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THE MINIMAL ORBIT IN A SIMPLE LIE ALGEBRA
AND ITS ASSOCIATED MAXIMAL IDEAL

BY A. JOSEPH

ABSTRACT. — Let 9 be a simple Lie algebra over C. If 9 is different from sl(n + 1) : n = 1, 2, ...,
then g* admits a single non-trivial G-orbit (Po of minimal dimension. This orbit consists of nilpotent
elements, contains (^ — { 0 }, where (^ is the root subspace of the highest root (3, and is not polarizable.
Through the study of a certain Heisenberg subalgebra of g associated with g0, it is shown that there exists
a unique completely prime, two-sided ideal Jo ofU (9) whose characteristic variety coincides with OQ u { 0 }.
Jo is shown to be a maximal ideal and that it cannot be induced from any proper subalgebra of 9. The
construction of Jo is very explicit and its central character is computed. For sp (4), Jo coincides with an
ideal constructed by Conze and Dixmier [8] (Ex. 3).

1. Introduction

Let C denote the complex numbers and 9 a finite dimensional Lie algebra over C.
This work arose out of an attempt to construct so-called minimal realizations [20] of 9
from quantum canonical variables. Now as B. Kostant points out to me the companion
problem in classical mechanics is implicity solved through the existence of a non-degenerate,
closed, antisymmetric two-form [2] (Chap. II), defined on any given G-orbit (G = exp ad 9)
of the dual 9*. Furthermore when the given orbit 0 is polarizable [27] (Remarks 4.3.1
and 4.3.2), the corresponding classical realization admits "quantization," a process
which associates with 0 a two-sided ideal in the enveloping algebra U (9) of 9.

If 9 is solvable, all orbits in 9* are polarizable [11] (Prop. 1.12.10), and this is also
true for 9 = sl(n) [30] (Prop. 6.1). Yet if 9 is simple and different from sl(n\ then 9*
admits a single non-trivial orbit OQ of minimal dimension in 9* and this is not polarizable.
(Other non-regular orbits may not be polarizable. For example the short root eigenvector
in G^ generates a non-minimal, non-polarizable orbit.)

In a natural fashion our previous construction [20] associates with OQ a unique comple-
tely prime two-sided ideal Jo in U (9). More specifically we show (Sect. 4) that U (9)/Jo
admits a unique embedding in the enveloping field of the tangent space to OQ identified
with a subalgebra of 9. A simple explicit formula for this embedding in given in Section 5.
It turns out that Jo is a primitive ideal and in Section 6, we determine its central character.

* Work supported by the C.N.R.S.
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2 A. JOSEPH

In Section 7, we show that Jo is always a maximal ideal and in Section 8 that it is never
an induced ideal. In Section 9 we show that the Weyl group acts through the auto-
morphism group of the embedding field, a fact which gives an alternative and more elegant
proof of the existence of the embedding. Finally in Section 10, we show that Jo is
the unique completely prime two-sided ideal whose characteristic variety is OQ u {0 }.
This suggest a generalization of quantization for non-polarizable orbits.

INDEX OF NOTATION. — Symbols frequently used in the text are given below in order
of appearance.

Section 1 C, 9, G, 9*, <P, U(g), ^o, Jo.
Section 2 I), A, TT, ̂  n, |. [, |3, A^, ̂ , <, ft,, ̂ , F, Fo, 9^ W, k (a), I\, T^ Up, Fs, B.
^c^w 3 0^ y, /(g). A; (9), Ep.
Section 4 r, 5, j<, j<, 0.

&c^w 5 N^p, F,, ^, a, D, 9, p.
Section 6 0^, M^, M,.
Section 7 ^f, Z (g).
&c^ 8 a, m, ̂  (m), n, ^, P, B^, /g-
Section 9 ^.
Section 10 : ̂  (J).

2. The Highest Root

Let 9 be a simple Lie algebra with fixed Cartan subalgebra t). Relative to t), let A
(resp. A4', A") denote the set of all non-zero (resp. positive, negative) roots with n a simple
system corresponding to A"^. Let cf be the root subspace for the root a and set
n = © g", n~ = © 901. Given a e A, let ( a [ denote the sum of its coefficients

aeA'1' aeA~
with respect to TC. Recall [6] (pp. 198-199), that A admits a unique highest root P
( i . e . | ( 3 | ^ | a [ .-aeA^.

Let n be a positive integer and recall that a Heisenberg Lie algebra c^ is a Lie algebra
with generators X,, Y», Z and relations [X», Y»] = Z: i = 1, 2, ..., n, and where all
other brackets vanish. In [19] we identified an important Heisenberg subalgebra of n
associated with P. For sl (n) this had previously been noticed by Dixmier and in the general
case had also been discovered by Kostant [28] and independently by Tits [33]. Here
we develop some further properties of this subalgebra which we require later on.

Let % denote the real dual of I) in which A is defined and set
r = {^et^ : (X, a,) ̂  0, for all a,e7i}.

Note that P e ̂ . Given X e Of, set A^ = { a e A* : (X, a) = 0 }, ^ = n n A^ and
n^ the complement of n^ in TT. Let N denote the natural numbers.

4* S^RIE — TOME 9 — 1976 — N° 1



A MAXIMAL NON-INDUCED IDEAL 3

LEMMA 2.1. — n^ generates A^ over N.

Proof. — Immediate from the definition of Of,

The conclusion of the lemma can be expressed by saying that A^ is a positive root
system for the semisimple subalgebra c^ obtained from the Dynkin diagram for 9 by
suppressing the simple roots not contained in n^. Note also that p^ = ^+I)+n~ is
a parabolic subalgebra of 9 with reductive part 9^+t). For the highest root P, the corres-
ponding gp can be recovered from the extended Dynkin diagram for 9 [6] (p. 198).

Set r == { y e A : (y, P) > 0 }. Obviously r c: A4' and is the complement of Ap"
in A4-. Set Fo = { y e r : y ^ P}.

LEMMA 2.2. - For all yeFo, we have (y, P) = 1/2 (P, P).

Proof. - Choose yeFo. Since P is the highest root, y+P, y-2? are not roots.
Yet (y, P) > 0, so y — P is a root and the assertion follows from [16] [(18), p. 116].

Set ^ = lin span { ̂  : y e r }.

COROLLARY 2.3. — c^ is a Heisenberg Lie algebra with centre ^p.

Proof. - Given y e Fo, P-y is a root and by Lemma 2.2, P-y e Fo. Again given y,
SeFo for which y+8 is a root, then from the definition of F, we have y+8er.
Yet by Lemma 2.2, (P,y+5) = 1/2 (P, P)+1/2(P, P), so y+5 = P. This proves the
assertion.

The semisimple Lie algebra gp need not be simple. Let A?" = (J Apf be a decompo-

sition of An" into simple components. Let ?' be a highest root for Api and set
F= { y e A ^ : ( y , P ' ) > 0 } .

LEMMA 2.4. — For each 8 e F', there exists y e r, such that (y, 5) > 0.

proof. - For each a e Tip, 8-a is not a root, so (a, 8) ^ 0. If (a, 8) 7^ O, take y = a.
Otherwise, note that for some a e ̂  we have (a, P') < 0. Now again, P'-8 is a root,
so let n be the largest positive integer such that 8^ = y—n 8 is a root. Then (8, 8,,) < 0
and (8,,, a) = (?', a) < 0. Hence y = a+8,, is a root and satisfies the requirements
of the lemma.

LEMMA 2.5. - There exists y e F such that (y, P') > 0.

Proof. - Recall that (a, ?') < 0 for some a e Tip, and let n be the largest positive integer
such that y = a+w P' is a root. Then y e T and (y, P') > 0, as required.

PROPOSITION 2.6. — Let co be a weight for a finite dimensional module M of 9.
Suppose for all y e F, that co+y is not a weight for M. Then co = 0, or ®- P is a weight
for M.

Proof. - If co-P is not a weight, then (o, P) = 0. Suppose co-y is a weight for
some y e Fo. Then (P, (oo-y)) = -(P, y) < 0, so o)-y+P is a weight. Yet P-y e To,
so this contradicts the hypothesis of the proposition. Hence (co, y) = 0, for all y e F.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



4 A. JOSEPH

Suppose co-P' is a weight. By Lemma 2.5, there exists yeF, such that (y, P') > 0.
Then ((co -?'), y) =-(?', y) < 0. Hence O)+(Y-P') is a weight, which contradicts
the fact that y-P'eF.

Suppose co+8 is a weight for some 8eP. By Lemma 2.4, there exists yeT such
that (y, 5) < 0. Then (y, co+8) = (y» 8) < 0, so co+(Y+8) is a weight, which contradicts
the fact that Y+8eF.

The first part of the proof now establishes that (co, 8) = 0, for all 8 e P. Hence by
the obvious induction we obtain (co, 8) = 0, for all 8 e A4'. That is oo = 0.

COROLLARY 2.7. — Let a be a root. Tfa+y is not a root for all y e I", then a = p.
Proof. — Obviously a ^ 0, so by Proposition 2.6, it follows that a — p is a root.

