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NON-TRIVIAL CHARACTERISTIC INVARIANTS
OF HOMOGENEOUS FOLIATED BUNDLES

BY FRANZ W. KAMBER (*) AND PHILIPPE TONDEUR (*)

A Monsieur Henri Carton
pour son soixante-dixieme anniversaire.

ABSTRACT. — The authors have given a construction of characteristic classes for foliated bundles which
generalizes the Chern-Weil construction for the characteristic classes of principal bundles. In this paper
these classes are evaluated for the particular case of locally homogeneous foliated bundles. The gene-
ralized characteristic homomorphism is then the composition of three maps. The first of these maps
is associated to the representation defining a foliated vector bundle from a foliated principal bundle.
The second map is expressible purely in terms of relative Lie algebra and Weil algebra cohomology. The
third map can be interpreted as the characteristic homomorphism of a flat bundle. The computation
of the characteristic homomorphism reduces then to purely algebraic problems which can be solved with
the methods discussed in earlier papers. Many non-trivial realizations of secondary characteristic invariants
in various geometric contexts are given.
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1. Introduction

The authors have given in [22] to [25] a construction of characteristic classes for foliated
bundles which generalizes the Chern-Weil construction for the characteristic classes of
principal bundles. A foliated bundle is a principal bundle P —> M with a foliation on the
base space M and a partial connection on P (defined along the leaves of the foliation only)
which has zero curvature. In other words: the horizontal spaces of the partial connection

(*) This work was partially supported by a grant from the National Science Foundation.
AMS 1972 subject classification: Primary 5732, Secondary 5736.
Key words: Characteristic classes, Chern-Weil classes, flat bundles, secondary invariants, foliations.
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434 p. W. KAMBER AND P. TONDEUR

define a fbliation of P projecting onto the foliation of M. This concept allows the
simultaneous discussion of characteristic invariants for ordinary bundles, bundles with
an infinitesimal or global group action, flat bundles and normal bundles of foliations.

This particular point of view concerning secondary characteristic invariants of
foliations ([24], [25]) is one of the various independently discovered approaches to this
topic by Godbillon-Vey [12], Bott-Haefliger ([5], [7], [15]), Bernstein-Rosenfeld [2],
Malgrange and the authors. An account of the developments leading to the authors
point of view can be found in the introduction to [25] and in the lecture notes [25'].

In this paper we evaluate the generalized characteristic homomorphism for the particular
case of locally homogeneous foliated bundles. The computation reduces then to purely
algebraic problems which can be solved with the methods discussed in [23]. Some
results of this paper are contained in the announcement [27]. The methods here developed
lead to many other applications which wil be presented in later papers.

The authors wish to emphasize how much this work on secondary invariants builds
on the classical work of Koszul ([29], [30]) and Cartan-Weil [8]). That subject is pre-
sented in the forthcoming book by Greub-Halperin-Vanstone [14] (Vol. III).

The outline of the paper is as follows. In section 2 we review the concept of foliated
bundle, give several examples and describe in particular locally homogeneous foliated
bundles given bya Lie group G, subgroups H c G c: G, with H closed in G and a discrete
subgroup r c G as in (2.14). An important example is the normal bundle of the foliation
of a group G by the cosets of a subgroup G. Invariant adapted connections are
characterized algebraically by (2.6) and (2.8).

In section 3 we review first our construction of generalized characteristic classes
[Theorems (3.4) and (3.5)]. Then we give an evaluation principle for the generalized
characteristic homomorphism A^ for the case of locally homogeneous foliated bundles
[Theorems (3.7) and (3.11)]. For the corresponding associated foliated vectorbundles
the construction is detailed in Theorem (3.7'). According to these results, A^ is the
composition of three maps. The first map is associated to the representation of (G, H)
which defines a foliated vectorbundle in terms of a foliated principal bundle. The second
map is expressible purely in terms of relative Lie algebra and Weil algebra cohomology.
The third map is the characteristic homomorphism of a flat bundle. The rest of the
paper proceeds according to this decomposition. First we study in section 4 the map
A^c for flat bundles. Then we compute A^ for certain foliated principal and vector
bundles in section 5 and 6. Finally we discuss in section 7 interrelations between these
results. Typical applications of the computations carried out are the following results.

THEOREM 6.49. - Let Qu (,) be the normal bundle of the foliation of SU 0-+1) by the
left cosets of the unitary group U (r) with quotient the complex projective space P1' C. The
image of the generalized characteristic homomorphism A^ (Qu ̂ )) in

H^SU^+l^^A^^,.. . ,^,)

is the ideal generated by the primitive element y,+^ the suspension of the top-dimensional
Chern polynomial c,+i e I2^2 (SU (r+1)).
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HOMOGENEOUS FOLIATED BUNDLES 435

This implies that dimimA^ (Quo.)) = ̂ ~\ whereas dimH (SU (r+1)) = 21'. It
further shows the abundant existence of non-trivial linearly independent secondary
invariants in dimensions greater than 2 r+1.

THEOREM 6.52. — Let Qso(2r) be the normal bundle of the foliation of SO (2 r+1) by
the left cosets of the orthogonal group SO (2 r) with quotient the sphere S2^ The image
of^ (Qso(2r)) ̂  H (SO (2 r+1)) ^ A (y^ ..., Yr) is the direct sum

Id(^)eA(^/2]+i, ...,^-i)

of the ideal generated by the suspension y^ of the top-dimensional Pontrjagin polynomial
/^er^SO (2 r+1)), a^ ^ exterior algebra generated by the primitive elements
^[r/2]+l» • • •»^r-r

Note that the foliations in both these examples are Riemannian, and the generalized
characteristic homomorphism

H (W (gl (2 r), SO (2 r)),) ̂  H^ (M)

is certainly trivial. However e.g. in the last example the bundle Qso(2r) with its
canonical trivialization gives according to our general construction rise to a generalized
characteristic homomorphism

A ^ : H(W(5o(2r)),)-^HDR(SO(2r+l))

which according to the result just stated is highly non-trivial. Moreover one obtains
non-trivial realizations of rigid secondary characteristic invariants in this case.

We wish to emphasize that the functorial properties of the generalized characteristic
homomorphism are immediate consequences of the general construction in [25], whereas
the evaluation for the cases here discussed is efficiently done through the principles
embodied in Theorems (3.7), (3.7') and (3.11).

In section 4 the map A^; is evaluated for flat bundles. Non-trivial characteristic
classes for flat bundles [Theorems (4.7), (4.17), (4.18)] have already occured in our
earlier work ([20], [24], [25]). A further application is the following. Let G be
compact and H closed in G. An H-bundle P' —» M with trivial G-extension P is characte-
rized by a homotopy class /: M —> G/H. The generalized characteristic homomorphism
A^ of P is then essentially /* : H (G/H) -> H (M) [see (4.13) and (4.14)]. This leads
e. g. to secondary invariants for real structures on a trivial complex vectorbundle
[Theorem (4.15)]. The lowest dimensional of these invariants corresponds to the Maslov
class entering in quantization conditions [1] [Proposition (4.16)]. We discuss briefly
the dual non-compact situation of flat GL (m)-bundles with an 0 (w)-reduction, and
prove the statements (4.17)-(4.18) given without proof in [25]. Another application
is to S0(2w—l)-bundles with a trivial SO (2 w)-extension, for which the suspension
a(e) of the Pfaffian polynomial e e I2" (SO (2m)) gives a secondary characteristic
invariant on the odd-dimensional sphere S2"*"1. The result of the explicit computation
of this invariant is (4.20). A geometric interpretation is given in (4.21) for Riemannnian
immersions in R2" with codimension 1 in terms of the normal degree of the immersion.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



436 p. W. KAMBER AND P. TONDEUR

The generalized characteristic homomorphism is computed explicitly for certain
symmetric pairs (G, G) in section 6. In section 5 we first prove general results for
reductive pairs. The framework for these computations is Theorem (5.6). This result
expresses the secondary characteristic homomorphism A (9) of the foliated G-bundle
P = r\G x G —> r\G in terms of the primary characteristic homomorphism h (9)
of the (ordinary) G-bundle G —> G -> G/G. For this purpose the relevant complexes
have to be replaced by the cohomologically equivalent complexes according to the
algorithm described in [23]. The relevant material is reviewed in the appendix to this
paper. More details on this algorithm are to appear in [28] (see also [25']). In top
dimension a necessary and sufficient condition for the surjectivity of A (P)^ is the surjectivity
of the primary characteristic homomorphism h (9)^ [Theorem (5.10)]. This condition is
satisfied if the Lie algebras 9 and 9 are of equal rank [Corollary (5.10').] This leads
to non-trivial secondary characteristic numbers. In the remainder of section 5 we prove
and apply a formula for the suspension a (<!>) e H (9) of an invariant polynomial 0 e I (G)
in terms of the restriction ;* <D e I (G) and the 9-DG-algebra structure of A 9* [see Corollary
(5.25) (i)]. This technical result is crucial for the computations in section 6 (and also
of interest in other contexts). It can be used to relate the cycles in the image of the
characteristic homomorphism A (9)^ to the primitive elements of H (9). Thereby one
obtains an estimate on the dimension of the image of A (9)^. Theorem (6.28) and Corollary
(6.30) are established in this way. A complete determination of A (9)^ for certain
symmetric pairs is the following main result of section 6.

THEOREM 6.40. - Let (G, G) be a symmetric pair of equal rank r and satisfying
conditions (6.21) and (6.22). Then for the generalized characteristic homomorphism
A (9)^ of the left coset foliation ofG by G we have

imA(9)^ = Id(^)+AO^, . . . , y,) c= H(9).

The primitive class yj of 9 is the suspension of the distinguished generator c. of I (G) in
(6.22), and the primitive classes y , 0/9 (i = t+1, ..., r) are the suspensions of the
generators c^ ofl (G) satisfying deg c, > 2 q' == dim 9/9.

The ideal Id (^generated by the element y^ has already dimension I1"1, since
H (9) = A (y^ ..., y^) has dimension T. This produces linearly independent secondary
invariants in dimensions greater than 2 q1 +1.

In the statement above A (9)^ is more precisely the characteristic homomorphism of
the foliated G-bundle G x G —x G, to which the normal bundle of the foliation of G by
G is associated. We refer to the text for a detailed explanation of the occuring terms.
Conditions (6.21) (6.22) are satisfied for the symmetric pairs

G, G) = (SU(r+l), U(r)) and (G, G) = (S0(2r+l), S0(2r)).

As applications of Theorem (6.40) we obtain Theorems (6.49) and (6.52) already stated
in this introduction.
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In section 7 we finally show how for certain non-compact pairs (G, G) the invariants
discussed are interrelated. The main result is the factorization of the characteristic
homomorphism on the cochain level given in diagram (7.9), which together with the
injectivity result in Theorem (4.7) gives a Lie algebraic description of secondary characte-
ristic classes. This applies in particular for hermitian symmetric spaces and flag mani-
folds. The results announced in [27] for this situation will be presented elsewhere.
Applications to linear independence results for certain cohomology classes of BFq are
announced in [25'], p. 179-185 and will be proved in a forthioming paper.

The appendix has been described before. It reviews the cohomological methods of
[23] which are needed in the present paper.

2. Foliated bundles

The concept of a foliated bundle involves three independent data: a principal G-bundle
TC : P —» M, a foliation L on the base space M, and a flat partial connection on P with
respect to L([25], [25']).

We review this concept for the case of smooth manifolds considered in this paper
A foliation on M is given by a involutive subbundle L of the tangent bundle T^. The
dimension q of the quotient bundle Q = T^/L is the codimension of the foliation. The
sections of the dual bundle Q* are the 1-forms annihilating the vectorfields tangent to
the foliation. A flat partial connection in the G-bundle P with respect to the foliation
L on M is a G-equivariant foliation 0)0 on P projecting onto L, and such that the tangent-
space to the foliation at each point u e P has only the zero vectorspace in common with
the tangent space to the fiber at u. A flat partial connection in P can be described by
a connection co in P whose horizontal space at u e P contains the tangentspace to the
foliation of P. Such a connection is called adapted to the foliation of P. The
components of the curvature Q of an adapted connection co in P are then contained
in the ideal generated in the de Rham complex Q* (P) of P by the 1-forms which are the
sections of TT* Q* c: Q1 (P). A flat partial connection (Og in P with respect to L (or
mod Q*) is completely characterized by a class of connections (called adapted) with the
curvature property above and such that the differences are tensorial 1-forms on P of type
Ad, where all components are sections of TI* Q*. A foliated bundle is then a triple
(P, Q*, coo).

There is a natural pull back /* (P, Q*, ©o) for any map/: M' —» M. It suffices to
define Q'* = /* Q*. Then the pullback bundle ?'=/*? inherits a flat connection ©o
mod Q'* in a canonical way. For Q'* to be the bundle of annihilating 1-forms of a (non-
singular) foliation on M', we have to require that/is transversal to the foliation on M.
The codimension of the pullback foliation on M' then equals the codimension
of the foliation on M.

Let PQ, Pi be foliated bundles on M. Po, Pi are integrably homotopic, if there
exists a foliated bundle P on Mx[0, 1] such that P( ^.A*P for i = 0, 1 (as foliated
bundles), where j\ : M —> M x { T } for T e [0, 1].

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



438 P. W. KAMBER AND P. TONDEUR

For Q* = Q^ (L = 0) the concept of a foliated bundle is simply a bundle P equipped
with a connection. For Q* = 0 (L = T^) it is a bundle P equipped with a flat connection.
If P is the GL (^)-frame bundle of a vector-bundle E -> M, the covariant derivative defined
by a connection co in P is given locally by

(2.1) V^,= ES*(O.,(^

for a vector-field ^ on M and a local trivializing section s = (^, . . . , ^) of P.
(Oy is the matrix of CD with respect to the canonical basis in 9 / (n). If © is an adapted
connection in P, the covariant derivative defined in (2.1) is well-defined only for
vectorfields ^ annihilated by forms in Q*. It turns E into a foliated vectorbundle
(see [21]-[22]). An example is the bundle Q* itself with Bott connection defined by
V^ o) = i (Q Jco for co belonging to Q* and S; belonging to L.

We recall the notion of a basic connection ([25], (7.8), (7.9)], which will be used
later on. Let co be an adapted connection in the foliated bundle P •—> M. Then

(2.2) coL-basic o 0(i)(o = i(^)Q = 0 for vectorfields ^ in L.

On the RHS ^ denotes the canonical lift of ^ to a "horizontal" vectorfield in P. The
geometric significance is that the flow of ^ leaves co invariant. A typical example is the
case of a submersion/: M —> M' and the foliation T (/) defined by the fibers of/. Any
connection CD' in the frame bundle P' —> M' of M' pulls back to a T (/)-basic connection
in P = /* P', the frame bundle of the normal bundle T^/T (/).

We turn now to the description of homogeneous and locally homogeneous foliated
bundles. Consider a Lie group G with Lie subgroup G c: G and corresponding Lie
algebras 9 <= g. On the G-bundle
(2.3) GxG-^G

the G-orbits of the diagonal G-action on GxG defined by (g, g ) g ' = (gg\ g~1 g) for
g e G, g e G, g ' e G lift the G-orbits on G (the left cosets) to G x G. Thus the bundle (2.3)
has a canonical foliated bundle structure.

