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COHOMOLOGY OF THE INFINITESMAL SITE

BY ARTHUR OGUS

Introduction

In his famous letter to Tate, Grothendieck attempted to develop a /?-adic cohomology
for varieties in characteristic p > 0 by considering a site (the "infinitesmal site") whose
objects were the nilpotent thickenings of open subsets of the given variety. By the end of
the letter he had realized that this cohomology was "too rigid" and that better results
would be obtained if one considered nilpotent thickenings endowed with divided powers
(the "crystalline site"). Since then Berthelot has quite fully developed the crystalline
theory, which Mazur has used to prove Katz's conjectures [7].

There remains the question of the meaning of the cohomology of the infinitesmal
site. We shall prove that, for proper schemes X over an algebraically closed field k, the
infinitesmal cohomology of X W^ (k) is nothing else than the etale cohomology with
coefficients in W^ (k), a much older, equally "unsatisfactory ",^-adic cohomology.

In view of the relationship between the infinitesmal site and F-descent, this result is
not too surprising. Care is required, however, because this result is false for nonproper
schemes. Our approach to infinitesmal cohomology is through the ring of differential
operators, a technique used in characteristic zero by differential geometers and by Katz,
Hartshorne, and others. (A somewhat different approach, using the Cech-Alexander
complex, is sketched at the end of paragraph 4.)

In paragraph 1 we discuss the behaviour of differential operators on formal
schemes. Most of this section can be skipped by readers interested only in smooth lifted
schemes, except for (1.10), which compares cohomology of affine (formal) schemes ̂  with
cohomology computed over F ( ,̂ 0^), and (1.14), a useful "invariance under base change"
result. In paragraph 2 we set up a spectral sequence which, in characteristics 0 and p,
degenerates, but in entirely different ways. Then in paragraph 3 we use the spectral
sequence to compute Ext^ (0^. Oy), in various cases, including the comparison with etale
cohomology. The fourth section contains the proof that this Ext group "is" the coho-
mology of the infinitesmal topos, a result we were surprised not to find in the lite-
rature. Finally in paragraph 5 we prove a curious result about the hypercohomology
of the de Rham complex of the formal neighborhood of a subvariety of projective space,
—a result which is, in a way, a ridiculous analogue of the strong Lefschetz theorem.
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296 A. OGUS

I would like to say here that our results can be viewed in the following way : If X is a
^-scheme, where char : k = p > 0, there is a morphism of ringed topoi,

(X|W^(fe))^^(X|W^(k))^,

and hence on the limit of cohpmology : H;nf(X|W, ^x|w)-^H^is(X|W, ^x|w)-
Then our results can be interpreted as saying that if X | k is proper, this map is an isomor-
phism onto the "unit root part". One is tempted to ask if there are intermediate sites,
whose cohomologies correspond to the pieces of other slopes. The feasibility of this
approach to understanding the slope filtration remains, however, in doubt. Forthcoming
work of S. Bloch using K-theory seems much more promising.

Many thanks go to the referee and to P. Berthelot for numerous useful suggestions.

Differential Operators on Formal Schemes

All "algebras" will be commutative with identity element, and all "algebra homomor-
phisms" will preserve the identity element, unless otherwise specified. If A is an R-
algebra and M and N are A-modules, Diff^ (M, N) will denote the set of differential
operators M -> N of order ^ n ([3], IV, 16.8). Recall that if P is another A-module,
composition of maps induces a composition

Diff^(M, N) x Diff^(N, P) -̂  Diff^M, P).

This is better written

Diff^N, P) x Diff^(M, N) ̂  Diff^(M, P)

byfe,/)~^o/. If

Dif^/R (M, N) = 0 Diff^/R (M, N), etc.,
o

then Diff^/R (M, N) is a left Dif^/R (N, N)-module and a right Diff^/R (M, M)-module,
where Diff^/R (N, N) c Endp (N, N) is a subring. In particular Diff^/p (M, N) has
two A-module structures, one via A -> DiffJ^ (N, N) -> Diff^/R (N, N) and one via
A -» Diff^R (M, M) -> DiffA/R (M, M). We shall write the first of these on the left and
the second on the right. Thus i f3 :M-^Nisan operator, a 9: M -> N means M -> N -°> N
and 9a means M -^ M —> N.

Since we want to work on formal schemes we need to study the behaviour of Diff under
completion. It turns out to be quite simple:

(1.1) PROPOSITION. — Suppose A is a noetherian ^.-algebra, I £ A is an ideal, and A
is its 1-adic completion. Then:
(I . I . I ) For each n, there are natural isomorphisms:

^^^y^
4® S^RIE —— TOME 8 —— 1975 —— N° 3
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y\.

where P" is the ring of principal parts of order ^ n [3] and?" means completion with respect
to the ideal IP".

(1.1.2) IfA/R is of finite type and ifM and N are finite type A-modules, there are natural
isomorphisms:

A ̂ A^/R^ N) ̂  ̂ A/R^ N)

and
A ®^Diff^(M, N) ̂  Diff^(M, N).

Proof. — For each /:, there is a natural map Pl/p/I^1 PI/R "̂  I^WR which I claim
induces an isomorphism in the inverse limit. To construct the inverse, observe that a
differential operator M -> N of order ^ n maps p4"^1 M into I^1 N, and hence induces
a map M^+k -> N^ for all k. Apply this to the universal operator of order ^ n: A -> P^
to get a differential operator A^-^P^P^ hence PA^/R ̂  PA/R/I'PA/R. It is
easily verified that this induces the inverse isomorphism in the limit. This shows that
^ /\
PA/R ->• lim P^/R is an isomorphism, and if we apply this result with A in place of A, we

getO.l'T).

For the next statement recall that if A/R is of finite type, P^/p is a finite type
A-module. Then

Diff^(M, N) ̂  Hom^[P^ ®^M, N]

^Hom^[(A®^)®^M.N]

-Hom^A^P^M.N]

^ Horn,, [PA/R ®AM, N] ̂  A ® DiffA/p(M, N).

Taking direct limits, we finish the proof. D

Next we have to study the behaviour of Diff with respect to localization and
base change. Everything we say is quite well-known except for the presence of the com-
pletions, and using (1.1) one can reduce to the familiar case. Therefore we omit most
of the proofs.

(1.2) COROLLARY. — Suppose B is an etale A-algebra and B is the 1-adic completion
of B, where A/R is of finite type and 1 £ A is an ideal. Then there is a natural isomorphism:

B ®^ Diff^ (M, N) -> Diff^ (B ®^ M, B ®^ N)

for any two finitely generated A-modules M and N. D

If A/R is smooth (hence of finite type), it is well known that Diff (A/R) = D (A/R) is
projective as a left A-module. It follows that D (A/R) = A ®^ Diff (A/R) is projective
as a left A-module. We use this fact extensively in the sequel.
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298 A. OGUS

(1.3) PROPOSITION. - Suppose R/ is an ^.-algebra, with R and R/ noetherian, B/R is
^ /\

smooth, and 1 ^ B is an ideal. Let B be the 1-adic completion of B and B' be the 1-adic
completion o/B' = R' ®^ B (or equivalently o/R' ®^ B).

(1.3.1) If D = Diff (B/R) and D' = Diff (B'/R), there is a natural isomorphism:

B'®gD^D'.

(1.3.2) IfM is a left D-module,

M'=B'®BM^D' (2 )DM,
def

and for any D'-module E',

Homiy(M', E') ̂  Hom^M, E').

(1.3.3) If either B' or M is flat over B, we have natural isomorphisms:
Ext^ (M', E') ^ Ext^ (M, E')for all i.

