Annales scientifiques de l’é.n.S.

LaKshmi Bai

C. Musili
C.S.SESHADRI

Correction to "Cohomology of line bundles on G / B "

Annales scientifiques de l'É.N.S. 4^{e} série, tome 8, no 3 (1975), p. 421
http://www.numdam.org/item?id=ASENS_1975_4_8_3_421_0

[^0]
Numdam

Article numérisé dans le cadre du programme

Correction to

C0H0M0LOGY 0F LINE BUNDLES 0N G/B

By Lakshmi Bai, C. Musili and C. S. Seshadri
(Ann. Scient. Éc. Norm. Sup., 4° série, t. 7, 1974, p. 89 à 138.)

G. Kempf has pointed out that the computation of the line bundle K_{r} on $\mathrm{X}\left(w_{n}\right)_{r}[c f$. § 3, B, type $\mathrm{B}_{n}, 6,7(b)$ and $8 ; \mathrm{p} .115$ to 121] is incorrect and that in fact it turns out to be the trivial line bundle. However this does not affect the proof of the main theorem of paragraph 3, Type B_{n} (Theorem B. 11), in fact the proof of the essentiel step I on p. 121 now becomes immediate after writing the exact cohomology sequence. Further as we shall now see, the proof that K_{r} is trivial also turns out to be simpler than the considerations of the paper for computing K_{r}.
Thus one has to make the following correction: In place of Proposition B. 9 (p. 119) one has

Proposition. - K_{r} is isomorphic to the trivial line bundle and in particular, we have the exact sequence.

$$
0 \rightarrow \mathcal{O}_{\mathbf{X}\left(w_{n}\right) r} \rightarrow \mathcal{O}_{\mathbf{Z}_{r}} \rightarrow \mathcal{O}_{\mathbf{X}\left(w_{n}\right) r} \rightarrow 0 .
$$

Proof. - Let $\mathrm{P}=\mathrm{P}_{\hat{\alpha}}, \mathrm{T}, \mathrm{B}$ be the subgroups of $\mathrm{G}=\mathrm{SO}(2 \mathrm{n}+1) \subsetneq \mathrm{GL}(2 \mathrm{n}+1)$ and identify $\mathrm{P} \backslash \mathrm{G}$ with the quadric $\mathrm{Q} \equiv x_{1} y_{n}+\ldots+x_{n} y_{1}+z^{2}=0$ in $\mathbf{P}^{2 n}=\left\{\left(x_{1}, \ldots, x_{n}, z, y_{1}, \ldots, y_{n}\right)\right\}$ as in the paper. The coordinate functions $x_{1}, \ldots, x_{n}, z, y_{1}, \ldots, y_{n}$ can be canonically identified with functions on G, namely the entries of the last row. We have the ideals $\mathrm{I}=\left(x_{1}, \ldots, x_{n}, z\right)$ and $J=\left(x_{1}, \ldots, x_{n}\right)$ in $\mathrm{A}=\mathrm{k}$ [G]. Take the action of G on A induced by right translation. Recall that I and J are B -stable ideals. Further notice that the element z is B -invariant modulo J (not merely B -stable modulo J , we see that B acts on $z \bmod \mathrm{~J}$ through the trivial character).
Let $\mathrm{K}=\mathrm{I} / \mathrm{J}$ as in the paper. Let $\mathrm{R}=\mathrm{A} / \mathrm{I}$; then $\mathrm{R}=k\left[\mathrm{X}\left(w_{n}\right)\right]$. Since $\mathrm{I}^{2} \subset \mathrm{~J}$, I / J acquires a B -action consistent with the canonical B -action on R (B -actions induced by right multiplication). To prove that K_{r} is the trivial line bundle on $\mathrm{X}\left(w_{n}\right)_{r}$, we have to show that (as R -module) I/J is B -isomorphic to R, R being considered as a module over itself. Since K_{l} is a line bundle, we know that I / J is a projective R-module of rank 1. Hence it suffices to show that there exists $m \in I / J$ such that: $1^{\circ} \mathrm{m}$ generates I / J over R and $2^{\circ} \mathrm{m}$ is B-invariant. For m we take the image in I / J of $z \in \mathrm{I}$. Since $z^{2} \in \mathrm{~J}$ it follows that z generates I / J over R and we have seen that $z \bmod \mathrm{~J}$ is a B -invariant element.
Q. E. D.

[^0]: © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1975, tous droits réservés.
 L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

