It is easily proved that $\mathrm{V}_{\lambda+\mu} \otimes \mathrm{F}$ contains the 1 -type $\mathrm{V}_{\lambda}$ with multiplicity 1 and that every $\mathfrak{l}$-type of $V_{\lambda+\mu} \otimes F$ is of the form $V_{\lambda+Q}$ with $Q$ a sum of elements of $P$. Also, if $\xi \neq \lambda+\mu$ and if $V_{\xi}$ occurs in $W_{P, \lambda+\mu}$ then every $\mathfrak{f}$-type in $V_{\xi} \otimes F$ is of the form $V_{\lambda+Q}$, $\mathrm{Q} \neq 0, \mathrm{Q}$ a sum of elements of P . This proves (1).

Let $v$ be a non-zero highest weight vector for $\mathrm{V}_{\lambda} \subset \mathrm{W}_{\mathrm{P}, \lambda+\mu} \otimes \mathrm{F}$. Let

$$
v_{1} \in \mathrm{~W}_{1, \lambda+\mu} \otimes \mathrm{F}
$$

be so that $h . v_{1}=\lambda(h) v_{1}, h \in \mathfrak{h}, \mathfrak{n}_{k}^{+} . v_{1}=0$ and if $\varepsilon: \mathrm{W}_{1, \lambda+\mu} \rightarrow \mathrm{W}_{\mathrm{P}, \lambda+\mu}$ is the natural map the $\varepsilon\left(v_{1}\right)=v$ (this is possible by lemma 2.5). Let $s \in \mathrm{~W}_{k}$ and suppose

$$
1 \xrightarrow{\gamma_{1}} s_{\gamma_{1}} \xrightarrow{\gamma_{2}} s_{\gamma_{2}} s_{\gamma_{1}} \rightarrow \ldots \xrightarrow{\gamma_{l}} s_{\gamma_{1}} \ldots s_{\gamma_{1}}=s,
$$

with $\gamma_{i}$ simple in $\mathbf{P}_{\boldsymbol{k}}$. Let $\mathbf{X}_{\boldsymbol{i}} \in \mathrm{g}_{-\gamma_{i}}-\{0\}$. Set

$$
v_{i}=\frac{2\left\langle s_{\gamma_{i-1}} \ldots s_{\gamma_{1}}\left(\lambda+\rho_{k}\right), \gamma_{i}\right\rangle}{\left\langle\gamma_{i}, \gamma_{i}\right\rangle}
$$

Let $v_{s}=\mathrm{X}_{l}^{v_{l}} \ldots \mathrm{X}_{1}^{v_{1}} v_{1}$. Then $v_{s} \in \mathrm{~W}_{s, \lambda+\mu} \otimes \mathrm{F}$. Furthermore

$$
h \cdot v_{s}=\left(s\left(\lambda+\rho_{k}\right)-\rho_{k}\right)(h) v_{s} \quad \text { and } \quad \mathfrak{n}_{k}^{+} \cdot v_{s}=0
$$

In particular, $v_{t_{0}} \in \mathbf{C} v_{0}$.

$$
4^{e} \text { SÉRIE }- \text { TOME } 9-1976-\text { N }^{\circ} 1
$$

Set $Z_{s}=\mathrm{U}(\mathrm{g}) v_{s}$. Then $\left\{\mathrm{Z}_{s}\right\}_{s \in \mathrm{~W}_{k}}$ satisfies the conditions of theorem 2.6. Clearly, $(\varepsilon \otimes I)\left(Z_{1}\right)$ is the cyclic space for $V_{\lambda}$ in $W_{P, \lambda+\mu} \otimes F$. Furthermore,

$$
\left.\operatorname{Ker}(\varepsilon \otimes I)\right|_{Z_{1}} \supset \sum_{s<1} Z_{s}
$$

Thus theorem 2.6 implies that $\left.(\varepsilon \otimes I)\right|_{\mathrm{Z}_{1}}$ induces a g -module surjection of $\mathrm{W}_{\mathrm{P}, \lambda}$ onto $(\varepsilon \otimes I)\left(Z_{1}\right)$.
Q. E. D.