Since P is the highest root, it follows that a e A +. If a 7^ P, then a e Fo, and by Lemma 2.2,
Y = P—oceFo. Then a+y is a root which contradicts the hypothesis.

Call a root a e A long if (a, a) ^ (a', a'), for all a' e A. Recall that P is always a long
root (in fact this follows from Lemma 2.2) and that any two long roots are conjugate
under the Weyl group W. Again recall that for each simple Lie algebra and for any a e A,
the quantity (P, P)/(a, a) is a positive integer which can have at most two values.
In particular, call 9 simply-laced, if (P, ?) = (a, a) for all a e A. If 9 is not simply-laced,
call a root a e A short if (a, a) < (P, P). Recall that any two shorts roots are conjugate
under the Weyl group.

PROPOSITION 2.8. — IfQ is not simply-laced, then TQ admits a short root.
Proof. — Let aeA4 ' be a short root. By Corollary 2.7, there exists yeFo such

that a+y is a root. If y, y+a are long, then (a, a)+2 (a, y) = 0, so

4(a,Y)2 / (a,a)(Y,Y)<l

which contradicts [16] [(18), p. 116]. So a+y is short and a+yeFo, since P is long.
A subset Pi, ?2, ..., Pr e A is said to be a strongly orthogonal set of roots if P( ± Pj

is not a root for all pairs i, j. For example, the sequence of roots obtained by taking
the highest root of A, the corresponding highest roots of Ap^ and so on, is a strongly
orthogonal set. Kostant points out to me that any orthogonal set of roots determines
a strongly orthogonal set (by taking sums and differences) and any maximal strongly
orthogonal set is unique up to W. This can be proved as follows.

LEMMA 2.9. — Let Pi, ?2, ..., Pr e A be a maximal strongly orthogonal set of roots.
Then at least one P^ is long.

Proof. — Obviously we can assume that 9 is not simply-laced. Since the assertion
can be verified for G^ by inspection, it remains to consider B,,, €„, F4. Now in each
such case, if oceA is long and if the P; are all short, then (a, Pi)/(Pi? Pi) == 0, ± 1.
Furthermore from the orthogonality of the ?„ it is evident that

B -a V k R • k - (a? ̂Pr+l - a- L ^iPi • /c. - 7n~n~\
»= 1 (Pi» Pi)
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A MAXIMAL NON-INDUCED IDEAL 5

is a root. Now (P., ?,.+1) = 0 for all f, so by maximality of { P. }, it follows that ?,.+i = 0.
Then a = ^ ̂  p, with fc, ^ 0 for at least one i, say i = 1,2, ..., ̂  Then (?„ a) == fc, ^ 0,
so a—/:, P, is a root and by induction k^ Pi+^z ?2 is a root which contradicts strong
orthogonality.

COROLLARY 2.10. — Let g be a semisimple Lie algebra. Then any two maximal strongly
orthogonal sets are conjugate under W.

Proof. — It is enough to prove this for the simple components of 9. The proof is
by induction on rank 9, the case rank 9 = 1 being trivial. Let { P, }^i be a maximal
strongly orthogonal set for 9. By Lemma 2.9, we can assume that Pi (say) is long,
so P = Pi to within W. Then P,eA^ u Ap", for all i > 1, so { P, }̂  is a strongly
orthogonal set for gp which is evidently maximal. Since rank 9 > rank gp, the proof
is completed.

Obviously r of the lemma satisfies r ^ rank g with equality only if — 1 is in the Weyl
group (actually if and only if [28]). These numbers are listed in [19] (Sect. 6, Table 1).
They coincide with number of independent generators of cent U (n) which, incidentally,
is a polynomial algebra. The latter was proved for sl (n) by Dixmier [9] (Thm. 1, 4) and
in the general case in an unpublished result of Kostant [28] and [31]. A proof is given
in [19] (Thm. 6.6).

For each a e A, let k (a) denote the sum of the coefficients of the a» e n^. By Lemma 2.1,
A; (8) =0, for all 5eAp- u Ap-.

LEMMA 2.11. - A;(P) = 1, if and only if\ P | = 1. Otherwise k (?) = 2 andk(y) = 1,
for all Y e FQ.

Proof. — | P [ = 1 implies k (?) = 1 trivially. We show k (?) = 2 otherwise.
By Corollary 2.3, this will also prove the second part.

Take any a e n^. Since | P | > 1, we have ? ^ a and so by Lemma 2.2, Yi = p — o c e TQ.
Now there exists a' en such that y^ = Y—a' is a non-negative root. If a'en^, then
Y 2 s { A p ' , 0 } by Lemma 2.2, and so A: (P)=2 . Otherwise 72 e ̂ o ^d reapplying
the argument to y^ eventually proves k (?) = 2.

COROLLARY 2.12. - Card Tip = 1 or 2.

When card n^ = 2, we have a natural decomposition of Fo into two disjoint sets Fi, F^.
n

That is if we write y = ^ fc, o^ : 04, a^ e Tip. Then Fi = { y e Fo : k^ = 1 },
i=i

r^ = { Y e To : kn = 1 }. Actually card Tip = 2, only for sl (n+1) : n ^ 2, and this case
is very special. It is an empirical fact that when card Tip = 1, then | P | is an odd integer.
In this case, we set

r i ^ Y e r o ^ Y l ^ l P l l , r ^ J Y e r o r l Y l ^ l P l l .
I 2 J C z J

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE 2





A MAXIMAL NON-INDUCED IDEAL 7

LEMMA 2.18. - Set B = r^ u-r\ u Ap" u-P. 77^ ^r6? ^dy^y ^ unique coeW
5-McA ^r o)~1 (B) = A+.

Proo/. - Observe that B u-B = A. Hence by [16] (Thm. 2, p. 242), it is enough
to show that B admits a hyperplane of support though the origin. Now if no such hyper-
plane exists, then by Caratheodory's theorem and the rationality of the Cartan matrix,
there exist positive integers k^ such that ^ k^ a; = 0 : a; e B. From Lemma 2.11 and

fe l
the definition of r\, 1̂ , it is easily checked that B+B c: B. Now for any i e I, we have
(a,, ay) < 0 for some 7 e I, so a, + a, e B and by induction we obtain the contradiction 0 e B.

LEMMA 2.19. - Let Bo be the subset of B generated additively by T^ u-P. Then
BO^-FI.

Proof. - Apply Corollary 2.3.

3. Orbits of Minimal Dimension in g*

Assume 9 simple. Here we characterize the non-trivial orbits of minimal dimension
in g*. The results are fairly well-known; but we give proofs for completion.

Recall that g* identifies with 9 through the Killing form B. Furthermore for
each X e 9, it follows by [11] (1.11.11), that codim gx = dim d?x. Hence to characterize
minimal orbits, it suffices to determine the conjugacy classes of the set

y = { X e g - { 0 } : dim^ ̂  dim^, for all Yeg-{0}}.

Define for each simple Lie algebra the numbers

^^(cardF+l),

J(g) = Inf{ codim p : p a proper parabolic subalgebra of g}.

The numbers k (9), / (c0 are listed in [20], Table (1), inspection of this and the root
tables, [6] (pp. 250-275), gives.

LEMMA 3.1. — (1) k(Q) ^ /(g) with equality if and only if 9 = sl(n+2) : n e ' N ;
(2) Suppose that, 1+codim p ^ 2k (of), with p parabolic. Then p is maximal, or
g == sl (/i+3) : n e N, and equality holds. If p is maximal and the simple root defining p
has coefficient k > 1 in P, then equality holds.

(1) As W. Borho has pointed out to me, the entries for £7, Eg were incorrectly given and should read :

______k (Q) l(Q)

E7. . . . . 17 27
Eg . . . . . 29 57

ANNALES SCIENTIFIQUES DE L'iCOLE NORMALE SUP^RIEURE



8 A. JOSPEH

Restrict B to I) and given ^ e I)* non-zero, define H^ e () uniquely, through

B(H,H,)-0,H>,

for all H e t).

LEMMA 3.2. - L^r H e 9 - { 0 } &^ semisimple. Then dim ̂  ^ 27 (9).

Remark. — Equality can hold.

Proof. — Recall that 9" contains a Cartan subalgebra, so H e I), up to conjugacy.
Write H = H^ : ?i e I)* and set X = ̂  + f ^2, 5ii, I^ e l)^. Clearly 9^ = 9^ n g^, with
^HM ^ gH^2 Q^jy ^ ̂  ̂  ̂  proportional, so^jit is enough to consider ^ real. Then
up to conjugacy we may write H = H^ for'some unique X e Q. By Lemma 2.1,
dim 9"̂  = rank 9+2 card A^, which gives, |dim ^ = dim 9-rank 9-2 card A^.
Yet card A^ = dim p^-1/2 (dim 9 + rank 9), so dim 0^ = 2 (dim ^-dim ?„). Recall-
ing that p^ is a parabolic subalgebra, this gives the assertion of the lemma.

LEMMA 3.3. - Let E e 9~{0} &6? nilpotent. Then dim ^g ^2^(9) w^A equality if
and only if E f^ conjugate to a fixed non-zero vector in c^.

