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1. INTRODUCTION. — In this paper we consider the problem of computing
the Plancherel measure of a locally compact group G in terms of the Plan-
cherel measure of a closed normal subgroup N. The results we obtain
require also that we know the Plancherel measures of certain subgroups
(little groups) of G/N. This is of course quite reasonable in light of
Mackey's theory which describes the irreducible representations of G
in terms of corresponding objects for N and the little groups.

(1) The work of the latter author was partially supported by a grant from the General
Research Board of the University of Maryland.
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460 A. KLEPPNER AND R. L. L1PSMAN

More explicitly, let G be a separable locally compact group, N a closed
normal subgroup of G. Assume that N is type I. The space N has a
natural Borel structure and is a standard Borel G-space under the action
(T-gO W = T (g^g~1), ^€N, g€G, y€ N. The stability subgroups
Gy == { g€G : Y .g and 7 are equivalent} are closed subgroups. Moreover
there exists a multiplier co^ on Gy/N with the following properties : if we
denote again by (Oy the lift to Gy, then y extends to an coy-representation 7'
of Gy; coy is unique up to similarity; coy may be chosen normalized, i. e.,
o^ {x, nT1) = 1. Next let a be an irreducible (iDy-representation of Gy/N.
Denote by ^1! its lift to Gy. Then y' (g) o^ is an ordinary representation
of Gy and Ti^o. == Ind^ y' (g) a77 is an irreducible representation of G.
Moreover, if the orbit space N/G is countably separated, we obtain all
irreducible representations of G as y varies over N/G and (T varies over
the irreducible co^-representations of G^/N.

Suppose that G is unimodular and type I. Then there is a unique
standard Borel measure class { p^ } on G such that

^
^G = / ^ 0 IT: dp.Q (7T),

^

where X^ is the left regular representation of G$ and a unique measure p^
(up to a positive constant depending on the normalization of Haar measure
on G) in that class such that

(1.1) yl?(^12d<7=^T^(7^(9)7^(cp)*)^G(7^), ? € Li (G) n L, (G).I2

^ ^

Our goal in this work is to describe (under reasonable assumptions) the
measure ^ m terms of corresponding objects for N and Gy/N.

Several difficulties are immediately evident. Since o>y-representations
(rather than ordinary representations) occur, we will need an analogue
of the Plancherel theorem for projective representations ( § 7 ) . A more
serious problem is that the groups Gy/N need not be unimodular. Thus
it becomes necessary to develop a Plancherel theorem for non-unimodular
groups (§6). We are able to overcome these and other obstacles in order
to obtain the desired result, which can be described roughly as follows :
in the above we have seen how G is a " fibre space " with base N/G and

fibres ^Gy/N^; we shall show that the Plancherel measure p^ is also
fibred — on the base it is a pseudo-image of p-N, and on the fibres it is the
projective Plancherel measure of Gy/N.
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We have assumed N is type I for ease of presentation here; in fact,
we need only assume that N has a type I regular representation. It turns
out that under reasonable assumptions the Plancherel measure is concen-

y\ __

trated in the set N( of traceable irreducible representations. This set,
one easily deduces from recent work of Effros, Davies and Guichardet,
is a well-behaved space in which none of the pathological behavior associa-
ted with non-type I groups can occur. Furthermore, Mackey's theory
can be localized to N( and remains true in unaltered form. With these
facts, we can carry out our analysis without requiring that the group N
be type I.

We do not assume G is unimodular in this paper. Therefore, because
of the nature of the Plancherel theorem for non-unimodular groups, we
are only able to compute the measure class of ^o m our main theorem (§ 10).
Even if G is unimodular, the fact that G-^/N may be non-unimodular
plus the built-in ambiguity of pseudo-images prevents us from specifying
the precise measure in general (5). However, under various additional
assumptions — namely, if G/N is compact (§ 4), or if G is ^-transitive
on N (§ 5), or if N = Cent G (§ 8) — we can compute the specific Plancherel
measure. This enables us to write down the Plancherel measure for
several kinds of groups for which it was not previously known — for
example, the group of rigid motions of Euclidean space, Moore groups,
the semidirect product of SL (/z, F) and F", F a local field (the latter pro-
viding, we believe, the first example of a specific determination of [̂
for a class of type I, non-CCR groups). We also obtain as special cases
Plancherel measures which were previously known — central groups,
certain kinds of nilpotent groups, and others. Among the examples
where we compute only the measure class of [̂  are the " ax + b ?? group
and the inhomogeneous Lorentz groups.

Other results which play auxiliary roles in the solution of the general
extension problem, but which may have independent interest are : two
results on disintegration of measures (§ 2) — these are certainly well-
known, but they exist in the literature only with (unnecessary) topological
assumptions; a general formula tor the character of an induced represen-
tation ( § 3 ) ; and a long section on measure-theoretic considerations (§ 9),
which is necessitated partly by our inability to describe completely the

Borel structure of G in terms of those for N and (G^/N) . We conclude
the paper (§ 11) with some brief comments on the relations between the
discrete series of G and those of N and Gy/N.

We shall adhere to the notation established in the second paragraph
of this introduction for describing the ingredients of the representation
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theory of a group extension. All groups throughout are assumed to be
separable. With the exception of paragraph 9, we shall not distinguish
between equivalent representations, i. e., TCi == 113 means they are equi-
valent representations. All of our coset spaces will be on the right and
written G/H = { Hg : g€G}. We apologize in advance if that offends
anyone -— blame it on the fact that we are right-handed, but read from
left to right. Finally we refer the reader to [I], [10], [23] and [24] for all
unexplained terminology and results relating to Borel spaces and repre-
sentation theory.