Corollary 3.9. - Let $\lambda . \mu$ and $F$ be or in theorem 3.8. Then $D_{p, \lambda+\mu} \otimes F$ contains $\mathrm{D}_{\mathrm{P}, \lambda}$ as a subquotient.
Proof. - Let $\eta: W_{P, \lambda+\mu} \rightarrow D_{P, \lambda+\mu}$ be the natural map. Then $(\eta \otimes I)\left(V_{\lambda}\right) \neq(0)$ with $\mathrm{V}_{\lambda} \subset \mathrm{W}_{\mathrm{P}, \lambda+\mu} \otimes \mathrm{F}$ as in (1) of theorem 3.8. Using the notation of the proof of theorem 3.8 we see that $U=(\eta \otimes I)(\varepsilon \otimes I)\left(Z_{1}\right) \neq(0)$.

Since U is a non-zero homomorphic image of $\mathrm{W}_{\mathrm{P}, \lambda} . \mathrm{U}$ has $\mathrm{D}_{\mathrm{P}, \lambda}$ as a quotient.
Q. E. D.

Conjecture 3.10. - If $\lambda$ is $P_{k}$-dominant integral and if $\lambda+\rho_{k}-\rho_{n}$ is P-dominant then $W_{P, \lambda}$ is irreducible.
We look at the special case that there is a parabolic $\mathfrak{p}$ of $\mathfrak{g}, \mathfrak{p}=\mathfrak{f} \oplus \mathfrak{r}=\mathfrak{f} \oplus \sum_{\alpha \in \mathbb{P}_{n}} \mathfrak{g}_{\alpha}$. Under these hypotheses we have

Lemma 3.11. - If $2<\lambda+\rho_{k}-\rho_{n}, \beta>/<\beta, \beta>\neq-1,-2, \ldots$ for any $\beta \in P_{n}$ then $\mathrm{W}_{\mathrm{P}, \mathrm{x}}$ is irreducible.
Proof. - In this case the simple roots of $\mathrm{P}_{k}$ are actually simple in P . Thus it is not hard to show that $W_{s, \lambda}=M^{s\left(\lambda+\rho_{k}\right)-\rho_{k}}=M^{s\left(\lambda-t_{0}\right)+t_{0} \rho}$ and hence $W_{P, \lambda}=U(g) \otimes V_{\lambda}$ $\mathrm{U}(\overline{\mathrm{p}})$
( $\overline{\mathfrak{p}}$ the opposite parabolic to $\mathfrak{p}$ ), where $\mathrm{V}_{\lambda}$ is made into a $\overline{\mathfrak{p}}$-module by taking $x \mathrm{~V}_{\lambda}=0, x \in \overline{\mathfrak{r}}$. If $W_{P, \lambda}$ is reducible then there is $M \underset{\neq}{\subsetneq} W_{P, \lambda}$ a submodule. Let $\tilde{M}$ be the inverse image of $M$ in $W_{1, \lambda}$. If $\tilde{M}=W_{1, \lambda}$ then $M=W_{P, \lambda}$. Now the weights of $\tilde{M}$ are bounded above relative to $-t_{0} \mathrm{P}$. Using 7.6.23 Dixmier [2] there is $0 \neq v \in \tilde{\mathrm{M}}$ so that $\tilde{\mathfrak{r}}^{+} . v=0, h . v=\mu(h) v\left(\tilde{\mathfrak{r}}^{+}=\sum_{\alpha \in-t_{0} \mathrm{P}} \mathfrak{g}_{\alpha}\right)$ and $\mu$ is $\mathrm{P}_{k}$-dominant integral. Since $\tilde{\mathbf{M}} \neq \mathrm{W}_{1, \lambda}$, $\mu<\lambda$ relative to $-t_{0} \mathbf{P}$. Now arguing as usual $d_{t_{0}}(\mu) v \in \mathrm{~W}_{t_{0}, \lambda}$. If $d_{t_{0}}(\mu) v \in \mathbf{C} w_{t_{0}, \lambda}$ then $v \in \mathbf{C} w_{1, \lambda}$. But $\tilde{\mathrm{M}} \neq \mathrm{M}$. Hence $d_{t_{0}}(\mu) v \notin \mathbf{C} w_{t_{0}, \lambda}$. Now the Bernstein, Gelfand, Gelfand theorem (see Dixmier [2], Chapter 7) implies there is $\beta \in-t_{0} P$ so that