Proof. — By the Jacobson-Morosov theorem [25] (Thm. 3.4), there exist H, Peg such
that (E, H, F) span an sl (2) subalgebra t of 9. Let p be the parabolic subalgera of 9
with reductive part 9". Up to conjugacy p => 1) © n~ (cf. [II], Prop. 1.10.20). Decom-
pose 9 as a direct sum of simple t-modules and let t be the number of 9, having even dimen-
sion. Then dim 9E = dim 9H+^. Now t = 9^, for some j, and so the relation
dim 9"+2 codim p = dim 9 established in Lemma 3.2 implies that t ^ codim p—1.
Hence dim 0^ ^ 1+codim p. Suppose 9 ^ sl(n). By Lemma 3.1 (2), the relation
dim^E ^ 2 k (9) implies that p is maximal and so defined by some a e TT. If the highest
root has coefficient k = 1 in a, then t = 0 and dim 0^ = 2 codim p ^ 2 / (9) > 2 k (9),
by Lemma 3.1 (1). Hence k > 1 and so by Lemma 3.1 (2), t = codim p-1. Hence
913 => n, and so E = Ep. Suppose 9 = sl(n+3) : n e N. If p is maximal, then t = 0
and dim 0^ = 2 codim p ^ 2 / (9) = 2 k (9). Furthermore equality determines p up
to outer conjugation and then it is easy to check that H cannot be of the required form.
Hence E = Ep as before. Finally application of exp ad H : (P, H) ^ 0, to a non-zero
vector Ep in 9^ shows that 9^(0} is contained in a single G-orbit.

Remark. — Of course all conjugacy classes of sl (2) subalgebras (and hence all nilpotent
orbits) were classified by Dynkin [12] (Chap. III).

LEMMA 3.4. — Given Xe y, then X is either semisimple or nilpotent.

Proof. — Recall that each X e 9 can be written uniquely as the sum X = E+H of
its nilpotent and semisimple components which lie in 9. Furthermore 9X = c^ n 911.
If E, H ^ 0, expressing adg X in Jordan canonical form shows that 913 ̂  9" and
so then X i y.

4® S^RIE — TOME 9 — 1976 — ?1



A MAXIMAL NON-INDUCED IDEAL 9

PROPOSITION 3.5. — Suppose 9 is simple and different from sl(n+l): n = 1, 2, ...
Then y consists of a single orbit containing €^—{0}, which furthermore does not admit
a polarization.

Proof. — The first part follows from Lemmas 3.1.-3.4. For the second part, note
that 91' © C Hp identifies with tangent space to the point E_p e y and apply Lemma 2.16.

The situation for sl(n+l) : n = 2, 3, ..., is rather different. It may be described
as follows. Let oc^, 02, ..., ̂  e n be chosen such that o^, a,, e n^ and let a1, a2, ..., a" e Of
denote the corresponding fundamental weights. Then the parabolics with the minimal
codimension / (9) are precisely 9^, 9 .̂ By Lemma 3.2, the semisimple orbits of minimal
dimension form a two parameter family corresponding to c^ H^, c^H^n : c^, c ^ e C ' ^ ' ,
where C+ = { z e C — 0 : R e z ^ O } . (Here we note that H^ is equivalent to—H^n
under W). By Lemma 3.1, the minimal nilpotent orbit has the same dimension and
in fact is a limit point for both families of semisimple orbits. Moreover the minimal
orbits admit a polarization (indeed so do all orbits in sl{n) [30], Prop. 6.1) and the
inducing construction associates with them a family (parametrized by C) of completely
prime, primitive (but not necessarily maximal) two-sided ideals in U (9). For *s7 (3),
Dixmier [10] has further shown that the orbits in 9* are in one to one correspondence
with the class of completely prime, primitive two-sided ideals in U (9); but this bijection
cannot be made continuous. In the sequel we shall generally ignore sl(n).

4. The Embedding Theorem

Let 9 be a simple Lie algebra and assume that card Tip = 1. Set r = f © CHp,
5 = 9p+r. Observe that r identifies with the tangent space to the point E_p on
the minimal orbit OQ. Hence to associate a two-sided ideal of U (9) with OQ it is natural
to consider an embedding of U (9) in U (r). Actually some localization is required.
Thus we set E = Ep and U (OE = {E~5 a : a e U (r) : s = 0, 1, 2, ...}.

LEMMA 4.1. — U (r)fi is isomorphic to a Weyl algebra ^/n-i^^^i °f order
n = 1/2 (card r+1), localized at one generator.

Proof. — Recall [11] (Sect. 4.6.), and apply Corollary 2.3. Under this isomorphism
we have U(r) c: j^ and for short we write ̂  = ^n-lx^l-

LEMMA 4.2. — (Card n^ = 1). There exists a unique embedding ofV(s) in U (x)^
for which (p | r = Id.

Proof. — Uniqueness. By Lemma 4.1, we obtain Cent U (r)e = C 1. Consequently
the relations [r, $] <= r, [Hp, s] = {0} determine q> ($) up to scalars. For each 8 e A p,
the relations [Hg, Eg] = (8, 8) Eg determine these scalars on (p (E§) and the relations
[Eg, E_g] = (8, 8) Hg determine these scalars on (p (Hg).

Existence. To each X e 9?, assign an element (p (X) e U (9^)E °f the form

V (X) = ^ c^ (X) E ~1 Ey Ey,; c^ (X) e C and symmetric.
Y, 1' e To

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



10 A. JOSEPH

Recalling that [gp, g^ c: g^, [gp, E] = 0 and that ^ is a Heisenberg Lie algebra, it is
easy to check that there is a unique choice of the scalars for which [X-(p (X), r] = 0.
(p is clearly linear and for all X, Y e 9?, we have [X-(p (X), Y-(p (Y)] = [X~(p (X), Y].
Through the Jacobi identity the left-hand side commutes with 9^ Since ad Y leaves the
c^ (X) symmetric, their uniqueness gives [X, (p (Y)] = (p ([X, Y]). Then resubs-
titution gives [(p (X), (p (Y)] = (p ([X, Y]). Setting (p = Id on r defines the required
embedding.

Remark 1. — Existence can also be established through [11] (10.1.4).
Remark 2. - When card ̂  = 2, uniqueness fails because of the relation rank 9-rank

9p = 2. This allows the inclusion of an additional scalar, in agreement with the conclu-
sions given in the latter part of Section 3.

THEOREM 4.3 [9 simple and different from sl (n +1) : n = 1, 2, ...]. - There exists
a unique embedding 0 of U (g)/Jo in U (x\ for which 0 | r = Id.

Proof. - Uniqueness. By Lemma 4.2, 0 is uniquely determined on U(s). From
the relations [9^ 9"^] c 9p ® g^ © C Hp, it follows that 0 is determined to within
an element of C [E, E~1] on 9-^0. Yet for all y e Fo, we have [Hp, E_J = -(p, y) E_^,
where (P, y) = 1/2 (P, p) by Lemma 2.2. Hence 0 is uniquely determined on 9~^0

and hence on 9.
Existence. Take (p in the conclusion of Lemma 4.2. By (say) 5.3 (p extends uniquely

to a linear map (p : $ © 9~^0 -> U (x)^ satisfying

(4.1) <P([X,Y])=[(p(X),(p(Y)], Xer, Ye9-^o.

Extend (p linearly to 9 by setting

(p([E.,, E_p^]) = [<p(E_,), (p(E.p^)],

where a is the unique simple root in TT^.
Set 11 (X, Y) == [(p (X), (p (Y)]-(p ([X, Y]) : X, Y e 9, considered as an element of

U (r)E. It remains to show that T| vanishes. This will follow from the Jacobi identity
and successive application of ad (p (X) : X e r.

Take X e $, Y e 9~^0, Z e 9^ Through (4.1), Lemma 4.2 and the Jacobi identity,
it follows that [(p (Z), ^ (X, Y)] = 0. Hence 11 (X,Y) eC [E, E-1]. Yet by Corol-
lary 2.3 :

[(p(Hp), 11 (X, Y)] = ^(p, p)ii(X, Y),

so

it(X,Y)=0: Xe$, Y69-^o.

Now take X e 9"^ Y e r. From the above definition of (p (E_p), the Jacobi identity
and the established properties of (p, we obtain T| (E_p, Y) = 0 : Y e r.

4® S^RIE — TOME 9 — 1976 — ?1



A MAXIMAL NON-INDUCED IDEAL 11

Now consider T| (E_^, E_^) : YI. Y2 e Fo, Yi+y^ ^ P- Commutation with
(p(X) :Xer , shows that T| (E_^,p3_^) e C E~1. Then taking ^ = Y i + Y 2 - P » com-
mutation with (p (H^shows that |r| (E_^, E_^) = 0. Applying ad (p (Eg) : 8 e Ap to
this last expression gives T| (Eg, E_p) = 0, and so we have established T| (X, E_p) = 0 : X e s.

Now consider T| (E_^, E_p) : a e Tip. Commutation with (p (Z) : Z e ̂ r shows that
T| (E_^, E_p) e C [E, E~1), and then commutation with (p (Hp) shows that T| (E_,, E_p) = 0.
Application of ad (p (Eg) :5eAp, to this relation, implies through Lemma 2.16 that
i l (E_, ,E_p)=0, for all yeFo.

