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GERSTEN'S CONJECTURE
AND THE HOMOLOGY OF SCHEMES

BY SPENCER BLOCH AND ARTHUR OGUS

0. Introduction

Let X be a smooth algebraic variety over a field k. The deepest conjectures in algebraic
geometry (Weil, Hodge, Tate) are attempts to calculate the (< arithmetic filtration " [7]
on a suitable cohomology group W (X). Recall that this filtration is given by

N P H l (X)=uKer{H l (X) -^H l (X-Z) :Zc=X is closed of codimension p } ' ,

it is called the filtration by (< coniveau " in [5]. These conjectures assert that this mys-
terious filtration is equal to (or contained in) another filtration which can " actually be
computed ".

The filtration by coniveau is the filtration of a natural spectral sequence, whose E^
term was written down by Grothendieck [4]; one has E^ = © H^"^ (k (x)); the direct

xeZP

sum being taken over points of codimension p. Our main result is an expression for
the E^-term. Namely we can regard W1' (k (x)) as a constant sheaf on { x } ~ and extend
it by zero to X. Then the differentials of the spectral sequence furnish us with a complex
of sheaves on X :

(0.1) 0-^^ -. ©H^(fc(x))->©Hg - l(Jc(x))-^. . .©HO(fc(x))->0,
Z° Z1 Z9

where ^q is the sheaf associated to the presheaf U i-> H^ (U). Our theorem asserts
that the above sequence is exact. Some consequences :
(0.2) The E^ term of the spectral sequence of coniveau is IP (X,^).

(0.3) HP(X,^q)=Q if p > q .

(0.4) In the case of de Rham cohomology over a field of characteristic zero, the coniveau
spectral sequence coincides, from E^ on, with the second spectral sequence of hyperco-
homology. In particular the two nitrations are the same, as conjectured by Washnitzer.
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182 S. BLOCH AND A. OGUS

(0.5) One has PP(X,^) ^ A^ (X) ® H° (/?0, in the etale and de Rham theories,
where A^ (X) is the group of cycles mod algebraic equivalence.
(0.6) H° (X, Jf^) can be identified with the space ofcohomology classes of the second
kind in the sense of Lefschetz. We can then see (using Griffiths' famous example) that
this is not equivalent with the notion used by Atiyah and Hodge, contrary to some claims
in the literature [16]. We are grateful to W. Messing for bringing this issue to our
attention.

Our paper is organized as follows : In paragraph 1 we describe the axioms that a coho-
mology theory must satisfy for our proof to go through. The main tool is a suitable
notion of (Borel-Moore) homology which is a covariant functor for proper maps. Para-
graph 2 establishes these properties for etale cohomology, de Rham cohomology, and
(< singular cohomology of associated analytic space ". In paragraph 3 we review the gene-
ral fomalism of the spectral sequence and the expression for its E^-term.

The fourth section contains the statement of the main result (Theorem 4.2), which is the
analogue of Gersten's conjecture in K-theory [2]. This section also contains the first
steps in the proof, notably employing a trick used by Quillen [10] in his proof of Gersten's
conjecture. We finish the proof in the next section, and give the applications in the last
three.

We would like to emphasize our intellectual debt to Gersten and Quillen. Essentially,
the purpose of this paper is to apply their ideas to various homology and cohomology
theories other than K-theory.

1. Poincare duality with supports

Let A: be a fixed ground field, and V be a category of schemes of finite type over k,
containing all quasi-projective ^-schemes. If X e Ob i^ and Y c X is locally closed,
we assume Y e Ob i^'. We shall here describe the axioms a cohomology functor on V
must satisfy in order to have a reasonable theory of" coniveau " as described by Grothen-
dieck in [5]. These are consequences of a satisfactory theory of/' and/,, but we have
found it more convenient to work with these consequences than with the derived categories
themselves. Our main tool is the notion of a suitable " Borel Moore homology " [1].
Notice that what we call Poincare duality is not a duality theorem at all, since no pairings
occur. More precisely, we use the existence of the functor/' and of the trace map
R//' —> id for proper/, but not the < ( duality theorem " itself.

(1.1) DEFINITION. — Let V be a category of algebraic /^-schemes, as above. Then
^* is the category whose objects are closed immersions Y c> X and whose morphisms
are Cartesian squares :

/Yc?/x: (Yc;X)->(rc?X'): Y c , X

fY\ \fx4, 4,
Y 'c^X '

46 SERIE —— TOME 7 —— 1974 —— N° 2



GERSTEN'S CONJECTURE 183

A twisted cohomology theory with supports is a sequence (indexed by n e Z) of contra-
variant functors "T* —> (graded abelian groups), written (Y q; X) i-> © H^ (X, 72).

i
For X e ̂ , we write H1 (X, n) in place of H^ (X, n). The ^ is included in the notation

to keep track of " Tate twist " in the etale theory.

We assume the following axioms :

(1.1.1) For Z ^ Y c X, there is a long exact sequence :

. . . ->Hz(X,n)->H^(X,^^)->H^_z(X-Z,n)->Hz + i (X,n)-> . . . .

(1.1.2) If

and
/: (Y^x^r^y)

g : (Zc^Y)-^'^)

are arrows in ^*, and k is the induced arrow (Y-Z q: X-Z) —^ (Y'-Z' q: X'-Z'),
then the arrows H* (/z), H* (/), and H* (k) fit together to form a commutative ladder of
the long exact sequences for Z c, Y q; X and Z' q: Y7 q: X'. Here A : (Z c? X) -> (Z' c; X').

(1.1.3) If Z c^ XeOb^* and if U c^ X is open in X and contains Z, the map
H^ (X, ^z) —> Hz (U, ^) is an isomorphism.

(1.2) DEFINITION. - Let y^ be the category with Ob Y^ = Ob ̂  but whose arrows
consist only of proper morphisms. A twisted homology theory is a sequence of covariant
functors ̂  —> (graded abelian groups), written H^ (X, n) for X e Y^. We assume the
following axioms :

(1.2.1) H^ is a presheaf in the etale topology, namely :

If a : X' —> X is etale, there is a functorial map

a*: H,(X,n)->H,(X',n).