$$
\frac{2\left\langle t_{0} \lambda-\rho, \beta\right\rangle}{\langle\beta, \beta\rangle}=n, \quad n>0 .
$$

If $\beta \in \mathrm{P}_{k}$ then

$$
\frac{2\left\langle t_{0} \lambda-\rho, \beta\right\rangle}{\langle\beta, \beta\rangle}<0 .
$$

annales scientifieues de l'école normale supérieure

Thus $\beta \in-t_{0} \mathrm{P}_{n}$. But $\beta=-t_{0} \beta^{\prime}, \beta^{\prime} \in \mathrm{P}_{n}$. Hence

$$
n=\frac{2\left\langle t_{0} \lambda-\rho, t_{0} \beta^{\prime}\right\rangle}{\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle}=-\frac{2\left\langle\lambda-t_{0} \rho, \beta^{\prime}\right\rangle}{\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle} .
$$

Now

$$
-t_{0} \rho=-\rho_{n}+\rho_{k} .
$$

We therefore have a contradiction, that implies the lemma.
Q. E. D.

## 4. Applications to the discrete series

Let $G$ be a simply connected, complex semi-simple Lie group with Lie algebra $\mathfrak{g}$. Let $g_{0} \subset \mathfrak{g}$ be a real form. Let $G_{0} \subset G$ be the connected subgroup with Lie algebra $\mathfrak{g}_{0}$. Let $\mathfrak{g}_{0}=\mathfrak{f}_{0} \oplus \mathfrak{f}_{0}$ be a Cartan decomposition of $\mathfrak{g}_{0}$. Let $\mathfrak{f}$ be the complexification of $\mathfrak{f}_{0}$. We assume that there is a Cartan subalgebra of $\mathfrak{g}, \mathfrak{h}, \mathfrak{h} \subset \mathfrak{f}$.

Let $\Delta$ be the root system of $(\mathfrak{g}, \mathfrak{h})$ and let $\Delta_{k}$ be the roots of $(\mathfrak{f}, \mathfrak{h}), \Delta_{k} \subset \Delta$. Set $\Delta_{n}=\Delta-\Delta_{k}$. Let $\Lambda \in \mathfrak{b}^{*}$ be integral that is $2\langle\Lambda, \alpha\rangle \mid\langle\alpha, \alpha\rangle \in \mathbf{Z}, \alpha \in \Delta$ and regular $(\langle\Lambda, \alpha\rangle \neq 0$ for $\alpha \in \Delta$ ). Fix $P \subset \Delta$ the system of positive roots for $\Delta$ so that $\langle\Lambda, \alpha\rangle>$ for $\alpha \in P$.

Let $H_{0}=\exp \left(\mathfrak{h} \cap \mathfrak{g}_{0}\right), H_{1}, \ldots, H_{k}$ be a complete set of non-conjugate Cartan subgroups of $G_{0}$. Let

$$
\operatorname{det}(\operatorname{Ad}(x)-(\lambda+1) \mathrm{I})=\lambda^{l} \mathrm{D}_{l}(x)+\sum_{j>l} \lambda^{j} \mathrm{D}_{j}(x) .
$$