The authors wish to thank Arlan Ramsey for his help with certain
measure-theoretic questions. Thanks are also due to L. Pukanszky for
several helpful observations, in particular a remark which caused us to
look more closely at G(.

2. DISINTEGRATION OF MEASURES. — Let X and Y be Borel spaces and
p : X — Y a Borel map. Given any positive Borel measure p< on X, let
p* [̂  be its image on Y; that is, p* [̂  (E) = y. (p~1 E) for Borel subsets E
of Y. Then p* (^ is a Borel measure on Y (possibly taking only the values
0, oo). Moreover, for all positive Borel functions f on Y, we have

^P*^==JF^

where F =f op . If X is a Borel space, R an equivalence relation on X
(e. g., the orbits of a group action), Y == X/R, p : X -> Y the canonical
projection, we write p- for p* ^ and call ~[L the image of [^. By a pseudo-
image of [̂  we mean the image of a finite measure equivalent to p-. We
shall also write p- for pseudo-images, being careful to indicate when ^L
is the image or a pseudo-image of p..

THEOREM 2.1. — Let G be a locally compact group. Let X be a right
Borel G-space and [^ a quasi-invariant ^-finite positive Borel measure on X.
Assume that there is a y^-null set Xo such that Xo is G-invariant and X — Xo
is standard. Let y. be a pseudo-image of [f.. Assume finally that^i. is countably
separated. Then for all a ;eX— Xo, the orbit x.G is Borel isomorphic
to G/Ga; under the natural mapping, and there is a quasi-invariant measure [̂
concentrated on x.G such that for all /*€Li (X, ^),

(2.1) ff(x)d^(x)=.f f f ( x . g ) d ^ ( g ) d ] I ( x ) ,
•^X ^(X—XoVG^G/G^

where Gsc is the stability group at x, g is the image of g in G/Go., and x is
the image of x in (X — Xo)/G.



THE PLANCHEREL FORMULA 463

Proof. — Replacing X by X ~ Xo, we may suppose that X is standard.
It follows immediately from [1, Proposition 3.7] that G^ is closed and that
Q x g - > x . g effects a Borel isomorphism of GfGsc onto x.G. Since [Z is
countably separated, there is a [Z-null set Y in X/G such that (X/G) — Y
is countably separated. It follows from [23, Theorem 6.2] that (enlarging Y
by another ji-null set if necessary) we may assume (X/G) — Y is standard.
The inverse image Xi of Y in G is a [^--null, G-invariant set. Replacing X
by X — Xi we may thus assume that X and X/G are standard. But
then there are (locally) compact separable metric topologies which generate
the Borel structures of X and X/G. We may therefore apply [4, § 3,
theoreme 2] to the projection X — X/G to obtain the disintegration (2.1).
Finally, the arguments used by Mackey in [22, Lemmas 11.4, 11.5] may
be applied here to show that all the p-a; are quasi-invariant.

We will use Theorem 2.1 in a key step in our proof of the general Plan-
cherel formula for group extensions (§ 10). However, we will need a
more precise result than Theorem 2.1 for use in the special case of a
compact extension ( § 4 ) . That is contained in our next theorem.

THEOREM 2.2. — With the assumptions of Theorem 2.1, suppose also
that G is compact and that [L is invariant. Then the ordinary image y. of [f.
is (J-finite and for all /*€Li (X, p-) :

ff(x) d^ (x) = f f f(x.g) dgdji (x),
^X ^(x-XoVG^G

where dg denotes normalized Haar measure on G.

Proof. — Again we may assume Xo = 0. Let h be a strictly positive,
bounded, p--integrable Borel function on X. Set

ht(x)= f h ( x . g ) d g .
^G

The integral exists since g -> h ( x . g ) is a bounded Borel function. Fur-
thermore, {x, g) -> h {x. g) is Borel on X x G and

f hf(x)d^(x)== f f h ( x . g ) d g d ^ ( x )
^X ^X ^G

= j f h ( x . g ) d ^ ( x ) d g
^G ^X

=/' f h ( x ) d ^ ( x ) d g
^G ^X

= j h(x) d^. (x) < oo,J^
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Note the switch of integration is valid by Tonelli's theorem. It follows
that h' is finite-valued a. e. and [^-integrable. It is obvious that A' is
G-invariant. We may also assume that A' is strictly positive. Indeed
by Varadarajan's theorem [32, Theorem 3.2], X may be given a separable
metric topology which generates the Borel structure and with respect to
which X is a topological G-space. In that case, we may take h strictly
positive, p-'integrable, and continuous. The compactness of the orbits
then guarantees that A' is strictly positive.

Now set v = h' p-, a finite G-invariant Borel measure on X. Let v
be the image of v on X/G as usual. Then by theoreme 1, § 3 of [4], there
exists for almost all x a positive measure Vsc of norm 1 concentrated on
x,G such that

ff(x)dv(x)=f f f(x.g)d^(g)dp.(x\ feL,(X,v).
^X ^x/G ̂ G/G^

Note that theoreme 1 applies since X -> X/G is ^-propre [3, remarque 1,
p. 74].

Since v is invariant, it follows again from the arguments of [12, Lemmas
11.4, 11.5] that almost all Va; are invariant. It follows immediately
that we can write

f f ( x ) d v ( x ) = = f f f ( x . g ) d g d ] i ( x ) , feL,(X,.).
• ' X ^X/G ^G

Note that the proof is finished if p- is finite (take h' = h = 1).

In general, we can say the following : for any G-invariant Borel function
on X, we have

ff(x)d^(x)== f f(x)d]i(x),
^X ^X/G

f f ( x ) d . ( x ) ^ f f(x)d.(xy,
^X ^X/G

and therefore

f f (x) h' (x) dji (x) ==f f (x) h' (x) d^ (x)

==ff(x)dv(x)

^ff(x)dv(x).