It remains to show that r\ (E_^, E_p+y) == 0 : y e Fo. This follows from the relation

0 = [(p(E,), [(p(E.,), (p(E^p)]] = [(p([E,, E,J), (p(E_p)]+[cp(E_,), (p([E,, E_p])].

Remark. — Uniqueness for .s7(w+l) :n ^ 2 fails through Remark 2 above. Uni-
queness for sl(2) fails because FQ is empty.

COROLLARY 4.4. -- G'fmi o linear map ^¥ ''Q-~^V(x)^ satisfying

(1) V|r=Id,
(2) ^(X^^t^j^y^Y]): Xer, Yeg,
(3) [XF(Hg),XF(Eg)]=y([Hg,Eg]): 8eAp,
(4) [y(Eg),y(E_g)]=Y([Eg,E..g]): 8eAp,
(5) [^(E-,), ^(E.p^)] = ̂ ([E^, E-p^]): aeTip.

Then ̂  = 0. //z particular ^f extends to an embedding of U (9) w U (r)E.
This result shows how many relations one must check to confirm that a given candi-

date ^F is indeed an embedding. Based on this we derive an explicit formula for 0 in
the next section.

5. The Embedding Construction

For all yeF, choose a non-zero vector E^eg7 and define non-zero scalars N o_
through [Ey, Ep_J = N^p_y Ep. In particular we write Eo = Hp, so that Np^o = -(P^ P).
Set E = Ep and Fy = N^_y E-1 Ep_y : y e F. Then for all y^, y^ e T :

(5.1) [E,, FJ = 8^,,+ l8^p(l-8^p)Np.,,^Fp^,

where 5^^ is the Kronecker delta. Set ^^lin span {Fy :yer}, let S(^) denote
the symmetric algebra over ^ and a : S (^) —> U (r)e the symmetrization with respect
to the given basis of ̂ . Note that a is independent of choice of basis and is not onto.
Define D' : 9 ® S (^) -> 9 ® S W, through

D' = ^ adEy ® Fy and D : 9 ® or(S(^-)) -^ 9 ® cr(S(^))
yer

through D' and transport under a, that is D (1 ® cr) = (1 ® CT) D'. Define e^ e 9*,
through < 6?-, E > = 1, < e^, Ey > = 0 : y e A, y ^ p, < ^_, h > = 0. That is <?, identifies

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



12 A. JOSEPH

with E_p under the Killing form. Similarly define <? e 9* through identification with En
under the Killing form. Define 9 : 9,®^(r)E --> U COg through

9 ( X ® 3 / ) = < ^ , X > E ^
(left multiplication).

LEMMA 5.1. — For all y e F, w^ have

(1) [(1 ®adE,, D] = adE,® 1- ^[(adE,® 1), D],

(2) [[(adE,®l),D],D]=0.

Proof. — It suffices to derive these formulae for D' and these result from (5.1) by direct
computation. For the reader's convenience we note that

[(adE,® 1), D'] = -(adEp^Ep-^Kl^p).

Note that D is nilpotent, so exp D is well-defined.

LEMMA 5.2. - For all jeF :

[(1 ® ad Ey), exp D] = exp D (ad Ey ® 1).

Proof. — From (1) of Lemma 5.1, we obtain

[(1 ® ad Ey +1/2 ad Ey ® 1), exp D]

== i "^ - '̂(adE^D"-7-1

n=o j=o n!

= expD—!—(l-exp(-adD))(adE^ ® 1).
adD

Rearrangement using (2) of Lemma 5.1 gives the required result.
Remark. — Lemma 5.2 fails if D is replaced by cD : ceC ;c ^ 1.
Direct computation further establishes :

(5.2) [(adHp® 1+1 ®adHp), D] = 0,

(5.3) (adE^)9=9(l®adE^): yeF,

(5.4) (adHp)9 = 9(adHp ® 1+1 ®adHp).

THEOREM 5.3. — [g simple and different from sl(n+l) : n = 1, 2, ...]. Let 0 be
in the conclusion of Theorem 4.3. Then

0(X)=9(expD(X®l))+c(9)(P,P)2E- l<^X>: Xeg

where 0(9) is a rational number dependent on 9.
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A MAXIMAL NON-INDUCED IDEAL 13

Remark. — The second term affects only <&(E_p). There seems to be no easy way
of absorbing it by say adjusting the 9 map.

Proof, — The given 0 is obviously linear and so it suffices to establish (1)-(5) of Corol-
lary 4.4. (1) is verified by an easy computation. Then for all y e F :

[0 (E,), 0 (X)] = (ad E,) 9 (exp D (X ® 1)),
=9((l®adEy)expD(X®l)), by (5.3),
= 9(expD(adE^® 1)(X® 1)), by Lemma 5.2,
= 0([Ey, X]), as required.

A similar argument using (5.2), (5.4) establishes (2). Parts (3), (4) derive from sym-
metrization and the contruction of Lemma 4.2. Finally the argument of Theorem 4.3
shows that (5) can only fail by an element of C E~1 and this determines c (9) which is
easily seen to be rational.

Set Jo = ker 0. Then Jo is a two-sided ideal in U (9).

LEMMA 5.4. — Jo is completely prime and is primitive.
Proof, — The first part follows from Lemma 4.1 and the fact that ̂  has no zero

divisors. Again we further obtain that Cent (U(g)/Jo) c: Cent ^ = C 1, so Jo is
primitive by [11] (Sect. 8.5.7).

Set p = (1/2) ^ a. Given co e W define C0p e End t)*, through (Op K = co (^+p)—p,
aeA+

for all ^ e t)*. Set W1' = {c0p : co e W }. It is well-known that the maximal ideals of
Cent U (9) are in one to one correspondence with the orbits of t)* under W1'. Now in
particular Jo n Cent U (9) is a maximal ideal in Cent U (9) and in the next section we
determine the corresponding W1^ orbit.

6. The Central Character of Jo

Let 0^ denote the W1' orbit defining Jo n Cent U (9). To determine a K e 0^, we
construct a U (9) module M^ with highest weight vector i\ such that q\ : U (9) —> End M^
satisfies ker (p^ = Jo-

Let s be a positive integer and set

M,=C[E^E^..,E^,E1/S,E-1/S],

where y^ runs over r\. Define Mg as an r-module by letting E,y : y e I\ u P act through
multiplication and E^, : y' e {r^, 0} (Eo = Hp) through adjoint action. Then M, extends
to a U (r)e module and through 0 to a U (9) module.

Now let t be an integer and set v^i = Ep^- By Theorem 5.3 and the definition of F^.

LEMMA 6.1. — $ (Ey) v^f = 0, for all y e 1̂  u Ap', and

0(Hp)t^=^(M)^.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE 3



14 A. JOSEPH

Let B be as defined in Lemma 2.18. Set

HB =lmsp^in{g[f: yeB}, n^ = linspan^""7 : yeB}.

Set DI = ^ ad Ey g) Fy : D^ = D'-D'i and define Di, D^ from D'̂ , D; by transport
yeFo

under a. Then [Di, D^] = 0, so from Theorem 5.3 we obtain

(6.1) O(E^) = 9(DiD2(E^® !))+ -9(Df(E-.,® 1)) : yeFo.

LEMMA 6.2. - Fix yera. TA^i ^ (E-p+^^.t = 0» and for a suitable choice of
^=^:0(E^)^=0.

Proof. — Both parts are similar and we prove just the second. Consider

9(D^(E_,®1))^,.

The 9 map gives a non-zero contribution, only if Yi + Y2 + Ys — Y = P? where Yi, 72? Ys e Fo
from the summations in D^. Thus | Yi | +1 Y2 | +1 Ya | = (3/2) | P | +1/2. Hence we must
have Yj s r\ for at least one value of i e {1, 2, 3}.

Suppose i = 1. To annihilate Vy^ we move the corresponding F to the left and this
gives a non-zero contribution only if Yi+Yj == P? t01* some j e {2, 3}. Suppose 7 = 2,
then YS == Y ^d we obtain a term proportional to B^Ep^i;^. Obviously

9(D?(E_,®l))i^

consists of only terms having this form. A similar computation for

9(DiD2(E-.,®l))i^

shows that besides such terms we obtain a non-zero contribution proportional to
E^Ep.y Hpi;^. Applying Lemma 6.1, we can cancel these terms for a suitable choice
of s / t , which is easily verified to be rational.

Let s, t be in the conclusion of Lemma 6.2 and set v^ = v^i: ^ el)*.

COROLLARY 6.3. - For all X e 1X3, 0 (X) v^ = 0.
Proof. — By choice of s, t and Lemma 6.2, we have <D (E.p) v^ == 0. The assertion

then follows from Lemmas 2.19 and 6.1.
It is clear that <D (H) v^ e C v^ : H e h, so we may write

^(Y^^O'.Y)^: YennCI).