Next consider a Lie subgroup H <= G with Lie algebra t) c: 9. We assume that H
is closed in G, hence closed in G. Since the foliation just described on GxG is
G-invariant, the G-bundle
(2.4) P = G X H G ^ G / H

inherits a canonical foliated bundle structure. A foliation LQ on the homogeneous
base space G/H is induced by the orbits (left cosets) of the (right) G-action on G. H acts
on the G-orbits of the diagonal action on G x G and the foliation LQ on G/H lifts to P,
thus defining a partial flat connection in P.

A left G-invariant connection CD on P adapted to this canonical foliated structure is
given by a g-valued 1-form in the de Rham complexes

^(Dp^r^crr^^)
4® S^RIE — TOME 8 — 1975 — ?4



HOMOGENEOUS FOLIATED BUNDLES 439

satisfying the conditions (on G x G):

/ (i) R^c^Adte"1)® for geG;
(ii) L*co=co for geG;

(2.5) - (iii) co(r|*) = (0, TIL) = -n for ^ eg;

(iv) CO(^L, -^0=0 for ^eg;
(v) 4*0)=^* co for ^eH.

Here we have used the notations R, R for the canonical right action of G, G on G x G
and L, L for the corresponding canonical left actions. Further ^ = (^R, 0) denotes
the right invariant vectorfield on G x G corresponding to ^ e 9, and ^ = (^L ? 0) Ae
corresponding left invariant vectorfield. Similarly T|R = (0, rip) and T|L = (0, r\^) resp.
denote the right and left invariant vectorfields an G x G corresponding to T| e 9. For
ri e 9 the infinitesimal transformation of Rexpin is TI* == (0, T|L) on Gx G. Conditions (i),
(iii) express then that co is a connection form, whose G-invariance is given by (ii). (iv)
expresses that co vanishes on the orbits of the diagonal G-action on G x G, whereas (v)
expresses the invariance under the diagonal H-action (so that co is in fact defined on
G x H G). To express these conditions more algebraically, we need the following

(2.6) LEMMA. - There is a bijection between left G-invariant connections co on G x G
and linear maps 9 : g —> g determined by the formula

(2.7) C0(,-,,) (L Tip) = Ad (g-l) o [6 (Q + Ti]

for ^ e 9, -q e 9. _ _
In view of the left G-invariance (2.5) (ii) and right G-covariance (2.5) (i) it is clear

that 9 determines co completely.

(2.8) LEMMA. - For a left G-invariant connection (D on G x G characterized by 9 : g —> 9
the following are equivalent:

(i) co is adapted to thefoliation defined by the diagonal G-action;

( i i )co(^^R)=Oybr i; e 9;
(iii) 9 | 9 == id.
Proof. — (i)<^>(ii) is clear, since the diagonal G-action is given by R^oL^- i .

(ii) o (iii) follows from (2.7) which reads

o)(,,,)(iL,-^)=Ad(g-l)o[9ft)-y for i;e9. •

Note that the vector field (^L» —Sp) on GxG is the infinitesimal transformation of
the flow of exp t ^ under the diagonal G-action.

ANNALES SCIENTIFIQUES DE I/ECOLE NOBMALE SUPEBIEURE 56



440 P. W. KAMBER AND P. TONDEUR

(2.9) LEMMA. - Let co be as above. The following conditions are equivalent:
(i) L^ co = R *̂ co for he H;

(ii) 9 is equivariant for Adg (H) and Adg (H).

We omit the trivial verification. These conditions make co a form on Gx^ G. The
preceding observations give a purely Lie algebraic characterization of G-invariant adapted
connections on P, which is summarized as follows.

(2.10) PROPOSITION. - Let P be the canonically foliated homogeneous bundle (2.4).
There is a bijection between left G-invariant and adapted connections co on P and H-equi-
variant splittings 9 : 9 —> g of the exact sequence 0 —> 9 —> cj —> 9/9 —> 0, where co and 9
^w related by (2.7).

For a connection co on P the g-valued curvature form Q = Ao+(l/2) [co, co] is
horizontal, i. e. i d*) Q = 0, TI e 9. A direct calculation shows that

(2.11) ^-,.)((L tip), (^ Tip)) = Adfe-1)^)^, ^)),

where ^, ^/ e 9, r|, TI' e 9 and K (9) : A2 9 -> 9 denotes the 9-valued algebraic curvature
form of 9 given by

a^)^^)^-1^^], oceg*.

d^ is the Chevalley-Eilenberg differential in A g*.

(2.12) LEMMA. - Let w be a left G-invariant adapted connection on P characterized by
an ^-equivariant splitting 9 : cj -> 9 o/ 0 -^ 9 -> g -> 9/9 -^ 0. 77^ following conditions
are equivalent:

(i) co is Lo-basic;
(ii) z^, -^)Q=0, ^eg;
(iii) f (0 (aK(9) )=0 , ^9; ae9*;
(iv) 9 ^ ^-equivariant.

Proof. - (i)o(ii) follows from (2.2) and (2.8) (ii). (ii)^>(iii) follows from (2.11).
(iii) <=> (iv): For ^ e 9, a e 9*, T| e 9 we have by (2.8) (iii):

i (Q (a K (9)) (ii) = a (K (9)) (^, ̂ ) == - a9 R, ̂ ] + a [9 (i;), 9 d)] = a (- 9 [̂ , 11] + R, 9 (it)]).

Hence i (Q (a K (9)) =0, ^ e 9, a e 9* is equivalent to 9 (adg (^ T|) = adg (^ 9 (r|),
!; e 9, T| e 9, i. e. to the 9-equivariance of 9. •

(2.13) LEMMA. - Assume G c: G to be closed. Then P admits an L^-basic adapted
connection.

4e SERIE —— TOME 8 —— 1975 —— ?4
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Proof. - The bundle P for the case H = G becomes P '=0x00=0- - ) - 0/0, the
canonical 0-bundle on 0/0. There is an obvious 0-bundle map (/, /):

P^Gx^G-^P^G

J J
0/H —f—^ 0/0

and P ^/* P'. The foliation on 0/H is given by the fibers o f / : L o = T(/). Any
connection co' in P' lifts to an L^-basic adapted connection co = /* co' in P. •

Finally we consider a discrete subgroup F c 0 acting properly discontinuously and
without fixed points on 0/H, so that M = r\0/H is a manifold. Dividing the 0-
bundle (2.4) by the action of F, we obtain the locally homogeneous 0-bundle

(2.14) P = (r\0) x H 0 ̂  M = r\0 H.

Since the foliation considered before on the bundle (2.4) is 0-invariant, it is inherited
by the bundle (2.14). Left 0-invariant connections on (2.4) pass to (2.14), so that
the preceding discussion of adapted connections applies equally well to this locally
homogeneous foliated bundle.

Consider the exact sequence of H-modules

0^9/t)^9/t)^9/9-^0

for which 6 : g —> 9 characterizing an invariant and adapted connection gives an H-module
splitting. In the exact sequence ofvectorbundles

o^r\oxH9/t)-^r\oxH9/t)^r\oxH9/9-^o
(2.15) || || ||

0———> La ——————> TM ——————> QG ———^0

the last term is associated to P and hence Q G = I > X G 9 / 9 • ^ ls ^ normal
bundle Qo = T^/L^ of the foliation and is canonically foliated. In fact the foliation
induced from P coincides with the Bott connection in Q^.

3. Generalized characteristic classes

For the convenience of the reader we recall briefly our construction of
generalized characteristic classes of foliated bundles as first announced in [22] to [24]
and detailed in [25]. For the sake of simplicity, we review our construction as it applies
in the category of smooth manifolds (see [25']). For this purpose consider the Well
homomorphism

fe(co): w(9)-^r(P,np)
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPEBIEURE



442 F. W. KAMBER AND P. TONDEUR

defined by a global connection CD in a smooth principal G-bundle G —> P —> M. W (9)
denotes the Weil algebra [8] of the Lie algebra 9 of G, Qp the sheaf of differential forms
on P with global sections the de Rham complex r (P, ^Ip) of P. On the subalgebra of
G-invariant polynomials I (G) <= W (9) the map k (0) induces the Chern-Weil homo-
morphism assigning to 0 e I (G) the de Rham cohomology class \k (co) 0] e H^R (M).
Let now P be a foliated bundle. The fundamental observation concerning the Weil
homomorphism of a foliated bundle is the following. For a connection co in P adapted
to the partial flat connection (OQ the Weil homomorphism k (oo) is filtration preserving
for the canonical filtration F2^ of W (9) {see below) and the filtration FP of the de Rham
complex r (P, Op) defined by the foliation in the base space M. The latter filtration
breaks off above the codimension q of the foliation in M. This leads to an induced
homomorphism

fe((o): w(9),->r(P,np)

on the truncated Weil algebra W(^ = W^/F2^^ W (9). This is a generalization
of Bott's vanishing theorem in [4]. Whereas the Weil algebra is contractible, the
cohomology of W (9)^ is non-trivial and thus leads to generalized characteristic invariants
in the de Rham cohomology H^ (P). This construction was motivated by the Chern-
Simons construction on invariant polynomials in [9], [10]. Additional devices lead to
invariants in Hp^ (M).

For our construction one needs the further data of a closed subgroup H c: G and an

H-reduction P' of the G-bundle Pgiven by a section s of P/H -"> M : P' = s * P. W (9, H)
denotes the algebra of H-basic elements in the Weil algebra W (9). These are the elements
in W (9) killed by the operators i (x), x e I) and invariant under the H-action induced from
the canonical G-action on W (9). The canonical filtration of W (9) by

(3.1) F2PW(9) = SP(9*).W(9), ¥2P~1W= F^W

induces a filtration on W (9, H). Denote,

(3.2) W(9, H), = W(9, H^F20^^, H) for fe ^ 0.

The construction sketched above establishes then the existence of the generalized
characteristic homomorphism A^ in Theorem (3.4) below. A^ is defined as the
composition A^ = s* o k^, where the homomorphism

(3.3) ^ : H (W (9, H),) -^ HDR (P/H)

is induced by the generalized Weil homomorphism restricted to H-basic elements and does
not depend on the choice of the adapted connection co (see [23] to [25] and [25'] for more
details.) The construction of A^ will be particularized below for the case of locally homo-
geneous foliated bundles, so that the present account can be read without consultation
of the papers giving the theory in the general case. We have then the following result.
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(3.4) THEOREM [25]. - Let P — > M be a foliated G-bundle mth an H-reduction, H c: G
a closed subgroup "with finitely many connected components.

(i) There is a canonical multiplicative homomorphism

^ : H(W(9,H),)-^HDR(M),

where q is the codimension of the given filiation on M. A 4; is the generalized characteristic
homomorphism of the bundle P equipped mth the filiation (DO and the H-reduction s.

(ii) A^e is functorial under pullbacks:

r ̂  (P, 0)0, s) = A^ a* p, r coo, r s).
(iii) A^ is invariant under integrable homotopies.
This construction contains beside the usual (primary) characteristic classes of P

secondary invariants, which therefore are naturally explained in the framework of the
Chern-Weil theory. For the particular foliated bundle obtained from the normal bundle
of a non-singular foliation or from a Haefliger I^-cocycle, the relationship of these inva-
riants with the invariants of Godbillon-Vey [12] and Bott-Haefliger ([7), [15]) has been
explained in [25]. The computation of the universal generalized characteristic
invariants has been carried out in [23]. The method is explained in the appendix to this
paper.

With the definitions given in section 2 it is e. g. clear that the generalized characteristic
homomorphism is invariant under integrable homotopies. Namely is P is a foliated
bundle on M x [0, 1] providing an integrable homotopy between the foliated bundles PQ,
PI on M, then the generalized characteristic homomorphism

A(P)^ : H(W(9,H),)^H^(MxI)

of P composed with j * : H^ (M x I) —> Hj^ (M) is independent of T, where

j\ : M - ^ M x {r}c:Mx[0, 1].

But A (P,)^ = yf ° A (P)^ for i = 0, 1 and hence A (Po)^ = A (P^.
The characteristic homomorphism A^ is also contravariant functorial for homomor-

phisms (G\ H') —> (G, H) in an obvious sense. This fact is used in the proof of the
next result, which is based on the construction of the complex A (W (9)^, H) for the coho-
mology H (W (g, H)^) in [23] (see appendix to this paper).

(3.5) THEOREM [25]. — Let P be a foliated bundle as in Theorem 3.4 and P' = s* P the
^-reduction of P given by a section s of P/H —> M.

(i) There is a split exact sequence of algebras

x

(3.6) 0-^H(K,)-^H(W(g,H),)^I(G),®,(G)I(H)^0
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and the composition A^ o x is induced by the characteristic homomorphism I (H) —> H^R (M)
ofV.

(ii) If the foliation of P is induced by a foliation of P7, then A^ [ H (K*) = 0.

The classes in A^ H (K^) are secondary invariants. Their appearance is by (ii) due
to the incompatibility of the foliation of P with the H-reduction P'.

It is clear from the construction of A^ that it depends only on the homotopy class
of s : M —> P/H. If the subgroup H c= G contains a maximal compact subgroup K
of G, then an H-reduction of P exists and A^ does not depend on the choice of the
H-reduction. To see this, it suffices to show that G/H is contractible, since the sections
of P/H —> M are classified by maps M —> G/H. But this follows from the fibration
H/K —>• G/K —> G/H, since both H/K and G/K are contractible. In general A^ does
depend on s and this dependence is in fact of great interest.

We describe now the construction of A^ in the case of locally homogeneous foliated
bundles. We have the following result.

(3.7) THEOREM. - Let H <= G <= G be Lie groups, H closed in G with finitely many
connected components, and T <= G a discrete subgroup acting properly discontinuously
and without fixed points on G/H.

The canonical G-foliation LQ of M = F\G/H has codimension q = dim 9/9. The
G-bundle P = (T\G) x^ G —> M is canonically foliated. Let co be a locally G-invariant
adapted connection on P, characterized by an H-equivariant splitting Q of the exact sequence

9

(3.8) o^9^9^9/9->0.

Then the generalized characteristic homomorphism A (co) of? on the cochain level facto-
rizes as follows

A (O)H
W(9,H),——^(9/1))*"

0-9) \ !r
A (<B)\ [

F(M, QM)
where j is the canonical inclusion and A (6)^ is induced by the H-DG-homomorphism

A(9): W(9)-»A9*

which is completely determined by

i A(9)a=a6 for aeA^*,
(3llo) 1 A(9)a=aK(9)=^ae+ l a [9 ,9 ] for aeS^*.

Note that the induced maps on the cohomology level do not depend of the choice of co,
resp. 9. Under a stronger assumption on 9 we have the following result.
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(3.11) THEOREM. - Let the situation be as in Theorem (3.7). Assume that 9 is a G-equi-
variant splitting of the exact sequence (3.8). Then there exists an Lc-basic and locally
G-invariant adapted connection 0) on P, and A (o) on the cochain level facto rizes as follow

(3.12)

A (9)

W(g,H)^——^(9/1))*"
\ n

r(M,QM)
where y, A (9) are defined as in Theorem (3.7).