(1.2.2) If the diagram below on the left is Cartesian, with proper vertical arrows and
etale horizontal arrows, then the diagram on the right commutes.

X'-tx H,(X', n)^H,(X, n)
9 \ \ f H.(g,n) Hf(/,n)

^ a ^ ^ a* ^
Y^Y H,(r, n) <-H,(Y, n)

(1.2.3) Let i : Y c? X be a closed immersion in ^, and let a : (X-Y) c; X be the
corresponding open immersion. Then there is a long exact sequence :

. . . -> H,(Y, n) -^ H,(X, n) -^ H,(X-Y, n) -> H,_ i (Y, n) -^...

(here we have written i^ for H^ (f, ^)).
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184 S. BLOCH AND A. OGUS

(1.2.4) Let / : X'-^X be a proper morphism in -T, let Z=/(Z'), and let
a : Xf—f~l (Z) <^ X '—Z 7 . Then the diagram below commutes :

...-^(Z', n)->H,(X', n)-^H,(X'-Z', n)-^H,-i(Z', n ) -> . . .
A /* f^ f*

. . . ->H,(Z,n) -^H,(X,n) -^H,(X-Z,n) ^H,_i(Z,n) -^. . .

(1.3) DEFINITION. — A Poincare duality theory with supports is a twisted cohomology
theory H*, together with the following structure :

(1.3.1) (Cap product with supports). — For any Y q; X in Ob ̂ *, a pairing :

H,(X, m)®H^(X, n)-^H,_,(Y, m-n).

(1.3.2) (Compatibility of cap product with restriction). - If Y c^ XeOb^T* and if

( p c ^ a ) : (Y'^X^-^Yc^eArr-T*

and is etale, then for a e H^ (X, n) and z e H^ (X, w), a* (^) n a* (z) = P* (a r\ z).

(1.3.3) (Projection formula). — If/is a proper morphism in Y^*,

/: (Y^XO-^Y^X,),

then for a e H^ (X^ , ^) and z e H, (Xi, w), H, (/x) (z) n a = H, (/y) (z n HV) (^)).

(1.3.4) (Fundamental class). — If XeOb^ is irreducible and of dimension d, then
there is a global section r|x of H;,^ (X, d) : thus if oc : X' —> X is etale, a* r|x = ̂  .

(1.3.5) (Poincare duality). - If XeObi^ is smooth of dimension d and
if Y c; X is a closed immersion, then cap-product induces an isomorphism :
r|x n : H^-1 (X, d-n) -> H, (Y, n).

For future convenience we shall record here a compatibility which is a consequence
of the above axioms and which will be an important tool in the proof of our main theorem.

(1.4) LEMMA. — Suppose we are given a Poincare duality theory with supports satisfying
the above axioms. Suppose that the square on the left is Cartesian and that /x is etale.
Then the square on the right commutes :

T ^ X' Hz.(X', n)^H^_,(Z', d-n)
(1-4.1) , 1 I,, H*a)T T,,

4, 4. I mix I
Z c, X H^(X, n) ——>H^_,(Z, d-n)

(1.4.2) Remark. — When we apply this result, we will know more, namely that X is
smooth and/z is an open immersion. This is the only application we shall make of the
fact that homology is a presheafin the etale topology (instead of just the Zariski topology).
In practice it may be easier in specific cases to verify compatibility (1.4) with these hypo-
theses than to construct a* for etale maps in general. All the results in this paper apply
whenever this can be done.
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GERSTEN'S CONJECTURE 185

(1.4.3) Remark. — The reader is warned against making too flippant a use of Poincare
duality. In particular if/: (X', Z') -> (X, Z) is a morphism in ̂  with X and X' smooth,
it does not follow that we get a map/z* : H^ (Z) —^ H^ (Z'). Of course such a map exists,
but it depends on/x, in general, not just on/z , unless/is etale.

Finally, in order to prove our main result, we need the following local triviality property,
which would follow from a theory of Chern classes :

(1.5) (Principal triviality). - Let; : W q: X be a smooth principal divisor in the smooth
scheme X. Then 4 n^ = 0.

2. Examples

(2.1) EXAMPLE. — Let / be a positive integer prime to char k, and let v be a fixed positive
integer. Let a denote the etale sheaf of /"-th roots of unity on Spec (k) and let

u" = u 0 . . . ® a, a-" == Horn (a", Z/FZ).

For X e Ob ^r, let n^ : X —> Spec (k) denote the structure map. Define

H^(X,n)=H^(X,7Tx^),
H^Y.^H-^Y,^-").

We shall sketch the proofs of some of the properties in paragraph 1 above. For an
explanation of the Grothendieck-Verdier style duality, including definitions of /! and
R/ , the most concise references are [II], [12], [13]; more details are given in [8]
and [6].

First of all, if/ : Y^ —> Y^ is proper, /, ^/^ . Since n^ a" =/1 n^ p~", there is a
trace map (py : R/; TC^ ^~n —> ̂ 2 ^~n9 hence R/^ Tiy^ ^-n —> JCy^ \i~n. Thus we obtain
the functoriality of homology by composing

H-^Yi, TTY^-^^H-^Y,, R/^Y^-^H-^Y,, 7i^-").

To obtain the restriction maps in the etale topology, use the fact that if a : X' —> X
is etale, a' ^ a* ([6], 3.1.8). Then the natural maps :

H-^X, Trx^-^H-^X, Ra^Trx^Q^H-^X', ̂ ~")

define a*. To verify the compatibility (1.2.2) we use the compatability of the trace
map (p^- : R/t/' -> id and of the adjoint map Qy : id —> R/^/* with base change. Namely
if we start with the Cartesian diagram in (1.2.2) (with etale horizontal arrows and proper
vertical arrows), we have commutative diagrams ([8], p. 207) :

^R/^Rg.P*/1 R/^ ^^R/.RM*
^((P/) S 9a Hi

a* <———Rg^g'a* Ra^a*R^^=Ra^Rg^P*
<pg
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186 S. BLOCH AND A. OGUS

Compose (on the left) with the functor R oc^ in the square on the left, and compose
(on the right) with the functor/' in the square on the right. Then fit the square on the
right on top of the one on the left and fill in the diagram (using naturality of Qy) to obtain :

R/*/'——.R/^RP.P*/'

R/^Ra^R/^Ra^R^pT
<P/ Ra»a*((p/) I

4, 4'
id————^Ra^a* <-—Ro^Rg^g'a*

Oa

Thus we get the commutative square on the left

R/^R^Rp^P*/' H,(X, n)-^H,(K\ n)i i i i
id ———.ROL,OC* H,(Y, n^H^Y", n)

Apply this to the sheaf Tiy H~" and recall that a* ^ a'. The square then becomes, after
applying H'^Y, ), the square on the right.