Set $\mathrm{D}(x)=\mathrm{D}_{l}(x)$. Let $\mathrm{G}_{0}^{\prime}=\left\{x \in \mathrm{G}_{0} \mid \mathrm{D}_{l}(x) \neq 0\right\}$. Let $\mathrm{H}_{i}^{\prime}=\mathrm{G}_{0}^{\prime} \cap \mathrm{H}_{i}$. Then $\mathrm{G}_{0}^{\prime}=\bigcup_{i=0} \operatorname{Ad}\left(\mathrm{G}_{0}\right) \mathrm{H}_{i}^{\prime}$. Ad $(g) x=g \otimes g^{-1}$. Let for each $i, \mathfrak{h}_{i}$ be the complexified Lie algebra of $\mathrm{H}_{i}$. Let $c_{i}: \mathfrak{h}_{0} \rightarrow \mathfrak{h}_{i}, c_{i} \in \operatorname{Ad}(\mathrm{G})$. Then $c_{i}$ is uniquely determined up to multiplication by an element of the Weyl group of $\mathfrak{h}_{i}$ on the left (equivalently up to multiplication on the right by an element of the Weyl group of $\mathfrak{h}_{0}=\mathfrak{h}$ ). Let $\mathfrak{z}$ be the center of $U(g)$. Then to $\Lambda$ there is associated a homomorphism in $\chi_{\Lambda}: \mathfrak{z} \rightarrow \mathbf{C}$ (denoted $\gamma_{\Lambda}$ in Warner [15], Section 10.1).

We recall the following theorem of Harish-Chandra [6] (see also Warner [15], p. 391. Theorem 10.1.1.1, p. 407, Theorem 10.2.4.1).

Theorem 4.1. - There exists one and only one central eigendistribution $\theta_{\Lambda}$ on $\mathrm{G}_{0}$ so that
(1) $z \cdot \theta_{\Lambda}=\chi_{\Lambda}(z) \theta_{\Lambda}$.
(2) $\sup _{x \in 0^{\prime}}|\mathrm{D}(x)|^{1 / 2}\left|\theta_{\Lambda}(x)\right|<\infty$.
(3) $\theta_{\Lambda}=\Delta_{\mathbf{H}_{0}}^{-1} \sum_{s \in \mathrm{~W}_{k}} \operatorname{det}(s) e^{s . \Lambda}$ on $\mathbf{H}_{0}^{\prime}\left[\right.$ here $\left.\Delta_{\mathbf{H}_{0}}=e^{\rho} \prod_{\alpha \in \mathrm{P}}\left(1-e^{-\alpha}\right)=\sum_{s \in \mathrm{~W}(\Delta)} \operatorname{det}(s) e^{s . \rho}\right]$.

Also there exists $\pi_{\Lambda}$ an irreducible square integrable representation of $G_{0}$ with character $(-1)^{\operatorname{dim}\left(G_{0} / K_{0}\right) / 2} \theta_{\Lambda}$. The $\pi_{\Lambda}$ defined as above exhaust the irreducible square integrable representations of $\mathrm{G}_{0}$.

```
4e SÉRIE - tome 9 - 1976 - No 1
```

Fix for each $\mathfrak{h}_{i}, \mathrm{P}_{\boldsymbol{i}}$ a system of positive roots for $\mathfrak{h}_{i}, \mathrm{P}_{0}=\mathrm{P}$. Let for $\chi: \mathfrak{z} \rightarrow \mathbf{C}$ a homomorphism $\Lambda_{i} \in \mathfrak{b}_{i}^{*}$ be defined by $\chi=\chi_{\Lambda_{i}}$, where $\chi_{\Lambda_{i}+\rho_{i}}$ the infinitessimal character of the Verma module with highest weight $\Lambda_{i}$ relative to $P_{i}\left(\rho_{i}=(1 / 2) \sum_{\alpha \in P_{i}} \alpha\right)$. $\Lambda_{i}$ is determined up to an element of the Weyl group of $\mathrm{W}\left(\Delta_{i}\right)$.
Theorem 4.2 (Harish-Chandra, see Warner [15], p. 136, Theorem 8.3.3.3). - Let T be a central eigen-distribution on $\mathrm{G}_{0}$ with $z . \mathrm{T}=\chi(z) \mathrm{T}$ for $z \in \mathfrak{3}$. Let $\mathrm{F}_{\mathrm{T}}$ be the locally summable function on $\mathrm{G}_{0}$ that gives T . Let $\chi=\chi_{\Lambda_{i}}, i=0,1, \ldots, k$. Let $h \in \mathrm{H}_{i}^{\prime}$. Then there is a neighborhood $\mathrm{U}_{h, i}$ of 0 in $\mathfrak{h}_{i} \cap \mathfrak{g}_{0}$ and polynomial functions $p_{s}(\mathrm{H})$, $s \in \mathrm{~W}\left(\Delta_{i}\right)$ so that if $\mathrm{H} \in \mathrm{U}_{h, i}$ then