For any G-module V let P (V) be the associated foliated vectorbundle. Assume more
specifically that

(3.13) p : (G, H)^(GL(V), L(V)) [resp. p : (G, H)-^(GL(V),0(V))],

where L(V) denotes the linear maps of V with determinant ± 1, and 0 (V) the ortho-
gonal group with respect to an Euclidean metric in V. Then p induces a canonical homo-
morphism

3.14) p* : W(gI(V), L(V))->W(g, H) [resp. p* : W(gI(V), O(V))-^W(Q, H)].

The generalized characteristic homomorphism of P (V) is then obtained by composing
the previous homomorphisms with p*. Specifically we obtain e. g. for the case of L (V)
the following result in cohomology.

(3.7)' THEOREM. - Let the situation be as in Theorem (3.7) and^f a G-module such that
p :(G,H)-^(GL(V),L(V)).

The generalized characteristic homomorphism A^ (P (V)) of the locally homogeneous
foliated vectorbundle P (V) facto rizes as in the commutative diagram

H- (W (9, H),) -^-. H- (A (9/1))*")
(3.9)' |p* I,*

" A*(P(V)) . v

H (W(Ql(V), L(V)),)———. HDR(M)

A similar result for A^ holds in case the particular situation of Theorem (3.11) is rea-
lized. The statement is analogeous, where q has now to be replaced by [^/2].

For the proof of these results we need the concept of a commutative G—DG-algebra E
with respect to a Lie group G (see [25'], 3.12). The corresponding Lie algebra concept
is defined in the appendix. The only difference is that the g-action 9 is the differential
of a G-action. For a subgroup H c: G the H-invariant elements are denoted E",
the H-basic elements by E^., e. g. W (9)^ == W (g, H).

It is useful to recall the universal property of the Well algebra in the following slightly
more general form.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



446 F. W. KAMBER AND P. TONDEUR

(3.15) LEMMA. — Let E* be a commutative G-DG-algebra and H c: G a subgroup.
Let v : g* —> E1 be a linear map commuting with the operators i (x), x e I) and the factions
on 9* and E'. 77^ ̂ /^ exists a unique H-DG-algebra homomorphism k (v) : W (9) —> E
*S'MC/Z r/z^ ̂  following diagram is commutative

W(9)^E

Proof. — k (v) is defined in A g* by multiplicative extension of v and on S 9* by multipli-
cative extension of k (v) a = rfco (a)—co ( d ' a). By direct verification one shows that k (v)
is a DG-homomorphism, and it commutes with i(x), xef) and the H-actions by the
assumptions on v. •

Let now (o be a locally G-invariant adapted connection on P and s : M —> P/H the
canonical cross-section G—> Gx (e) of Gx G. To evaluate A (co) = s * o k (co) it is as
in section 2 convenient to perform all calculations on G x G under observation of the
correct equivariance properties. Then by left G-invariance A (co) factorizes through
left G-invariant forms as follows:

A(co): w^^^r^^^r^) = Ag* ̂  F(^).

Let 9 : g -^ 9 be the H-equivariant splitting of 0 -)• g -+ 9 -> g/g -> 0 characterizing co
by Lemma 2.6.

(3.16) LEMMA. — With the notation above, we have

(3.17) A(o))a=y(a9) for oceA^*;
(3.18) A(o))a=y(aK(9)) for SeS^*.

Here A (©) a is defined as usual by the curvature:

A(co)a = ̂ co(a)-co(^'a) = aQ,

where a denotes the element in A1 g* = Q* corresponding to a e S1 9* = 9s".

Proo/. - (3.17) and (3.18) follow directly from (2.7) and (2.11). •
From Lemma 3.15 it follows that there exists a unique homomorphism of H-DG-

algebras A (9) : W (g) -> A g* satisfying A (9) a = a9, A (9) a = a K (9), a e A1 9*,
aeS^g*. Lemma 3.16 and the universal property of W(g) imply the equation
A (co) = Y o A (9). •
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On H-basic elements we have then the following induced factorization of A (o) :

W^H^CA^H
(3.19) \ P,

A(<B)\ 4.

n^e/H)
With the definition

(3.20) ¥p^)Ay=^pm*.^y

for m = ker 9 <= 9 we have the following result for A (9).

(3.21) LEMMA.
A(9): F2P(9)W(9)^FP(9)A9* for p ̂  0.

proof. — Since both filtrations and A (0) are multiplicative, it suffices to show that

A(9) : F2(9)W(9)=S19SIS .W(9)^F l(9)A9*=m*.A9 i l t .

We have in fact

(A(9)a)(^, TI) = a(K(9))(^, 11) = a([9(^), 9(ii)]-9[^ r\])

for ̂ e9. But 9 [9 = id, so that (A (9) a) (^, T|) == 0 for ^, T| e 9, i. e. A(9)aem*.A9*,
which proves the desired result. •

Since for q = dim 9/9 = dimm we have clearly F^1 (9) A 9* = 0, the preceding
facts complete the proof of Theorem (3.7).

To prove Theorem (3.11), it suffices to observe in addition the following fact.

(3.22) LEMMA. - Assume 9 : Q — ^ 9 to be G-equivariant. Then

A (9) : F^ (9) W (9) -^ F^ (9)A 9*, P ̂  0.

Proof. - Again it suffices to verify this for p = 1. But for ^ e 9 and T| e 9 we have
since 9 19 = id

(A(9)£)(^, TI)=OC(R, 9(ii)]-9R, TIJ)
= a(ad,(i;)9(ii)-9(ad,(i;)Ti)) = 0,

since 9 is G-equivariant. Therefore indeed A (9) a e F2 (9) A2 9* = A2 m*. •

4. Flat bundles

The simplest case of the constructions in the preceding sections occurs for G = G and
therefore q = 0. Recall that H <= G is a closed subgroup with finitely many connected
components, and F c: G a discrete subgroup, operating properly discontinuously and
without fixed points on G/H, so that M = F\G/H is a manifold. The foliation of M
consists of one single leaf equal to M. The bundle

(4.1) P = F\G x ^G ^ G/H x rG -> M = F\GH
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is flat. Clearly
W(9, H)o ̂  (W (9)^(9)^ ̂  (A9*)H.

Since A (0) = identity, the generalized characteristic homomorphism of P reduces to
the canonical homomorphism

(4.2) Y* : H-(9,H)^H^(M)

on the relative Lie algebra cohomology H* (9, H), induced by the canonical inclusion

(4.3) y : A- (g/l))*" ̂  (A- 9*)n c> F (M, ̂ ).

The following fact is well-known.

(4.4) LEMMA. — If G is compact and connected, then y^ is an isomorphism.
The realization of H^p (G/H) by G-invariant cohomology classes establishes the iso-

morphism H (9, H) ^ HDR (G/H). The result follows, since the finite group r <= G
acts trivially on H^p (G/H). The following is an immediate consequence.

(4.5) THEOREM. — Let H be a closed subgroup of a compact connected Lie group G and F
a finite subgroup ofG acting without fixed points on G/H. The generalized characteristic
homomorphism

A^ : H (W (9, H)o) ̂  H (9, H) ̂  H^ (M)

of the fiat bundle
P = F\G x^G -> M = F\G/H

is an isomorphism.
For r = { e } the map y : (A' 9*)^ c^ r (G/H, ^o/n) ls ^e inclusion of left-invariant

forms into r (G, D'c), restricted to H-basic elements. Thus e. g. for a compact connected
group G the Chevalley-Eilenberg cohomology isomorphism H (9) —» H (G) induced by
the canonical inclusion of left-invariant forms A* 9* c? r (G, Q^) can be interpreted as
the generalized characteristic homomorphism of the trivial bundle G x G —> G. The
foliation is given by the diagonal action of G on G x G, which is non-compatible with the
trivialization, and therefore gives rise to secondary invariants by the principle embodied
in Theorem 3.5.

Assume in particular G/H to be a symmetric space. It is then easy to check that the
differential on (A 9*^ is zero, so that in fact y^ : (A 9*)n ^ H (G/H). An application
is to the symmetric space defined by the Gx G-action on G via (g, g ^ . g " = g g " g ' ~ 1 - In
this case the diagonal AG plays the role of the subgroup H and by the remark above

Y* : A(9X9)*^H(G).

The left-hand side represents now the biinvariant forms on G with trivial differential and
hence is isomorphic to H (G). This is the interpretation of the generalized characteristic
homomorphism in this case.
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Before giving applications of Theorem (4.5), we turn to the case of a not necessarily
compact G. We need the following fact (see e. g. [20], Lemma (4.21)).

(4.6) LEMMA. — Assume that M = r\G/H is a compact orientable manifold, and
that H (9, H) satisfies Poincare-duality "with respect to a non-zero \JL e A" (g/t))*",
n = dim g/t). Then y^ is injective.

Proof. — n defines a G-invariant nowhere zero n-form on G/H, which is a fortiori
r-invariant and induces hence a non-trivial cohomology class of degree n on the compact
manifold M. It follows that y^ is an isomorphism in dimension n.

Let now x -^ 0 e W (9, H). By Poincare-duality there exists y eH""1 (9, H) such
that x.y = [i e H" (9, H). Since y^ is multiplicative and y ^ ( x . y ) ^ 0 , it follows
that Y^ (x) 1=- 0. •

Note that for compact H the isotropy representation of H in g/t) is unimodular, so that
the existence of a non-zero n e A" (g/t))*" is then always guaranteed.

For the flat bundles considered in [20] (4.14) this leads to the following result ([24],
[25], 8.6).

(4.7) THEOREM. — Let G be connected semi-simple with finite center and containing no
compact factor, K <= G a maximal compact subgroup and T cz G a discrete uniform and
torsion-free subgroup. Then the generalized characteristic homomorphism

A^ : H (W (9, K)o) ̂  H (g, K) ̂  H^ (M)

of the flat bundle
P = r\G x^G -^ M = r\G/K

is injective.

Proof. — The existence of a discrete uniform torsion free subgroup r c: G is proved
in [3]. The result follows from 4.6. •

It is useful to recall at this place how this homomorphism fits into the commutative
diagram of [20] (4.18) or [25] (8.6) :

H(BG)-^->H(BK)
(4.8) B^| L

H(T)^H(M)^H^K)

where x is the characteristic homomorphism of the bundle K —> G —> G/K with values
in the invariant forms on G/K, and B a* is induced by the classifying map B a : M —> BQ
of P. Here B a is induced by the holonomy homomorphism a : F —> G.

This is a special case of the construction of A^ for a flat G-bundle P —>• M with H-reduc-
tion in section 4.3 of [25]. The classifying map g of P factorizes as g : M —> Bp —> BQ,
where ^ classifies the universal covering M —> M, F is the fundamental group of M and
a : r —> G the holonomy homomorphism of the flat connection in P [20]. V g ' : M —> Bp,
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denotes the classifying map of the H-reduction, then A^ (P) appears more generally in the
commutative diagram

where x is again the characteristic homomorphism of the pair (G, H) with values in the
invariant forms of G/H (for this we assume the existence of an H-invariant split of
0 -^ ^ -> 9 -> 9/1) -> 0)» and v : I (H) -> H (Bn) the Chern-Weil homomorphism of the
universal H-bundle over B^. The commutativity of the right hand side is the content
of Theorem (3.5), (i). For H compact, v is an isomorphism. But this diagram holds
in full generality. In the case discussed above the manifold M = F\G/K is a Bp and
the classifying map Bp -> BQ is realized as B a, a : T^ (M) = r -> G the holonomy homo-
morphism.

Recall now that for a reductive pair (G, H) satisfying condition (C) of the appendix

(4-10) H(9, H) ̂  AP ®I(H)/r (G).I(H),

where I^G).!^) denotes the ideal in I (H) generated by the image of the res-
triction I(G)-^I(H) (we use the notations of the appendix). A^ (P) restricted to
HH)/^ (G).I(H) is induced by the characteristic homomorphism I (H)—)• H^ (M)
of the H-reduction of P. Thus by (4.9) the classes of main interest obtained by A^ (P)
are those coming from A P. Moreover a linear basis of A P leads to linearly independent
cohomology classes in H (9, H).

As subspace of the primitive elements Pg of 9, all elements of P are suspensions o- of
invariant polynomials 0 e I (G). If condition (CS) of the appendix holds, P is spanned
by the suspensions a <D of <D e ker (I (G) -> I (H)). It is therefore useful to have an expli-
cite formula for the suspension of invariant polynomials. Recall that by Hopf-
Samelson H (9) ^ (A 9*)9 ^ A Pg [29]. To give a formula for a <t» let X,, . . . , X^ be
a basis of 9 with dual basis X; of g* = A1 9* and corresponding basis Xt of S1 9*. Then
for an invariant polynomial of degree p :

^=.Z.^..^X,*...X^eI^(G)
J l ' - ' J ' p

with symmetric coefficients a^ ̂  we have ([28], [14]) :

(4Al) '̂̂ Hfr' ^^w^-^w-^
with d^ X^ e A2 9*. The following fact is useful.
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(4.12) LEMMA. - Let 0> e I2^ (G) restrict to zero on H. Then a 0 e (A 9*)^ i. e. CT 0
^ H-A^s7'c.

This is proved in section 5 (Corollary 5.26). For H-basic forms (4.11) simplifies then
considerably. We return to this in an example at the end of this section.

We turn now to applications of Theorem (4.5) (G and H compact). For F = { e }
note that P is the G-extension of the H-bundle G —> G/H. Let more generally P' —> M
be an H-bundle with trivial G-extension P = P'x^G. The fibration G/H-^BH-^BQ
shows that P7 together with a trivialization of P is characterized by a homotopy
class/ : M —» G/H. Diagram (4.9) is in this case induced by the commutative diagram
of space maps

(4.13) 5^0

where g classifies P, g ' classifies P'. The generalized characteristic homomor-
phism A^ (P) of the trivial G-bundle P with the H-reduction P' factorizes then as follows

(4.14) A^ : H (9, H) ̂  H^R (G/H) ̂  H^p (M)

and A^ depends only on the homotopy class of/ : M —> G/H.
A first application of this construction is to the case G = U (m) and H = 0 (m). It

is well-known that
H(u(m), 0(m)) = A(^, y^ ..., ̂ ),

where m' = 2 [(w+l)/2]-l is the largest odd integer ^ m. The generators y^ of
degree 2 i-1 are primitive elements transgressing to the odd Chern classes c, e I (U (m)).
With the definition

c(A)=^c,(A)^=detfld-^-A) for Aeu(m)
\ 2ni )

this gives a normalization of the y^ and e. g.

yi = -1- trace e (A1 u (m)*)o (m)-
271

(4.15) THEOREM. - Let P' —> M be an 0 (m)-bundle with a trivial U (m)-extension (tri-
vial complex bundles with real structures). There are well-defined secondary characte-
ristic invariants

A^eH^M) for i = l , 3 , . . . ,m ' , m^r^t-l.