For the long exact sequence (1.2.3) we use the isomorphism f 1 ^ Fy in the derived
category of sheaves of Z / l v Z-modules, where; : Y —•> X is a closed immersion ([6], 3.1.8).
This shows in fact that there is a canonical isomorphism :
(2.1.1) H^"1 (X, d-n) -> H, (Y, n) if X is smooth of dimension d. (This isomor-
phism will be Poincare duality, once we identify the fundamental class.)

Cap product with supports comes from the pairing, TC* u"1 ® n' u" —> n' ^m+n, which
is compatible with the trace and restriction maps.

For the fundamental class, we first need :

(2.1.2) LEMMA. - Suppose that dim X ^ d. Then H, (X, n) = 0 for i> I d .
Proof. — We may assume that k is perfect, since the etale theory and dim X are inde-

pendent of purely inseparable base extension. We shall fix this assumption for the rest
of this example. We may also assume that X is reduced, since the etale cohomology of
X and X^ are isomorphic.

We proceed by induction on d. If d = 0, X is smooth over k by the assumptions above,
hence H^ (X, n) ^ HT^X, —n) by (1.3.5), which vanishes for i > 0. Assuming the
result for all Y with dimension < d, we observe that an X of dimension ^ d is generically
smooth over k by our assumptions, hence its singular locus 2 has H( (2, n) = 0 for
i > 2 d—1. Then the long exact sequence (1.2.3) gives us that H; (X, n) ^ H^ (X-£, n)
for i ^ 2 d . Since X — £ is smooth (say of pure dimension = d) we get
H,(X-S, n) ^ H^'^X-S, d-n) which vanishes for i > I d .

Note that the lemma gives, for any irreducible X of dimension d, an isomorphism :

H,,(X, d) ̂  H^(X-S, d) ̂  H°(X-£, 0).

The latter has a natural global section, namely 1, and hence we get T[^ e H^ (X, d) satisfying
(1.3.4).
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GERSTEN'S CONJECTURE 187

(2.2) EXAMPLE. - Let k have characteristic zero and let ̂  be the category of all schemes
embeddable in a smooth scheme over k. Then Hartshorne has written a detailed expo-
sition of a Poincare duality theory satisfying the axioms of paragraph 1, based on algebraic
de Rham cohomology. The only thing missing is the construction of a* for a etale,
so we will get away with Remark (1.4.2). With the hypotheses stated there, it is easy
to verify (1.4). Indeed, if we let X" = X-(Z-Z'), then/" : X' -^ X" is an etale neigh-
borhood of T in which Z' is its own inverse image, and the map

df"'. ^-/;^x"/^/£r*Qx^
induces the inverse of the trace map f^ F^ E^ —> Fy E^, where E* is the canonical
resolution of the de Rham complex [9]. We leave the details to the reader.

(2.3) EXAMPLE. - Let k = C and let ̂  be the category of algebraic varieties of finite
type over C. For each X e i^, let X^ be the corresponding complex analytic variety,
and let H* (X) = H* (X^, Z) and H^ (X) = H^ M- (X^, Z) - the Borel-Moore homology
of X^. Again all the properties are standard except a* for etale maps. One can argue
either as in (2.1) using Verdier's duality for paracompact spaces [13], or as in (2.2). Of
course one can take any ring of coefficients in place of Z.

3. Filtration by niveau and coniveau

Fix a ground field k and a category ̂  as above. If X e Ob ̂ , let Z^ = Z^ (X) denote
the set of all closed subsets Z c X of dimension ^ d, ordered by inclusion. Let Z^/Z^_i
denote the ordered set of pairs (Z, Z^eZ^xZ^. i such that Z' c: Z, with the ordering

(Z, Z') ^ (Zi, Zi) if Z ^ Z i and Z' ^ Z[.

Suppose now we are given an homology theory as above. We can form

(3.1) H,(Z,(X),n)= limH,(Z,n),
def ——>

Z e Z d

(3.2) H,(Z,/Z,_i, n) = lim H,(Z-Z', n).
def ——>

(Z,Z')eZd/Zd-i
Notice that (Z, Z') < (Z^ , Z\) gives

7' CZ-Z' c-^ Zi-Z'^Zi-Zi.^~ f ' \ — f ' ^ ^ ~ ' \ — ^ J \ *
closed open

The transition maps in (3.2) are v^ u^.
If / : X —> Y is proper, there are maps

H,(Z,(X),n)^H,(Z,(Y),n),
H,(Z,/Z,_i(X), n)^H,(Z,/Z,_,(Y), n).

The filtration by niveau is the ascending filtration N^ H; (X, n) on H^ (X, n) :

(3.3) N, H, (X, n) = 1m (H, (Z, (X), n) -^ H, (X, n)).

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE 24



188 S. BLOCH AND A. OGUS

Equivalent^ N^ H; (X, n) is the subgroup of H, (X, n) generated by all images
/^ : H, (W, n) -> H, (X, n) where W e Ob V, / : W -^ X is proper, and dim /(W) ^ d.

Suppose now that (Z, Z') e Z^_i. There is a long exact sequence

. . . -^ H,(Z', n) -^ H,(Z, n) ̂  H^Z-Z', n) -> H,_i (Z', n) ̂ . . .

Taking the limit over such pairs gives

(3.4) ...^H,(Z,_i, n)^H,(Z,, n)^ H,(Z,/Z,_i, n)^ H,_i(Z,_i, n ) -> . . .