It follows that h' p- == v. In particular p. and v are equivalent. Since v
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is finite, p: must be or-finite. Finally, we compute for feLi (X, p.) :

ff(x) d^ (x) = f[f(x)jh' (x)] h' (x) d^ (x)
^x ^x

-r[fW(x)}d.(x)
^x

-f f[f^'gW(x.g)}dgd^x)
^X/G ^G

-f f f f ( x . g ) d g \ h / ( x ) - ^ d ^ ( x )
^X/G WG /

-f f f ( x . g ) d g d ] i ( x ) .
^X/G ^G

3. A CHARACTER FORMULA. — Let K be a separable locally compact
Hausdorff space with a positive, o-finite, regular Borel measure p-. In
this section it will be convenient to suppress the p- and write dk. If 9€
is a separable Hilbert space, we denote by La (K; 3€) the Hilbert space
of measurable, ^-valued, square-integrable functions on K. We use
£ [S€) and S (<?e) to denote the bounded operators and Hilbert-Schmidt
operators on 9€ respectively. We shall use ||.||2 for both the Hilbert-
Schmidt norm in S {9€) and the norm on La (K; 9€}\ but the precise
meaning will be clear from the context.

Let <t> : K X K -> £- {9€) be a (weakly) measurable operator-valued
function. We say that $ determines a kernel operator T$ whenever
there is a constant C such that

(3.1) jf\<^(k^)f(^ff(k)y\d^dk^C\\f\\,\\f/^ /•,reL.(K;^).

When (3.1) holds, it is clear that T$ is given by

T^ f(k) == f^(k, x) /-(x) dx, /-eL^ (K; ^e).
^K

There are many sufficient conditions on $ to guarantee equation (3.1).
For example :

(i) K = locally compact group, dk = Haar measure, $ (/c, x) = £1 (/ex-1)
where the operator norm || 12 ( . ) [| is an integrable function on K;

(ii) | $ ( . , . ) l ] . € = L . ( K x K ) .

The latter example will be important for us. It is fairly well-known
and not hard to see [from the identifications L^ (K; 3€) = Lg (K) (g) ff€
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and S (9€) = Si (g) <?<T], that the Hilbert-Schmidt operators on L, (K; X)
are precisely the kernel operators T$ where ^eLa ( K x K ; S (<%)) and

T$||i = f [|<I»(/c,x)||^dz.
^KXK^ K X K

It is straightforward to check that T^ == T$* where

€»* (A-, x) == €> (%, ^)*.

Given a kernel 3>, let us set

T(/c)= f^(A-,x)0(/c,x)*dx.
^K

For any /c€=K, W (/c) is a (perhaps unbounded) linear operator on 3C

any vector $€^e having the property that f\\^ (/c, x) $ ( A ' , x ) * ^ [ [ rfx <oo
L »-/K.

will certainly be in the domain of W (/c)1. Given $€^, then (^ (/c) ^, ^)

is either a finite non-negative number [if ^€ domain of W (k)] or +00.
Moreover Tr W (/c) = 2 (T (/c) $„ $,), { ^ ,} an orthonormal basis of 9€,
is well-defined (independent of the choice of { ^ }) and will be finite if
and only if W (k) is a bounded positive trace-class operator on 9€. It
is easily seen that k -> Tr W (/c) is a non-negative measurable function
(perhaps taking the value + °o).

LEMMA 3.1. - Tr (T<^ TS,) = fir y (/c) dk in the sense that if T$ is
^K

a Hilbert-Schmidt operator both sides are finite and equal, while if T^) is
not Hilbert-Schmidt then both sides are equal to +00.

Proof. — We compute that

F Tr W (k) dk == f 1 (W (k) ̂  ̂  dk
^K ^K

= f 1; f (^ (k, x) <D (k, x)* ^, S,) dx d/c
^K ^K

==^2 f\\^(k,^^\Yd^dk
^R ^K

= f fsi]^(^)*^[|2^^
^K •^K

-f ||€>(^x) [ | jd /cdx.
•^RXK^ R X K
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But T$ Hilbert-Schmidt ^> f || $ (/c, x) ||^ dkdK<oo and
^ K X K

Tr (T^ T|>) = [I T$ ||2 == f || €» (̂  x) ||j d/c dx.
^KXK

On the other hand T^ not Hilbert-Schmidt [i.e., Tr (T$ T|>) = + oo]

==> f 1] $ (/c, x) 1|^ rf/c dK = + oo, and so f Tr V (/c) dk = + oo also.
^ K X K ^'

We use Lemma 3.1 to obtain a formula for the character of an induced
representation that will be useful several times in the following. Let G
be locally compact and let N be a closed (not necessarily normal) subgroup.
Set K == G/N, the homogeneous space of right cosets. If we choose
right Haar measures dg, dn on G, N then we may find a strictly positive
continuous function q on G satisfying

q 00 - 1,
(3.2) q (nx) = AH (n) Ac (n)-1 q (x), n e N, x e G,

where A^, A^ denote the modular functions on N, G (see [5, p. 102, 103]).
q defines a quasi-invariant measure dk on K as follows. For /*eCo (G),

the continuous functions of compact support, put f {x) = f f {nx) dn,
_ ^N

x = N x. Then dk (wich we sometimes write dg) is defined by

( r ( g ) d g = ff(x)q(x)dx.
^G/N ^G

Let Y be a unitary representation of N and set n == Ind0 y. We write
down a formula for the character of TI in terms of that for y. First we
want to realize 11 on the homogeneous space K. Let 9€^ be the space of y.
Then TT acts on the space ̂  of functions f : G -^ ̂  satisfying

f(ng) = y (n) f(g) and f\\f(g) [p dg < oo.
^K

The action of Ti is
^(^/'(^-n^)^^)^^)!172.