Proof. - We omit the proofs of the first two statements. If F* is a resolution of N by
free D-modules, B' ®g F* ^ D' 0^ F'is a complex of free D'-modules, and either flatness
hypothesis implies that it is a resolution of M'. Applying Hom^, (, E') and (1.3.2), the
result follows. D

We are now ready to define the functors we will study. Notice that A is, tautologically,
a left D = D (A/R)-module. The functor Hom^ (A,) can be identified with the functor
E — > { x e E : 8 x = 0 whenever 91 = 0 }. The derived functors of this functor are of
course Extj^ (A, ), but they deserve a special name:

(1.4) DEFINITION. — If E is a D-module, Hp (E) = Ext^ (A, E).

(1.5) COROLLARY. - With the notations of (1.3) and (1.4), there are natural isomor-
phisms:

HD(E')^H^(E'). D

In order to calculate H^ (E) we shall use the following standard construction ofinjectives
in the category of left D-modules. If M is any A-module, let L (M) = Hom^ [D, M], the
set ofA-linear homomorphisms (p : D -> M, where D is regarded as a left A-module. Then
L(M) is a D-module by the formula (3(p) (8) = (p (83)-one must check carefully that
5(p is still A-linear and that Q' (3(p) = (9' 9) ((p). Beware that if L (M) is regarded as an
A-module through its D-module structure (a (p) (8) ^ a (q> (8)). There is a canonical
A-linear map n : L (M) -> M : (p -> (p (1), and the functor L is right adjoint to the forget-
ful functor which takes D-modules to A-modules: Given an A-linear map/: E-> M, the
unique D-linear map L (/) : E -> L* (M) such that K o L (/) =/is given by L (/) (x) (9) = f(9x).

(1.6) PROPOSITION. - Suppose A/R is smooth, R is noetherian, and A is the 1-adic
completion of A. Then the functor L is exact and takes injectives to injectives. If E is a

4® S^RIE —— TOME 8 —— 1975 —— ?3
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^ /\
left D (A/K)-module and M f5' aw A-module, there are natural isomorphisms:

Ext^(E,M)^ExtD(E,L(M)).

In particular H^ (L (M)) = 0 ifi > 0.

Proof. — Since the forgetful functor is exact and L is its right adjoint, L takes injectives
to injectives. The additional hypotheses imply that D is projective as a left A-module,
i. e., that L is exact. The rest follows. D

We now want to sheafify the above constructions. We shall find it convenient to work
in the 6tale topology as well as the Zariski topology. If/: °£ -> S is any morphism of
ringed spaces, let QQ = ^o (X/S) be the presheaf which to any open U assigns the ring
DiffR (A, A), where R == F (U,/-1 (^g)) and A = r (U, ̂ ). Let 0) = 2 (^/S) be the
associated sheaf.

Before we describe the sheaves ̂ , a word about the etale topology on a formal scheme,
as defined in [4]. If A is I-adically complete, and if Bo is etale over Ao = A/I, then for
each n there is a unique etale A-algebra Bn lifting Ao, and B = lim B^ is said to be etale

over A, although it is not of finite type (or the I-adic completion of a finite type A-algebra,
in general). We shall call such an etale map "special" iff there exists a finite type and./\
etale A-algebra C with C = B. It is easy to see that any etale B/A is, locally in the Zariski
topology on B, special.

/\.
(1.8) PROPOSITION. — Suppose A is a finite type noetherian R-algebra, and A is its
I-adic completion. °K = Spf A. Then:

(1.8.1) If\ -> ^ is etale and affine, with V = SpfB, there are natural isomorphisms:

B ®^ D (A/R) -^ D (B/R) -^ Y (V, Q)\
v

(1.8.2) I f N - > ^ i s a quasi-compact affine etale covering, the Cech complex ^ (V, 2) is
a resolution ofT (^, 3) ̂  D (A/R).

(1.8.3) H1^,^) = IT(^^) = 0 fori>Q.

Proof. - If V is special, say V = Spf(C) with C/A finite type and etale, by (1.2)
y\ \̂ /<

D (C/R) = C 00, D (A/R). If V is a covering by special etales, the sequence
^ /\ /<
A -> ^' (V, Oy) is exact and consists of flat A-modules, so that tensoring with D (A/R)

^ • ^we obtain an exact sequence D (A/R) -^ ^* (V, D). Since this is true with A replaced by
y\

a basis of open sets, it follows that r (^, 2) ̂  D (A/R), and that the analogue is true for a
special etale V in place of ̂ . This shows that the natural map B ® ̂  D (A/R) -> T (V, &)
is an isomorphism if V is special, and the general case follows easily. One quickly deduces
(1.8.2) and (1.8.3) by standard arguments. It remains only to prove that
D (B/R) -> r (V, 2) is an isomorphism for any etale V, and injectivity will suffice. If
8 e D (B/R) goes to zero, then there is a special etale cover V, such that 8 L = 0 for all i,
hence in particular if P e B, 8 (P) |y^ = 0 for all i, so 8 (p) =0. D
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300 A. OGUS

Recall that a sheaf ^ of ^-modules on ^ = SpfA is "quasi-coherent" if for each
affine open V -> ^ with V = SpfB, ^ (V) = B ®^ ̂  W- In particular, ^ is quasi-
coherent. If the 6^-module ^ comes from a sheaf ^ of ^-modules, then quasi-
coherence as an (P^-module implies, and hence is equivalent to, quasi-coherence as a
^-module, because

^-(V) = B ®A ̂ W ^ B ®A^W ®^w^W ̂  W) (g^^Cn

Note that this is so both in the etale and Zariski topologies.

(1.9) PROPOSITION. - Suppose 3C = Spf A and S and ^ are Gy-modules, with ^
quasi-coherent. Then if A is the completion of a finite type R-algebra, and if we work in
either the etale or the Zariski topology:

(1.9.1) There is a spectral sequence:

E^Ext^Or),^^,^)) => Ext^(^,<0.

(1.9.2) If^ and ^ are also sheaves of ̂ -modules, there is a spectral sequence:

Ef=Ext^(^Cr),H^,^)) => Ex4(^,^).

Proof. — There are natural maps

Hom^QF, ^)-^HomA(^(^), ^W)
and

Hom^ (^, (T) -> Hom^ ̂  (^ (^), ^ (^)),

which are easily seen to be isomorphisms, from the quasi-coherence of ^F. Since the
functor H° (^, ) takes injectives to injectives, we can apply the spectral sequence of a
composite fanctor to get the spectral sequences. D

(1.10) COROLLARY. - With the hypotheses above, assume that W (̂ , <T) = 0
if q > 0. Then there are natural isomorphisms:

+1 / i^zr {(JT\ £>far\\ ̂  c^+iExtA^W, ^W) ̂  Ext^(^, ^)
awrf

Ext^ ̂  (̂ r (̂ r), ̂  (̂ r)) ̂  Ext^ (̂ -, ̂ ). D+1 f (ST f(W\ jpfar\\ ̂  r?^-^*

We shall need to construct explicit injective resolutions using the sheaf
Hom^. [ ,̂ ^] = ^ (^); note that this sheaf is not quasi-coherent because Q) is not
coherent.

(1.11) PROPOSITION. - Suppose ^ = Spf A, where A/R is of finite type.

(1.11.1) The functor ^ takes injectives to injectives and is right adjoint to the forgetful
functor from Q-modules to 0^-modules. T (^, ^ (0) ^ L (F ( ,̂ 0) for any
6^-module €. If A/R is smooth then:

4® SERIE —— TOME 8 —— 1975 —— ?3
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(1.11.2) If S is a sheaf of 0 ̂ -modules such that W (^, 0 = 0 for q > 0, the same is
true of^C (0.