Form an ^^ac^ couple as follows

D = © H^ (Z,, n) = © D,,,, ; Dp,, = H^, (Z^, n),
w, d= ~ oo p, ^

oo

E= © H^(Z,/Z,_i ,n)=©E^,; E^,=H^,(Zp/Z^_i,n).
^P,1 9

P, 9w, d= — oo

There is an exact triangle

D——.D
\ /
k\^J

E

where ij, k are obtained from the maps in (3.4). These maps are homogeneous of degrees
(L —1), (0, 0), and (-1, 0) respectively, so there is an associated spectral sequence

(3-5) E^=H^(Z^_i,n) ^ N.H^(X,n).

This construction is entirely analogous to the construction of the spectral sequence of
a simplicial complex by ^-skeletons (c/. [14] for example).

For x e X, we write x e Z^ instead of { x } e Z^. Given x e Z^ , define

H,(x,n)= lim H,(U, n),
U £ { ^ } -

the limit being taken over all non-empty U which are open in ~{x~}. Clearly

(3-6) H,(Z^/Z^,n)^ © H,(x,n).
xeZp/Zp-i

Combining (3.5) and (3.6) we have shown :

(3.7) PROPOSITION. - Let H^ be an homology theory on T as in paragraph 1. For
any X e Ob ̂ , there is a spectral sequence \

E^= © H^(x,n) => N.H^,(X,n).
xeZp/Zp-i

This spectral sequence is covariant with respect to proper morphisms, and contravariant
with respect to etale maps.
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GERSTEN'S CONJECTURE 189

Now suppose given a Poincare duality theory with supports, H*.

Let V = { Z <= X closed, codim^ Z ^ p ] .

Define the filtration by coniveau

(3.8) N^CX, n) = Ker(H*(X, n))-> lim H*(X-Z, n)
ZeZP

= Im( lim Hz(X, n) -> H*(X, n)).
ZeZP

(3.9) PROPOSITION. — With notation as above, assume the ground field k is perfect, and
that X is smooth over k. For x e Z P / Z ^ 1 (i.e. ~{~x] e V, {T^Z^) define
H* (x, n) = lim H* (U, n). Then there is a cohomological spectral sequence

U < = { x } -

E^= © W^x.n-p) => N'H^^X.n).
xeZP/ZP+1

Proof. — Because k is perfect, there exists for x e Z^/Z^4"1 an open U c { x } smooth
over k. Poincare duality (1.3.4) gives isomorphisms

(mix)-1

Hp+«(^ n)———>W q(x,p-n), d i m { x } = p ,
(n^)-1

Hp+^(X, n)———^H^'^^x, d-n\ dimX = d.

If we take p ' = ^—/?, q ' = ^—^, ^' = d—n, we get

H^^x.^^H^-^^n'-p),
H^^X.^^H^^^X.n')

and the desired spectral sequence follows easily from (3.7).
Q. E. D.

(3.10) REMARKS. - <( Dual " to (3.1), (3.2) one can define H^, (X, n), H^p/zp+i (X, n),
and there is a spectral sequence, generalizing (3.9) :

(3.11) E^=H^p-i(X,n) => N.H^(X, n).

I f / : Y - > X i s a f l a t morphism and Z e Z^ (X), we have f ~ l ( Z ) e Z P (Y). Together
with the assumed contravariant functoriality of cohomology with supports (1.1), this
implies the spectral sequences (3.9) and (3.11) are contravariant with respect to flat
morphisms.

4. The arithmetic resolution

Fix a perfect field k, an X e Ob i^ with X smooth over k, and a Poincare duality theory
with supports (H*, 1-4). Define sheaves ̂ \ (n), e^f* (n) for the Zariski topology on X
by sheafifying the presheaves

U^H^(U,n); Uh->H*(U,n).

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



190 S. BLOCH AND A. OGUS

If A is an abelian group and x e X, let ^ A denote the constant sheaf A on { x },
extended by zero to all ofX. With this notation, there is an obvious way to (< sheafify "
the spectral sequences (3.7), (3.9), (3.11). For example :

(4.1) PROPOSITION. — Assume k perfect and X smooth over k. Then there is a spectral
sequence of sheaves

<^= © i^W^x.n-p) => ^^(n).
x e Z P / Z P - ^ 1

Our main result is

(4.2) THEOREM. — Let k be a per feet field, X e Ob V smooth'over k, and H*, H^ a Poincare
duality theory with supports (§ 1). Then

(4.2.1) The spectral sequence (4.1) is degenerate at ^ , in fact ^q == (0) for p > 0.

(4.2.2) The complex of sheaves

0-^^r(n)-> C 4H^(x,n)-^ © ^H^OC, n-l)-> . . .
x e Z ° / Z 1 xeZ^Z2

-> © ^H°(x, n-^)->0
A: 6 Z9/Z9 + 1

^ exact.

(4.2.3) Let J'f|p (/z) be the sheaf associated to the presheaf

U^> lim Hi,u(U^).
ZeZP

The natural map
^.^n)^^(n)

is zero for all p, q, n.
When the conditions of the theorem are fulfilled, the complex (4.2.2) will be called

the arithmetic resolution of ̂ q (n).
Notice that (4.2.3) implies the other statements. Indeed, there is an exact sequence

(4.3) ... -^ ̂ fip/zp. i (n) ̂  ̂ f^i (n) -^ Jf^' W -^ ̂ ^. i (n) -^...
o

with
^ZPIZP-^) ̂  © f^H^-^x, n-p).

x e ZP/ZP + 1

The differential in (4.2.2) is obtained by composing

^ip/zp^W-^^h(n),
with

|̂̂ (n)-̂ i:.\zp-(n).

Comparing with (4.3), one sees that (4.2.2) is exact. This remark motivates the following :

(4.4) DEFINITION. - Let/ : Zi —> Z^ be a morphism in Y^ , and let S c z^ be a finite
set. We shall say that/is homologically ejfaceable at S iff there is an open neignborhood
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GERSTEN'S CONJECTURE 191

U c? Z^ of S such that the composition :

H^ (ZO ̂  H^ (Z^) ̂  H^ (U) is zero.