$$
\mathrm{F}_{\mathrm{T}}(h \exp \mathrm{H})=|\mathrm{D}(h \exp \mathrm{H})|^{-1 / 2} \sum_{s \in \mathrm{~W}\left(\Delta_{t}\right)} \mathrm{P}_{s}(\mathrm{H}) e^{s \Lambda_{t}(\mathrm{H})} \xi_{s \Lambda_{t}}(h) .
$$

If $\Lambda_{i}$ is regular then $p_{s}(\mathrm{H})$ is a scalar. Here $\xi_{\mu}$ is the character of the complexified Cartan corresponding to $\mathfrak{h}_{i}$.
Theorem 4.3 (Harish-Chandra [6]). - Let $\mathrm{F}_{\mathrm{A}}$ be the locally integrable function on $\mathrm{G}_{0}$ that gives $\theta_{\Lambda}$. Then in the expression of Theorem 4.2 the constants $p_{s}=p_{s}(0)$ depend only on $\mathrm{P}=\left\{\alpha \in \Delta^{\prime}|\langle\Lambda, \alpha\rangle\rangle 0\right\}$ if $\Lambda_{i}^{\prime}={ }^{3} \Lambda_{i}^{\mathrm{g}}{ }^{\mathrm{s}} c_{i}^{-1}$.
Theorem 4.4 (Schmid [12], Enright, Varadarajan [4]). - There is a constant $\mathrm{C}_{\mathrm{P}}>0$ so that if $\langle\Lambda, \alpha\rangle>\mathrm{C}_{\mathrm{P}}$ for all $\alpha \in \mathrm{P}$ and if $\Lambda$ is integral then $\mathrm{D}_{\mathrm{P}, \Lambda+\rho_{n}-\rho_{k}}$ is equivalent with $\pi_{\Lambda}$.
Let now $\Lambda \in \mathfrak{h}^{*}$ be regular and dominant integral relative to P. Let $\mu \in \mathfrak{b}^{*}$ be dominant integral relative to P so that $\Lambda+\mu$ satisfies the hypothesis of Theorem 4.4. Let $\eta$ be the character of the irreducible finite dimensional representation, $F$, of $G$ with lowest weight $-\mu$. Then Corollary 3.9 implies that $\left(\pi_{\Lambda+\mu} \otimes F\right) \chi_{\Lambda}$ contains $D_{P, \Lambda+\rho_{n}-\rho_{k}}$ as a subquotient. But now the character of $\pi_{\Lambda+\mu} \otimes F$ is $\eta \theta_{\Lambda+\mu}$. $\eta=\sum_{\xi \in \pi(\mathbf{F})} m_{\xi} e^{\xi}, \pi(\mathrm{F})$ the weights of F . Let now $h \in \mathrm{H}_{i}^{\prime}$. Let $p_{s}$ be as above ( $p_{s}$ independent of $\Lambda$ ). Then

$$
\theta_{\Lambda+\mu}(h \exp \mathrm{H})=|\mathrm{D}(h \exp \mathrm{H})|^{-1 / 2} \sum_{s \in \mathrm{~W}\left(\Delta_{i}\right)}{ }^{s} p_{s} e^{s\left(\Lambda_{i}+\mu_{i}\right)(\mathrm{H})} \xi_{s}\left(\Lambda_{i}+\mu_{i}\right)(h) .
$$