(1.11.3) If S is a sheaf of(9 ̂ -modules such that W (^, 0 = Ofor q > 0, there are natu-
ral isomorphisms: Ext1^ (̂ ", ^ CO) -^ Ext^ (^, 0 for any quasi-coherent 2-module ^.

Proof. — The first statement is standard except for the last part, which follows from (1.9)
and the quasi-coherence of 2. For the next statement, use the previous corollary and the
fact that Q) (^) is a projective A-module to see that Ex4 (^, <f) = 0 if i > 0, and hence
that Ext1 ,̂ (Q, 0 = 0. Then the spectral sequence

E^H^Ext^,^)) => Ext^(^,^)

degenerates and converges to zero, so that W (^, ^ (0) = 0 if p > 0. The last state-
ment now follows from the corollary and (1.6). D

Now we can deduce some results about nonaffine formal schemes. For simplicity we
consider only formal schemes arising globally from smooth quasi-compact, quasi-separated
ordinary schemes, although we could easily consider formal schemes obtained by gluing these.

Thus we consider a smooth morphism X -> S, S = Spec R, with R noetherian, and let
^ be the formal completion along a closed subset Y q: X. If ^ and € are sheaves of^-
modules we shall want to consider Ext^ (^r, €) and in particular H^ (^, 0 = Ext1^ (0^, <f).

(1.13) PROPOSITION. — Suppose S and ^F are sheaves of Q)-modules on ̂ , such that SF is
quasi-coherent and W (U, 0 = W (U^, 0 = 0 for q > 0 and every a/fine open
U c ^. Then the natural maps:

Ex4(^ar, ̂  ^)^Ex4(^et, ̂ , <0

or^ isomorphisms for all i.

Proof. — We have already seen in (1.10) that this is true if °K is affine; the general case
follows by considering the Cech spectral sequence of an affine open hypercovering. D

(1.14) PROPOSITION. — Suppose R' is a noetherian ̂ -algebra andf: S O ' -> °£, with ° K ' the
formal completion ofX' = X x ^ R' along Y' = Y x ̂ R'. If'(T is a 0)' = 2 (T'^-module
such that W (V, ^ ' ) = Ofor open affines U', and if ̂  is a quasi-coherent Q-module and is
flat as an 0 ̂ -module, the natural maps:

Ex4 (/* ̂ , n ̂  ExtJ, (^, ̂  r)
are isomorphisms for all i.

Proof. - Note that/* ̂  is quasi-coherent on 3£ and that W (V,/^ (T) = 0 for q > 0
for V c> ^ affine, because/is affine. Since the above result follows from (1.3) and (1.10)
if ^ is affine, we deduce the general case from the Cech spectral sequence as above. D

(1.15) COROLLARY. - If € ' is a 0)'-module with W (V, (T) = 0 for any affine V, there
are natural isomorphisms:

H^ ( '̂, (Q -> H^ OT, /„ (T) for all i. D

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



302 A. OGUS

2. A Spectral Sequence

For the time being let us work in the affine situation with D" = Diff" (A/R),
D = Diff (A/R). If N and M are two left D-modules, let

H^(N, M) = Homon(N, M)0 = {/: N -> M: f(8x) == 8f(x) for all xeN and BeD"}.

Then
HomA(N, M) = Ho(N, M) 3 Hi (N, M) 3 ...

and

H H,(N,M)=HoniD(N,M).
n=0

Thus if H (N) is the functor which takes D-modules to the inverse system of R-modules
{ Hn (N, M) }, we have expressed Hom^ (N, ) as the composite lim o H (N, ). Note

that we could also have used Hj^ (N, ) = Horn ^ (N, ), if QzjJ is any increasing
sequence of integers.

We shall show that there is a spectral sequence for the composite lim o H^ (N, ), and

this spectral sequence will be our main tool in the calculation of infinitesmal cohomo-
logy. We must show that any M has a resolution by injective objects I such that H^ (N, I)
is acyclic for lim. Note that we will never have a Mittag-Leffler condition, so a more

delicate argument is needed.

(2.1) LEMMA. — Suppose Q is an A-module and N is a D-module. Then
R1 lim H (N, L (Q)) == Ofor i > 0.

Proof. — Since the index set is the set N of positive integers, we need only show that
R1 lim H (N, L (Q)) = 0, i. e. that each H; is complete in the topology defined by

H, 2 H,+i 3 ... [8]. If x e N, and /e Ho, let /, e L (Q) = Hom^ [D, Q] be the
corresponding element. Then/e Hk iS9fx = fgx whenever 8 e D^ i. e. iff

/^ (5 Q) = /^ (8) for all 8 e D, all 9 e D\ and all x e N.

Suppose (/J) is a Cauchy sequence in H,; by passing to a sub-sequence, if necessary, we
may assume that/7 — /fc e Hj^ for j ^ k. This condition says that

^(8a)-/^(8)=/.fe(85)-/^(8) for j^k^oTd(8),

and in particular we see that f^ (8) — f^ (1) is independent of j for j ^ ord (8). Denote
this value by/c (3); I claim that/is a limit of (/J) in H,.

First we must verify that/, e L (Q), i. e. that it is A-linear. If a e A and 8 e D, then for
large 7,

f.(a8) =/;(^)~/ic(l) =fi{a8)^f^

4® S^RIE —— TOME 8 — 1975 — ?3
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Now since f^ Stadf^ are A-linear, this is

= a(f^8))-a(f^(l)) = a/,(<3).

Next we check that/e H(. If 8 e D1 and 8 6 D, and if j ^ max (i, ord (S8)), we have:

/,(83) =^(8<5)-/^(1) =/^(5)-/^(1) =/.,(§).

Finally we must check that the sequence /'' converges to /, i. e. that / — /* e H^. If
9 e D1 and if 8 e D, then for large./:

/,(85)-/^(8a) =^(§3)-/^(l)-^(8a), (and since^-^eH*)

=/^(8)-/^(1)-/^(8)
^a^)-/^). D

/\

(2.2) PROPOSITION. — Suppose A/R ^ of finite type and A ^ ^ I-^c completion
of A. 77^/z;/ N a^rf M are D-modules, there are exact sequences:

0 -̂  R1 lim Exto"1 • • (N, M) -^ Ext^ (N, M) -^ lim Ext^ • (N, M) -̂  0,

whereExt1"^, ) means the inverse system ofright derivedfunctors of'Horn' (N, )==H.(N, ).

Proof, — This will just be the spectral sequence of a composite functor, once we
know that any D-module M is contained in an injective which is acyclic for lim. This

is easy: Find an injective A-module Q containing M; then there is a unique D-linear
map i: M -> L (Q) such that n o i = inci, so i is injective. D

Next we shall sheafify the above construction. For technical reasons, we must consider
only the functors H^ (^, <f). Define a functor <S> from the category of ^-modules on the
formal scheme ^/S to the category of inverse systems of sheaves of abelian groups on °K
by <!>„ W == Hom^n (0^, <^). Then if r is the functor which takes an inverse system of
sheaves S^ to lim T (̂ *, S) ^ F (^, lim S), we see that

r°o == r(^r, lim^W) = r(^, Hom^, ^)) = Hom^(^, <o = r^(^, ^).

(2.3) PROPOSITION. — There is a spectral sequence

E^R^T'R^W => H^(^,(^),

/or ^w^ sheaf of 3)-modules S on ̂ .

Proo/. — If we can show that any S can be embedded in an injective ^-module ^ such
that ^ (^) is acyclic for r, this will just be the spectral sequence of a composite func-
tor. Thus it will suffice to prove that if Q is an injective ^-module, <S> ^ (Q) is r-acyclic.