The main technical point in the proof of (4.2) is the following :

(4.5) PROPOSITION. — Let i : Z^—> Z^ be a closed immersion ofaffine schemes, and suppose
there is a morphism n : Z^ —> Z^ with n o i = id w?^ TT smooth of relative dimension 1 at
the points of S q: Z^. 77?^ ; ̂  homologically effaceable at S.

Assuming (4.5), the proof of (4.2) goes as follows : for x e X we must show the stalk
of the map

^ip^(n)-.^(n)

at x is zero. Using the expression of these sheaves as direct limits together with (1.3.5),
the problem reduces to proving :

CLAIM. — Given Z' eZP+l, x e Z', there exists a Z e V containing Z' and an affine
neighborhood U of x in X such that the map Z' n U —> Z n U is locally homologically
effaceable at x.

Proof of Claim. - We use a trick of Quillen. Find a Y e Z1 containing Z'; say dim Y = d.
Then shrinking X around x, there exists a finite morphism/: Y —> A^ (affine fif-space over k)
and a lifting g : X -^ A^ with ^ smooth at x [10]. Let X' = X x ̂  Y and Z" = Z' x y Y'.

Z" q: X' ̂  X

Z' c, Y -> A^

In the Cartesian diagram above, ^/ is smooth of relative dimension 1 at the points of
S' =/'~1 (x), i is the natural section and/' is finite. Hence if Z ^'(Z"), ZeZ^X),
and Z 3 Z'. Moreover by (4.5), we can find an open neighborhood U" of S' in Z" such
that the composite H, (Z', n) —^ H, (Z", ^) -^ H, (U", n) is zero. Since Z" -» Z is finite
and/'"1 (x) c: U", we can find a neighborhood U of x such that U' =/'~1 (U) c u".
Then the result follows by the commutativity of the diagram below :

H,(Z', n) -^ H,(Z", n) -^ H^U", n) -^ H,(U', n)i- /
H,(Z', n) -^ H,(Z, n)—>H,(U, n)

(4.6) REMARK. — The claim above makes sense on a singular scheme, but it is false.
In fact there is a 3-dimensional cone X whose vertex p is an isolated singularity, and a
closed subset; : Y c: X of dimension 2, such that (4 riy) |u ^ 0 for any open neighborhood
of p, in algebraic de Rham cohomology.
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Namely let X = Spec k [^ , ̂ 3, t^/(t, ̂  - h ̂  and let Y be defined by ^ = ^3 = 0.
Let X be the completion of X at;?; it is even true that 4 riy is nonzero in H4 (X). In fact
X is the cone over Xo = P1 xP1 q: P3 and Y is the cone over one of the rulings Yo,
so we have an exact sequence [9] :

0 ̂  H4 (Xo) ̂  H, (Xo) -^ H^ (X) -^ 0\... \ _
0->H2(Yo)-^H4(Y)

where ^ = c^ ̂  (1). Since i^ (r|̂ ) ^ Im ^, the claim is clear.

(4.7) REMARK. - When ̂  is the etale theory described in paragraph 2, the assumption
that the ground field k is perfect can be suppressed. Indeed all expressions in (4.1)
and (4.2) are invariant under purely inseparable base extension.

5. Proof of (4.5)

(5.1) LEMMA. — Suppose given a commutative square of schemes in V :

i2
Z^X^

•I , ! '
Zi4xi

with ;i, ^ closed immersions andf, g smooth. Let S c= X^ be a finite set of points contained
in an affine. Then after replacing Z^ and X^ by neighborhoods of S, there exists a closed
subscheme X; q: X^ containing Z^ such that the induced morphism f : X^ —> X^ is still
smooth and the square

iiz^x;
( 5 • l • l ) J r

ii
Z,c,X,

is Cartesian.

Proof. - Let Y = /-1 (Z^) c: X^ and let I (resp. I) be the ideal of Z^ in X^ (resp. in Y).
Since Y and Z^ are both smooth over Zi we have an exact sequence of locally free sheaves
on Z^ :

0 -^ l/l^ ̂  ̂  ® ̂  ̂  ̂ ^ ̂  o.

After replacing X^ by a neighborhood of S if necessary, we can find sections /i, . . . , /
of I whose images form a basis for I/I2. Take X; to be the scheme defined by
/I =f2-^.=fr=0.

Since D^, ^ ^/x, ® ^zp the differentials fi^, . . . , ^eO^i are independent
in some neighborhood of S, so that after shrinking, X^ is smooth over X^. Moreover
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it follows from Nakayama's lemma that/i, .. .,fy generate I in some neighborhood of S,
and hence that I is generated by /i, . . . , fy together with the ideal Iy of Y in X2. This
implies (5.1.1) is Cartesian.

Q. E. D.

(5.2) REMARK. - The relative dimension of/' in (5.1.1) is the same as that of g. In
particular, if g is an open immersion, /' is etale.

Recall that we wish to prove :

(4.5) PROPOSITION. — Let : Z^ q: Z^ be a closed immersion of affine schemes in i^ and
let n : Z^ -—> Zi be a section of i, smooth of relative dimension 1 at a finite set S of points
in Z^. Then i is homologically effaceable at S.

STEP 1. — Find a commutative diagram
ii

Z,c;X,

(5.3) J^ I/
4, 4,

itz^x,
with Xi, X^, and / smooth and ;\, ^ closed immersions. This is easy since Z^ and
Z^ are affine.

STEP 2. — Since n is smooth in a neighborhood of S, we may apply Lemma (5.1) to the
square (5.3). We find a neighborhood U of S in X^ and a closed scheme X^ c: U n X^
containing Z^ = Z^ n ̂  such that // : x! —^ x! is smooth of relative dimension 1,
S c Z^ and Z^ = Z^ x^ X[. If we let Z[ = i~1 (Z;), the map a : Z'i -> Zi, induced
by 71' : Z^ —> Zi is an open immersion :

i'
Zi c? Z^ c^ X^

(5-4) \!"' [r
Zi c? Xi

STEP 3. - Apply (5.1) to the square below on the left to get the Cartesian square on the
right, again shrinking X^ in some neighborhood of S :

z'i (5X2 z'i c; w ^ x;

•! I'- -1 •{/
Zi c, Xi Zi c? Xi

Note that W is a smooth divisior in the smooth X^, hence after again shrinking to a
neighborhood of S, we may assume W is principal.