With respect to this choice of Borel subalgebra, v^ is a highest weight vector for the
infinite dimensional U (g) module M^ = €> (U (Up)) ̂ ,. To determine V we note from
Theorem 5.3, that tor all SeAp :

0(Hs) = - I E (Yi. 8)N^lp_„E-l(^Ep.„+Ep^,E^.
2 yieFi
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Hence

(6.2) 0(Hs)t;- ^ (Yi,5)t^.
2 YieFi

Now with respect to our previous choice of y e T^, we obtain from Lemmas 6.1 and 6.2
that (Y, ^') = 0. This and (6.2) determines ^/. Of course X' is then calculated relative
to B and we must refer it back to A +. To do this let co be in the conclusion of Lemma 2.18.
Then (o~1 (^/) e 0^. Hence X = ® (co-1 (^)+p) -p e ̂  and ^ = X'+cop-p. Sum-
marizing.

TABLE
77^ U (g)-module M^ A^ /»^/^/ weight ^ aw/ (p^ : U (g) -» End M^ satisfies ker (p^ == Jo

Cartan Label Central Character ^ + p e Q

B«............ V a* + 1 a"-2 + ̂  a"-1 + a"
»=l z 2

n-i .
Q...... . . . . . . ^ a^-a"

i==l
n-3

D«. . . . . . . . . . . . ^ a ^ + ^ ^ + a "
»=i

Ee . . . . . . . . . . . . a1 + a2 + a3 + a5 + a6

E7............ a1 + a2 + a3 + a5 + a6 + a7

Eg............ a1 + a2 + a3 + a5 + a6 + a7 + a8

F4............ ^a l +^a 2 +a 3 +a 4

€2. . . . . . . . . . . . a^a2

PROPOSITION 6.4. — Set

^=————( S (P,P)Yi+2(Y,y,)P)-p,
^(P? P) Yisn

wA^r^ Y e ly TA^ X e 6? ,̂ that is it defines the central character for Jo.
Based on this formula, the above Table gives the unique representative of

^+p : ̂  e (^ lying in the fundamental domain ^. The fundamental weights a1 : i = 1,
2, ..., rank 9, are defined through the relation a1 = ®», where the co, are taken from
Bourbaki [6] (pp. 250-275). Define ^ : U (g) -> End M^ through (p^ (a)m=<S> (a) m :
a e U (9), w e M,,. Then ker (p^ => ker 0 = Jo. Conversely given a e ker q\, then
0 (a) m == 0, for all w e M^. Since M^ contains, up to a displacement of E^5, the poly-
nomial algebra on which the $ (a) act as differential operators, we obtain 0 {a) = 0 and
so a e Jo. Thus ker (p^ = Jo, as required.
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16 A. JOSEPH

7. The Maximality of Jo

We show that Jo is maximal [for 9 simple and different from sl (n+1) : n = 1, 2,... ].
The original proof was simplified by the following lemma [4] (Kor. 3.5) (whose full
generality we do not require). We outline the proof. Define Dim as in Section 8.

LEMMA 7.1 .— That I be a prime ideal of U (9) and J a two-sided ideal of U (9) properly
containing I. Then Dim U (g)/J ^ Dim U (9)/I-1.

Proof. - Set V = U (g)/I, J = J/I. Let gr be the gradation functor for the filtration
of V defined in Section 10. Since gr (V) is finitely generated, it follows by use of the
Hilbert-Samuel polynomial that dim V"* is a polynomial in m, for all m sufficiently large.
Say this polynomial is of degree /. Then [cf. (10.1)] Dim V == /. Now since I is prime
and V is Noetherian, there exists (see [II], 3.5.10, 3.5.11) aeJ which is not a divisor
of zero in V. Suppose a e V^. Then for all m > k, we have dim (V"" n J) ^ dim \m~~k,
Consequently Dim U (cQ/J = Dim V/J ^ /— 1, as required.

LEMMA 7.2. — Let J be a two-sided ideal of U(g) properly containing Ko. Then
dim U (9)/J < oo.

Proof. — Since Jo is completely prime (Lemma 5.4) it follows by Lemmas 8.8 and 7.1,
that Dim U (g)/J < 2 k (9) = dim OQ. Yet QQ is the orbit of minimal non-zero dimension,
so by Lemma 10.1. It follows that

DimU(9)/J=dim{0}=0.

Hence dim U (cQ/J < oo.
Remark. — We sketch an alternative proof. Let J be as above. From the given form of<I>

one shows easily that E^ e J, for some non-negative integer k. Now Borho [3] has shown
that if the power of some root eigenvector lies in a two-sided ideal J of U (9), then E^ e J,
for / large, and all 5 e A. Indeed this is immediate if 9 is simply-laced and also if the
given root is a short one. Otherwise it suffices to show that E^ e J, for a short root y. Here
one can conveniently use Proposition 2.8, the only really delicate case being G^. It
follows that dim U (n)/U (n) n J < oo and hence that dimJf/^f n J < oo, where ^
denotes the set of harmonic elements of U (9) [16] (Sect. 0). After Kostant [26], we
have U (9) = ̂  Z (9), where Z (9) = Cent U (9). (Actually this is a tensor product;
but we do not require this hard result). Some Jo is primitive and J :=> Jo, it follows that
J n Z (9) contains a maximal ideal of Z (9). Combined with the above observation,
we have dim U (9)/J < oo, as required. This argument was essentially my original proof.
It also gives a special case ofBorho's lemma [3], namely.

LEMMA 7.3. — (9 simple). I f J is a two-sided ideal of\J (9) containing a power of some
non-zero root eigenvector and an element o/Prim U (9), then dim U (9)/J < oo.

THEOREM 7.4 [9 simple and different from sl (n+1) : n = 1,2, ... ]. — Jo is a maximal
ideal.
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Proof. — Let J be a two-sided ideal of U (g) properly containing Jo. By Lemma 7.2,
dim U(g)/J < oo. Hence if J ^ U(c0, its central character coincides with that of Jo
given in the Table, namely ?i. Yet, this is impossible since ^ is never a dominant
integral form, hence J = U (9) as required.

Remark. — In sl (n+1) : n = 1,2, ...»there is a family (parametrized by C) of ideals
corresponding to the minimal orbits (Sect. 3). These are maximal except (as usual) on
the integers.

8. Jo is not Induced

Let 9 be a finite dimensional Lie algebra over C. The theory of induced representations
translated to an algebraic setting [11] (Chap. 5), leads to the following definition. A two-
sided ideal J of U (g) is said to be induced from a subalgebra a of 9, if there exists a two-
sided ideal I of U (a) such that J is the largest two-sided ideal of U (9) contained in U (9) I.
Our main result is that Jo is not induced (except trivially from 9 itself). This can be
expected since Jo is associated with a non-polarizable orbit. Yet for the moment we are
unable to apply this fact and we rely on the dimensionality estimate below.

Given an associative algebra ^ over C, we recall that its Gelfand-Kirillov
dimension Dim^ s^ over C is defined follows [15"] (Sect. 4). (In a non-associative algebra
context see [23]). Let a = (a^, a^ ..., On) be any finite subset of elements ofj^, (a, m) the
set of monomials of degree ^ m and d (a, m\ its dimension over C. Then

_. . ,7— logd(a, m)Dim^ ̂  = sup hm ——-——-.
logma m->oo

We drop C in the sequel. For general information on Dim, see [21] (Chap. 2) and [4].
If ^ is commutative and integral [4] (2.1), then Dim sf is just the maximal number

of algebraically independent elements of j^. Now suppose ^ is a filtered algebra with
oo

the filtration { ^m }^=-oo satisfying Q ^m = { 0 }, and such the associated graded
m= —oo

algebra gr(j^) is commutative. Then from [21] (2.3) or [4] (5.1), we have

(8.1) Dim ̂  ^ Dim gr (jaQ.

Furthermore equality holds ifj^"""1 = { 0 } for some integer n and if gr (.s/) is finitely
generated [4] (5.5).
IPlLet a be a subalgebra of 9 and m a complementary subspace for a in g. Let S (m)
be the symmetric algebra over m and ^ (m) the algebra of infinite order differential
operators over m with polynomial coefficients. Let v be a representation for a and ^ the
associated U (a) module. The representation \i induced to 9 by v is defined to be the
left regular representation in U (9) ®u(a) ^ ' ^et ^ = ker^i, and 89 = v(U(a)) c Endc<f.
We construct a representation (A* of U (9) in S (m) ® € equivalent to H [7].
Then [7] (Prop. 2.2), U fe)/J ^ n* (U (9)) c= jT (m) ® ̂ .
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18 A. JOSEPH

Furthermore ^* can be given explicitly. Let {X,}^i be a basis for 9 such
that { Xy}^Li, { X, Ys^m+i are fcases for m, a respectively. For r e { 1, 2, ..., w } use ̂
to denote Xy considered as an element of S (m) and set y = (y^ y^ ..., y^),
where y, = 5/3 .̂ Let g denote the function ^ : x - ^ g ( x ) = ;c~1 (-l+;c+exp-jc).
Let P : 9 --> m be the (linear) projection of 9 onto m. Extend ad Xg : X e m, to a
derivation ad X of C [[>]] ® 9 by C [[>]]-linearity. Define (analytic) functions A,,
through identification of coefficients of X, in the equation

(8-2) E ^jhji(y) = (l-^DOOPr^exp-DOOX,,
j=i

where

(8.3) D00= E^adX,
r=l

Then [22] (Equation 3.9), we have

(8-4) U*(X,)= ExA.(30+ E v(X,)fc,(30.
r= l s=m+l

Let n^ denote the representation of g induced from the trivial representation of a.
Set t = { X e g : H* (X) e C [[>]] ® ̂  }. Obviously n* [9, i] c: C [[>]] 0 ̂ , so i is
an ideal in 9. By (8.2), Ay, (0) = 8^, where 8 .̂ is the Kronecker delta, so i <= a.