These invariants are according to Theorem 3.5 obstructions to the triviality of the
real structure on a trivial complex vectorbundle.
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To give an interpretation of A^ (y^), we refer now to the cohomology class introduced
by Maslov and which intervenes in quantization conditions (see the discussion by Arnold
in [1]).

(4.16) PROPOSITION. - Let P' -> M be an 0 (rn)-bundle with a trivial U (m)-extension P,
© the connection form of the trivial connection in P. Then A^ (j^) is represented by a closed
1-form A (co) (y^) on M. The Maslov class of P' is the characteristic class

-2A^)eH^(M)
and

- 2 A (®) (^) = deg (det2 o/(y)) for 7^1
JY

(M).

Proof. - The map det : U (m) -> S1 squared factorizes through 0 (m) and defines
det2 : U (m)10 (m) -> S1. The RHS is then the degree of the map

^^U(m)/0(m)^S\

where / : M —> U (w)/0 Qn) classifies P' with its trivialized U (w)-extension.
This is proved by observing that for the 0 (w)-reduction s : P' —» P given by

s : M —> P/0 (w), we can represent A (co) (y^) as the 0 (w)-ba?ic 1-form (f/2 71)
s * (trace o) on P'. It suffices to check the formula for the critical example

0 (m) -> U (m) -> U (m)/0 (m).

Observe further that for a lift ^ to U (m) of y e n^ (U (w)/0 (w)) clearly

^s* trace co = s* trace co.
J7 JY

Since TCi (U (m)/0 (m)) ^ Z, it suffices to verify that

— - s* trace co = deg (det2 o y)
Tljy

for a single path y : [0,2 jc] -^ U (m) which maps into a non-trivial loop in
Tii (U (w)/0 (w)). For the path y (r) = e 1 ' 2 ' 1 in U (w) it is then easily verified that the
value of both terms is m, which completes the proof. •

At this place we digress to discuss the non-compact version of these classes. Let P
be a flat GL (w)-bundle. It has an 0 (m)-reduction and the generalized characteristic
homomorphism does not depend on the choice of the 0 (w)-reduction, since there is only
one homotopy class of sections of P/0 (m) -» M. A^ is a well-defined homomorphism

A^ : H(9l(m),0(m))^HDR(M).

Again H (gl (m), 0 (m)) = A (y^ y^ . . . , y^), m' = 2 [w+1/2] -1, where the primitive
elements y 21-1(1= 1, . . . , [(w+l)/2]) are now transgressing to the Chern classes
c,,_ieI(GL(w)).
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Therefore

(4.17) THEOREM [25] (Theorem 4.5). - Let P->M be aflat GL (m)-bundle. There
are well-defined secondary characteristic invariants A^ (j^) e H^R~ 1 (M) for z = 1,
3, . . . , m\ If P is a flat 0 (m)-bundle, these invariants are zero.

These classes are closely related to the invariants defined by Reinhart [32] and
Goldman [13] on a leaf of a foliated bundle. The foliated normal bundle restricted
to a leaf is flat, so that it carries the invariants described above.

Since the flat bundle P is completely characterized by the holonomy representation
a : 7ii (M) —> GL (m), it is interesting to determine the invariants A^ (j») from a. For
the invariant A^ (y^) e H^R (M) this is done by the following formula of [25]
(Theorem 4.5).

(4.18) PROPOSITION. - Let P be a flat GL (ni)-bundle with connection form co.
Then A^ (y^) is represented by a closed 1-form A (co) (y^) on M and

[A(co)(^)=-^-log]deta(y)| for yeTi^M).
JY 271

Note that by this formula A^ (y^) is visibly not invariant under deformations, whereas this
is the case for all invariants A^ (^»), i > 1. Proposition 4.18 is proved by observing that
for the 0 (/^-reduction s : P' -> P given by s : M -> P/0 (m), we can represent A (co) ̂ )
as the 0 (m)-basic 1-form s * trace co on P'. Note that the normalization in (4.18) depends
on the normalization for c^ resp. y^ which is here taken as y^ = 1/2 n. trace.

From (4.18) it follows that A^ (yi) is non-zero if and only if the holonomy representation
does not map the (m x ̂ -matrices with determinant ±1. In the following situation we
obtain a non-trivial realization of this invariant.

(4.19) PROPOSITION. — Let M"* be a compact affine hyperbolic manifold. Then A^(^i)
is a non-trivial cohomology class.

The hyperbolicity of the affine structure means that the universal covering of M"1 is
affinely isomorphic to an open convex subset of R"1 containing no complete line (these
are non-complete affine manifolds). According to Koszul [31], the hyperbolicity condi-
tion is equivalent to the existence of a closed 1-form a with positive definite co variant
derivative V a (symmetric since the connection is torsion-free). The 1-form A(co) (y^) can
be identified with a. From this it is now easy to conclude that A (®) (^i) is not exact.
Because if it were, the metric V a would be the Hessian of a function / : M —^ R in each
critical point, which is absurd if M is compact. •

We turn to a further application of the preceding constructions. Let G = SO (2 m)
and H=SO(2w- l ) , so that G/H = S2"1'1. For an SO (2w-l)-bundle P'-> M
with trivial SO (2 w)-extension P there is a unique homotopy class/ : M —> S2"1"1. Then

ker(I(SO(2m))-^I(SO 2m-l))
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is generated by the (normalized) Pfaffian polynomial e e I2"1 (SO (2 m)) which is defined
as follows. Let x^ . . . , ^m be an orthonormal basis of R2"* with dual basis x^ . . . , x^
and define

O)(A)= ^ Af.xfA^eA^2"*
i<J

for A = (Afy) e so (2 w). co (A) is SO (2 ̂ -invariant and hence co"* (A) an SO (2 ̂ -invariant
volume element on R2"1. As such it is a non-zero multiple of ^ = x^ A . . . A jc^p and
therefore co"* (A) = ( -1)"*. (2 TI^. m! 6? (A). n defines ^ e I2"1 (SO (2 w)). The ex^plicite
formula for e in terms of a basis of so (2 w)* is

^ (-1)"
X ^ Xj,y, . . . X,̂ ,

(27C)'"W! ,,<A
f c = l , . . . , m

where £„ = signer, CT(I . . . 2m) = (i^j\ ... ^y'J. X,, (i <j) is the basis element
of so (2 m) with a 1 in the f-th row and y-th column, — 1 in the y-th row and f-th column
and zero everywhere else. X,*. denotes the dual basis of so (2 w)*. Let

so (2 m) = so (2 m— 1) © m

be the symmetric space decomposition with m spanned by the matrices

Z a = X ^ ( o c = l , . . . , 2m- l ) .
Note that

a^)e(A2m-15o(2m)*)so(2n.-l)^(A2w-lm*)so<2m-l)

is a multiple of the volume form

H = Z?A . . . AZ^-i e(A2m-l m*)50^-^.

(4.20) PROPOSITION. - Let the notation be as above. Then a (e) = a.|Li with

-(m-1)!
a~(27^)w2w~ l(2m-l) '

Proof. — This follows by a direct computation using (4.11) and the fact that the volume
of S2"1'1 with respect to the invariant form \i is (2/(w-l) OTI". •

To give a geometric interpretation to the invariant or (e), consider the following situation.

(4.21) THEOREM. - Let h : M2"1"1--^2"1 be an isometric immersion of the compact
oriented Riemannian manifold M. The tangent frame bundle SO (2w-l)-> P' -^ M
has a trivial SO (2 m)-extension P-^M. TA^ generalized characteristic homomor-
phism A^ = A^ (P) applied to or (^) ^"mz a top-dimensional cohomology class such that

N^^^-^m-^A^CTOOl^M],

where N (A) ^ the normal degree of h.
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Proof. - The SO (2 w- l)-bundle P' with trivial SO (2 ̂ -extension P is characterized
by a map/ : M^^ -> S2"11 which (up to homotopy) is precisely the Gauss map ̂  of h.
Thus with the previous notations A^ = gf o y^ and in top degree 2 w— 1,

A ^ = d e g ( ^ ) . Y ^ = N ( A ) . y ^ .

This establishes the functoriality of A^ a (e) in the sense that

A^(e)[M2m-l]==^(h)'^a(e)[S2m-l],

and it suffices to verify that

A^OOIS2--1]^ y*a(^)= ^[S2-1]^
-1

ls2n.-i v / 22 ( m- l )(2m-l)

But with a as in proposition (4.20) :

y^cr(^)=a \i
JS2m-l JS2"'-1

and t H-^-.-,Js2m-i (m—1) !

which proves the desired result. •
It is of interest to contrast this last result with the situation when an even-dimensional

compact manifold M2"1 is immersed in R2"'1'1. For such an immersion h : M2"* —> R2"1'1"1

by Hopf ([18], [19]) the normal degree is given by N (A) = (1/2) ̂  (M), where % (M) is
the Euler number of M. In the framework of our discussion this formula follows from:
(a) the functoriality

A^M^N^-A^S2^

of the primary invariant A^ e [e the Pfaffian in I2"1 (SO (2 w))], and (b) the evaluation

[S2-] = f
Js^

A^S2^ ne=2

of this invariant on the sphere S2"*.
In contrast to the primary nature of the Euler number (its definition is independent

of the immersion), our secondary invariant A^a(e) needs for its definition on M2""1

beside the Riemannian structure a trivialization ofr^®^, where T^ is the tangent bundle
of M and £1 a trivial line bundle on S2"'"1. It is in fact an invariant defined for Rie-
mannian Ti-manifolds M2"*"1 and allows to test the Riemannian immersability of M2"*"1

in R2"1. Note that Theorem 4.21 holds also for an isometric immersion h : M2"*"1 -» N2"1

into a Riemannian parallelizable manifold N2" [the Gauss map g^ and the normal degree
N(A) = deg(gh) are then defined].
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5. Reductive pairs

In the next section the generalized characteristic homomorphism is evaluated for cer-
tain symmetric pairs. In this section we prove for reductive pairs general results needed
below, some in slightly more general form in view of other applications. See also the
outline of this section in the introduction.

Let (G, G) be a reductive pair with G connected. 9 denotes a G-equivariant splitting
of the exact sequence

e
(5.1) 0-> 9^9-^9/9-^0.

We assume further that

(5.2) dim g/9 =2^'.

This is always true in the case of greatest interest, where rank 9 equals rank 9
[Lemma (5.11)]. For the sake of simplicity we let H = { e }. If F c G denotes a
discrete uniform subgroup, the foliated bundle under discussion is

(5.3) P = r\GxG-^ M = r\G.

By Theorem (3.11) the crucial map to evaluate is the cohomology map A (9)^ induced
by the G-DG-homomorphism

(5.4) A(9): W(9)^A9ilt

determined by 9 : 9 —> 9 (note that the truncation index is q').
Let as in section 3 :

(5.5) 9=9©nt , m=ker9,

so that A 9* = A m* ® A 9*. The map (5.4) is then induced from the G-DG-homo-
morphism A (9) : W(9)->Acj*. Since A (9) preserves filtrations by (3.22), it maps
p2(^+i) ̂  ̂  ̂  ^Q ̂ ^ ^^ hence induces the map 5.4 on the quotient

W(9V=W(9)/F2^+1)W(9).

For the computation of A (9)^ we replace the complexes in (5.4) by the corresponding
cohomologically equivalent complexes according to the algorithm of [23], which is
reviewed in the appendix. We have then the following result, which is the framework
for the explicite computations done below.

(5.6) THEOREM. — Let (G, G) be a reductive pair and 9 : 9 —> 9 a G-equivariant splitting
of {5.1). There is a commutative diagram of filtration preserving G-DG-homomorphisms

W(o), A(9) . As-
(5.7) ,̂  ,̂

AP, ®I(G),."^AP, ®(AtnT
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where h (6) = A (9)o : I (G)^ —^ (A m*)0 ^ induced by the (ordinary) characteristic homo'
morphism of (G, G) with values in the invariant forms (A m*)0, and where the vertical
maps are cohomology isomorphisms.

Here we have used the identification (A m*)0 ^ (A 9*)o. If G is closed in G, h (9)
is the characteristic homomorphism of the G-bundle G —> G/G with values in the invariant
forms. But the facts above hold regardless of this property. The result follows from
the appendix. Note that (p restricted to I (G\, and (A m*)0 is the canonical inclusion.
On the primitive elements Pg the definition of (p via the difference homomorphism ^1 is
explained in the appendix.

For compact connected G and closed G c: G we have

H ((A m*)0) ^ H (9, G) ^ H (G/G).

For ^el2p(G) the well-known formula

h(Q)W = <D(K(9)A . . . AK(9))

reduces in view of K (6) = — 9 [ , ] (since [6, 9] = 0 on m) to

(5.8) h (9) 0= (-1)^0 (9 [ , ] A . . . A 9 [ , ^(A^m*)0.
p factors

Note that for a symmetric pair in particular this simplifies in view of [m, m] c: 9 fur-
ther to

(5.9) A(9)a>==(-l)^([ , ] A . . . A [ , ]).
p factors

The main effect of the preceding Theorem is the expression of the secondary characte-
ristic homomorphism A (9) of the foliated bundle (5.3) by the primary characteristic
homomorphism h (9) of the pair (G, G). This is made clear for the corresponding
characteristic numbers by the following result.

(5.10) THEOREM. — Let G be compact, G a connected subgroup and F = { e }, or
G connected semi-simple non-compact, G a compact subgroup and T c: G a discrete, uni-
form and torsionfree subgroup. Then the generalized characteristic homomorphism of
the foliated bundle

P = r\G x G -> M = r\G
in degree n = dim 9:

A(9)* Y*
A (P)^ : H" (W (9),0 ——> H" (9) -^ H" (M) ̂  R

is onto if and only if the characteristic homomorphism of(G, G) with values in the invariant
forms in degree 2 q' == dim 9/9:

h (9)^ : I24' (G) ̂  H24' (9, G) ̂  H2^ ((A m*)0) ̂  R
is onto.
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When G and G are compact, h (9)^ is the characteristic homomorphism of the
G-bundle G -^ G/G. In the case where G is non-compact, h (9)^ takes values in the
cohomology of the G-invariant forms on G/G. Note that in both cases y^ in degree u
is injective, hence an isomorphism.

In particular we have the following consequence of Theorem (5.10).

(5.10)' COROLLARY. - If(Q, 9) is a pair of equal rank, then h (9)^ is surjective [see (5.11)].
Therefore A (P)^ in degree n == dim 9 is onto.

We collect for reference a few facts needed for reductive and symmetric pairs.

(5.11) LEMMA. — Let (G, G) be a reductive pair of Lie groups with G connected. Then
the following facts hold.

(i) The exact sequence 0 —> 9 -» 9 —x 9/9 = m -> 0 is a sequence of unimodular
G-modules, and hence (A^ m*)0 ^ R for q = dim m.

(ii) The differential d : (A^-1 m^-^m* is zero, and hence

W (9, G) = W (A m*)0) = M m* ^ R.

(iii) If 9 and 9 are of equal rank, then h (9)^ : I (G) -^ H (9, G) is onto, and hence
q = 2 q' is even.

(iy) If (G, G) is a symmetric pair, then the differential in (A m*)0 is zero and hence
H^O^^m*)0.