STEP 4. — We have constructed a pair of morphisms in T^"* :

h : (Z'iC5W)^(Z^X2),

/' : (Z'^X',)^(Z^Xt)
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such that in the composition f° h = a c? g :

a c ? g : (Z'ic?W)^(Zic?Xi),

g is etale and a is an open immersion. It follows that the diagram below commutes
\cf. (1.4)] :

Hz,(Xi,n)- •Hz,(X2,n)

"Ix,
Hz',(W,n)

n/f*rivy

H2,_,(Zi,d-n) H^_,(Z,,d-n)
/

/..

nri^v

^ 1
H^(Zl,^-n)

By the principal triviality axiom, h^ T|̂  = 0, and by Poincare duality n ri^ is an isomor-
phism. It follows that the composition ^ a* is the zero map. But since Z[ = Z^ n Z^

p
where Z^ q: Z^ is open, p* ̂  = i^ a*, and we have proved the result.

6. Applications : the filtration by coniveau

Let A: be a perfect [but cf. (4.7)] field, X e Ob ̂  smooth over k, and H*, H^ a Poincare
duality theory with supports. The arithmetic resolution (4.2.2) is a resolution of J'f* (n)
by flasque sheaves in the Zariski topology. As a consequence, we have

(6.1) THEOREM :
Ker( ® H^Qc, n-p)-^ © H^^OC, n- p-1))

H^(X, ̂ (n)) ̂  Jcgzp/zp+l__________JC6ZP+1/ZP+2____________ .
Im( © W^Oc.n-p+l)^ © H^-^x.n-p))

xeZP-^/ZP xeZP/ZP'^'1

(6.2) COROLLARY :
H^X, ^(n)) = (0) /or p > q.

(6.3) COROLLARY. — The E^ ^rm o/^ spectral sequence (3.8) :

Ef^= © H^Qc, ^-^^^^•'^(X, n)
xeZP/ZP+ l

^ given by
EI^H^X,^^)).

(6.4) REMARK. — If as in (2.1) and (2.3) we have a (( fine " topology X^ on X and if
the cohomology theory is given by H* (X, n) == H* (X^, [i") for some sheaf |T on X^,
we have ̂  (n) ^ R* a^ (^), where a : X^ —> X^^iski is the " continuous map. " Thus
the Leray spectral sequence for F o a has the same E^ terms as the " coniveau spectral
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sequence " (3.8). It is tempting to suppose that these two coincide from E^ onward,
but we can only prove this for the de Rham theory (1).

(6.4) PROPOSITION. — Suppose X e Ob V is smooth and the field k has characteristic
zero. Let H^ (X) be the de Rham theory,

H^(X)=H*(X,Qx) [(2.2)].
The coniveau spectral sequence

(6.4.1) E^= © H^(x) => N-H^(X)
x e Z P / Z P - ^ - 1

is isomorphic from E^ on with the " second spectral sequence of hyper cohomology " asso-
ciated to the complex Q^,

(6.4.2) E^H^X,^,) => Hg^(X).

If, moreover, k = C, X^ = X with the classical topology, and oc : X^ —» X is the canonical
map, then both coincide with the Leray spectral sequence

(6.4.3) E^H^X.R^CxJ) => H^^X^, C).

Proof. — The fact that (6.4.2) and (6.4.3) coincide is a consequence of Grothendieck's
theorem calculating de Rham cohomology with algebraic differentials [4]. Namely
the holomorphic de Rham complex Q^an ls a resolution of C^ by oc-acyclic sheaves, so
(6.4.3) is the second spectral sequence of hypercohomology associated to the complex
a^ Oxan- ^lnce ^m ̂  R^ (^Xan) ^V Grothendieck's theorem, the map 0^ —> a* ^Xan
induces an isomorphism between (6.4.2) and (6.4.3).

To compare (6.4.1) and (6.4.2) we use Hartshorne's canonical resolution of Qx-
Recall if F is any abelian sheaf on X, there is a complex (Cousin complex) of sheaves

(6.5) F^ © ^X(F)-^ © LX(F)^...,
x e Z ° / Z 1 xeZi/Z2

where H^ (F) denote the ;-th local cohomology group of F with supports at the point x
(for details, see [8], chapter IV). When X is regular and F is a locally free sheaf of
^x-1110^ ,̂ (6.5) gives a resolution of F (op. cit. prop. 2.6).

If we replace F by the complex Q^ m (6.5), we get a double complex C" with C'̂  a reso-
lution of Ox ^or an (! (assuming X smooth). Let F C* be the total complex of F C" :

and filter F C' by

rc"= © rc^
p+q=r

F^C^ © rcy'^ © © H^(X,^).
p+q=r P+q^r x e Z P / Z P ' ^ ' 1

p^S p^S

(1) P. Deligne has kindly supplied us with a general proof of the hoped for coincidence.
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Notice F'' F C* = F^s C', where F^s means sections with codimension of support ^ S.
Thus the two spectral sequences

(6.6) E^^H^^F^TC'/F^rC') => H^(FC'),
(6.7) E^=H^(Fz^iC') => H^(rC')

coincide. On the one hand, since C* is a flasque resolution ofQ', (6.7) is the de Rham
version of (3.11). On the other hand, if Q*-^E" is a Cartan Eilenberg resolution
and C" —> E" is a map, we get a map of spectral sequences

(6.8) E^(C")^E^(E") = H^^FE'/F^FE').

Since E" is a Cartan Eilenberg resolution, the right hand side of (6.8) is F (Hff9), where
H;? is an injective resolution of ̂ f^. On the E^ level, this gives a map of spectral sequences

E^ level of (6.4.1)^(6.4.2).

The fact that this map is an isomorphism can be seen for example by sheafifying (6.8) and
noting that both sides give resolutions of ^R.