Define a filtration in ^ (m) (g) ^ through the degree of an element considered as a
polynomial in x = (x^ x^ ..., x») and let gr denote the associated gradation functor.
Set Ji = ker ̂ .

LEMMA 8.1:

(1) Dim U (9)/J = Dim gr (U (9)/J),

(2) Dimgr(U(9)/J) ̂  Dimgr(U(9)/Ji).

Proof. - Observe that deg n* (X) = 1 : X ^ i and deg n* (X) = 0 : X c: i. Hence gr
is induced by the canonical filtration of U (9/1), and (1) follows from [4] (5.5).

Since gr ̂  (m) is commutative and integral [7], Lemme 1.4 (i). Dim gr (U (^)/Ji) = r,
where r is the transcendence degree of Fract gr (U (9)/Ji). Since gr ̂  (X) : X e 9
generates gr (U (9)/Ji), there exist Yi, ¥3, ..., Y,. e 9 such that the gr ̂  (Y,) are alge-
braically independent. Now ^ (X) = 0 : X e t, so Y, ̂  i and hence

grH*(Y,)=grn?(Y,),

from (8.4). This gives (2).
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Below we estimate Dim gr(U(9)/Ji). In this we may take v = 0 in (8.4) and
treat x, y as independent variables. Set z = (x, y) and

(8.5) w,= f x.h^y): i = l , 2 , . . . ,n.
r=l

Then it is elementary that

LEMMA 8»2. — Dim gr (U (cQ/Ji) ^ rank (Sw^Qz^ with equality if the h^ are rational.
Set

h^k=8h^l8yk: f e = l , 2 , . . . ,m .

LEMMA 8.3. — Rank (Sw^Sz^ ^ codim a, with equality if and only if a is an ideal in 9.
Proof. — Observe that

(8.6) dw, = S (h^y)dx,+x^,(y)dy^
r==l

Now from (8.2), we obtain h^ (0) = 8y;, where 8^ is the Kronecker delta. This gives
rank h^ (y) = m in some neighbourhood No of the origin. Since m = codim a, we
obtain the asserted inequality. For equality to hold, we require h^s(y) = 0 :^eNo;
r, s = 1, 2, ..., w, f = w+1, ..., w. Evaluation at ^ = 0, using (8.2)?gives [9, a] c: a,
as required.

Given /em*, define the two-form B^ on 9 through B^(X, Y) = </, P [X, Y] >.
Given E e m, define the map /g : 9 —)"Tn? through

XE = PO^adE)?)-^? -adE).

LEMMA 8.4. — Fix fern*, Eent. Let u, o be subspaces ofc^ with trivial intersection.
Then

rank ( - w t } = rank (B^ |u- x m) + dim XE ^>\az,/
w/z^r^

u' = f ^ Y + Z : Y+Zeu; Yem, Zea LI' = f ^ Y + Z : Y+Zeu; Yem, Zeal.

Proof. — Set </, X,. > = x^ : r = 1, 2, ..., w. From (8.2) we obtain for
all s == 1,2, ..., m, i = 1,2, ..., n, that

(8.7) E^A,s(0)=c^(X,,XO: c.= r ^l^•-m}'
1: otherwise.
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Yet dim /^ ^ ^ dim ̂  D •' b e Co : Co some non-empty Zariski open set in C. Hence
in the ^-space, there exists in each neighbourhood of the origin a point y ' such that

dim 7E'i> ^ dim/E o, where E '= ^ y[ X,. u n t ) = { 0 } ; (8.6) and (8.7) imply
r=l

the required assertion.

Remarks. - If either m c: u, or m n u == { 0 }, then u = u'. Suppose [m, u] c m,
then H can be replaced by the two-form B .̂ : (X, Y) -^ </, [X, Y] >. Finally if m is
a subalgebra, then (1-P) A(y)P = 0, so ̂  = (l-^(adE))-1 P exp(-ad E). Hence
in the lemma, we can replace ^g by XE = p ̂ P (-ad E).

From now on we assume that 9 is simple. In the notation of Section 2, we
set b = n © I), b~ = n~ © t). Given p a parabolic subalgebra of 9, we can assume
that p => b". We write p = to © ito, where to, nj" are respectively the reductive
part and nilradical of p. Let ito be the unique subalgebra of n complementing p in 9,
satisfying [b. ito] <= ito.

LEMMA 8.5. — These exists fe ito6 such that rank (B^ L^no) = dim ito.

Pnw/. — It suffices to prove the corresponding assertion for n. This follows
form [19] (Lemma 5.7).

Remark. — This incidentally proves the statement given in [31].
Recall [25] that an S-triple (E, H, F) is a three dimensional subalgebra of 9 satisfying

the relations [H, E] = 2E, [H, F] =-2F, [E, F] = 2 H. An S-triple parabolic p
is a parabolic subalgebra of 9 with XQ = 9", where H = H^ : 'k e 2 and is the semisimple
element of an S-triple (E, H, F). For example, b~ is an S-triple parabolic with respect to
the principle S-triple [25] (Sect. 5). Again if P is the highest root, pp is an S-triple parabolic
with respect to (Ep, Hp, E_p). Unfortunately not all parabolics are of this form. For
example, the parabolic of minimal (non-zero) codimension in D,, : n ^ 4.

LEMMA 8 . 6 . — Suppose p is an S-triple parabolic with respect to the S-triple (E, H, F).
Then P (exp —ad E) ito = ito, where P : 9 —> ito is the projection onto ito.

Proof. — Let g = © 9, be the decomposition of 9 into simple S-modules. Since
H = H^ : ̂  e ̂ , it follows that ito (resp. ito) is the linear span of positive (resp. negative)
root subspaces of ad H. Hence HQ = © (ito n 9,), nj" = © (HQ n 9,). Thus it suffices
to prove that ^ ̂ o n 9f) = ^o ^ 9». for each f, where /g = P (exp -ad E) |g. Now
since XQ = 9", we obtain dim (HO n 9,) = dim (HQ n 9,) = m^ for suitable non-negative
integers w,. Then ^ is an w,xw, matrix which in a suitable basis has entries
(Xv)rs = ^l(^i+s—r)\, where w, = dim 9,—w,. Then

^ 1!2!...!(^-1).
n,!(n..+l)!... !(n,+m,-l)! •

as required.
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PROPOSITION 8.7. — Let p a parabolic subalgebra 0/9. Suppose thet either,
(1) The nilradical ofp is commutative, or;
(2) p f.y an ^-triple parabolic.

Then rank (Qw^/SZj) = 2 codim p,/o/- a representation induced from p.

Proof (1). - Let m, u, o be in the hypothesis of Lemma 8.4. Set E = 0, m = x> = HO
and let u be the complementary subalgebra of HQ in b. Then dim XE l) = codim p,
trivially. Again HQ is commutative by hypothesis and hence so is m. Then applying
Lemma 8.5 to the conclusion of Lemma 8.4, we obtain the required assertion.

(2) Set m == Ho, u = b, D = no and E the nilpositive element of the defining S-triple.
From Lemmas 8.4-8.6 we obtain the required result.

Let Jo be the two-sided ideal of U (9) defined in Section 5, and k (9) the numbers defined
in Section 3. Set E = Ep.

LEMMA 8.8 [9 simple and different from sl (n+1) n = 1, 2, ... ]. — Let J be a completely
prime, proper two-sided ideal of U(9), which is not the augmentation ideal. Then
Dim U (9)/J ^ 2 k (9), with equality if and only z / J= Jo.

Proof. — We have E ^ J, otherwise J is the augmentation ideal. Hence since J is
completely prime and ad E is locally nilpotent on U (9), it follows that { E1' }^o ls an

Ore set for U(9)/J and so we can localize U(9)/I at E. Then by Lemma 4.1 it follows
that (U(9)/J)E contains the Weyl algebra j< : n = 1/2 (card F+l) = k(g), defined in
its conclusion. Hence J n U (r) = { 0 } and so by (8.1):

Dim U (9)/J ^ Dim U (r) = dimr = 2 n,

with equality if J = Jo. Suppose J ^> Jo. Then there exists a e Jo, a t J which we can
choose to be highest weight vector under the adjoint action of 9. Suppose

DimU(9)/J=2fe(9).

Then a is left algebraic over U (r) and commutation with Ey : y e r implies that a is algebraic
over C [E]. This gives the relation u^a"-^...+UQ = 0, with n ^ 1, UQ ^ 0 and
Ui e C [E] for ; = 0, 1, 2, . . . , n. Since a e Jo, this implies UQ e Jo, which contradicts
the fact that C [E] n Jo = 0. Hence J => Jo, so J = Jo by Lemma 7.2.