(v) If(G, G) is a symmetric pair with 9 and 9 of equal rank, then h (9) : I (G)^ —> (A m*)0

^ onto.

Proof. - (i) The adjoint representations of G in 9 and 9 are semi-simple, trivial on the
center, hence unimodular. Therefore m is also a unimodular G-module. The existence
of a G-invariant volume on m shows that (A^ m*)0 ^ R.

(ii) Choose a basis x^, ..., x^ of 9 and a basis ^1=^+1, ..., ^ = ^+^ of m.
Then ae(A4"1 m*)0 can be written

9
a == £ Wf A . . . A^* A ... A^* with 0(x.)a = 0,

i=i

7 = 1 , ..., m. We need the following expressions valid in A 9*= A m * ® A 9*
modulo Am* ® A 9* + :

®(^)(^A...A^*A...A^)

=~£ £^^A. . .A^*A. . .A^*A. . .A^*
J^ i i=l j-th place

= - £ ̂ ?A ... A^.*A ... A^*- ̂  (-l^'c^rA .. . Ap;A . . . A^*,
J'^< J^(

«

where ©0^* =- ^ c^*. Then we have
1=1

1 q 1 q

^a— £^A©(^)a= , £ ^^A©(^)(^A.. .A^*A.. .A^*)=x.^*A.. .A^*
~ " •*• ^ K, i— i
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where

^— i E îr^c^).
2 i=l j^i

But x == 0 in view of the skew-symmetry of the c' s, which up to a shift of indices are the
structure constants of 9. Therefore d a = 0.

(iii) For the equal rank case h (9)^ : I (G) -^ H (9, G) is onto by [14] (vol. Ill) (see
also the beginning of section 6). Since I (G) is evenly graded, so is H (9, G). But W (9, G)
is non-trivial by (ii). Thus q must be even.

(iv) This is well-known, and follows from the compatibility of the differential with
the involutive symmetry, whose differential at the identity has m as eigenspace corres-
ponding to the eigenvalue —1.

(v) Follows from (iii) and (iv). •
For the proof of Theorem (5.10) we need the following result.

(5.12) LEMMA. — Let <D e I24 (G) andy^, ..., y^ a basis of the primitive space Pg (r = rank
of 9). Then for 1 ̂  i^ <... < is ^ r we have

(pO^A ... A 3^ ®0) = 3^.. .}^OeW(9)^.

Proof. — By (A. 5) (see appendix) we have for the suspension c ^ c = ^ o f c e I + (G)
the universal transgression T c e W (9):

(5.13) Tc=ac=^modF 2 W(9) ,

since the projection n has as kernel precisely F2 W (9). By definition of (p:

(p(^A . . . A^. 00) = Tc,,.. .T^.06F^W(9)

But (5.13) implies that

Tc^. . .Tc^.O = CTC^. . .oc^.O = ̂ .. .^.OmodF2(€ '+l)W(9)

which proves the desired result. •
Proof of Theorem 5.10. — The monomials y^ A . . . /\y^ 00, 0 e I29' (G) are

cocycles in A P 0 I (G\., and it is convenient to identify them with their images under (p
in W (9)^. Using (5.7) we have then in particular in degree n = dim 9 :

(5.14) A(9)(^.. .^.0) = y , . . .^./i(9)0.

Therefore A (9)^ in degree n is non-zero if and only if h (9) in degree 2 q' is non-zero,
which proves Theorem (5.10). •

(5.14) together with (5.8) gives the explicite formula

A(9)(^...^.0)=(-l)^...^.0(9[ , ] A . . . A 9 [ , ]).
q' factors

In the case of a symmetric pair, 9 inside 0 is redundant, since the bracket [m, m] c 9
and 9/9 = id.
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If G is compact and/: G —> G/G, then the primary invariant h (6) €> and the secondary
invariant A (6) ( y ^ . . .^.0) are related via integration/^ over the fiber G by the formula

^(A(9)(^...^.0)= f (y,...y,).h(Q)<S>e(/\2q'm*)G,
Jo

where y ^ . . .y, is a non-zero constant.
JG __

For the computations carried out for symmetric pairs (G, G) in the next section, we
need a formula for the suspension of an invariant polynomial 0 e I (G)'1' in terms of the
9-DG-algebra structure of A 9* defined by the splitting 9 :9 -^9 . As this formula is of
independent interest, we derive it under the sole assumption that the sequence (5.1) admits
a G-invariant splitting 6.

Consider the diagram

(5.15)

in which u and u denote the canonical (universal) connections in W (9) and W (9),
and k (9) the Weil homomorphism of the 9-connection u o A 9* : A 9* —^ W (9), i. e.
the unique g-homomorphism W (9) —> W (9) such that k (6) o u = u o A 9* : A 9* —^ W (9)
By the universal property of W (9), we have then

i r o f e ( 9 ) o M = 7 t ( M o A 9 * ) = A 9 * = A ( 9 ) o M
and therefore

(5.16) A(9)=7iofe(9).

In other words : k (9) is a lift of A (9) to W (9). This induces in particular on G-basic
elements

(5.17) h (9) = KG o k (9)o, where h (9) = A (9)o.

The Weil homomorphism k (9) : W (9) —^ W (9) in diagram (5.15) has a useful property
with respect to the canonical Koszul filtrations F (9) on W (9) and F (9) on W (9) defined
by 3.1.

(5.18) LEMMA. - The Weil-homomorphism k (9) satisfies

^9)F2<p+<n(9)W(9)c=F2J?(9)W(9) for p ̂  0,

where q ' = [^/2], q = dim 9/9.
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Proof. - By definition, k (9) is determined by k (9) | A 9* ® 1 = A 9* and

(5.19) f e (9 ) ( l®a)=aK(9)®l+ l®9^eW(9) for aeS^)*,

where

A(9)a == aK(6) = ^a9+ ^[O, ejeA2^.

By Lemma 3.22 aK(9 )eA 2 m* and hence

(5.19') a iK(9 )A. . .Aa ,K(9)=0 for s > q\

As k(Q) is a DG-algebra homomorphism it is sufficient to verify (5.18) for elements of
the form 1 ® 04.. .5^ e 1 ® S^4' (9*) c: W (9). By (5.19), (5.19') we have

fe(9)(l ®Si.. .a,^) =1: E ^K(9)A . . . Aa,.K(9)®9^.. .9^,
S=0 <T=(ll, ..., lp+g') 6Sj»+g'

I\ <. . . < I,, l,+i <. . . < ip+q',

where Sp+q. denotes the symmetric group in p-\-q' variables. But p + q ' - s ^ p and
hence the above expression is contained in F2^ (g) W (9). •

Consider now the universal homotopy operator 'k1 : W (9) —> W (9) ® W (9) (^e
the appendix or [25'], 5.54). Since id ® W(Q is a g-DG-homomorphism and so is
the canonical map

a = (id, k (9)) : W (9) ® W (9) -> W (9),

it follows that the composition

ao(id®W(0)^1 : W(9)-.W(g)

is compatible with the operators i (x), 0 (x) for x e 9 and therefore induces a map

X1 : W(9,G)->W(9,G)

of degree —1. The homotopy formula

ri^^^Eo-ei : W(g)-^W(9)®W(9)

implies immediately the homotopy formula

(5.20) dK1 + X1 d = k (9)o o W (QG - id.

Restricted to I (G) <^ W (9, G) this implies by d 11 (G) = 0 the formula

(5.21) d^ =fc(9)oof*- j : I(G)^W(9,G),

where i* : I (G) —^ I (G) = W (9, G). Let now 0 e I (G)2^, p > 0 and choose any trans-
gressive cochain T (;* (S>) e W (9) of the restriction ;* 0 e I (G)21', so that d T (;* 0) = f* $.
Then we have the following result.
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(5.22) PROPOSITION. - Let OeICG)2^ p > 0. The element

(5.23) TO=fe(9)T(rl60)-^l(0)€W(9)

is a transgressive cochain of <I>, and the suspension of 0 is given by
(5.24) a(0)=[A(9)Ta*0)-(^0)2p-l•o]eH2p-l(9),

where n^ (̂  0) = (V O)^-1.0 e (A2^"1 m*)0 ^ ̂  component of bidegree (2 p-1,0)
of ̂  0 e W (9, G) = (A* m* ® S* 9*)°.

Formula (5.23) expresses a transgressive cochain of OenG)"^ in terms of the res-
triction f* 0 e I (G) and the canonical G-basic cochain X,1 0 e W (9, G).

P/w/. - The element T <D == k (9) T (f* 0)-5i1 0 is transgressive to 0 e I (G) exactly
if fiTTO = 0 But by (5.21):

dT (0) = dk (9) T (f* <D) - d^1 (0) = k (9) dT (f* 0>) + (0 - k (9)o (i* €>))
= fe(9)GOiltO)+(0-fc(9)G(lilcO)) = 0

since rfT(f*0) == f ^ O . Consequently we obtain by (5.16) for the suspension

CT (0) = n f(0) = A (9) T (i* 0) -^G (?i1 0).

But Tie clearly projects W (9, G) = (A m* ® S 9*)° to (A m*)° along the ideal gene-
rated by (Sg^ and (5.24) follows. •

Proposition (5.22) has the following consequences.

(5.25) COROLLARY. - Suppose that the differential d^ : (^ev€n m*)0-^ (A0^ m*)0 is sur'
jective. Then

(i) a (0) = [A (9) T 0'* 0)] e H^ (9) for <D € I (G)^
(ii) h (9) o f* = 0,

(iii) k (9)^ o f* : I (G)+ ̂  F2 W (9, G).

If G is closed in G, the assumption means that all G-invariant forms of odd degree on
the homogeneous space G/G are coboundaries of invariant forms. This assumption
implies that H0^ (9, G) = 0, and hence that 9 and 9 [in case (9, 9) is a reductive pair]
are of equal rank [14]. But the converse need not be true. The condition is satisfied e. g.
for symmetric pairs of equal rank, where (A0^ m*)0 = 0 [see (5.11) and the beginning
of section 6].

Proof. — By (5.24) the suspension a (0) is represented by the cocycle

2 = A(9)T(l*(D)-7iG(?llO)eA9ilt, where ^(V 0)e(A9*)G == (A^m*)0.

By assumption KQ (Kl ^>) = dw for some CD e (A m*)0 and fi) follows, (ii) holds since
0 = dz = dA (9) T (f* € > ) = / ? (9) f* 0. (iii) is a consequence of(ii) and formula (5.17). •

(5.26) COROLLARY. - Suppose that for OeHG)4^ we have

^(D^I*^.).^ where O/eHC^ and ^.^(G)-'.
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Then a (0) e H (9) is represented by the G-basic cocycle
(5.27) E7CG(^0,).^e)XF,-7CG(?llO)e(A9%=(AmT

j

In particular for 0 e ker (f* : I (G) —> I (G)) the transgressive cochain

TO^^eW^.G)

is G-basic and the suspension a (0) is represented by the G-basic cocycle
-^(^^(A^^Am*)0.

Proof. - For ^eHG)'1" as in the Corollary, the cochain ^T(f* O^.^.eW^) is
j

transgressive for z*0. Hence we may choose T(?*0) = ^TQ'*^).^.. By (5.23)
j

TO=Sfe(e)T(I*€),).fc(9)GXF,-?llOeW(g)
j

is a transgressive cochain for 0. But by (5.23) applied to f* <S>j we have

TO = ^(TO,+X10,).fe(e)GY,-^ 0
j

=^10,.^9)G^^10+ETO,.fc(e)GXFy
7 J

=EX10,.fe(9)GXF,-?llO-Ed(TO,.fe(e)T^)+EO,.fe(9)TXF,.
j J ^

Hence
(5.28) E^<l>,.fe(9)GXP,-^^+E^.fc(e)T^,

J J

is also a transgressive cochain for 0, which projects under n onto the G-basic cocycle
in (5.27) since KG (^) = 0, 0 € I (G)-".

The formulas in the case /* <D == 0 are a direct consequence of (5.23) and (5.24). •
In the next section Corollary 5.25 will be applied to the computation of A (6)^ for

symmetric pairs (g, 9) of equal rank. Formulas (5.23) (5.24) for the transgression and
suspension are valid for arbitrary pairs (9, g). In order to compute A (9)^ in such cases,
a subtler analysis of k (9) is needed.

6. Symmetric pairs of equal rank

In this section we consider reductive pairs (G, G) which are symmetric of equal rank,
and compute the characteristic homomorphism

H(W(g)^) ^H^rYG)
(6.1) \ f r ,

A (0), \ 'u

^ H©

of the foliation on r\G induced by the left cosets of G in G.
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The spectral sequence in the appendix [Theorem A. 9, (ii)] has for E = W(cj) the
form

(6.2) ^^=?(9,0 01^(0) => H^^W^G))^!2^^).

As (9, 9) is an equal rank pair, the fibre "E^^ is totally non-homologeons to zero, i. e.
the edge-homomorphism

(6.3) H (W (9, G)) ̂  I (G) -^ H (9, G)

is surjective [14] (Vol. III). By the Leray-Hirsch Theorem, the restriction map

(6.4) i* : I(G)->I(G)

is injective and

(6.5) kerh „= Id(f*I(G)+) <= I(G),

i. e. ker h^ is equal to the ideal generated by the image under ;'* of I (G)4'.
Since the pair (G, G) is symmetric, the surjectivity of the cohomology map h^ in (6.3)

implies by Lemma (5.11), (iv) the surjectivity of the cochain map

(6.6) H (W (9, G)) ̂  I (G) h^ (A m*)0 ̂  H (9, G).

and

(6.7) ker h (6) = Id (f* I (G)4-) c: I (G).

As I (G) is evenly graded, it follows that (A0^ m*)° = 0.
Remark. — This is the only point in our computation of the characteristic homomor-

phism where the symmetry assumption enters. The following computations apply more
generally for any reductive pair for which the differential

^: (A^my^A^m*)0 is surjective.

We can now apply Corollary (5.25) to compute the suspension o(0)eH(9) of an
invariant polynomial 0 e I (G)4' via its restriction f* (0) to I (G)4'. This in turn can be
used to relate the cocycles in the image of A (9)^ to the primitive elements of H* (9) and
thereby to obtain an estimate on the dimension of im A (0)^ [see Theorem (6.28)
and Corollary (6.29)].

For this purpose let Cy and yj = a (c,) (j = 1, . . . , r; r = rank 9 = rank 9) be a basis
for the indecomposable elements in I (G) and the primitive elements Pg in H (9). The
corresponding elements for G will be denoted Cj and y . = CT (cj). Then

I (G) ^ R [ci, . . . , c,] and H (9) ^ A P, = A (y,, .. .,^)

and similarly for I (G) and H (9) [29]. In terms of these generators the restriction

i* : R[ci, ...,c,]-^R[ci, . . . ,cj
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can now be expressed uniquely as follows. Let

f^c,, ^eI°(G)^R
k=l

r
be the indecomposable part of f* c. and ^ ^.(p,k, 9jfc G R [c ,̂ . . . , c^ c: I (G)+ the

k=l

decomposable part of f* c^ i. e.:
r

(6.8) i*c,= ^ ^(^+(p^).
k = l

The (r x r)-matrices a = [flyj and 0 = [(pyj contain all the information needed to
compute A (9) as well as T Cj and o (cj). First it follows from the definitions:

(6.9) if cijk + 0, then deg Cy—deg c^ = deg a^ = 0;
(6.10) if (p^.fe + 0, then deg Cy-deg c^ = deg (p^ > 0.