^ Q. E. D.

(6.9) COROLLARY (Conjecture of Washnitzer). - The filtration arising from the second
spectral sequence of hypercohomology

E^= H^X, Jf^)=>H^(X)
is the filtration by coniveau.

7. Algebraic cycles

Throughout this section we assume k is algebraically closed, and that our Poincare
duality theory takes values in the category of R-modules, with R = H° (Spec k, 0). We
need the following axioms :

(7.1.1) If dim X ^ d, H, (X, n) = 0 if ; > 2 a.

(7.1.2) I f / : X - > Y i s a proper map between varieties of the same dimension, then
/^ r|x = r.r|y, where r is the degree of k (X) over k (Y).

These hold for all the cohomology theories in paragraph 2. One can deduce (7.1.2)
from the other axioms for maps which are generically etale, and (7.1.1) from an alternate
version : H1 = 0 if i < 0.

For any X e Ob -T we denote by ̂  (X) the free R-module generated by all irreducible
Z c x of dimension p. Recall that ̂  is made into a functor for proper morphisms/
according to the following rule : If/(Z) has dimension < p then ^ (/) (Z) = 0;
if/(Z) has dimension p then ̂  (/) (Z) = d.f(Z) where d is the degree of k (Z) over
k (/(Z)). It is a tautology that the map ^ : ̂  (X) -^ H^ (X, p) determined by Z -^ ^ T^,
where i : Z -> X is the inclusion, is a natural transformation.
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(7.2) TAUTOLOGY :

(7.2.1) There are natural transformations ^ : ^ ' p — > E ' p p ( p ) for all r, compatible with
the (surjective) edge homomorphisms Wppf^p^—^E'pp1 (p) and the (inje cive) edge homo-
morphisms E^(p)—>H^p( , p), where E*.. is the niveau spectral sequence (3.7).

(7.2.2) ^ is injective, and Ker (^) = { Z : there is a Y e Zp+^ (X) such that the support
of Z is contained in Y and ^y (z) = 0 in H^ (Y, p ) } .

Proof. — Notice that

E^(n)=H^(Z,/Z^,n)=0 if q>p,

by (7.1.1), hence the assertions about the edge homomorphisms. Note that

^pp(p) = H^(Z,/Z^, p) ̂  H^(Z^, p)

and it is clear that we can factor ^ through E^p (p).

For the next statement, observe first that the map TT^ : R —> H° (X, 0) induced by the
structure map of X is injective (find a point on X), and hence, by Poincare duality on the
smooth part of X, the map R —> H^ (X, d) given by a i-> TT^ (a) n n^ is injective. It
follows immediately that ^ is injective. The determination of Ker (^x) follows from
the construction of the spectral sequence.

As an example, suppose X is smooth and projective over the complex numbers, and
let H; (X) = H^ (X, Z) be classical integral homology.

(7.3) THEOREM. — With assumptions as above, the kernel of^2 : ^p —> E^ p is the group
^p of p-cycles algebraically equivalent to zero.

Proof. — Recall ̂  is generated by cycles

Z=^(/)(YO-^(/)(Y,),

where /: Y —> X is proper, and where Y^ and Y^ are two fibers (counting multiplicity)
of a flat map n : Y —> C with C a smooth, connected, complete curve.

STEP 1. - ̂  (X) c: Ker^2. Indeed, let Y, Z be as above. It suffices by naturality
to show ^(Yi-Y2)=0. Suppose Y^'n;"1^) with p , e C. If L = 6?c (pi-Pi\
YI —Y^ is a Cartier divisor associated to TT* (L). By compatibility of the cycle class with
the Chern class, we deduce

^(Yi-Y,)=TiYnci(7i*L)=iiYn7r*Ci(L).

But Ci (L) = 0, since i^ (p^) = ^ (p^) in Ho (C, Z).

STEP 2. - Ker (^) c: ̂  (X), i. e. :

d1 : E^+ i ,p= © H^+i(}O^EL=^
y e Z p + i / Z p
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factors through ̂ . Indeed, let Y be the closure of [y } and let/: W-^Y be a projective
desingularization of Y. If coeW is the generic point, we have an isomorphism
/* : H2p+i W-^H^p+i ( y ) ' Since ^ (/) preserves ^, it suffices to show that
d (a) e ̂  (W) for a e H^+1 (co). In other words, we are reduced to the case of divisors
on a smooth variety W of dimension p+\. Since E^ (W) = E^p(W), the assertion
amounts to the well-known fact that homological and algebraic equivalence coincide
for divisors on a smooth schemes [easily proved from the exponential sequence

H1 (W, ̂ ) -> H1 (W, ̂ ) ̂  H2 (W, Z)].

(7.4) COROLLARY. - Let ^p be the Zariski sheaf on X associated to the presheaf
U —> H^ (U, Z). 77?^ there is a natural isomorphism

A^X^H^X,^),

where AP (X) ^ the group of cycles of codimension p modulo algebraic equivalence.

Proof. - It follows from (7.2) and (7.3) that A^ (X) ^ E^_^_p where n = dim X.
By (3.9) and (6.1) we have E^_^ ^ IP(X, ̂ ) as claimed.'

(7.5) EXAMPLE. - Let W(X) cz H^X, Z) be the subgroup generated by algebraic
cycles. When p = 2 we get an exact sequence

H3 (X, Z) -> F(X, ^f3) ̂  A2 (X) ̂  B2 (X) ̂  0.

Thus A2 (X) is a finitely generated abelian group if and only if r (X, JT3) is. Note that
in general 5 ^ 0 even mod torsion (Griffith's counterexample [3]).

(7.6) REMARK. - When the ground field k is any field of characteristic zero, one can
replace the sheaf ^p by the p-ih cohomology sheaf ^^ of the de Rham complex Ox..
One gets an isomorphism A^ (X) ® k ^ H^ (X, Jf^).

z
One has analogues of (7.4) in other cohomology theories. For example, let char k

be arbitrary and fix an integer r prime to char k. Let ̂  (n) be the Zariski sheaf on X
associated to the presheaf

U^HS(U,rt

where u = u^ is the etale sheaf of r-th roots of 1.
(7.7) THEOREM :

W (X, ̂  ( p)) ̂  ̂  (X) ® Z/r Z.
Proof. — We have f

)!