First let us reinterpret the functor 0. We have a natural map: Of -> Oy -> 0 given by
a (9) = 6 (1), which is a homorphism of left ^-modules, and hence we have an exact
sequence of left ^-modules:

0->^-^->^->0.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEUBE 39



304 A. OGUS

Note thatch is quasi-coherent, and if € is any ^-module, we get an exact sequence:

0 -> Hom^ (^, 0 -> € -> Hom^ (6^, <f).

Thus, we can think of Hom^ (^, <) as the sheaf of all ^ e € such that 3^ = 0 for all
sections 8 of^. Similarly, Hom^n (^, <f) is the sheaf of all x such that &c = 0 for all
sections Q QiM c\ ̂ ", or equivalently, the sheaf of all x such that 9x = 0 for all 8 in the
left ideal ̂  generated by ̂  n ^". Thus, 0^ (<f) ^ Hom^ (^/^, <f). Since ̂  and
Q" are quasi-coherent (P^-modules, so are M n ^", and J^, and 2\M^

We are going to use the spectral sequence for the composite r = r o lim, as explained

in [8]. Note that R1 lim is not, in general, the sheaf associated to the presheaf

U -> R1 lim (U, ). Suppose Q is an injective ^-module and Q = <D (J^ (Q)). I claim

that R1 lim Q = 0 for i > 0. We must check two conditions.

(a) For a basis of opens U, H1 (U, ?„) == 0 iH > 0. Indeed,

Q^ ̂  Hom^ [^/^, ̂  (Q)] ̂  Hom^ [^/^, Q]

which is flasque since Q is injective, so this is true for any open set U.
(b) For a basis of opens U, R1 lim Q (U)=0. If U=SpfA is affine and D=^ (U), etc.,

we have from the quasi-coherence of^/e^, that:

Q^ (U) ̂  Horn,, (DIM,, L (Q (U))).

Thus R1 lim Q (U) = 0 by (2.1).

Thus the spectral sequence for the composite r = r o lim degenerates, and we have

R1 r = H1' (^, lim Q;). But lim Q^ ^ Hom^ (^, J^f (Q)) ^ Q and since Q is injective,

these vanish. D

In characteristic 0, Qf1 generates ^, so that 0^ ^ lim d) and the spectral sequence dege-

nerates stupidly. In characteristic p > 0 however, we shall see that if v, = p" — 1 for
n ^ 0 and €^ Hom^ (^, ), the functor ^ is exact. Thus the spectral sequence will
again degenerate, this time in a more interesting way. We obtain:

(2.4) THEOREM. — Suppose p 0^ = 0, X/S is smooth, and 3C is the formal completion of
X along Y <= X. Then the functor ^ (indexed as above) is exact, and for any sheaf S of
Q modules there are exact sequences:

0 ̂  R1 lim H1-' (^, 0. (<0) -> H^ (^, ^) -> lim H1 (^, 0. €} -> 0.

Proo/. — We must show that each 0^ is exact. This is a local question, so we can intro-
duce coordinates on X, ^ .. . t^ Then there exist well-known projection operators
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TC" e Q which universally project € onto 0^ (<f). If we work with one coordinate t = tj,
at a time, we take

TÎ S (-ly^V,, where V. = -1 (a/SQ1.
»=o i!

It is well known that Vi n^ = 0; we leave it as an exercise in the binomial theorem to verify
d

that V, 71̂  = 0 if; ^ p" — 1. Then 71" = ]"J ^ is the desired projection. The exactness
k=l

of 0^ follows immediately. To get the exact sequence above, use the spectral sequence
of the composite r = lim o r and the previous proposition. D

We shall call the first term in the sequence above the "unstable submodule" ofH^ (^, <^)»
and shall call the last term the "stable quotient" of H^ (^, 0. Needless to say, the
unstable submodule is unpleasant; if it does not vanish one should, no doubt, work with
a pro-object instead of a module. In the next section we shall investigate the exact
sequence with some care.

3. The Comparison Theorem

We now turn our attention to the case S = 0^. Then one expects that H1^ (^, 0^)
is determined by the action of Frobenius on H1 (^, 0^). This turns out to be the case,
at least with certain hypotheses on °K. We shall essentially consider two cases; first
^ = X, a smooth proper scheme over R, and next any proper formal scheme °K over a
field k. The first case corresponds to a family of smooth varieties; we shall see that the
monodrony around supersingular points creates unpleasant behavior in H^ (^, Oy).

We begin with some general nonsense about ^-linear endomorphisms. Let R be a
regular local ring of characteristic p > 0, let a : R -> R be the p-th power map, which we
assume to be finite (for instance, if R is "geometric"). A G-linear endomorphism of an
R-module M is an additive map \|/ : M -> M such that v|/ (ax) = cf \|/ (x) if a e R, x e M. We
deduce an R-linear map (pi :Mi = R O O ^ M - > M : a ® x - > < 2 \ | / (x), and in fact an
inverse system (M, cp) of R-linear maps, where M; = R ®gi M, and M,.^ -> M, is
induced by vlA

00

LetNf = Im (pf : M, -> M, the R-module spanned by Im \|/1, and let M5 = Q N1.
i=l

Obviously (p maps M5 into M5; we shall call (M5, v)/5) the "stable submodule" of(M, v|/),
and the quotient ofMby M5 "(M", \|/")", the "unstable quotient" of(M, \|/).

(3.1) THEOREM. — Suppose M is a finite type and torsion free ^-module. Then:

(3.1.1) The map KQ : lim M -> M is injective, with image M5.

(3.1.2) There are natural isomorphisms:

M^limN^limM
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and

R^mN^RMimM.

(3.1.3) The submodule (M5, ^s) of (M, v|/) ^ ^ra6fc, i. 6?. ̂  w^p R ®^ M5 -^ M5 is an
isomorphism.

(3.1.4) 77^ quotient (M", vj/") o/(M, \]/) is unstable, i. e. lim M" = 0.

Moreover there is a natural isomorphism:

R^imM^R^imM".

Proof. — If R is a field, this is all well-known. In fact we have:

(3.2) LEMMA. - IfR is afield, then:

(1) There exists an integer r such that N,+^ = N,. for all i ̂  0.
(2) The maps (p^, : M^ -> M? are zero for k > r.
(3) The maps (p?+j^ : Mf+^ -> M^ ar^ isomorphisms for all i, k.

Sketch. — The first statement is clear, because M is finite dimensional, and immediately
implies (2). Since the modules Mf are all of the same dimension, surjectivity suffices to
prove (3), and this is easy.

(3.3) LEMMA. — Let K( = Ker ((p, : M, -> M). Then there is an r such that the map
Ki+r -^ K, is zero for all i.

Proof. — First assume R is a field, and let r be as in the first lemma. Then if
xeM^+r, (pi+r,»(^) lies in M^ and since the map Mf -> M is injective, (?;+,.,» (x) = 0
if x e K,+^, as claimed. Now in general, since M is torsion free, so are each M( and each
K,, so the result follows by tensoring with the'quotient field of R.

Now we can prove the theorem. We have an exact sequence of inverse systems:

0-^K->M.-^N-^0.

By Lemma (3.3), the inverse system is essentially zero, so that

UmK^R^imK^O.

This proves (3.1.2) and (3.1.1), because lim N = Q N = M5.