Therefore

(6.11) ^fc.(Pjk=0 for J , k = l , . . . , y .

By the injectivity of;* we also have for every j = 1, . . . , r:

(6.12) Ojk+^jk + ° for at least one fe = 1, . . . , r.
r(6.13) LEMMA. - // n ^j\kj +0 rA^j=i

/ r \ r

^g n ^.^^ Z deg(py,^=2^,\j=i / y = i

where 2 q' = dim m = dim (9/9) aw^ { k^ . . . , kr} is a permutation of {1, . . . , r }.

Proof. - By (6.10) it follows that
/ r \ r

deg n^j,k,)= Edeg((p,.^)
\7=1 / J = l

r r r

= ^ (degc^.-degc^) = ^ degi/, ^ degc^
7=1 J= l k = l

= (dim 9 + r)- (dim 9 4- r) = dim(9/9) = 2 ^ ' .

Here we used the fact that for any reductive Lie algebra 9 the ^ r^duct y^ A . . . A ^ of
primitive generators is a top-dimensional non-trivial cohomology class in H (9) and the-
refore

r r
S degCfc = ^ (dega(Cfc)+l) = deg(^iA . . . A^,)+r = dim9+r. •

k=l k=l

In order to relate the cocycles in

imA(9)^c:H-(9)^ A-(^, ...,^)
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with the primitive classes y^ = o (Cj),j = 1, . . . , r, we realize the formula for <T (c,) given
in Corollary (5.25) in the A-complex of the 9-DG-algebra A 9* (see appendix and [25'],
chapter 5). With this formalism diagram (5.15) translates into the diagram

<"»
A(yi,.....^) ———————^ A (yi,.......,y )̂ ® (Ai»?)

(6.14) A(y„.....^)^R[c„....„^]ld0A(e)GxA^,.....^)®W(g,G)

R [c,,....... Cr] ^———1^——— R [c .̂....... ̂ ],

where A induces an isomorphism h : I (G)/Id 0'* I (G)"^ = (A m*)° by (6.5), (6.6) and

^G : W (9, G) ̂  (A m* ® S 9*)° -^ (A m*)°

is the projection along (S g*)4'.

First we observe that a transgressive chain T i* Cj can be obtained in the following way.
The cochains

r

(6.15) z;.== E ^®(a,fc+(p,fe)eA(3;i, . . . ,^)®R[ci, ...,c,]

clearly satisfy
r

^} = £ 1 ® ^(^fc+<Pyfc) = 1 ® i*(^),

and hence (p (2}) e W (9) is a transgressive cochain T i* c^ for f* Cy. But then by the natu-
rality of (p we obtain

AteW^c,) = A(9)(p(z;.) = <p(id ® A)(z;.) = <p(z,),
where

r

(6-16) ^^ £ ^®(^+/i(pyk)eA(^, ...^(g^Am*)0.
k = l

Hence we have proved

(6.17) PROPOSITION. - The cochains z^.eA^i, . . . , y,) ® (Am*)0 are cocycles repre-
senting the suspensions y^ ofcj:

(P*([zy])=^ 7=1, . . . , r .

This enables us to write down for a pair (9, 9) explicit formulas for y^ in terms of y^
Cj, whenever the matrices a and 0 are known.
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(6.18) LEMMA:

zr . . .-z; = ^A . . . A^detCa+^eA"*^, . . . , ^)®R[ci, . . . , c,p;

wA^ w = d i m 9 , det (a+0) e R [c^, ..., cj24'. Hence z\- ... 'z , is a cocycle in
AOi, . . . ,^r)® R[<^ ...^r]^.

Proo/?
r r r

zr . . . •z, = n (E^®(^+<Pjk)) = E ^A • • • A^® n (^+<P^)
j= l k k i , . . . ,kr=l J=l

r

= E ea^ lA. . .A^®^(^k-+q)y .^ , ) = ^ lA. . .A^®det (a+0) .
06S, J=l •/ j

The fact that deg det (fl+e>) = 2^' follows from deg (z'i- ...-^) == dim 9 and deg
(^A. . .A^) = dim 9. •

From Proposition (6.17) and Lemma (6.18) it follows that the cocycle z\' .. .• z'y maps
under A (9) ^ id ® h into the cocycle z^ • . . . • z^ representing the non-trivial cohomology
class

y^ A ... A^eH^^AO^, ...J,).

(6.19) THEOREM. - Tft6? invariant polynomial det (fl+0) 6 R [c^ . . . , cj24' determines
a complement to the ideal Id24' (f* c^, ..., '̂* c,), i. e. det (a+h 0) 6(A2^ m*)0 ^ R ffe^r-
ww^ a non-trivial characteristic number.

Such non-trivial characteristic numbers always exist in the equal rank case
[Corollary (5.10')]. Theorem (6.19) gives an explicit procedure for the construction of
such a number in terms of the matrix o+<3>.

As in the proof of Lemma (6.18) one obtains more generally for the cochain
z^ • ... • z^, i^ < ... < is the formula

(6.20) z^.... <= S ^A ... A^. ®det(a+<D)^) î......
l^k.<...<k,^r

It is desirable to have a formula expressing the monomials

^A. . .A j^®OeA(W(9V»

in terms of the elements z'^- .. .• z^. This can be done under the following simplifying
assumptions :

(6.21) degC(<degCk for l ^ K f e ^ r ;

(6.22) there exists Cj such that
r

i*^= E Ck.<Pyt(^ ...,c,)
k=l

with deg (p^ = 2 q ' for the non-zero q>^, k = 1, ..., r.
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Condition (6.22) implies that i* Cj is decomposable (a^ = 0 for k = 1, . . . , r) and
that degc, > 2q\ (6.21) together with the injectivity of i* implies further that there
exists exactly one k, 1 ̂  k ^ r such that (p^ ^ 0:

(6.23) i* cj = Ck. (p^, deg (p,fc = 2 ̂ '.

Similarly it follows from (6.11), (6.19) and (6.21) that (up to a sign)
r

(6.24) det(o+0) = f] ̂ .^ ̂  0,
i=i
i^J

where (k^^j is the unique order-preserving mapping

(1, ...,./, ..., r)-^(l, ..., fe, ..., r).
Hence for i ̂  j

r

(6 •25) t* c. = ''i, *< Ck, + E Ct <)),.» (c», .... c,),
k=\

with a(, ̂  ?& 0.

(6.26) LEMMA. — The monomials

z,,.....z,..z}eA(^, ...,^)®R[ci, ...,c,],,

for 1 ̂  »i < . . . < i, ̂  r, 0 ̂  s ^ r-1 and j ̂  ;', are cocycles given by

(6.27) z,,.... -z^z;. = CTO'-C;,).. .. •CTO'-C^.Z;

= "(O ̂  A • • • A ̂ ,. A ̂  ® (p,.t,
S

H?^^ ^(0 = ± ]"[ ^»<x.fc( ^ ^- Furthermore the class Cj satisfying condition (6.22) is
a= 1 9

unique.

This follows at once from (6.23), (6.25) and the fact that degcp^ = 2q\ Uniqueness
of Cj follows from (6.27), since cr (f* c,) == 0 by (6.22). •

Using the structure of

H(W(9V> ̂  H(A(^, .... ̂ ) ®R[c,, ..., c^)

given in Theorem (A. 22) we can now conclude that im A (9)^ must contain a large number
of linearly independent classes.

(6.28) THEOREM. - Let (g, 9) be a reductive pair of equal rank satisfying condition (6.22).
Then

Id(^) c: imA(6)^ c H(s) = A(^, ..., ̂ ).

(6.29) COROLLARY. - The cohomology class y^ A ... Aj^Aj^ e H (9) ^ A (J^, ..., y,)
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is the image under A (9)^ of the secondary characteristic class

£ (P* h O* ̂ ) A ... A a (f* ̂ ) A y, ® (p,J e H (W (9)^).
fc=i

/w particular, the generator y^ A . . . /\y, e H"* (cj) ^ ̂  fw^ M^r A (9)^ o/ rA<? cocycfc

z ' i - . . . •z ;=}^A.. .A^,(g)det(f l+0)

a^ /^cc det (a+0) t Id24' 0'* Ci, . . . , f* c,).

Thus the conclusion of Theorem (6.19) also holds true under the assumptions of
Theorem (6.28).

(6.30) COROLLARY. - dim im A (9)^ ^ 2 r~ l, whereas dim H (9) = T.

Proof of Theorem (6.28). — For a symmetric pair of equal rank satisfying in addition
condition (6.21) this follows from (6.16), proposition (6.17) and Lemma (6.26). In
the general case one observes that by (5.24) and (6.16) the class y , is represented by the
cocycle

(6.31) Zf-Ka^G^^AC^, ...^(g^Am*)0.

But since z, = ^ y^ ® h (p^, with deg (p^ = 2 q' for (p^ ^ 0, it follows as before for
k

1 ^ fi < ... < is ^ r, j ^ i^ that
s _ _ _ - r / s - \n^-i®^1^)^--!®^1^ E n0^.) A^®hq>^

<x==l k = l \ a = l /

where CT (i* Ci) = ̂  ^«.^z. Hence the cocycle
i

r ( s - \
£ ^a(f*cia) A^®(pjk€A(^i , . . . ,^)®R[ci, ...,c,]^

f c = l \ a = l /

maps under A (9) - id ® A into a cocycle representing y ^ / \ . . . Aj^Aj^, ^ ^ 0. •
Theorem (6.28) gives a lower bound for A (9)». Before turning to a determination of

imA(9)^ we discuss the implication of conditions (6.21), (6.22) on the structure of
l(G)/ld(^l(G)+)^H(^G).

Let 1 ̂  t ^ r be the smallest integer such that deg c, > 2 q' for i > t. By
using (6.25) to eliminate the generators c^, i ̂  k modulo Id Q'* I (G)"^) = IdQ'* c^ .... f*c^),
one obtains by induction on i that

(6.32) c < = 0 for 1 ̂  i < fe, f < i ̂  r;

and

(6.33) Cf = x, c^ for k < i ^ t , with X( > 1.
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This implies that

(6.34) (py,=xct

By Theorem (6.19) and (6.24) it follows that (p^ ^ 0, hence x ^ O and c^ 0,
^.deg ^ == 2 ̂ /, while ^+1 = 0 since H (9, G)^ = 0 for ^ > 2 ^/. Thus

(6.35) PROPOSITION. - For a reductive pair (9, 9) of equal rank satisfying (6.21) W (6.22),
we have

H(9, G) ̂  nO/IdO^HG)^ ̂  RpJ/^r1),

i. e. H (g, G) is a truncated polynomial algebra in one generator 2^ = h^ (c^), the residue
class of Ck modulo Id (i* c^, ..., f* Cy).

If (G, G) is symmetric, then in particular (A in*)0 ^ R [^]/( '̂1'1). By a theorem of
Bott the compact symmetric spaces of rank 1 have this cohomology structure. These
are the spheres SO(/-+1)/SO (r), the complex and quaternion projective spaces

SU (r + 1)/U (r) and Sp (r + l)/Sp (r) x Sp (1),

and the Cayley projective plane. The non-compact dual spaces have of course the same
cohomology of invariant forms. We compute at the end of this section A (9)^ explicitly
for the pairs

(G, G) = (SU(r+1), U(r)) with G/G = P'C
and

(G, G) = (SO (2 r +1), SO (2 r)) with G/G = S2'.

The other cases are treated similarly.
The degree of the generator ^ is intimately related to the existence of non-trivial secon-

dary invariants which are rigid. It is known that the classes in the image of the canonical
homomorphisms

^WteM^HtWfe)^), 1 ^ 1

are rigid, i. e. A (6)^ o p^ is invariant under deformation of the data defining A (9)^ (see
Heitsch [16], and [25], section 8.7). We first have the following general result, valid
for all symmetric pairs of equal rank.

(6.36) LEMMA. - Suppose that H (g, G) ^ (A m*)0 is generated as an algebra by ele-
ments of degree ^ 2 /. Then the composition

I^ (Wfe)^)-'1!^ (W(9V^A^H+ (9)
is zero.

Proof. — A monomial cocycle

z^j) = Yd) ̂ o')6^^ • • - Yr) ®K[ci, ..., c,]̂
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[see Theorem (A.22)] is in the image of (p^ if and only if dz^^eP2^^^^ in
the untruncated algebra, i. e.

deg c^ ^ 2 (q' +1 - (p -;)), where 2 p = deg c^y

By assumption we can write c^ = ̂  (py.cpj modulo ker A == Id (f* I (G)4') with deg (pj ̂  2 /.
j

Therefore deg (py ^ 2 ( p — l ) ^ 0. It follows that the elements j^ ® (py are cocycles
modulo the filtration ideal F20^^, and that in A (A 9*):

A (0)^ |>«,,)] = E b(o ® ^ ((p;.)]. [1 ® ft (<p;)] = 0,
j

since 1 ® A ((p)J is a coboundary in A (y^, . . . , y^) ® (A in*)0.

Applied to the situation in Proposition (6.35) we obtain for deg c^ = 2 /:

(6.37) THEOREM. - ( i ) I f l = 1, ^€T! ^// ̂  n^W classes in H+ (W (9)^) fi?^ mapped to
zero under A (6)^.

(ii) If I > 1, then the rigid class [̂ .] = [̂  ® (pjk] ^ mapped into yj under A (9)^ a/zfif
A^c^ defines a non-trivial rigid secondary class.

From (6.35), (6.36) and Theorem (A. 22) in the appendix we see now that im A (9)^ is
spanned by the images of the monomial classes

[z^]eH'(A(^, . . . , ^) ®R[ci, . . . , c,\)

of the form

(6.38) ^ (o=^A. . .A^®cf , 0<s^ r ,

where 0 ^ p ^ X is the least integer satisfying

(6.39) deg c,^ 2(^+1-p. 0

and where z\ ^ /r for p > 0. These cocycles 2^ are of three distinct types, namely

(a) i^ < k, k + ̂  for a = 1, . . . , s, with p = K;
(b) i^ ^ k, k == i^ for some a == 1, . . . , s, with /? = ^;
(c) fi > r, with /? = 0.

In case (a) we may write

A(9)z^ = (^ A .. . A^, ®^-1) ®(1 ®^),

where the first factor is a cocycle by (6.32) and (6.33), whereas 1 ® 2^ = rf(jk ® 1)
and hence A (9) z^ ^ 0 in

A (^, ..., ̂ ) ® (A m*)0 ^ A ( ,̂ ..., y,) ® R pj/^r ̂ .
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In case (b) z^ can be written in the form

}^A...Aj^A^®^,

where the k^ are as in (6.24). This cocycle maps under A (9) into a non-zero multiple
of z^- . . . ' z ^ ^ Z j by Lemma (6.26) and (6.34), and thus A (9)^ [z^~\ coincides up to
a non-zero factor with the class y^ A . . . Aj^_^ / \ y - e H (9).