Thus

$$
\begin{aligned}
& \left(\eta \theta_{\Lambda+\mu}\right)(h \exp \mathrm{H}) \\
& \quad=|\mathrm{D}(h \operatorname{expH})|^{-1 / 2} \sum_{\gamma \in \pi_{i}(\mathrm{~F})} m_{\gamma} \sum_{s \in \mathrm{~W}\left(\Delta_{i}\right)} p_{s} e^{s\left(\Lambda_{i}+\mu_{i}\right)(\mathrm{H})+\gamma(\mathrm{H})} \xi_{\gamma}(h) \cdot \xi_{s\left(\Lambda_{i}+\mu_{i}\right)(h)},
\end{aligned}
$$

$\pi_{i}(\mathrm{~F})$ the weights of F on $\mathfrak{h}_{i}$. Now $\theta_{\Lambda+\mu}=\theta+\mathrm{T}$ with $z . \theta=\chi_{\Lambda}(z) \theta, \mathrm{T}=\sum_{i=1}^{u} \mathrm{~T}_{i}$ with $\left(z-\chi_{i}(z)\right)^{i} \mathrm{~T}_{i}=0, \mathrm{i}=1, \ldots, u, z \in 3, \chi_{i} \neq \chi_{\Lambda}$. Now $\gamma \in \pi_{i}(\mathrm{~F})$ is of the form $-\mu_{i}+\delta$, $\delta$ a sum of elements of $\mathrm{P}_{i}$. Hence of the form $-s \mu_{i}+s \delta, s \in \mathrm{~W}\left(\Delta_{i}\right)$ and $\delta$ as above.

Using the arguments of the proof of Theorem 3.8 we find

$$
\theta(h \exp \mathrm{H})=|\mathrm{D}(h \operatorname{expH})|^{-1 / 2} \sum_{\substack{\gamma \in \pi_{i}(\underset{\sim}{2}) \\ s\left(\Lambda_{i}+\mu_{i}\right)+\gamma=\mathcal{S}^{\prime}\left(\Lambda_{i}\right)}} m_{\gamma} p_{s} e^{\left(s\left(\Delta i+\mu_{i}\right)+\gamma\right)(\mathrm{H})} \xi_{\gamma+s\left(\Lambda_{i}+\mu_{i}\right)}(h) .
$$

annales scientifieues de l'école normale supérieure

But now $\gamma=-s \mu_{i}+s \delta$ as above if $s\left(\lambda_{i}+\mu_{i}\right)-s \mu_{i}+s \delta=s^{\prime} \Lambda_{i}$ then $s\left(\Lambda_{i}+\delta\right)=s^{\prime} \Lambda_{i}$. Hence $s^{-1} s^{\prime} \Lambda_{i}=\Lambda_{i}+\delta$. But $\Lambda_{i}$ is $\mathrm{P}_{i}$-dominant integral thus $\delta=0$ and $s^{-1} s^{\prime} \Lambda_{i}=\Lambda_{i}$. But $\Lambda_{i}$ is regular hence $s=s^{\prime}$. We therefore have

$$
\theta(h \exp \mathrm{H})=|\mathrm{D}(h \exp \mathrm{H})|^{-1 / 2} \sum_{s \in \mathrm{~W}\left(\Delta_{i}\right)} p_{s} e^{s \Lambda_{i}(\mathrm{H})} \xi_{s \Lambda_{i}}(h)
$$

But then $\theta=\theta_{\Lambda}$. We have proved
Theorem 4.5. - If $\Lambda \in \mathfrak{h}^{*}$ is integral and regular and if $\mathrm{P}=\{\alpha \in \Delta \mid\langle\Lambda, \alpha\rangle>0\}$ then $D_{P_{, ~}, \Lambda+\rho_{n}-\rho_{k}}$ is infinitesimally equivalent with $\pi_{\Lambda}$.

The preceeding argument to prove Theorem 4.5 is due to Zuckerman. It has also been used by W. Schmid in the course of his proof of Blattner's conjecture.