Next observe that R is a flat, finite type R-module via a, and hence is free and of finite
type, so that the natural map t : R ®^ lim M, ̂  lim R ®^ M, is an isomorphism. There

is an isomorphism (equality) R ® ^ M , - > M , + i for each f, hence an isomorphism
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8: lim R ®a M, -> lim M,+i, and finally there is a shifting isomorphism

T: lim Mf+i -> lim M( sending (x^, x^ ...) to ((p (;q), ;q, x^, ...). Composing these,

we get an isomorphism (p : R ® lim M^ -> lim M^. Since KQ o q> (a ® ̂ ) = a v|/ Tio C\),

we get a diagram:
T£ id(8»no

limR®^^—R®^™!^ ——^R®]^

^ •I- f " !.
limMf+i T£ ) lim M no , M5

It follows that (p^ is an isomorphism, proving (3.1.3). Finally, looking at the exact
sequence of inverse systems:

O-^M'-^M -^M"-^0• • •

and observing that the maps in M5 are isomorphisms and that lim M5 -> lim M^ is an

isomorphism, we see that lim M" = 0 and that R1 lim M^ -^ R1 lim M". D

(3.4) Remark. - R1 lim N^ [J N,/N,, where N, is the N^-adic completion of N, [8] - a

very unpleasant object indeed. For poetic reasons we shall call this the "complete uns-
table quotient of M55.

(3.5) Remark. — If (p is linear, it is an easy exercise to prove the above result, without
the assumption of torsion freeness. However in our case the assumption is necessary
because if R is a local ring and M is the residue field with its Frobenius endomorphism,
M< ^ R/m^> and lim M, = R.

(3.6) THEOREM. — Suppose X is smooth and proper over the spectrum Sofa regular local
ring R of characteristic p > 0. Then the inverse system H1 (X, <S> (^x)) ls isomorphic to
the inverse system deduced by linearizing the ^-linear endomorphism F^ of H1 (X, (P^)* V
in addition a is finite, we can conclude:

(3.6.1) The stable quotient of H^ (X/S, Oy) is isomorphic to the stable submodule of
(H1 (X, 6?x), F*), ifW (X, (?x) is torsion free.

(3.6.2) The unstable submodule of H^ (X/S, 0^) is isomorphic to the complete unstable
quotient o/(H1-1 (X, Oy), Fx), ifW1 (X, (P^) is also torsion free.

Proof. - Let X" = Spec R x „„ X, with /" : X -> X" the R-morphism induced by
Fx. It is well-known that/" is a homeomorphism and that there is a natural isomorphism:

/;Hom^x^x)^xn.
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Thus 0^ (0^) ^ O^n, so we have

H^X.OA^H^X",^).

Since a" is flat, this is canonically isomorphic to R ®^n H1 (X, ^x). D

(3.7) Example. — Let R be a noetherian ring of characteristic p > 0, X an elliptic curve
over S = Spec R; then H° (X, Oy) and H1 (X, O^) are each one dimensional. There are
three cases to consider: If all the fibers are ordinary, i. e., if the Hasse invariant A is a unit
in R, then each map (p^ : R ®^ H1 (X, 0^) —> H1 (X, Oy) is an isomorphism. Thus
H1 (X, ̂ ) is stable, so H^ (X/S, ̂ ) ̂  H1 (X, 0^) and H^ (X/S, 0^) = 0. [Of course,
H° (X, C?x) is always stable.] If the Hasse invariant h is not a unit in R, the filtration
N^ of H1 (X, ^x) is equivalent to the (/Q-adic filtration, so that

H^(X/S,fl?x)=limN=0,

and
Hi (X/S, 0^) = R'limN^ (R/R)1',

where " means A-adic completion. Notice that this vanishes if R is complete A-adically
or if h = 0, but in general it is very unpleasant. If we consider instead the pro-object
defined by N^ one gets something slightly more reasonable. Namely, this pro-object is
the functor M —> lim Horn [N^, M] ^ M^, the localization of M by A. This functor is

not representable by an R-module, but if S = Spec R and U = Spec R/,, with j : U —> S
the inclusion, M^ ^ Homy [^j, ;* M] ^ HonixO'i 0^ M), where ^ 0^ is the extension
of 0^ by zero. Thus, the pro-object "lim N^ is represented by the non-quasi-coherent

sheaf f, ^u.

Let us now consider the case in which the base S = Spec V,, where V is a discrete valua-
tion ring of mixed characteristic p, with uniformizing parameter n and ¥„ = V/TI" V. We
shall assume that the residue field k is separably closed and that \k : ̂ p] is finite.

(3.8) THEOREM. — Let X/S be smooth and proper^ let Y—>X be a closed subset, and
let ^ be the formal completion of X along Y. Then there is a natural isomorphism:

H1 (Y^,/-1 (^)) -^ H1^ (3T/S, O^for all f, where 2=2 (^T/S).

Proof. — It is easy to see, and well-known, that the natural map

/-'W^Hom^,^)

in an isomorphism, both on 3C^ and on ̂ . Henceforth we shall work uniformly on
the latter. The edge homomorphism of the spectral sequence

E^H^.Ext^^)) => Ext^(^,^)
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is therefore a map H1 (X^/~1 (^s)) -> H^ W^ ̂ ) and siDce ^a and ̂ t are the same

site, we get our map. The rest of the proof can be interpreted as showing that

H^,Ext^,^))=0

for all q, but we do not do this directly.
First let us reduce to the case of a field. We have an exact sequence:

Q—> K—> ¥„—» V^_i —> 0, where K is a one-dimensional ^-vector space, and since °K is
flat over S, an exact sequence 0 -> K ®^ 0^ -> ̂  —> ̂ .̂  -> 0; note that these are all
^-modules. We can write this as 0—> i^ ̂  —> Qgc—^j^ ^n-i —> ̂  where ^ is
^ Xg Sfe, Sfe = Sp Vfc, f and 7 are the inclusions. Now if ̂  = Q) (^/S^), we have

Hom^, i^) ̂  Hom^(^, ̂ ) ̂ /"'(^

and hence we obtain by functoriality of the edge homorphism, a long exact sequence:

... ^ H^WS, fA) -^ H^WS^, ̂ ) ——. W^j^,,) —^ ...
t T T

... - H1^,/-1^) -> H^Y,,,/-1^) - H^,/-1 (^.,) - .. .

Thus we will be able to prove our claim by induction on n, provided we can show that
the maps H1 (Y^,/~1 (^si)) "̂  H^ WS, ^ ^i) are isomorphisms. But we have a natural
isomorphism, by the base changing result (1.15): H^ (X/S, ^ ^^) ^ H^(^*i/Si,^),
so we have reduced to the case S = k.

Since now p 0^ = 0, we can apply the spectral sequence of paragraph 2. We cannot
use (3.1) directly to analyze (H1 (^, ̂ ), F^), however, because it will not be finite dimen-
sional over k. But since each Yy = Sp^ ̂ ^/^+1 is proper over k, H1 (Y, ^yy) ls fi111^
dimensional and H1 (^, 6?^) ^ lim H1 (Y, 0^). Moreover F acts on each Y^, and we

have:

(3.9) LEMMA. - For each v, the map (H1 (Y, ̂ J, F*) -> (H1 (Y, 0^)\ F*) ^ ̂  isomor-
phism, and the "complete unstable quotient" o/(H1 (Y, 0^) F*) vanishes.

Proof. — The second statement is clear, because for any inverse system of finite dimen-
sional ^-vector spaces, R1 lim = 0. For the first statement, consider the exact sequence:

0 -^ 1̂  -> (^Yv -> ^Y -> °

which induces an exact sequence of modules with cr-linear endomorphisms:

... -^ H^Y, I,) ̂  H^Y, ̂ ) ̂  H^Y, ̂ ) -> H14-1 (Y, I,) ̂  ...