Remark. — The only if part of the lemma was pointed out to be by W. Borho, who
observes that the conclusion fails in general for primitive ideals (of infinite codimension).
A primitive ideal is prime; but not necessarily completely prime [11] (3.1.6 and
Thm. 3.7.2).

PROPOSITION 8.9. - [9 simple and different from sl(n+l) : n = 1, 2, ...]. Jo is not
induced by any proper parabolic subalgebra of 9.

Proof. — By Lemmas 8.1-8.3 and 8.8, it suffices to consider parabolics for which
codim p < 2 k (9), that is codim p ^ codim pp. It is easy to verify that all such parabolics
are maximal and furthermore satisfy either (1) or (2) of Proposition 8.7. [In fact
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only B„ , D„^.l : n ^ 3, Eg, E7 admit a parabolic of strictly smaller codimension and this
satisfies (1). Apart from the S-triple parabolic pp , only F4, G^ admit a parabolic of equal
codimension and this satisfies (2) because there exists a root proportional to the corres-
ponding fundamental weight.] Then the assertion of the proposition obtains from
Lemma 3.1 and the conclusion of Proposition 8.7.

Consider now induction from an arbitrary subalgebra. By stepwise induction it suffices
to consider only maximal subalgebras. From [24], [12] (Sect. 7.23), and (Thms. 7.3
and 5.5), a maximal subalgebra p is either parabolic or semisimple. Furthermore :

LEMMA 8.10 [9 simple and different from sl (n +1) : n = 1,2, ... ]. - LetQo be a maximal
semisimple subalgebra of ^ satisfying dim 9-dim go ^ 2A:(g)-l. Then either:

(1) 9 = so (m+1), go = so (m) : m ̂  6, or;
(2) g = so (7), 90 °f type GI embedded in so (7) through its seven dimensional

rep resentation.
Proof. — If go is maximal and semisimple, then in the terminology of Dynkin

([12], [13], [29]), 90 is either a regular or an S-subalgebra. Furthermore the [maximal
regular subalgebras of 9 are determined by suppressing a simple root in the extended
Dynkin diagram [12] (Chap. II, Sect. 5); [4] (pp. 250-275), of 9. Computation then
shows go cannot be regular. Again if 9 is an exceptional Lie algebra, then from [12]
(Thm. 14.1 and Table 39), it is easy to verify that go cannot be an S-subalgebra. Finally
assume that 9 is a classical Lie algebra. If go is a direct sum of classical simple Lie algebras,
then the requirement rank 9 ^ rank 90 is sufficient to give (1) as the only possible choice.
If go contains an exceptional Lie algebra/then byj[13] (Chap. 1 and Thm. 1.5), go is a
maximal S-subalgebra of so (w), or sp (m)^(m even^onlyjif it admits a representation T of
dimension m. Given 0 the highest weight vector for T, let Q (n) denote the sum of the
coefficients of the simple roots in Q. Then dim T ^ 2 Q. (n) and this estimate suffices
to give (2) as the only possible choice.

Given go a semisimple subalgebra of 9, let m be the complementary invariant subspace
for the adjoint action of go in 9- Set / (go, m) = sup {/e m* : rank (By. |̂ ^)}. For 9
simple and m a simple 9 module, a complete listing of these numbers derives from [14]
(Table 1). Furthermore

LEMMA 8.11. — Let J be a two-sided ideal of\J (9). IfJ is induced from 9o» then

Dim"U|(9)/^ ̂  idim m +1 feo^)-

Proof. — By Lemmas 8.1-8.3, it suffices to prove that

rank( —* ) ̂  dimm+Jfeo? rT^)-
W7

In Lemma 8.4, set E == 0, u = go, D == m. Its conclusion gives the required result.

THEOREM 8.12. — [9 simple^and different from sl (n +1) : n = 1, 2, ... ] JQ is not induced
by any proper subalgebra of 9.
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Proof. — By Proposition 8.9 and the above discussion, it remains to examine cases (1),
(2) of Lemma 8.10. Take 9 = so (m+1) : m ^ 6. Then Dim (U (g)/Jo) = 2w-4.
Yet for an ideal J induced from its so (m) subalgebra, we have through Lemma 8.11
and [14] (Table 1), that Dim U(g)/J ^ 2m-l. Again take 9 = so (7). Then
Dim U (g)/Jo = 8, whereas for an ideal induced from its G^ subalgebra, we have [14]
(Table 1), that Dim U (g)/J ^13. This completes the proof of the theorem.

9. Weyl Induction

Let 9 be simple and different from sl (n +1) : n = 1, 2, ... Set r = ̂  © C Ho, E = Eo.
Since the embedding U (9) c U (r)e is rather asymmetric with respect to r, it is natural
to consider the action of the Weyl group W, which permutes the possible choices of F.
We show that W acts through Aut (Fract U (r)). This provides an alternative proof of
the existence of the ambedding.

Given a e A, let (0^ e W denote the reflection in the plane normal to a and co, = co^
given a, en. Recall that the (o, : i = 1, 2, . . . , rank 9, generate W and that for
all a e A4' : a 7^ oc,, we have co, a e A'1'. Again for all o e W, we have co g" = g^ and
we can choose 0 ^ E^ e g " such that o^ (E) = c (co, a) E^ : c (co, a) = d= 1. (It will
turn out that these ± 1 factors play absolutely no role in our analysis and could be ignored).

Recall the decomposition 9 = n © l ) © n ~ and let ^ be an associative algebra. Given
associative algebra homomorphisms (p : U (n) —> ̂ , 0 : U (9) —> ̂  and the group
homomorphism \|/: W—> Aut j^, the pair?((p, \|/) [resp. (0,^)] will bewailed compatible
on n (resp. on 9) if

(9.1) v|/((Of)(p(E,)=(p(co;EJ: i = l , 2 , . . . , r ankg , aeA4 ', a^a, ,

(9.2) [resp. ̂  (co) 0 (E,) = <D (® E,), co e W, a e A].

LEMMA 9.1 [g semisimple with card A4' > rank 9]. — A compatible pair ((p, \|/) on n
extends uniquely to a compatible pair (0, \|/) on 9.

Proo/. - For each a e A4", set 0 (E^) = (p (E,):

0 (®, E,) = c (G^ , a) 0 (E_,) = v|/ (co,) (p (E,).

To show that (9.2) holds, its suffices to take —a e A" and a, e K, a,+a ^0. Ignoring
the ± 1 factors we obtain

\|/ (co.) 0 (E_J = \|/ (co,) v|/ (coj (p (E,), by definition,
=^((o,)^((o„)^-l(co,)(p(o),E„), by(9.1),

= ^ ((Oo, a) <P (E<o< a)» and by definition,
= 0 (E _ ̂  „), as required.
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Again the ± 1 factors must come out right by the compatibility of the Weyl group
action on 9. Hence (9.2) holds. It remains to show that 0 extends to a homo-
morphism U (9) —> sf.

Given a, R e A, with a+P ^ 0, there exists by [16] (Thm. 2, p. 242), ©eW such
that coa, o)peA"1'. Ignoring ± 1 factors and recalling that 0 [„ = (p is a homomor-
phism, we obtain

v|/((o) [0(EJ, 0(Ep)] = [$(E<J, <D(E,p)], by (9.2),
- <&([E,,, E,p]) = ^(O))$([E,, Ep]).

Then multiplication by \|/~1 (co) gives the required identity.
Now with (a, a) H, == [E, , E_J, set (a, a) 0 (H,) = [0 (E^), 0 (E_,)], for all a e A

Through the Jacobi identity we obtain for all a, P e A : a ^ P, that

0([H,,Ep])==[0(H,),0(Ep)]

and hence [$ (H<,), <D (Hp)] = 0, and O(H^p) = 0(H,)+$(Hp). Finally given
card A4' > rank g, this last relation implies that 0 ([H^, EJ) = [<1> (H^), $ (E^], which
concludes the proof.

Now let I, I be the subalgebras of 9 defined in Lemma 2.15. Its conclusion allows
us to construct by induction from a character v on I, a realization of t. In this (8.2)-(8.4)
apply and because I admits a commutative complement in I, the factor (1 —g (D(y))'P)~1

in (8.2) drops out. Furthermore by Corollary 2.3, we can identify y^ with E~1 Eo_
as Y, runs over I\ u P [with Eo = Hp-1/2 ^ N;;̂  (P, p) E-1 Ep_^ EJ. Thus this

YeFi
construction gives an embedding (p,, of U (I) in U (r)E. We remark that if 0 is defined
by the conclusion of Theorem 5.3, then there exists a character Vo on I such that 0 L = (p^.
On the other hand using Lemma 9.1 we can reconstruct 0 from (p^. (More precisely
we reconstruct 0 from (p = (py [(. : f = n ® C H^ © C E_^, which is independent of v.)
To do this it suffices to define \|/ : W —> Aut (Fract U (r)) and show that (q>, \|/) is compatible
on n. Now it is easy to verify that the uniqueness part of the proof of Theorem 4.3
implies that it is sufficient to assertain compatibility on r. However compatibility on r
exactly defines \|/ (co,) : i = 1, 2, .. .."rank 9, if we can show that

Fract (p(U (0,1)) = Fract V(x\

For all a, e TT? , it follows that ®, r = r, so there is nothing to prove. For o^ = a e 7t£,
we have

LEMMA 9.2. - Fract (p (U (o^ r)) = Fract U (r).