In the case (c) finally we have cocycles of the type

z(i) == YiiA • • • A^. ® 1 with f i > t,
i. e. deg c^ > 2 ̂ /.

These cycles form a subalgebra

A'C^+i, ..., Yr) <= H-(A-(^, ..., y,) ®R[ci, ..., c,V== H(W(9^)

which is mapped isomorphically under A (9)^, defining therefore a subalgebra

A-O^i, ..., y,) c: H-(A(^i, ..., y,)0R[^]l(c^1)) ̂  A(y,, . . . , ̂ ).

We can now summarize these results.

(6.40) THEOREM. - Let (9, g) be a symmetric pair of equal rank r and satisfying (6.21)
and (6.22). Then

imA(9)^ = Id(^)+A*0^, ..., y,) c H-fe),

H*6W ^ = a (Cj) is the primitive class of 9 defined by the distinguished generator Cj
in (6.22) andyi = a (c,), f = t+1, ..., r are the primitive classes 0/9 defined by the gene-
rators Ci satisfying deg c, > 2 q' = dim (9/9). More precisely, the cocycles.

^i) = ̂ A • • • A^A^ ®c^, 1 ̂  i\ < ... < i, ̂  r, f. ̂ j,

W z^ = ̂  A . . . A^ ® 1, t < i^ <... < ^ ^ r, are mapped onto a basis ofim A (9)^.

This result is applied to the following examples.

(6.41) Example. - (G, G) = (SU(r+l), U(r)). Here

U(r) ̂  S(U(r)xU(l)) c SU(r+l),

i. e. U (r) is realized in SU (/•+1) by the matrices ^ with A e U (r), X = det A.

This is a symmetric pair of equal rank r with P'1 C ^ SU(r+l)/U(r). The restriction
map f* is given by

(6.42) I(SU(r+l))——'—^(UO-))
^11 _ ^11

R[^ ... ,c^i]^R[ci, ...,c,]
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where the c; (resp. c»+i) are the Chern polynonomials given by

<'t(A)== ic,(A)f i==detfId~- (-AV Aeu(r).
»=o \ 2ni )

As i*Ci+^ = C f+ i -C i c, for f = 1, . . . , r-1, and ;*^+i ==~^ i ^, the matrix a+0 is
given by

(6.43) a+0=

-Ci 1 0'

<\
-c, 0 0

with determinant (—ly-c,,.

It is clear that (6.21) is satisfied as deg c^ == 2 ; and ?* c^+1 = - c^ c^, deg c^ = 2 r = 2 ̂
satisfies (6.22). Thus we have ^ ==7 = r and fc = 1. Furthermore we have

(Am*)^ ^ R^]^4'1),

where a = A (cQ is the residue class of c^ mod (f* ^2, . . . , f* c^+i) and h (c,) = a^. It
follows now from our preceding results that the primitive elements

Yi+i =^(^+i)eH($u(r+l))sA(^2, . • • ,^ Yr+i). i=^ " ^ r

are realized by the cocycles z^+i = yi+i ® l-^i ® a1, f < r and z^+i = —^i ® a*"
in the A-complex \(y^ . . . , ^) ® R [aJAa^1). From Proposition (6.17), (6.27) and
Theorem (6.40) it follows now that im A^ (0) = Id(^+i) is exactly of dimension 2 r~ l

in H(su(r+l)). More precisely, the cohomology classes defined by

^(o=ylA^lA • • •A^ ,®^ ,
2 ^ fi < . . . < ^ ^ r, 0 ^ ^ ^ r-1 in H (W (u (r)\) map under A (9)^ onto the basis
elements (-I)5'1'1 y^ A . . . Aj^A.^+i of Id (ji^i) <= H ($u (/•+1)). The geometric inter-
pretation of A (6)^ is as follows.

The canonical homomorphism

h : I(U(r))^R[ci. ...,c,]-^H(P rC,R)^H(su(r+l),U(r))^R[a]/(a r+ l)

given by h (c,) = a1 is the characteristic homomorphism of the U (r)-bundle

P'^SU^+l^SlKr+l^UOO^P'C.

Moreover the U(l)-bundle

de4 P' = SU(r+l)/SU(r) ̂  S2^1 -> SU(r+l)/U(r) ̂  re
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has the U (l)-action given by

(zo, ..., Zy)o5i==(zo?i"1, ..., z^1),

(zo, ...^eS2^1, ^eU(l)

and thus det^ P' coincides with the principal U (l)-bundle associated with the canonical
line bundle H -̂  P1' C. Thus

a = h (c,) == c, (P') = c, (de4 P') = c, (H)

and a identifies with the canonical generator of H2 (P'' C, Z). The isotropy representa-
tion p : U (r) —> U (m) is given by p = id ® det on m == su (/•+ l)/u (r) ^ €7. If we
use the notation E (n) = E ® H" for any C-vectorbundle on P1' C, n e Z, it follows from

c
the above formulas that

(6.45) Tp, ̂  P' x mp ̂  (P' x C') ® H,
U(r) U(r) C

and hence

(6.46) P' x C'^Tp^-l),
U(r)

i. e. P' is the unitary frame bundle of Tp. (~ 1) ^ Tp. ® H*. In fact Tp. (-1) occurs in
an exact sequence

0 -^ H* -> e,+1 -^ Tpr(~ 1) -^ 0

and thus its characteristic classes are given by

c,(Tp.(-l)=c,(-[H*])=c,([H*])-l=(l-(xO-l= 1 a"̂ .
w=0

We want to compute the generalized characteristic homomorphism of the (complex)
normal bundle Qu<r) °f Ae left-coset foliation of SU (r+1) by U (r). This (trivial) vec-
torbundle is associated to the foliated bundle

P==SU(r+l)xU(r)-^SU(r+l)

via the representation p by (2.15) and is equivalently given by

Qu^^^^Tp^TC^P' xfttp.
U(r)

By Theorem 3.7' in the basic case we need to compute the induced homomorphim
p* : I (U (r)) —^ I (U (r)). A direct calculation shows

p'c^zfi^-^cT-^V^c,= z zr-7 c?-^ <"^Q\j^Q\m—j^ )^Q\j^Q\m—j^ )
and hence

(6.47) p^ = i (^^^^ m = 1, ..., r.j^o\m-j^
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Thus
p*ci = (r+l)ci and p*c^ = ^(modi4'2),

and it follows that the map induced by p on the suspensions yj = <r (cj) is given by

P^i = P*(CTCi) = CT(P*^) = (r+l)^i
and similarly

p * y j = y p j > i -
Note that (6.47) gives us in particular the characteristic classes of Tp, ^ P' x m?:

U(r)

(6.48) c,(Tp,)=h(p^)= E fsf'"^)^ S f^o^-O+aO^1.
m=0\j=0\^~7/ / m=0\ m /

Summarizing our calculations, we obtain from Corollary (6.29) and Theorem (6.40)
the following result for the normal bundle Qu/^.

(6.49) THEOREM. — Let Qu(r) be the foliated complex normal bundle of the filiation
ofS\J (r+1) defined by the right action ofV(r) mth quotient space Pr C. Then the image
of the generalized characteristic homomorphism

A;(Qu(r)) : H^W^M^-^H^SU^+l^^A^^, ...,^i)

is spanned by the linearly independent classes

A^(Z(.)) = x^A ... A^A^+i,

where z^ = y^ /\y^ A . . . /\y^ ® c\ e W (u (r)\ for 2 ̂  i^ <... < i, ̂  r, 0 ^ ^ ^ r-1
andK=(- l)s+l'(r+1)^1. 7w particular

imA: (QU(,)) = Id 0^0 c H+ (SU(r+l)).

(6.50) Example. (G, G) = (SO (2 r+1), SO (2 r)), with quotient

SO(2r+l)/SO(2r)» S2''.

In this case the restriction map /* is given by

I(SO(2r+l))—l—>I(SO(2r))
^ 1 1 ^ 1 1

R[^l» • • •»Pr ] -^R[Pl , . . . ,Pr-l ,^r]

where the p^ p, are the Pontrjagin polynomials and ^ is the Pfaffian. As f* (pj) == pj
for 7 = 1, . . . , r~l and f* (^) = ^2, the matrix a-\-<S> is given by the diagonal matrix

~1
\°

(6.51) a+(S>= ^\

er_
with determinant e^
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The class p, satisfies (6.22) as i * p , = 6?2, deg e, = 2 r = 2 q ' . (6.21) is satisfied for r
odd. For r even there are two classes of degree 2 r in I (SO (2 r)), namely py,^ and ^,
but this does not affect our calculations in this case. Thus we have j = k = r and ^ == 1.
Furthermore (A m*)50 (2r) ^ R [2r]/(^2), where h (e^) = ^ is the residue class of e,
mod (/?i, ...,/?,.) [twice a generator of H^S2'", Z)]. From our preceding calculation
it follows that the primitive generators y^ of H(SO(2r+l)) are realized by the
cocycles y^ ^ y, ® 1, i == 1, . . . , r-1, and ̂  - x ® ̂ , ;c = CT (e). Observing that the
isotropy representation p : SO (2 r) —x SO (m) is the identity, we obtain from Corol-
lary (6.29) and Theorem (6.40) the following result for the normal bundle

Qs0(2r) ^7C'*Ts2r,

n' : F = SO (2 r+1) -> SO (2 r+ 1)/SO (2 /•) » S2'.

(6.52) THEOREM. - Let Qso(2r) &6? ^e normal bundle of the filiation of SO (2 r+1) by
the left cosets of SO (2 r) with quotient S2''. The image of the generalized characteristic
homomorphism

A* (Qso (2r)) '' H (W(so(2/-)),) -> H (S0(2r+1) ^ A ̂ , ..., ̂ )

is spanned by the linearly independent classes

(6.53) A^)=^A...A^A^,

where z^ = y ^ / \ . . . A^A^: ® ^ e W (so (2 /-)), /or 1 ^ ^ < . . . < f, ^ r-1,
0 ^ ^ ^ r-1, aw^

(6.54) A^(^, A . . . A^ ® 1) = ̂  A ... A^,

wA^r^ [r/2] +1 ^ /;i < .. . < k^ ^ r-1. In particular

imA^(Qso(2r)) = Id(^) ®A(^/23+i, ..., ̂ -i) <= H(SO(2r+l))
and thus

^( 2r-l+2[r r even,l ,^[r /2]- l

dim(imA^) y-l^^r/2]^ ,. ̂ ^

Note that for r > 1 the non-trivial class A^ (^ ® ^) == y^ is rigid by Theorem (6.37).
This applies to deformations through basic adapted connections on the normal bundles
involved.

7. Interrelation between the previously discussed invariants

In this section we finally show how for certain pairs (G, G) the invariants previously
discussed are interrelated.

We begin with a connected semi-simple Lie group G with no compact factor, KQ c= G
a maximal compact subgroup, and r c: G a discrete, uniform and torsion free subgroup.
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Let G be a subgroup of G. Its maximal compact subgroup is KQ == KQ n G and we
£ —

assume that the canonical map KQ/KQ —> G/G is a diffeomorphism.

The total space of the foliated G-bundle

(7.1) P = r\GxK,G-^M == r\G/Ke

maps canonically into the total space of the flat G-bundle

(7.2) P=r \GxKGGr^G/KGXrG->X=r\G/Ko

by the map (p : P —> P induced by the inclusion id x inci : G x G —>• G x G. The map (p
is clearly G-equivariant and hence induces a map M = P/G —> P/G of orbit spaces.

(7.3) PROPOSITION. — Under the assumption KQ/KQ -^ G/G, the canonical map (p : P —> P
induces an isomorphism of G'bundles

P-^Pi ^ i
(7.4)

M^P/G

Proof. — Since both sides are principal G-bundles and (p is a G-map, it suffices to show
that the induced map of the base spaces

(p/G : F\G x ̂  G/G == P\G/KG -> F\G x ̂  G/G ̂  G/K^ x r G/G

is a diffeomorphism. But we have canonically

r\G/Ko^r\Gx^ KG/KG.
^ —

The assumption K^/K^ —> G/G implies now the desired result. •
It follows that the foliation of the bundle P —> M (7.1) defined by the diagonal action

of G, coincides with the foliation on the bundle P —> P/G induced from the flat bundle
structure on P —> X. Here the foliation on the space P/G is the quotient of the foliation
on the space P given by the flat connection in P.

For the natural bundle Qo of the foliation on the base space M the first description
shows that

(7.5) Q G = P X G 9 / 9 ,

where p : G —> GL (9/9) is the adjoint representation of G in 9/9. The second description
shows that

(7.6) QG=T(7r),
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where T (n) is the tangent bundle along the fiber of the canonical projection
K : P/G -> P/G = X induced by n : P -»- X.

With our previous constructions we have then the following result.

(7.7) THEOREM. — Let G be a connected semi-simple Lie group with finite center and no
compact factor, KQ <= G a maximal compact subgroup; and T c: G a discrete, uniform

— £ —
and torsion free subgroup. Let G <= G be a subgroup such that KG/KG —> G/G,
where KQ == KQ n G.

Let q be the codimension of the canonical G-foliation on r\G/Kc, with normal bundle QQ,
q == dim 9/9. Let 9 : 9 —» 9 be a Ko-equivariant splitting of the exact sequence

^(7.8) 0 -^ Q -> 9 -> 8/9 = m -> 0.

Then the generalized characteristic homomorphism A(Qo) on the cochain level factorizes
as in the following commutative diagram

(7.9)

In this diagram, A (P) is the characteristic homomorphism of the foliated G-bundle P
in (7.1) with its canonical K^-reduction. Q (r\G/Ko) denotes the de Rham complex
of r\G/Ko. Y denotes the canonical inclusion of the G-invariant forms on G/KQ into
the de Rham complex of r\G/Ko. The two top triangles are then commutative by
Theorem 3.7'.

A (P) is the characteristic homomorphism of the flat G-bundle P in (7.2) with its cano-
nical K^-reduction, namely the canonical inclusion y of the G-invariant forms on G/KQ
into the de Rham comr ex Q (r\G/Ko) of F\G/KG. It induces an injective coho-
mology map A (P)^ by Theorem (4.7).

The map j^ = K^iA . . . A^) denotes the interior product with the unique ^-vector
^ A . . . A ̂  e A9 fo/fo normalized by ; (^i A . . . A ̂ ) T| == 1 for an invariant unit volume T|
on K^/KG. Ify* : (A 9*^-^ (A 9*)^^ denotes the canonical inclusion, then the deri-
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vation property of the interior product i (Q leads to the following formula useful for
computations:

(7.10) ^a i l (a.P)=a.J,(P)

forae(A9*)^,pe(Ag*)^.

The map TC^ denotes integration over the fiber K^/KQ ^ G/G of the canonical map

K : P/G = r\G/Ko -^ P/G = r\G/Ko.