We transfer to the Hilbert space La (K; ̂ ) as follows. Choose a Borel
cross-section s : K -> G such that s {e) == e. Then we have unitaries

F W -^f(9)= f(ns (k)) == T (n) F (/c),
L^K;^)-^^;

/•(^F^)^/1^)),
^-.L^K;^),

ANN. 6C. NORM., (4), V. —— FASC. 3 61
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and these are inverses of each other. It is easy to compute the action
of ^ on L, (K;^) :

n (g) F (k) = y ((3 (k, g)) F (sWg) [q (s (k) g)lq (s (^))]V2, FeL. (K; ̂ )

where for g€G, /c€K, we write

P^)^^)^^^)-1^.

Now let y € Co (G). Then

7:(9)F(^)= f ^ ( g ) n ( g ) F ( k ) d g
^G

= f? (<7) T (P (̂  <7)) F (W^) [g (s (Jc) ̂  (s (/c))]V2 ̂
^G

= fAo (5 (^)-1 g (s (A))-1/2 cp (5 W-1 )̂ T (P (e, )̂) F (g) q (g^2 dg
^G

== AG (5 (/c))-1 ^ (5 (/Q)-1/2 f f 9 (s (k)-1 ng) y (P (e, n )̂) F (^) g (ng)-^ dn dg
^G/N ^N

=f^(k,g)F(-g)dg

where
0, (A, ^) = Ac (5 (A))-1 g (s (/Q)-1/2 fcp (5 (/c)-^ ng) y ((3 (e, n )̂) q (ng)-^ dn

^N

= AG (5 W)-^ ^ (5 (/c))-1/2 fcp (s W-i n5 (̂ )) Y (n) g (ns (^))-1/2 dn.
^N

We know a priori that n (<p) is a bounded operator. Thus T. (<p) is in fact
a kernel operator on L.2 (K;<^) with kernel $cp.

THEOREM 3.2. — Let y€ Co (G), 9* (g) == y (g-1) A^ (g-1), and set
^ == y*G?*. ^^
(3.3) Tr(Ind§Y)(^)

=== f Ac ̂ )-1 ^ ̂ )-1 Trf f+ (^-1 n )̂ T (n) Ac (n)1/2 AH (n)-1/2 dn} dg,
^G/N L ^ N J

in the sense that both sides are finite and equal, or both = + oo.

Proof, — On the left side of (3.3), we have

Tr (Ind§ y) (^) == Tr TT (9 * ?*) == Tr TT (9) T: (cp)* = Tr (T$, TlJ.

As for the right, using the substitution g -> nig and equation (3.2), it
is easily checked that the integrand is N-invariant. Claim : with the
notation of Lemma 3.1, we have W (/c) == ̂  (/c, k). Postponing the proof
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of this momentarily, we can then invoke Lemma 3.1 to verify

Tr n (+) == Tr (T<^ T^) = ^Tr W (k) dk = ^Tr <^ ̂ , /c) d/c
^K ^K

= /WAG (5 (;c))-1 g (s (/Q)-1/2 f^ (s (/c)-1 ns (k)) y (n) g (ns (/c))-1/2 dn] d/c
l7R L ^N J

= f Ac (^)-1 y (g)-1 Tr f f^ (̂  7 )̂ Y (n) Ac (n)1/2 AH (n)-1/2 dn] dg.
^G/N L ^N J

It remains to prove the claim. According to the definition of W,

W(k) == f<D (k, x) €> (k, x)* dx
«>'R

= /Y ^G (s (/c))-1 ^ (s (/c))-1/2 9 (s (^-1 n, s (x)) y (n,) q (n, s (x))-v^ dn^
^K V^N y

X f f^G (s (k))-1 q (s (A:))-1/2 cp (5 (/c)-1 ns (x)) Y (n) q (ns (x))-V2 dnY d^
V^N /

= f f /\ (5 (/c))-2 ^ (5 (/c))-1 cp (s (k)-1 n, s (x)) cp (s (k)-1 ns (x))
^K ^N ^N

Xy (Hi) y (n)-1 q (Hi s (x))-1/2 q (ns (x))-1/2 dni dn dx.

On the other hand

^ (̂  ̂  == ^G (s (/c))-i 9 (5 (/c))-v2 ^ (5 (̂ -i ni 5 (k)) Y (nQ g (ni s (/c))-1/2 dn,
^N

= fAc (s (A))-' <? (s (A))-v^ f<p (s (A)-* n. s (k) <r') 9* (y) dy
^•N ^'6

XY(nl)y(^lS(A•))- l-/2d^l

= FAG (s (k))-1 q (s (A))-'/2 / cp (s (A)-1 /i, <y-1) cp* (gs (k)) dg
^v •/G
XT (ni) g (ni s (/c))-1/2 Aii

= /'Ac (s (A))-2 ^ (s (A))-< ^(s (k)-1 n. ff) 9 (s (A)-« y) dy
^•N ^ft

xy (ni) ^ (ni)-1/2 dn,

= fAo (s (A))-^ ^ (s (A))-< f f cp (s (A)-' n, ns (x))
"N ••'G/N "'N

X9 (s (A:)-1 ns (x)) y (ns (x))-' dn dg y (n,) (? (n,)-v2 Aii

= f f fAc (s (fr))-' q (s (A))-i 9 (s (k)-1 n, s (x))
^G/N^N ^N

X9(s (^c)-1 ns (x)) Y (n, n-i) ^ (ns (x))-i ^ (ni n-1)-1/2 dni dn dg

- f f f^(s (k))-^ q (s (k))-^ cp (s (/c)- n, s (x))
^G/N ^ N ^ N

X^ (s (A1)-1 ns (x)) y (ni n-1) g (ns (x))-1/2 q (ni s (x))-1/2 dn, dn dg.
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Remark. — All of our applications will be in the unimodular case
A(, = AN = 1. In that event the character formula becomes more simply

Tr (Indg y) (^) = f Tr[ f^ Or1 ng) T (̂  dn\ dg.
^G/N L ̂ N J

Still we feel it is worthwhile to present the most general case (3.3); in
fact, we shall have use for it in a subsequent paper.