Proof. - Set ^ = Fract (p (U (©„ r)). The inclusion ^ c= Fract U (r), holds by
definition of (p. For the reverse inclusion, we may use the relation 0 L = (p noted above,
where 0 is defined by Theorem 5.3.
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Prove Ep, Ep_^ e 31. If p— 2 a is not root then <o^ interchanges P and P—a and the
assertion is immediate. Otherwise we note from Lemma 2.11, that P—3 a is not a root
and so ((P-oc), a) = 0. Then o^ P = P-2 a, co, (P-a) = P-a. From (5.3) ^

7-1 T;2(p(Ep_^) = Ep 'Ep-, and (p(Ep_,) = Ep-,,

so Ep, Ep_^ e 91 as required.
Let 71 be an integer > 1. Assume we have shown that E^e^, for all y e F

with | y [ > n. Then we show that E^ e ̂ , for all y, e F satisfying | yJ = n. In this
we can assume that n < \ P |— 1. If (y,, a) = 0, then co^ y, = 7;, so E e ̂  trivially.
If (Yi? a) ^ 0, then by Lemma 2.11, y,+a, y,— 2 aJare not roots, so co^ y< = Y i — a e Ap\
By Theorem 5.3:

(9.3) <P(E^)- E N^„N;-.lp.,Ep~lEp_,E^,.,
2 -yelo

Now since card n^ = 1, it follows that | y+y,—a | ̂  y, with equality only if y = a.
Again since y,-a e Ap", we have | y+yf-a | < | P |, so | y+y, | ̂  P. If equality holds,
set P — y = Vy. In (9.3), we obtain a non-zero contribution only if P — y, + y; — a is a root.
Yet | P — y j + y i — a | = | P — o c [ and so by Corollary 2.3, it follows from the relation
card Tip = 1, that y; = y^. Noting the identity N^^N^^ = Np_^^,_, Np-^^,
we may rewrite (9.3) in the form

q>(E,,_J = N^_,N;-/p-,Ep-lEp_,E,„ mod^.

Hence E^ e ̂  as required.
It remains to show that E,, Hp e ̂ . Let Sl' denote the field generated by

{E, :yer , |y |> l} .

From Theorem 5.3, it follows that co^ E^ (= E_^) and G)^ Hp are linear in E,, Hp over ^'
Since they cannot be linearly dependent it follows that E<,, Hp e ̂ , as required.

We may summarize our conclusions in the following manner:

PROPOSITION 9.3.- Let I, I be in the conclusion of Lemma 2.15 and set ̂  = Fract U (r).
Define a compatible pair ((p, \[/) on n, through the representation |i* (cf. Sect. 8) on t induced
from the trivial representation of I and through the conclusion of Lemma 9.2. Then ((p, \[/)
extends to a compatible pair (0, \|/) on 9, and 0 coincides with the homomorphism in the
conclusion of Theorem 5.3.

We can now verify the claims asserted in [20]. The proof of [20] (Lemma 2.1) is
given in [21] (2.10). Given this, the results claimed in [20] (Thm. 4.1 follow from
Lemma 4.1, Thm. 4.3, Lemma 5.4 and Prop. 9.3). Similar arguments give [20]
(Thm. 5.1). The explicit formulae computed in [20] (Sections 9-11 coincide with
that given by Theorem 5.3).
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10. Quantization and Non-Polarizable Orbits

Here we establish a precise connection between (PQ and Jo, and suggest a possible
generalization of this relationship.

Define a filtration { U"1 }^=o OD U (9) through

U m ==l in span{X n : n=0 , 1,2, . . . .m.Xeg},

and let gr denote the associated gradation functor. Recall that S (9) identifies
with gr (U (9)) and let { , } denote the Poisson| bracket defined on S (9) [and hence on
Fract S (9)] through gr [32] (Sect. 2). Given m an integer ^ 0, set

U, = gr, (U"), S" = © U^, U = U (9), S = S (9).
n==0

Let J be a two-sided ideal in U (9). Define the characteristic variety ̂  (J) <= 9* of J
to be the zero variety of gr (J). For each i; e Fract U (9), set gr (Q = (gr (a))~1 gr (6)
and deg ^ = deg gr (&)-deg gr (a), given ^ = a~1 b : a, &eU(9). Recall [15]
(Lemma 4), that gr (Q and deg ^ are independent of the representatives a, b of ^.

Define a filtration { (U/J)"* }^o on U/J through (U/J)"1 = U^U"* n J. Since gr (U)
is commutative and Noetherian, it follows that gr(U/J) is commutative and finitely
generated. Hence by the remark following (8.1) we have (see also [4], Kor., 5.4):

(10.1) Dim (U/J) = Dim gr (U/J) = Dim S/gr (J).

Now gr (J) is G-stable and hence by transposition so is 1^ (J). Let Ii, I^, ..., !„ be
prime ideals of S such that \ n I^ n . . .n !„ = ^gr (J), [11] (3.1.10). It is easy to
check that each I, is G-stable and hence so is each irreducible component ^, (J) = V (I,)
of 'T (J). By [4] (3.1 e). Dim S/gr (J) = max { Dim A/I :i=i, 2, ..., n}. Now
Dim A/I, is the transcendence degree of Fract S/I, and it is classical that this coincides
with the dimension dim V (I,) of the tangent space to a generic point of ̂  (I,). We obtain

LEMMA 10.1. — Let J be a two-sided ideal in (9). Then V (J) is a union ofG-orbits in 9*
and Dim (U/J) = max { dim -T (I,) : i = 1, 2, ..., n }.

Remark. — This result is implicit in [4] (Sect. 7).

Assume 9 simple and different from sl (n+1) : n = 1, 2, ... Let Jo be the two-sided
ideal of U (9) defined in Section 5 (following Thm. 5.3) and i^o the minimal non-zero
orbit in 9*.

PROPOSITION 10.2. — Let J be a completely prime two-sided ideal in U (g). Then
-T (J) = i^o u {0 }, if and only if] = Jo.

Proof. - By Lemma 8.8, Dim (U/J) = 2 k (9), if and only if J = JQ. Excepting { 0 },
there is by Lemma 3.3 and by Proposition 3.5 only one orbit in 9* of dimension ^ 2 k (9).
Hence the required assertion follows from Lemma 10.1.
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This result uniquely relates Jo to ^o- More generally, as R. Rentschler suggests, one
may expect there to be a bijection (or very nearly one) between the family of orbits in 9*
and the class of primitive, completely prime, two-sided ideals in U (9). To discuss this
the above procedure needs some refining since ^ (J) is always a cone (consisting of
nilpotent orbits) and may also give too much. In particular one always gets the
point { 0 } corresponding to the augmentation ideal. Finally we should not expect
the simple dimensionality arguments given above to be sufficient in general. Rather
we should recall that deg 0 (X) = 1 and note that as a consequence we have

(10.4) {grO(X),gra>(Y)}=gr[0)(X),0(Y)]: X,Yeg.

Thus (p : X —> (px = gr 0 (X) is a Lie algebra homomorphism of 9 into Fract S (r),
sometimes called a classical realization of 9. After Kostant [27], it is known that the
set of zeros of X-(px [which coincides with ̂  (J^)] is a union of G-orbits in 9*, which
in this case is just OQ u {0 }. Conversely starting from a given orbit (9 in 9*, we choose
local co-ordinates x,, ^ e C°° (O) such that the Kirillov-Kostant symplectic form is
given by

m
Y , d x i / \ d y i : 2m==dim0.
i=l

This gives rise to a linear map q> : X —> (px of 9 into C°° (0) satisfying

<Pcx,v3=t<Px,(Pv}=Zf^x^Y-^Y^XV
i=i\8xi 9yi Qxi QyJ

Suppose that 0 admits a polarization a. Then by induction from the character
a-^ </? ^ > •*/€ 0 on a, we [may write (px as jfunctions linear in homogeneous in x^
x^ ..., x^ over C [[vi, y^ ..., ̂ J], given by^cpx = H* (X) and (8.2)-(8.4). Moreover
the linearity of (px enables one to replace ̂  by Q/ffx^ and so define a completely prime [7]
(Cor. 3.2), two-sided ideal J in U (9). In fact J = ker H* and is the ideal induced by the
character a —» </, a > on a. This process, though not obviously canonical, works rather
well for 9 solvable and 9 == .$7(3) ([I], [5], [10]) and represents the algebraic basis of
Kostant's quantization [27].

When 0 is not polarizable, it is no longer possible to choose co-ordinates so that (px
is linear in the x,. Yet we might hope that at least (px can be chosen to be no more than
polynomial over x^ x^ ..., x^. Even then, 0 (X) must contain terms of lower order if
it is to satisfy (10.4) with 0(X) = (px. Neither the existence or uniqueness of such
terms is obvious. Indeed difficultes are known to arise when dim 9 = oo [17], a fact
responable for the failure of old-fashioned quantization. Nevertheless we do wish to
point out that it is essentially the above process by which we associated Jo with the minimal
orbit OQ.
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