We note that Corollary 3.7 now says how discrete series tensored with finite dimensional representations decompose. This result has been proved by Hecht and Schmid by different methods.

## 5. Application to the realization of the discrete series

We retain the notation of Section 4. In Hotta [16] a realization of "most" of the discrete series for $G_{0}$ is given as follows. Let $\lambda \in \mathfrak{h}^{*}$ be regular and integral.

Let P be the system of positive roots for $\Delta$ so that $\langle\lambda, \alpha\rangle>0, \alpha \in \mathrm{P}$. Let $\mathrm{T}_{\lambda}$ be the representation of $G_{0}$ on the space $\mathfrak{S}_{\lambda}$, of all $f: G_{0} \rightarrow V_{\lambda+\rho-2 \rho_{k}}$ so that
(i) $f(g k)=k^{-1} \cdot f(g)$ for $k \in \mathrm{~K}_{0}, g \in \mathrm{G}_{0}$.
(ii) $\int_{G_{0}}|f(g)|^{2} d g<\infty$.
(iii) $\Omega f=(\langle\lambda, \lambda\rangle-\langle\rho, \rho\rangle) f$.
$\Omega$ the Casimir operator for $\mathfrak{g}_{0} . \quad \mathrm{T}_{\lambda}(g) f(x)=f\left(g^{-1} x\right)$.
We prove
Theorem 5.1. - Let $\lambda \in \mathfrak{h}^{*}$ be regular and integral and let $\left(\mathrm{T}_{\lambda}, \mathfrak{F}_{\lambda}\right)$ be defined as above. Then $\mathrm{T}_{\lambda}$ is irreducible and has character $\theta_{\lambda}$.

Proof. - The Plancherel theorem for $G_{0}$ implies that $\left(T_{\lambda}, \mathfrak{H}_{\lambda}\right)$ is a finite sum of discrete series representations ( $c f$. Hotta [16]). Frobenus reciprocity for multiplicites of discrete series in representations induced from $K_{0}$ to $G_{0}$ is true. Hence $T_{\lambda}=\sum m_{i} \pi_{\lambda_{i}}$ with $m_{i}$ less than or equal to the multiplicity of $\mathrm{V}_{\lambda+\rho-2 \rho_{k}}$ in $\pi_{\lambda_{i}} . \quad \lambda_{i}$ can be taken $\mathrm{P}_{k^{-}}$ dominant.

Hence if $m_{i} \neq 0$ and $s \in \mathrm{~W}$ is such that $s \mathrm{P} \supset \mathrm{P}_{k}$ and $\lambda_{i}=s \mu, \mu$, P -dominant integral, then since $\mathrm{V}_{\lambda+\rho-2 \rho_{k}}$ appears in $\pi_{\lambda_{i}}$ we must have $\lambda+\rho-2 \rho_{k}=s \mu+s \rho-2 \rho_{k}+s \mathrm{Q}$, Q a sum of elements of P . But then $\lambda+\rho=s(\mu+\rho+\mathrm{Q})$.

Now the action of the Casimir operator $\Omega$ [(iii) above] implies $\langle\mu, \mu\rangle=\langle\lambda, \lambda\rangle$. Hence

$$
\langle s(\mu+\rho+\mathrm{Q})-\rho, s(\mu+\rho+\mathrm{Q})-\rho\rangle=\langle\mu, \mu\rangle .
$$

But then

$$
\left\langle\mu+\rho-s^{-1} \rho+\mathrm{Q}, \mu+\rho-s^{-1} \rho+\mathrm{Q}\right\rangle=\langle\mu, \mu\rangle
$$

$$
4^{\text {e }} \text { SÉRIE }- \text { TOME } 9-1976-\mathrm{N}^{0} 1
$$

This implies that

$$
0=2\left\langle\mu, \rho-s^{-1} \rho+Q\right\rangle+\left\langle\rho-s^{-1} \rho+Q, \rho-s^{-1} \rho+Q\right\rangle
$$

Now $\rho-s^{-1} \rho$ is a sum of elements of $P$. Since $\mu$ is P-dominant integral and regular this implies that $\rho-s^{-1} \rho+\mathrm{Q}=0$. But then $\rho=s^{-1} \rho$ and $\mathrm{Q}=0$. Hence $s=1$ and $\lambda_{i}=\lambda$. To complete the proof we need only show that $\mathfrak{H}_{\lambda} \neq 0$.