4. COMPACT EXTENSIONS. — We return now to the situation (and nota-
tion) described in the introduction, NC G closed and normal. We suppose
in addition that N is unimodular and type I, and that G/N is compact.
It follows that G is unimodular and also by [18, Theorem 1] G is type I.

Recall that the irreducible representations of G are described by
71 = ^Y,o = Ind^ Y'^)^, Y' is the extension of y € N to an ^-representa-
tion of GY, ^// is the lift to G^ of an irreducible (Oy-representation of G^/N.
Let us write G^ = \ r€G^ : T \y is a multiple of y |. Every reGv is
of the form T = y'(g) d'7; we write n^ (r) = the number of times T [^
contains 7. Since Gy/N is compact, it is clear that n^ (r) == dim a <oo.
Next, let pco be the right regular ^-representation of G^/N and p^ its lift
to G^.

LEMMA 4.1 : p ^ = ® - (dim a) a77.
CTe((v^F

Proof. — It is obviously enough to show that p^ = Q)^ (dim o-) a.
But this is precisely the Peter-Weyl theorem for compact groups with
a multiplier. The details are essentially all contained in [2, p. 286]. This
result is also a special case of the results of paragraph 7, and so we omit
the details.

LEMMA 4.2 : IndS Y = ©^ ^ (r) Ind^ T, yeN.

Proof. — We have Ind^ 7 = Ind^ Ind^ y, while on the other hand

®, 7^ (T) Ind^ T == Ind^ [©, n^ (r) rl.

Thus it suffices to prove that Ind^ y == ®. v n ^ ^ r ; that is, we
may assume G = Gy. But then Baggett [2, p. 283] has shown that
Ind§ y = T'^P'O). However, by Lemma 4.1,

®, n^ (T) T = ©<, (dim (7) (y7 0 a " ) = ©<, [y7 (g) (dim d) (T']
= T' ® [®o (dim ^) a " ] = y' (g) p^.

Q. E. D.
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We need one more lemma before giving the main result of this section.
It will be useful tor later applications as well; so we state it in greater
generality than is needed here.

Let G be unimodular and type I. Denote by S^ the Dirac measure,
SG ^ Co (G) -> C, SG 00 == f {e)' ^G 1s positive and central and thus induces
a trace on C* (G)"^ which we also denote by S^. Then an alternate form
of the Plancherel formula is

(4.1) ^ (+) = fTr 7i (^) dp.G (TT), + e C* (G)^
^

{see e. g., [10, 18.8.1 (ii)]). If ^ == /•*/•*, /•€ L, (G)nL^ (G), we obtain
the Plancherel formula (1.1). Conversely (4.1) is a consequence of (1.1)
and [10, 6.5.3].

In a sense, this scenario is really taking place on the reduced dual of G.
Let C*, (G) be the uniform closure of { X^ (/*) : /"€ Li (G) }. Then the Dirac
measure also generates a trace on C* (G)^ which by a further abuse of
notation we also denote S^- This is legitimate since C*, (G) is a quotient
algebra of C* (G) and the canonical projection p : C* (G) ->- C* (G) has
the property S^ (p (^)) = °G (^)? ^€C* (G)4', as is easily checked.

LEMMA 4.3. — (i) Let ^€LI (G) be continuous. Suppose that for any
unitary representation ^ of G, TI (^) is a positive operator. Then
^€P (G)nC* (G)^, P (G) = continuous positive definite functions.

(ii) Let ^€L, (G)nP (G). Then ^€C* (G)^ and ^ (^) = ^ {e) (2).

Proof. — (i) For any unitary representation 11 of G and any vector $
in the space of IT, we are given that

In particular

(TT W ̂  S) =f^ (9) ̂  0 ^ (9) dg ̂  0.

f h ( g ) ^ ( g ) d g ^ 0 , 7ieP(G).

Therefore ^eP(G) [10, 13.4.4]. It also follows immediately from [10,
2.6.2] that ^€C* (G)".

(2) Originally, we stated this result with the conclusion ^ € C* (G)"^ in part (ii).
We thank R. Mosak for pointing out that the proper assertion is ^^C? (G)^~. In addi-
tion, we have noted since writing the paper that the proof of (ii) could be simplified by
using the factorization theorem on p. 277 in M. RIEFFEL, Square-integrable representations
of Hilbert algebras (J. Fund. Anal., vol. 3, 1969, p. 265-300).
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(ii) It ^€L, ( G ) n P ( G ) g L . ( G ) n P ( G ) , then by [10, 13.8.6] there
exists y € L 2 ( G ) n P ( G ) such that ^ = y * y = = = y * y * . But ^eLi (G)
implies that the operator L^ equal to convolution by ^ is bounded on
La (G), i. e., ^ is modere in [10, p. 268] terminology, or said otherwise,
^ is a bounded element of the Hilbert algebra of G. Moreover the proof
in [10, p. 269-270] shows that ^ modere allows 9 to be chosen modere.
Also U = LcpLy. Therefore if we denote by 8 the canonical trace on the
Hilbert algebra of G and use the definition of S^, we obtain

3c W = ^ (L, Ly) == (9, cp) =f cp p = 4. (e).