(7 •8) © H^ (x, 1) ̂  ® Z/r Z -> IP (X, ̂  (^)) -> 0.
x e Z P - l / Z P , :ceZP/Z?+1

f

From Hilbert's theorem 90, we have

H|,(x, 1) = H^,(fe(x), a) ̂  WIW

4® SERIE —— TOME 7 —— 1974 —— ?2



GERSTEN'S CONJECTURE 199

so (7.8) can be identified with the bottom row of the diagram

© k(xf^ © Z——^(X.K^)——.0
XGZP-^ZP xeZP/ZP+ 1

(7-9) i I I

© k (xYlk (x^--^ © Z/r Z —> H^ (X, ̂  ( p)) -^ 0

The top row in (7.9) is the K-theoretic analogue [10]. In particular, W (X, Kp) ̂  CKF (X),
the group of cycles modulo rational equivalence (pp. cit. 5.14). It follows that
IP(X, ̂ (p)) ̂  CH^X) ® Z/r Z. Define R^ by the sequence

0-> R^ CIP (X)-> A^ (X)^ 0.

(7.10) LEMMA. - R^ ^ ^ divisible group.

Proof. — R7' is generated by cycles which come via an algebraic correspondence from
a difference of two points on a smooth curve. Divisibility for R^ follows from divisibility
for the Jacobian of the curve.

As a consequence we get CtP (X) ® Z/r Z ^ A^ (X) ® Z/r Z proving (7.6).

8. Differentials of the second kind

Suppose X/k is smooth and connected, where k is a field of characteristic zero. Let T|
be the generic point of X, K = 0^^ the fraction field of X, and Q^^ the stalk of the de
Rham complex Dx/& at r\' Recall that a (closed) form (oeQi^ is called (in the clas-
sical language) a form " of the second kind " iff for each xe X there is a (pen^ such that
co - fi?(p is regular at x, i. e. belongs to Q^/^ • Equivalently, co is of the second kind iff its
image co in W (QK/^) nes m tne image of the map :

H^Ox/.,.) = ̂  -> H^OK/fc) = ̂ ,

for every x in X. We shall then say that co is a " meromorphic cohomology class of the
second kind ", or, for emphasis, " .. .locally of the second kind ".

Notice that a special case of our Main Theorem asserts that the map J'f^ -> ^q is
infective. (Concretely, this says that ifcoe Q|̂  is regular at x and is d^> for some (p e Q^1,
then also co = d^' with some (p' which is regular at x.) This observation makes it possible
to give a classical interpretation of the mysterious terms H° (X, Jf^) :

(8.1) THEOREM. — There is a natural isomorphism between H° (X, ^q) and the space
of meromorphic cohomology classes of the second kind, i. e. the space [ differential forms
of the second kind }/{ exact ones }.

Proof. - The map is just the map H° (X, ^v) -^ ̂  = W (0^)- This m^? is
injective, and clearly its image is contained in the space of classes of the second kind.

To prove the reverse inclusion, let co e Q^ be of the second kind. For each x e X,
let (p" e Q^ be such that co-^cp" = co" is regular at x, say in the affine neighborhood Vx

of x. Then d^ = 0, and hence co" defines an element co" of W (U", ^x/fe)? an(! hence a
section y" of ̂ q over U". To see that the sections agree on U" n W and so define a global
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section of Jf4, it is enough to see that they have same stalks, i. e. that ifye U", the image
of y" in ̂  is equal to y^. But since ̂  q: ̂ , it suffices to take the case y == T|, and
this case is obvious from the definition.

Recall that Atiyah and Hodge [15] and later Grothendieck [5] found a different,
a priori smaller space of " differential of the second kind " more convenient, namely the
image of the map : W (X) -> H^, and they asked if the two notions are equivalent. In
terms of our spectral sequence, this questions asks if all the maps d^^ vanish for r ^ 2,
which is trivially true for q ^ 2. For q = 3, this distinction turns out to be equivalent
to the distinction between algebraic and homological equivalence. In fact, we have an
exact sequence :

(8.2) H^X^H^X, Jf^-^H^X, .T^H^X).

Using the interpretation of H2 (X, ^f2) as cycles mod algebraic equivalence, we see
that, thanks to Griffiths, c is not injective, so d is not zero, so e is not surjective. In fact
we have an isomorphism between the kernel of c and the cokernel of e.

(8.3) COROLLARY. — For cycles of codimension 2, the k-vector space of cycles mod
algebraic equivalence is finite dimensional if f the space of cohomology classes locally of the
second kind is.

Actually it is quite easy to construct an example of the distinction directly, at least
in Griffiths example. In that case, X is a 3-fold containing two disjoint smooth curves
Z^ and Z^, and the cycle z = [ZIJ—EZ^] is homologically but not algebraically equi-
valent to zero. The discussion of the previous section shows that if Z = Z^ u Z^ ,
H4 (X) = k © k, with basis Zi , Z^ , and z e H4 (X) maps to zero in H4 (X) but is
nonzero in H4, (X) for every divisor D containing Z. From the exact sequence
H3 (X-Z) -> H4 (X) -> H4 (X) we see that there is a (nonzero) co e H3 (X-Z) which
maps to z. It follows from the main theorem that co^ is of the second kind, because
for any point x in X we can find a neighborhood U and a divisor D containing Z such
that the map H4 (X) -> H^y (U) is zero. In fact, since Z is smooth one can do this very
easily, without recourse to our results. Hence from the diagram

H^X-Z) ^H^(X)
[ I

H^U^H^U-D^H^U)

we see that co [u.^ = co' u_o for some co' e H3 (U). On the other hand, if we
had co^ = co '̂ for some co" e H3 (X), then for some divisor D we would
have co |x-D = co// [x-D ? an^ the diagram below would then show that z would vanish
in H4 (X), a contradiction,

H^X-Z^H^X)
1 i

H3 (X) -> H3 (X - D) -> H4, (X)
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