Since the above is an exact sequence of finite dimensional ^-vector spaces, we get an exact
sequence of the corresponding stable submodules, so it is enough to show that H1 (Y, ly)5^
for all i. Since (F1)* = 0 for v > 0 on H1 (Y, 1 )̂, this is clear. D

Now for each non-negative integer i, let M^ = k ®^, H1 (Y, (Py^). Thus we have a
doubly indexed inverse system of finite dimensional fc-vector spaces. We get two spectral
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sequences for lim (which may be viewed as the Leray spectral sequences for the projec-
N X N

tions NxN=$N). Both are degenerate because R1 limV = 0 for an inverse system of
N

finite dimensional vector spaces. Thus, the first of these tells us that

lim M^, ̂  lim lim M^ ̂  lim(MJ ̂  (Mo)5 ̂  H^Y, ̂
NXN v i v

and
R1 Urn M^ = R1 Urn lim M^ = R1lin^My)' = 0.

NXN v » v

The second tells us that

lim My, ̂  lim lim M^i
N X N i v

^ limlim(fe g^H^Y, ^v)) ̂  lim(fe g^limH^Y, (B,)\
* V I V

since k is finite over fc via CT*. This is just

lim(fe ̂ ^H^ar, ̂ )) = H1^, ̂ s.
i

Also,
R1 lim M^ = R1 lim(fe ®<,i H1^, ̂ )).

N X N »

We deduce from our first calculation that the R1 vanishes and that the natural map
H1^, ̂ -^(Y, ^y)5 is an isomorphism. Thus from (2.4) and (3.6) we obtain
canonical isomorphisms (valid whenever \k : A^] is finite):

(3.9.1) H^ar/S, ̂ ^H1^, ̂ -^(Y, (Py)5.

It is well know that over a separably closed field k, the natural map H1 (Y^, A;) -> H1 (Y, ̂ y)5

is an isomorphism ([SGA 7, Exp. XXII, § 2]). Modulo an idenitification between cano-
nical maps, this concludes the proof. D

4. Cohomology of the Infinitesmal Site

In this section we shall construct a canonical resolution of a D-module E, which, it will
appear, is related to the Cech-Alexander resolution used by Grothendieck [2]. We need
this resolution to prove that the functors H^ calculate cohomology in the infinitesmal
topos. What is surprising about these results is that they have not yet appeared in the
literature (1).

(1) I recently learned that (4.4), at least, will appear in a paper by M. Sweedler.
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The construction we use is almost completely formal: Let A be a commutative ring with
identity, D a non-commutative A-algebra, with 9 : A—»Dthegivenhomomorphism. Sup-
pose that 9 (1) is a two sided identity for D. If 9 e D and a e A, write a 9 for 9 (a) 9 and
8a for 8Q (a), so that D becomes a (unitary) A-module in two different ways. We again
make use of the functor L = Hom^ [D, ], adjoint to the forgetful functor F from the
category of left D-modules to the category of A-modules. Recall that here D is regarded
as an A-module from the left.

We define inductively functors C1' from ((A-modules)) to ((left-D modules)) by C° = L
and C^ == L o F o C^"1. A little care shows that C^ (E) can be identified with the set of
all functions ( p : D x D x . . . x D — ^ E such that:

(4.0.1) (p(3o, . . . ,5f,^+i, . . . ,^)=(p(5o» . . . ,a^,a,+i, - ' , 8 k )

and
^(a9o, 9^ ..., 9k) =a^(9o, ..., 9k),

for any a e A. The D-module structure is through the extreme right: if 8 e D and (p e Ck (E),
(8(p)(3o, ...,a,)=(p(ao, ...^8).
(4.1) LEMMA. -- Suppose F(D) and F(N) are projectile ^-modules. Then for any
^.-module E, Ck (E) is acyclic for Hom^ (N, ).

Proof, — As in paragraph 1 we observe that L is exact because D is projective, and also
that L takes injectives to injectives because its adjoint F is exact. Thus

ExtL(N, L(Q))^ Ext^(F(N), Q),

for any N, Q, and hence
Exto (N, L (Q)) ==0 for i > 0

for any A-module Q, in particular, for FC^1 (E). D
00

(4.2) PROPOSITION. - Suppose E is a left D-module. Then C'(E) = ® C^E) has a
k=0

natural structure of a complex of D-modules, and there is a natural D-linear quasi-isomor-
phism E -> C' (E).

Proof. - Define d : Ck (E) -> C^1 (E) by:
k+l

(4.2.1) (d(p)(ao,...,^i)=ao9(^...A+i)+ E(-iy(p(ao,...^i^,...A+i).1=1
We let the reader verify that d is well-defined, D-linear, and satisfies d2 == 0. There is

a natural D-linear augmentation e : E—> C° (E) given by (s (x)) (9) = 9x\ note that if
71 : C° (E) —> E is the adjunction map, n o e = id (but n is not D-linear). In fact there is
a homotopy (which is not D-linear) R : C' (E) -> C*~1 (E) given by

(R^K^o, ..., ^-i) = (P(3o, ..., 9k-.,, 1)
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with R° : C° (E) -> E equal to TT. Checking:

(dR(p)(ao, ...,^)=<9o(R(p)(5i, ...,^)+E R(p(3o, ...,^-i^, ...,3,)
1 = 1
fc-i

=3o<p(3i, . . . ,^ , i )+ E (p(3o, . . . ,^-i^, . . . ,^, i)i=i
while

(Rd(p)(3o, ..., 9k) == W(ao, ..., 8^ 1)

=ao(p(3i, . . . , ^ , i )+E(~iy(p(^ ...^-^, . . . , a , , i )» = i
+(-l)fc+l(p(a„ ...,5,i).

Thus (-l)^1 R^+C-l^r fR = ̂  so R is a chain homotopy. It follows of course
that e is a quasi-isomorphism. D

Combining the two previous results we immediately obtain:

(4.3) COROLLARY. - With the hypotheses of (4.1)^^(4.2) above, the complex
Hom^ (N, C' (E)) represents the derived functor R Hom^ (N, E). In particular its i-th
cohomology group is Ext^ (N, E). D

The corollary applies if A is itself a left D-module, and in this case we shall describe the
complex R Hom^ (A, E) more explicitly. We have a surjective D-linear map a : D —> A
given by a (8) = 8 (1), and in terms of this we can define a new complex (L* (E), d), for
any left D-module E, by L° (E) = E, L^ (E) = C^1 (E) for k > 0, and with
d : 1̂  (E) -. L^1 (E) given by:

dQ(x)(S) = 9x-^(8)x

^(X)(BO, ...,B,)=^M^ ...,^)+E(-iy(^ ...^-i^ ...,^)
1=1

+(-1)^^(30,...,3,-i)a(a,).

(4.4) THEOREM. — I f ¥ ( D ) is a projective ^-module, the complex (L* (E), d) represents
R Hom^ (A, E).

Proof. - By the previous result, R Hom^ (A, E) ^ Hom^ (A, C* (E)). Since
C^E^LFC^-^E), Hom^C^E^Hom^A^-^E^L^E). It remains
to check that the boundary map on L* (E) induced from the boundary on C" (E) is as
described. To do this, use a to obtain an injection f : Q - ^ L (Q), namely

Q ̂  Hom^A, Q)-^HomD(A, L(Q))^Homo(D, L(Q)) ̂  L(Q).

Explicitly, i (g) (8) = a (3) g. We also have the adjunction map n: L (Q) -+ Q given by
7i (X)=^( l ) ; of course n o i = idQ. We thus have for each k a natural inclusion
^ : L* (E) -> C^ (E) with a section ^ : C* (E) -^ L^ (E), and if ̂  : L^ (E) ̂  L^1 (E) is
induced from d^ : C^ (E) -^ C^1 (E), it follows that ̂  = ^fe+l ° ^c ° ̂ - ^^g the explicit
formulas

(f^)^, ...,^)=a(a,)?i(ao, ... ,^4-1)
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and
(^^(80, ..., 8k-i) = (pC^o. • • •. 8k-i. 1).

one easily computes d^ D
(4.5) THEOREM. — Suppose S is a coherent Q) (^/S)-module on the "smooth^ formal
^-scheme, "where S is a noetherian scheme. Then there are natural isomorphisms:

H^/S.^H^L^)).