Q. E. D.

Several times in this paper we shall be confronted with a function
^€Co (G) such that 11 (^p) is positive for all 7i€Rep (G). It follows from
this lemma that 4'€C* (G)^ and S^ (^) = ̂  (e). We are ready now for
the main theorem of this section.

THEOREM 4.4. — Let N be unimodular and type I, and let G be a compact
extension of N, i. e., N is a closed normal subgroup of G and G/N is compact.
Then G is unimodular and type I, and for all y6Li (G)nL2 (G) :

(4.2) f\ 9 (g) |2 dg == f S , [| ̂  (cp) [|j dim ^ d^ (y).
^G ^N/G ^eVG^/N; T

Proof. — It is enough to prove (4.2) when yeCo (G). Let ^ = y *^ y*
and 9 = ^ IN. Then 6e Co (N)n P (N), and we have the following
computation :

f l ? (g) P d g ==^ (e) == 9 (e) = ̂  (9) (Lemma4.3)
^G

= FTr Y (6) d^ (y) [formula (4.1)]
J^

= f f Tr (r. g) (9) ̂  d^ (y) (Theorem 2.2)
^/G^^

= f Tr (Indg y) (^) d^ (y) (Theorem 3.2)
•^/G

= f Tr (®.€G ^T (T) ̂ ) (+) ̂ N (f) (Lemma4.2)
^J/G y

=' f S^G Tr7T,(+)^(T)d^(T)
^/G r

-f S ./^^Tr[^^((p)^,,(cp)*]dim^^(y).
^/G ^eVG^/N;
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Examples. — 1. The group of rigid motions of Euclidean space :
Let n^2 be an integer. Denote K == SO (^), N = IT, and G == N. K,
where K acts on N via rotations. We identify N with its dual. The
orbits in N are then spheres centered at the origin, and N/G ̂  a ray
emanating from the origin. For ye N, r == | y |, we have G^ = G if r = 0
and G^ ̂  N.SO (n - 1) if r > 0. Moreover d^ == c^-1 dr, where Cn
is the surface area of S"-1. Thus G is a (< fibre space " with base ̂  the
non-negative reals (carrying the measure c^71"1 dr) and fibre ̂  SO {n — 1)"
[with discrete mass dim a- corresponding to each o-e SO (n — i)"]. Note
that the exceptional fibre over r = 0 [namely SO {n)'] has Plancherel
measure zero.

2. Central groups : In case N = Cent G and G/N is compact, for-
mula (4.2) specializes to the Plancherel formula for central groups recently
published in [16].

3. Moore groups : G is called a Moore group if TI € Irr (G) ==> dim TT < oo.
By [26, Theorem 3] every such group is a projective limit of finite extensions
of central groups. Combining example 2, Theorem 4.4 and [21,
Theorem 5.4], one can in principle write down the Plancherel measure
of an arbitrary Moore group.

4. GL (n, F) : Let F be a locally compact, non-discrete field, with
char (F) = 0. Then [F* : F*"] < oo. If we set

Gn == { geGL (n, F): det geF^},

then Gn is a closed normal subgroup of finite index in GL (n, F). But
the map

(gij)^a->(agij\
SL(n,F)xF*-^G.

is a continuous and open homomorphism onto Gn with finite kernel.
Hence Theorem 4.4 provides the means of computing the Plancherel
measure of GL (n, F), given that of SL (M, F). We have worked out
the cases for which the latter is known ( F = C ; F = = R ; F a p-adic field
with character of the residue class field ̂  2 and n = 2). The precise
formulas can be computed fairly easily. We omit the various details here.

5. A LARGE ORBIT. — In this section we replace the assumption of
compactness of the extension by (< near transitivity ". The theorem we
prove is not the most general possible, but it includes the important special
case we have in mind. Therefore to avoid unenlightening technical diffi-
culties, we omit further generalizations at this time.
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THEOREM 5.1. — Let N be a locally compact abelian group and H
a locally compact unimodular group of automorphisms of N. Let G = N.H
and assume G is unimodular (i. e., the modulus of the ^-action on N is 1)
and! type J. Assume that N 15 regularly embedded in G. 7n addition^
assume that there is an orbit 0 in N whose complement has Haar measure
zero. Let Yi€<9 and V = G^nH. Assume finally that V 15 unimodular,
Then we have the following Plancherel formula : for all y€Li (G)nL2 (G) :

fl ? (</) I2 ̂  = fll ̂ ,o (cp) [|i d^v (cr).
^ a ^ o^G *^

Proof. — We first note that since

ff(n.h) dn = f/-(n) dn, f^L, (N).
^N ^N

it follows from a simple argument using the Plancherel theorem on N that

r/'(Y.A)dy=r/-(y)dy.
^ ^

That is, H also leaves Haar measure on N invariant. If follows easily
that H leaves d\ ^ invariant. Since N is regularly embedded, H/V is
Borel isomorphic to 0. But H/V carries a unique (up to a constant)
H-invariant Borel measure dh. Therefore with a suitable normalization
of dh, we must have

(5.1) ftCr)^ = f f ( ^ ' h ) d h , feL, (^).
^/o ^H/V^O ^H/V

Now proceed in a manner reminiscent of the proof of Theorem 4.4.
We may assume yeCo (G). Set ^ = y *^ ?* and 9 = ^ |^. Then

f \ ^ ( 9 ) ? d g ^ ^ ( e ) = Q ( e )
^G

== f§(T)dY [Lemma 4.3 and formula (4.1)]
J^

= f Q (f) dy (Hypothesis of theorem)
JQ

= f § (yi. h) dh [formula (5.1)]
•^H/V

(5.2) = fTr TT. ^ (^) d^y (a) (to prove).
^^
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Note — the fact that V is type I is a consequence of the hypotheses of
the theorem. It remains to establish equation (5.2).