Let $\left(\pi_{\lambda}, \mathrm{H}\right)$ be a realization of $\pi_{\lambda}$. Let $\mathrm{P}: \rightarrow H V_{\lambda+\rho-2 \rho_{k}}$ be a $\mathrm{K}_{0}$-intertwining operator. Let $v \in \mathrm{H}$ be $\mathrm{K}_{0}$-finite and define $f_{v}(g)=\mathrm{P}\left(\pi_{\lambda}(g)^{-1} v\right)$. Then $f_{v}$ satisfies (i) and (ii).
$\Omega f_{v}=\chi_{-\mathrm{P}, \lambda+\rho}(\Omega) f_{v}=(\langle\lambda, \lambda\rangle-\langle\rho, \rho\rangle) f_{v}$ by the results of Section 4. Hence if $v \neq 0, f_{v} \in \mathfrak{G}_{\lambda}$.

Q. E. D.

## REFERENCES

[1] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, The Structure of Representations Generated by Highest Weight Vectors (Funct. Anal. Appl., vol. 5, 1971, pp. 1-9).
[2] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974.
[3] T. Enright, On the Discrete Series Representations of SU $(n, 1)$ and $\operatorname{SO}(2 k, 1)$ (to appear).
[4] T. Enright and V. Varadarajan, On an Infinitessimal Characterizatic of the Discrete Series (to appear in Annals of Mathematics).
[5] Harish-Chandra, Representations of Semi-Simple Lie Groups, II (Trans. Amer. Math. Soc., vol. 75, 1954, pp. 26-65).
[6] Harish-Chandra, Discrete Series for Semi-Simple Lie Groups, II (Acta Math., vol. 16, 1966, pp. 1-111).
[7] Harish-Chandra, Two Theorems on Semi-Simple Lie Groups (Ann. of Math., vol. 83, 1966, pp. 74 -128).
[8] T. Hirai, Invariant Eigen-Distributions of Laplace Operators on Real Simple Lie Groups, I. Case of SU ( $p, q$ ) (Japan J. Math., vol. 40, 1970, pp. 1-68).
[9] R. Hotta and R. Parthasarthy, Multiplicity Formulae for Discrete Series (Inventiones Math., vol. 26, 1974, pp. 133-178).
[10] J. Lepowsky, Algebraic Results on Representations of Semi-Simple Lie Groups (Trans. Amer. Math. Soc., vol. 176, 1973, pp. 1-44).
[11] H. Rossi and M. Vergne, The Analytic Continuation of the Holomorphic Discrete Series (to appear).
[12] W. Schmid, On the Realization of the Discrete Series of a Semi-Simple Lie Group (Rice University Studies, vol. 56, 1970, pp. 99-108).
[13] W. Schmid, On a Conjecture of Langlands (Ann. of Math., vol. 93, 1971, pp. 1-42).
[14] W. Schmid, Some Properties of Square Integrable Representations of Semi-Simple Lie Groups (to appear).
[15] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, vol. II, Springer-Verlag, Berlin, 1972.
[16] R. Hotтa, Elliptic Complexes on some Homogeneous Spaces (Osaka J. Math., vol. 1970. pp. 117-160).
(Manuscrit reçu le 26 juin 1975.)
Nolan R. Wallach, Rutgers College,
Department of Mathematics,
New Brunswick, New Jersey 08903,
U.S. A.


[^0]:    © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1976, tous droits réservés.
    L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[^1]:    $4^{\circ}$ série - tome $9-1976-\mathrm{N}^{\circ} 1$