Proof. — Consider the complex ^' (<f). Since ^ -» ^* (^) is a quasi-isomorphism of
complexes of D-modules, we have an isomorphism R Tg, (^, <f) -> R r^ (^, ^* (<^)).
Since R TQ = R F o R Hom^ (0, ) we get an isomorphism :

R r^ c^r, ^) -> R r o R Hom^ (^, ̂ ' (0).
By the previous result and (1.10), R Hom^ (^, ̂  (<^)) is represented by

L" W, and so R 1̂  (^, ^) ^ R F (^, L* (^)).

This prove the theorem. D
Now suppose Y is an S-scheme embedable in a smooth S-scheme X, and suppose E is

a coherent crystal on (Y/S)^f (without divided powers). Thus for every nilpotent immer-
sion U c> T where U is open in T, we have a coherent sheaf E^ on T, and for any/: T^ -> T^
inducing an open immersion Ui q: U^, we have an isomorphism E^ ^/* E^; moreover
these isomorphisms are compatible with composition. Then if 3C is the formal comple-
tion of X along Y, we get a coherent D (^yS)-module, as indicated by Grothendieck [2]
and Berthelot [1 ]: Namely, for each X^, we have E^, compatibly, so by [EGA], lim E^ = S

is a coherent sheaf on °K. Moreover for each n, we have a nilpotent immersion
Y c? P" (XJS), and hence a canonical isomorphism n^ E^ ^ TT^ E^ for each v, where
the Hi are the projections P^/s -)> ^v Passing to the limit we get [thanks to (1.1)]
an isomorphism e, : P^/g ® S -» <^ ® P^/s? satisfying the usual cocyle condition. Then
given any differential operator 8 of order ^ n, i. e. a map P^/g —> (P^, we get a map/<
^ ® P^/s -> ^» hence composing with the universal differential operator 8 : S -> ^ ® P^./s»
an endomorphism of E. The cocyle conditions tell us that this map Diff (X/S) -^ End^ (E)
is a ring homomorphism. D

(4.6) THEOREM. — With the above notations and hypotheses^ we have natural isomorphisms:

HLf(Y/S,E)^H^/S,^).

Proof. — According to Grothendieck's calculation, H^f (Y/S, E) may be calculated as
the Zariski hypercohomology of the Cech-Alexander complex ^' (X/S, <f) [2]. So by
theorem (4.5) above, it suffices to notice that this complex is just the complex L'(<f)
—a matter of inspection: Observe for instance that the first two terms of L* (<^) are
S -> Hom^, (Q, S) ̂  ^ ® P^/g. Then I claim that, with this identification, the boun-
dary d of L is given by d^ (X) = e (5 (x))—x ® 1. It suffices to check this after "evaluat-
ing" with any differential operator 8. But (s 8 (x), 8)-(x ® 1, 8) = 8x-x8 (1),
which is indeed d^ (x). D
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(4.7) COROLLARY. - Suppose k is algebraically closed and Y / k is proper and embeddable
in a smooth W^ (k)-scheme. Then there are natural isomorphisms:

H^Y^, Z/^Z^W^fe^H^, W^))-^H^(Y/S, ^/s). D

The referee has pointed out that although the relationship between Z -etale cohomology
and the unit root part of crystalline cohomology is folklore, no precise theorems seem to
exist in the literature. Fortunately we can provide a quick proof, without killing torsion.

Actually it seems most natural to compare crystalline and infinitesmal cohomology
directly. Let us begin by briefly describing the morphism i;x/s : (X/S)^s -> (X/S)^,
alluded to in the introduction. Here we are working over a noetherian base scheme S on
which p is nilpotent and which is endowed with a P.D. ideal (I, y) which extends to X. For
details of these notions, we must refer to Berthelot's thesis [1]; the reader can keep in
mind the special case S = Spec W^ (k\ with k a perfect field and with the canonical divided
power structure on the ideal n = p W^

The functor v^ : (X/S)^ -> (X/S),^ is easy to describe: If F is a sheaf on Inf(X/S) and
(U, T, 5) e Cris (X/S), then (U, T) e Inf (X/S), and we can set ^/s (F)(u.T.8) = F(U,T)-
Clearly this construction commutes with inverse limits. If G is a sheaf on Cris (X/S)
and (U, T) G Inf (X/S), let D = (U, Dy (T), [ ]) be the P.D. envelope of U in T, and let
^x/s* (GOdj.T) be the sheaf G^. The reader can easily check the necessary compatibilities
and the fact that v^ is left adjoint to t?x/s*. Clearly i^/s defines a morphism of ringed
topoi: (X/S, ^x/s)cris -> (X/S, ^x/s)inf To describe the image of the induced map in coho-
mology, we need the following unequal characteristic version of (3.1):

(4.8) LEMMA. - Let R be a local ring, a : R -> R a finite flat endomorphism such thas
R ®a k ^ k. Using the notations of (3.1) for ^'linear endomorphisms, we have, if M it
an Artininan ^-module:

(4.8.1) The map lim M -> M is injective, with image M5.

(4.8.2) There are natural isomorphisms:

M'^l imN^l imM
and

R^imM^R^imN^O.

(4.8.3) The submodule (M5, ̂ s) is stable, and the quotient (M", v)/") unstable.
(4.8.4) The functors M \-> M5 and M i-> M" are exact.

Proof. — In fact, since ®y R preserves lenghts, the analogue of (3.2) is even true, and the
first statement follows easily. Mittag-Leffler conditions imply the vanishing of the
R1 lim. The exactness claim follows from this, or from the snake lemma and the fact

that any homorphism from a stable module to an unstable one and which preserves \|/
vanishes. D
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(4.9) THEOREM. — Let k be a perfect field, and suppose X/k is smooth and proper and
embeddable in a smooth scheme over W^ (k). Then the map:

^/s: Hi^ (X/W, (fe), ^x/wn w) ̂  H;,, (X/W^ (fe), ^x/w. w)

is injective, with image the stable submodule ofW^ (X/W,, (k)).

Proof. — We already know from (3.9.1) that the infinitesmal cohomology is stable.
Using the exactness of extraction of stable submodules and the inductive technique
of (3.8), we reduce to the case n == 1, i. e. W^ (k) = k. We have maps of ringed topoi:

(X,ar, ^^(Xens, ^X/s)^(Xinf, ^X/s).

[For an explanation of fx/s? see ([!]»III? 3.3) .] Since these maps are compatible with
Frobenius, we obtain maps:

y*s ^*s
HLf(X/S, ̂ ^H^X/S, ̂ ^H^X, ^x)8.