We compute Tr TI^ = Tr Ind^ yi a- via Theorem 3.2. Indeed
that result gives

Tr n^,a W = f Tr[ f ̂  (h-1 nuh) ̂  (n) cr (u) dn dv\ dh.
^H/V L ^ N V J

Now define ^ {u) = f^ (/^-i nuh) 71 {n) dn. Then
»/N

Tr TT^ W == f Tr[ f^ (u) a (u) du\dh= f Tr ̂  (^) dh.
•^H/V L ^ V J ^H/V

Therefore

fTr 7r^<, (^) ̂ v (̂  = f f Tr ̂  ((7) dh d^ ^)
J^ *^ ^H/V

(5.3) = f f Tr ̂  (y) rf^v ((7) ̂
^H/V ty^

(5.4) = f ^(e)rfA
^H/V

== f ^(h-^nh)^,(n)dndh
^H/V *^N

= f ^ ( ^ . K ) d h .
^H/V

We still need to justify (5.3) and (5.4). Let o" be any unitary representation
of V. Then the operator

f ^ (h~^nvh) YI (n) a (u) dn dv
^NV

is positive. In fact, it is nothing more than W (h) in the notation of
Theorem 3.2. That is, 1̂  (o") is a positive operator for every o'€Rep (V).
The switch of integration in (5.3) is valid then by Tonelli's theorem and
equation (5.4) follows from Lemma 4.3. That completes the proof.

Examples, — 1. Let F be any locally compact non-discrete field and
consider the group G = F^SL (2, F). Identify F2 with its dual and
let SL (2, F) act on it via

(u, ( ; ) . ( " ) = (ua + uc, ub + ud).\c u /
ANN. 6C. NORM., (4), V. —— FASC. 3 62
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There are two orbits, namely { 0} and F2 — { 0 }. The stability group
of Yi = (1, 0) is v-^ M-
And so, all the hypothesis of Theorem 5.1 are satisfied. There are two
families of irreducible representations of G : those trivial on F2, i. e.,
the representations of SL (2, F) $ and the one parameter family

7r^,(T = Ind^ vYi 0-, o-eV.

By Theorem 5.1, the former has Plancherel measure zero, while the Plan-
cherel measure on the latter is the image of Haar measure on F under
the map a" ->• TI^^.

2. Gn = F^.SL (n, F). Once again, we identify F71 with its dual and
let SL (n, F) act by matrix multiplication on the right. As before, there
are two orbits { 0 } and F" — { 0 }. It is easy to check that the stability
group of the latter is ^ F^.SL (n — 1, F). The irreducible represen-
tations of Gn are : those trivial on F", i. e., the representations of SL (n, F);
and the family

^Ti^ ^[F^.SL^-^F)?.

The Plancherel measure on Gn < ( agrees " with the Plancherel measure
on Gn-i $ and so it follows easily by an induction argument that

G.^SL(n,F)'uSL(n - 1, F)'u ... uSL(2, F)'u^;

each of these sets has Plancherel measure zero with the exception of the
latter, on which the Plancherel measure is an image of Haar measure on F.

Remark. — So far as we know, these are the first examples of a specific
computation of the Plancherel measure for a class of type I, non-CCR,
unimodular groups. That they are type I follows from [11, Proposition
2.3] (3), that they are not CCR can be shown in a fashion similar to [1, p. 172].
For example, if G = F\SL (2, F); consider ^ = (y, 0)eF2 = F2,
<p€F*. Then G ^ ^ F ^ V in the notation of example 1. Write y'y
for the character ̂  0 1 on F2. V. It is easily seen that ̂  -> 1 as <p -> 0
in the dual topology of F2. V (the latter is the " Heisenberg group " over F).
By continuity of induction [14, Theorem 4.1] Ind^.y ^ -> Ind^.y 1-

(3) At least for F = R or C. For other local fields it appears reasonable to expect
these to be type I, although (as Professor Dixmier has reminded us) this remains unproven.
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But the representations Ind^y Top are all equivalent to ,̂1; and the
representation Ind^.v 1 is reducible. It follows that every irreducible
representation in the support of Ind^ay 1 is contained in the closure of the
point ^Yi,r Therefore ic^i is not a CCR representation.

6. THE PLANCHEREL THEOREM FOR NON-UNIMODULAR GROUPS. — We

begin with a generalized theory of Hilbert algebras (due to Dixmier [7])
which allows us to drop the unimodularity of the groups whose PIancherel
formula we wish to consider.

DEFINITION. — A quasi-Hilbert algebra 31 is an associative algebra
over C provided with an inner product ( . , . ) , an automorphism x —>- x,
and an involution x — x* which satisfy :

(i) {x, S)^o, ^e5i;
(ii) {x, x) = (^*, ^*), o;e5l;

(iii) {xy, z) = (y, {x^Y z), x, y , ^e5l;
(iv) the map y -> xy is continuous, a;€5l;
(v) the set { xy + (^yY *• ^9 y€5l } is dense in 51.

The topology referred to in (iv) and (v) is that deduced from the norm
defined by the inner product. Let 9€^ be the Hilbert space completion
of 51. Then the map x —^ x^ may be extended uniquely to a continuous
conjugate linear map J of 9€^ onto itself which satisfies

J2 = 1, (J a, J b) = (b, a), a, be. ̂ .