The bottom rectangle in (7.9) is commutative (up to sign) (see [14], Vol. II, p. 243).
The point of (7.9) is that the left hand vertical map is given completely in Lie algebra

terms by the adjoint representation p in m, the split 9, and the canonical map j^ This
applies e. g. to the following situations.

Let U/K be an irreducible hermitian space of the compact type. The complexification Gc
of U is a simple complex group acting by holomorphic diffeomorphisms transitively
on U/K. The isotropy group L is a complex subgroup of Gc and U/K ^ GJL. U is
maximal compact in Gc and K maximal compact in L [17], (ch. VIII). The foliated
L-bundle P = r\G^ x ^L is mapped into the flat G^-bundle P = F\G^ x y Gc by an
L-equivariant map, which induces over T\GJK an isomorphism of (real) L-bundles.
The (complex) foliation of Gc by the cosets of L induces on r\G^/K a (real) foliation
with complex normal bundle Q^, associated to P by the adjoint representation of L
in c^/I. The bundle Q^ is the tangent bundle along the complex fiber U/K of the pro-
jection r\G<,/K —> r\Gc/U. The evaluation of A (C^)* involves then a K-equivariant
splitting 6 : Qc —> I of the exact sequence 0 —» I —> Qc —>• ^Jl —» 0. Note that no such
L-invariant splitting exists by [21] (Prop. 9.14). The computation of A (Q^)* by the
methods here discussed leads to non-trivial secondary invariants.

Further applications of Theorem (7.7) can be found in [25'], Theorem 7.93 and
Theorem 7.95. Added in proof : These results are proved in the authors' paper. <( On
the linear independence of certain cohomology classes of BF1".

APPENDIX

Computation of the universal generalized characteristic classes

In this appendix we discuss the universal algebras H (W (g, 1))̂ ) of generalized cha-
racteristic classes. We describe more generally an algorithm for the computation of the
cohomology H (E^) of the I)-basic elements E^ in a g-DG-algebra E with connection.
There are two spectral sequences converging to E.. S. Halperin has independently obtai-
ned some of these results under slightly less restrictive hypotheses on E [14] (Vol. III).
For E = W(g)^ this leads to the computation of H(W(g, t)\) announced in [23].
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We need the notion of a 9-DG-algebra A* with respect to a Lie algebra 9 (all algebras
are over the same ground field of characteristic zero). Such an algebra is an associative
DG-algebra which is equipped with derivations © (x) of degree 0, i(x) of degree-1 for
x e 9, satisfying the identies i (x)2 = 0, i [x, y~\ = [© (x), i (y)] and © (x) == di (x)+i (x) d.
The bracket of derivations is here used with the degree convention

[D, D'] = DD'+C-l)^1 D' D

for derivations D, D' of degress d, d\ For a subalgebra t) <= 9 the ^-invariant resp.
I)-basic elements [killed by © (x) resp. © (x), i (x) for x e I)] are denoted by A^ resp. A^.

Commutative 9-DG-algebras were introduced in [8]. W (9) is canonically a g-DG-
algebra. A (formal) connection in a (commutative) 9-DG-algebra E is characterized by a
9-DG-homomorphism W (9) -^ E. Restricted to 9* = A1 (9*) this map gives a connec-
tion form co : 9* -> E\ restricted to 9* = S1 (9*) its curvature form K (co) : 9* -> E2,
which in turn determine the map k (co) : W (9) -» E, the Weil homomorphism of the for-
mal connection co. For a principal G-bundle P —> M the de Rham complex is a 9-DG-
algebra (more precisely a G-DG-algebra). To a connection in P corresponds by dua-
lization a formal connection co : 9* -> F (P, 0^) with curvature K (co) : 9* -^ F (P, Q^)
and Weil homomorphism k (co) : W (9) -^ T (P, Op). To simplify matters we consider
in this appendix everything from the Lie algebra point of view (ignoring group actions).

We describe a method for the computation of the cohomology H (E.) for a commu-
tative 9-DG-algebra E with connection k. We assume that (9, t)) is a reductive pair
of Lie algebras and that E satisfies the condition:
(A.I) E4 is a direct sum of finite-dimensional simple 9-modules for q ^ 0.

First we define the graded algebra

(A. 2) A- (E, t)) = A- P; ® E, ® P(t)),

where Pg c A* (9*)9 denotes the graded subspace of primitive elements of 9.
Let Tg : Pg —> I (9)4' be a transgression for 9. A differential dp, is defined on A as a deri-
vation of degree 1, which is zero on I (I)), equal to the restriction of d^ on E , and on A P
uniquely characterized by

^ A W = i ® ^ ) ® l - l ® l ® i * ( c ) for xePg.

Here h : I (9) —> Eg denotes the restriction of the (Weil-homomorphism of the) connec-
tion k : W(9)—^E to 9-basic elements, and this map is applied to the element
^ = TgMeHG)'^ to which x transgresses, f* : 1(9)—>!(!)) denotes the canonical
restriction, d^ = 0 is trivially verified. The DG-algebra (A, d^ is functorial with
respect to connection preserving homomorphisms of 9-DG-algebras and with respect
to inclusions I)' <= I).

Next we define a homomorphism of DG-algebras

(A •3) <P (E, t)) : A (E, t)) -^ (E ® W W)\
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which is natural in E, t). On I(t)) this map is induced by the canonical map
W (t)) -> E ® W (I)). On Eg the map is induced by the canonical map E --> E ® W (I)).
On A Pg the map is the canonical extension of

-^(E^oTg, where V(E, t)) = (fc®W(0)^1.

Here W (i) is induced by i : I) <= 9 and ^ = ̂  (W (9), 9) is the universal homotopy
operator

V : W (9)->W(9)®W(9)([26], (Theorem 1.12), [25'], (5.54))

which restricted to I (9) = W(9, 9) satisfies by [26] (1.15) or [25'], (5.69)

^/(O)^®^--^®! for Oelte)''.

Note for later use that for t) = 0 the map W (i) = s : W (9) —^ F is the augmentation
to the groundfield F. For the map X1 (W (9), 0) = (id 00 s) o ̂  we obtain therefore

^ l(W(9),0)(0)=(id®e)od5l l(a))=-a) for ^el^.
Hence

(A.4) T^-^W^O) : I(g) ̂ Wte)9

is a universal transgression operator. Consequently

(A.5) (T=-X l (A9 i l ( ,0 )==-7loX l (W(9) ,0)=7toT

is the suspension CT : I (9)"^ —>• (A 9*)8, where

^ : W (9)-^(9)^^ (9)= A 9*

is the canonical projection.
The combination of the natural transformation (A. 3) with the canonical homology

equivalence a : (E ® W (l)))^ —> E^ induced by the identity on E and the ^-connection
k o k (9) in E [8] leads to the following result.

(A. 6) THEOREM. — The homomorphism (A. 3) induces an isomorphism
® ( E b)*

H (A (E, W —^ H ((E ® W (t))\) ̂  H (E^).

For I) = 0 this is a result of Chevalley [8], [30]. This Theorem is proved by intro-
ducing filtrations on A (E, I)) and (E ® W (i))\ which are preserved by (p (E, t)), and esta-
blishing that (p induces an isomorphism of the initial terms of the associated spectral
sequences. The following two multiplicative filtrations are used.

First the canonical filtration on W (I)) induces a filtration on I (t)) and hence on A (E, t))
via I (t)), and further on E ® W (t)) and hence on (E ® W (t)))^ via W (I)). These even
filtrations will be denoted F2^ (t)) = 'F2^ and are called Infiltrations of the respective
DG-algebras.
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Next consider the canonical filtration on E given by

(A. 7) F^E'^ ©((E^y'.E)-,
J^P

where E1^ denotes the elements in E killed by i (x), x e 9. This induces on Eg the filtra-
tion F^ Eg = © E^, and hence a (decreasing) filtration on A (E, t)), and further

S^P
on E ® W (t)) and hence on (E ® W (l)))^ via E. These filtrations will be denoted by
F^ (9) = ̂  and are called 9-filtrations of the respective DG-algebras.

The natural homomorphism (p is filtration preserving for both the t)-and the 9-filtrations.

(A. 8) THEOREM. — (i) (p induces for the even spectral sequences associated to the ^-fil-
trations an isomorphism on the 'E^-level for r ^ 1.

(ii) The composition of(p with the canonical map (E ® W (t)))^ —> E^ is filtration preser-
ving with respect to the ^-filtrations on A (E, I)) andE^. It induces for the associated spectral
sequences an isomorphism on the "Ey-level for r ^ 1.

Each of these facts proves Theorem (A. 6). Together with the computation of the
initial terms of the spectral sequences associated to the l)-and 9-filtrations on A (E, I)) we
obtain the following result.

(A. 9) THEOREM. — (i) There is a multiplicative even spectral sequence

'E^'^H^E)®!2^!)) => H^^E,,).

(ii) There is a multiplicative spectral sequence

"E^H^t))®!^) => H^^E^).

A geometric analogon of the previous results concerns the G-DG-algebra r (P, Qp)
for an ordinary principal G-bundle P —»M with compact group G. For a closed sub-
group H c: G the natural homomorphisms

A(F(P, Qp), H)^(F(P, Dp)®W(l)))H^r(P, ftp)H

induce isomorphisms in homology. The spectral sequences discussed above have as
geometric analoga the Serre spectral sequences of the fibrations

P-^THXHP-^BH, G/H->P/H^>M,

where T^ —> B^ denotes a universal H-bundle.
These theorems apply to E = W (9)^, k ^ 0. It is convenient to set W (9)00 = W (9).

Then we obtain the following result [23] (see also [25'], (5.85)).

(A. 10) THEOREM. - For 0 ^ k ^ oo the cohomology H (W (9, l)\) can be computed as
the cohomology of the DG-algebra

(A.11) A(W(9),,l))=A-P,®r(9),®r(I)).
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There are multiplicative spectral sequences

(A.12) 'E^H^Wfe),)®!2^!)) => H^^Wte, t)),),

(A.13) '^=?(9,1)) (8)1^ (9), => H^^tWfe,^).

/w ri^ second spectral sequence "Ej^4'1^ = 0.

For k == oo we have 'E^4 = 0 for q > 0 and an edge isomorphism

I(I))^H(W(9,t))).
Therefore

(A. 14) "E^ q = H9 (9,1)) ® 1̂  (9) -> I2^ (I)),

where the edge homomorphism I219 (9) -^ I2^ (t)) is the restriction map. Since
I (9) = S (9*)9, the initial term equals H4 (9, t); S^ (9*)).

For the case of a connected group G and maximal compact subgroup K this gives e. g.
a spectral sequence

(A. 15) H^(9,K; SW) =^ I (K).

The initial term can by the Van Est Theorem [11] be replaced by the continuous coho-
mology H(. (G, S1' (9*)), whereas the end term is by the universal Chern-Weil homomor-
phism isomorphic to H (Bg). Under these replacements (A. 15) coincides with the spectral
sequence

H?(G, SW) => H(BK)

considered in [6] and [33].
The computation of H (A (E, t))) can be further simplified. For this purpose we need/\

the Samelson space P c: Pg of the reductive pair (9,1)) ([8], [14]). We use the condition
/s

(C) dim P == rank 9 ~ rank t)

and the stronger condition

(CS) There exists a transgression T for 9 such that

ker(I(9) -^ I(^)) = ideal (rP) c= 1(9).

This condition is satisfied for symmetric pairs (9,1)) or I) c 9 of equal rank and
implies (C) [23] (see also [25'], chapter 5).

We define now for a commutative 9-DG-algebra E with connection and satisfying (A.I)
a graded algebra

(A. 16) A-(E)=A-P-®Eg

with differential characterized by d^ (x) == 1 ® A (c) for x 6 P, c = T x e I (9) and equal
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to the restriction of d^ on Eg. Under the condition (CS) for the pair (9, I)) the canonical
map

(A. 17) A(E)^A(E,l))

given b y x S ) c — > x ^ c ® l i s compatible with the differentials. Consider further the
canonical homomorphism j : I (t)) —> A (E, t)) and the induced cohomology map

(A. 18) P = (^, ;„) : H (A (E)) ® I (^) -^ H (A (E, I))).
A /v

Note that A (E) and hence H (A (E)) is an I (g)-module via the characteristic homomor-
phism. We have then the following result [23] (also [25'], (5.107)).

(A. 19) THEOREM. — Let (9, t)) be a reductive pair satisfying (CS). The homomor-
phism (A. 18) factorizes through an isomorphism

P : H(A(E))®^I(t))^H(A(E,l))).

This result applies to E = W (9)^. Let A^ = A (W (g\). Then we get the following
consequence [23] (also [25'], (5.108)).

(A. 20) THEOREM. — For 0 = k = oo there are isomorphisms

H (A,) ®^ I (t)) -^ H (A (W (9),, ̂  H (W (9, t)),).
y\

To describe a basis of H (Aj^) over the groundfield F of characteristic zero, recall
that I (9) ^ F [ci, . . . , cj, r = rank 9 (ordered such that deg c, ^ deg c^+i) and Pg
has a basis of elements transgressing to c^, . . . , Cy respectively. Let

/\
r' = rank9—rankt) = dimP

^
and ^i, . . . , ̂  a basis of P such that y^ transgresses to c^ (o^ ^ . . . ̂  a,.,). For I) = 0
we have in particular P = Pg, r' == r and a, = i for all L With these notations

Afc = A(^i, . . . , y,,) ® F [ci, .... cjk,

where d^ = c^. We use the following conventions:

, ^(0 == ̂ iA • • • A^, ^ (0 = (^ • . • > 0> 1 ^ ii < ... < i,^ r' (5 > 0);
y^=l for (0=0 (s==0);

(A.21) c^ = ct1.. .c/- for 0) = 0\, ..., j^ 0 ̂ j\',
I r

2p=degC(y)= E^degCf8

' i=l

Then we have the following result (this is the result of [23] with a slight change of
notation adapted to the present purposes, see also [25'], (5.110)).
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/\
(A. 22) THEOREM. — An P-basis of H (AjJ is given by the classes of the monomial
cocycles z^j^ = y^ ® c^ satisfying the conditions:

(a) 0 ̂  I p ^ 2k, 0 ^ s ^ r ' \
(b) deg c^ = deg ̂  +1 ^ 2 (fc+1 -^) ^(f) ^ 0;
(^) Yc, = Qfor I < i, if(i) + 0 andj^ = 0 for all I if(i) = 0.

Remarks. — (i) The monomials z^ ^ (^ = 0) form a basis of the primary classes (indu-
ced from I(9)^W(g,^).

(ii) The monomials z^j^ for s > 0 form a basis for the secondary classes, (iii) The
classes for s > 0 and p = 0 are the classes y^ ® 1 with deg ^^+1 ^ 2 (fc+1).

/s.

Note that the degrees of the secondary classes [^(i,j)] in H(Afc) satisfy the inequality

(A.23) 2 fc+l ^degZ(^.) ^2fe+m, m =dimg.

In fact s > 0 guarantees the occurance of at least the element y^ and hence

degZ(^.)+1^2p4-deg}^+1^2(fe+l).

The other inequality follows from the fact that deg c^ ^ 2 k and deg y^ ^ m (which
equals the sum of the degrees of all primitive generators).
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