According to (3.6) and (4.6) (and an unchecked compatibility), the composite is an iso-
morphism. Thus it suffices to show that f^s ls injective. By the Poincare lemma for
crystals, we can identify H^is (X/S, d?x/s) ^th de Rham cohomology H1 (X, Qx/s) an^ ̂
map ^/s with the edge homorphism H1 (X, Ox/s) -)> H1 (X, 0^). Thus, Ker (^/s) becomes
F^dge HI (X, Ox/s) c Ker (^^x)' and since F$is injective on H1 (X, Ox/s)8' ̂ /lis injective. D

(4.10) Remark. — The same formula holds after passing to the limit. Indeed, if(M^, v|/n)
is an inverse system of Artinian W-modules with or-linear endomorphisms and
(M, \|/) = lim (M,,, v|/^), then since a is finite M; = R ®^ M ^ lim R 00 ̂  M^, so

M8 ^ lim M^. On the torsion free part of M, which we assume to be finitely generated,

M51 can clearly be described as the unit root part. Thus we obtain the following result,
which includes the torsion as well:

(4.11) COROLLARY. — Ifk is algebraically closed, we have natural isomorphisms:

H^(X/W)——^H^X^

H^(X,Z,)®^W

(4.12) Remark. — The referee suggests that I point out how the exactness of the functor 0.
in (2.4) and the exact sequence (2.4) can be deduced from F-descent, using the Cech-
Alexander complex. If A is an S-algebra, where pS = 0, let A^ = S ®pg A, where F§
is the absolute Frobenius endomorphism of S, and let A have the structure of A^-algebra
by the relative Frobenius F^/g. There is a natural surjection A ®g A -> A ® ^ n. A,
and one easily sees that its kernel is generated by the set of elements (a ® 1—1 ® a)^
with a e A. In other words, there is a natural isomorphism between A ® ^ n. A and
(A ®s A)/! ,̂ where I is the ideal of the diagonal and I^ is the ideal generated by the
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p"-th powers of its elements. The same is true if we take products with more factors, and
we deduce an isomorphism of complexes:

A=f(A ^sA^I^^CA ®sA OsA)/!^ EL .
11^ 11^ I I /
Az^ A(s)A(Pn)A ̂ ^A^^A^il

Now if A/S is smooth, a calculation with local coordinates shows that the map A -> A^
is faithfully flat, so that the complexes above are both resolutions of A^. One now can
see the exactness of <D in the affine setting. However, if we use Cech-Alexander resolu-
tions to calculate the cohomology of an arbitrary crystal on Inf (X/S), we can derive the
exact sequence (2.4) directly in this context from the isomorphism of complexes above.
Details of the necessary sheafifications, completions, and Mittag-Leffler arguments are
left to the mythical interested reader.

5. Formal de Rham Cohomology

In this section we discuss the hypercohomology of the formal completion of projective
space along a closed subset. The proofs are logically independent of the rest of this paper,
but are related spiritually. We let P be ^-dimensional projective space over an algebrai-
cally closed field k of positive characteristic.

(5.1) THEOREM. — Suppose Y c p is Cohen-Macaulay of pure dimension d, and ^ is the
formal completion of¥ along Y. Then:

(5.1.1) The map L: H1"1 (^, 0^) ̂  H14'1 (^, Q^) induced by cup-product with
c! (fty 0)) 1s injectivefor i ^ d.

(5.1.2) There are natural maps:

©^•^H^P, Op/,) Oz/pzHT^t, Z/pZ)-.H\^, Q;/,)

which are isomorphisms ifk < d and injective ifk = d.

(5.1.3) The spectral sequence Ef = W (^, Q^) => H1 (^, Q^) is partially dege-
nerate, namely d^^ == 0 ifr ^ 1 andp+q < d.

Proof. — This theorem was motivated by a misbegotten attempt to prove the strong
Lefschetz theorem in characteristic 0 using the Barth vanishing theorem (c/. [9]). In
characteristic p we can use the Carrier operation to "turn the vanishing around", as
needed, but we succeed in obtaining the above theorem instead of strong Lefschetz.

The proof makes use of the <( primitive de Rham complex " Pp/^ explained in [9]. Let
G = k [Xo, . . . , XJ be the homogeneous coordinate ring ofP, let G^ = k [To, ..., TJ,
and define (p : G^ -> G by T; -^ Xf . . . the "relative Frobenius map F". For eachz,
we have the "inverse Cartier isomorphism," if we identify T^ with 1 ® X^.
^-1 : Q^-^H1 (Q^) [6]. Now recall that 0^ is a graded complex, where
degrfX—1, and ^-1 (rfT,)=Xf-1 rfX,, ^-1 (aco)=(p (a)(^-1 (co) if a e G^, co e Q^A-
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Thus it follows that deg ̂ -1 (®) = p deg (co). Moreover ̂ -1 is compatible with locali-
zation, and so for any fe G^, we have an isomorphism of graded G^-mo-
dules: (^G(p)/k)f -> Hl [(°G)(P(/)]- Taking the degree zero parts of both sides we obtain
an isomorphism:

Ppo-)/^ (/)) ̂  F^P^ ((?(/)))).

Since this map is compatible with further localization we obtain an isomorphism of sheaves:
Pp(p)/fe -^ F* ̂ l (Pp/fe)-

Now if Y £ P is a closed subscheme defined by an ideal I, we obtain by base change a
closed subscheme Y^ c pw defined by ^(p), of course F: P -> P^ and Y -> Y^ are
homeomorphisms. Since F* maps I^ into I and ̂ -1 is (Pp(p)^-linear we see that we get
induced an isomorphism:
(5.2) ^~1: P^(p)/fe -> F^ ̂ T (P'̂ ) for all i,

where ^(p) is the completion ofP^ along Y^^
The isomorphism above and the following results are the key ingredients to our proof.

(5.3) THEOREM. — (Harstorne) With the assumptions of (5.1), there are natural maps,
for any locally free sheaf ¥ on P;

C.+^H^P, FX^z/pzH^, Z/pZ^H^P, F).

These maps are isomorphisms for k < d and injectivefor k = d.

Proof. — Hartshorne proves the above result with F = (Ppn (I) for any / in [5]; we have
replaced H1 (Y, ^y)8 ̂  Hl (Y^ VP z)- The general case follows by subtle devissage
(c/.[9]). D

(5.4) LEMMA. — Let F^n H denote the filtration which goes with the spectral sequence of
hypercohomology

E^H^X,^) => H'(X).
Then

FLH^P^H^P:^ for i ^ d ,
and

Fc'on H1 (^, P^) = H1 (^, P^) for i ̂  d.

Proof. — We have

E^ == H^, ^f^(P') ̂  W^, F^^f^P')) ̂  W^\ P^(p)/fc),

from isomorphism (5.2). Since the Frobenius a of k is an isomorphism, one can easily
deduce that this is k®^W(sy, P^). But P|^=A^/fe and Pp/^ ©5^(-1);
thus P|»^ is a direct sum of line bundles of negative degrees. It follows from (5.3)
that W (^, Pj^) = 0 if p < d and q > 0, so the same holds for E^. The lemma follows. D

Next we use the exact sequence of complexes on 2P [9, 1.6.1]

0 -^ 0^ -^ P^/, -> Q^/fc [ -1] -^ 0.
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Recall that the coboundary map of the associated long exact sequence
ff^Q^J-l])^^-1^,^)-^4-1^,^^) is L.

Trivially, E^ == W (^ ̂  (O ,̂ [-1])) == 0 if q < 1, so F^ H1 ( ,̂ ̂  [-1]) = 0.
Since the map IT(^, P^) -^ H1^, 0^ [-1]) preserves the filtration F^n, it follows
immediately from (5.4) that it vanishes for^' ^ d. The long exact sequence of hypercoho-
mology therefore proves (5.1.1).

To prove (5.1.2) observe that ft^ is a complex of Z/^Z-modules and Z//?Z-linear
maps on ̂ , so that we have a cup-product:

H1^, Q^) ̂ H^^, Z/pZ^H^'O^, Q^).

Using the isomorphisms:

H^, 0^) ̂  H^^, ̂ ) and H^, Z/pZ) ̂  H7^, Z/^Z)

and the map H1 (P, Op/^) -> H1 (^t, Qp^), we obtain the maps in (5.1.2). These maps
are compatible with the "first" spectral sequence of hypercohomology and the maps of
Hartshorne's (5.3). We deduce from (5.3) isomorphisms

©.H^-^P, Qp/,) OH^t, Z/pZ)^ H'(^, Q^) for q < d,

compatible with the differentials of the spectral sequence. Statement (5.1.2) follows
immediately, and so does (5.1.3), because the differentials on the left all vanish. D
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