The symmetric operator x -> x admits a closure A which is invertible
and satisfies

A-1 = J A J, A = J A^J.

Now for each x^3^y the operators y -> xy and y -> yx may be extended
to bounded linear operators Ua; and Va; on 9€^ The map x -> Vx (respecti-
vely x -> Va;) is an algebra isomorphism (respectively anti-isomorphism).
Furthermore

(6.1) U^=IW VS=Y(^,

(6.2) JU.. J == V^, JVo: J == U^.

Let "U (51) [respectively V (51)] be the von Neumann algebra generated
by the collection { IL : ^€51} (respectively { Va; : ^€51}). Then 1L (51)
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and V (51), called the left and right rings of 51, are commutants of each
other [7, Theorem 1].

An element x^3€^ is called left bounded if there exists a bounded
operator U^ such that for all a€5l, LL a = Va x. Similarly, x is right
bounded if there exists a bounded operator Vo; such that Va; a = Va x,
a€5l. If x is left (respectively right) bounded, then U^GiL (51) [respec-
tively V^ € V (51)]. Of course, the elements of 51 are left and right bounded,
and the notation is consistent.

LEMMA 6.1 . — If A71 x exists and is left bounded for all n€Z, then AJ x
is left bounded and U^ = UAJ^.

Proof. — Let 511 be the set of all x for which A71 x exists and is left bounded
for all yi€Z. With the inner product inherited from 9€^ and the operations
A ^, J ^, xy = V^ y, 5li is a quasi-Hilbert algebra which contains 51
[7, proof of Proposition 6]. The lemma then follows from the first of
equations (6.1).

Next suppose that 11 (51) is a semi-finite von Neumann algebra. Then
there exist positive invertible self-adjoint operators M and M' (in general,
unbounded), affiliated (4) with V (51) and 1L (51) respectively, such that

M' = JMJ, A = closure of M'M-1

[28, Theorem 1]. Moreover M and A commute [28, proof of Theorem 1].
The operators M and M' are not uniquely determined; but if Mi, M', have
the same properties, there exists a positive invertible self-adjoint ope-
rator C, affiliated with U (51) FtV (51), such that Mi and M, are the closures
of CM and CM' [7, Proposition 3]. Now if we let Wi denote the set of
operators in 01 (51) of the form 2^ U,, U^, a,, b, left bounded and in the
domain ̂  of M, then the map

I: U,, U^ -> £ (M a,, M bi)

may be extended to a faithful normal semi-finite trace t^ on 01 (51). We
shall refer to t = t^ as the trace defined by M, and shall call M a tracing
operator.

M and 4 determine each other uniquely. In fact, if t is a faithful normal
semifinite trace on 1L (51), let tit, be its ideal of definition and put

n = n, = m1/2 = { TeOL (̂ ) : / (T* T) < oo ;.

(4) An unbounded operator T on ^C is affiliated with a von Neumann algebra 01 on ^€
if ST^TS for all SeOl/.



THE PLANCHEREL FORMULA 479

n is a Hilbert algebra with inner product (S, T) = t (ST*) [8, Chapter I,
§ 6, Theorem 1]. Let S€^ be the completion of n, and let 9€^ (t) be the
set of all left bounded elements x in 9€^ for which Ua;€n. Then there
exists a tracing operator M, which is the closure of its restriction to
^ (t), such that ( {Va U^) = (M a, M &), a, &€<^ (t). In addition, the
map MX -> U.r : 9€^ {t) -> n, may be extended to a unitary map YM of 9€^
onto 9€^ which carries OL (51) into 1L (n) and V (51) into V (n) (^e [7, proof
of Theorem 3] and [28, Lemma 2]). We call Y = Ygi the isomorphism
defined by M. Because U (51)' = V (51) and U (n)' = V (n)', Y must
carry 1L (51) onto U (n) and V (51) onto V (it). If (© is a dense subset
of 9€^ ((), then since M is a self-adjoint invertible operator, the set
\M x : x ^ ( J 5 } is dense in 3€^

For Ten, we write U (T) and V (T) for Ur and Vr; i. e., U (T) S = TS,
V (T) S = ST. Let j' : T -> T* be the canonical involution on ti.

LEMMA 6.2. — If a^9€^ (t) we have :

(i) YU. Y- 1 =U(U, ) ;
(ii) YV^Y-^VTO;

(iii) Y J = j Y .

Proof. — Let a, &€^(^) . Then

rU. M b = TMU, b - Uu,6 = U. U& = U (U,) TM b,

where the first equality results from the fact that M is affiliated
with V (51) = U (51)', and the second from [7, Lemma 1]. But we have
remarked that M 9€^ (() is dense in c%^. Thus it follows that
YU, = U (Ua) Y which proves (i).

Assume for the moment that (iii) is proven. Then, using (6.2) :

TV.* r-1 = YJU. jr-1 ==j ru. r-^j =j'u (u.)j = v (u;).

This proves (ii) and so it remains to prove (iii).
Let 5li be the set of b^9€c^ for which A'1 b exists and is left bounded

for all ^€Z. If fee^iO^i, then by Lemma 6.1 and [7, Lemma 10] :

TJM b = YMJA-1 b = UjA-i& = ^Asb = U? =j U& =j TM b.

By the continuity of j and J, it suffices to show (S^n^i is dense in ^Cj^

For this we argue as in the proof of [7, Theoreme 2]. Let M == f a dEy^
^0
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be the spectral decomposition of M. Because M and A commute, A"
and Ea commute, n€Z, a ̂  0. If a;€^, then Ea x is left bounded [7,
Lemma 8] and A" Ea x == Ea A" x exists for all n€Z. Furthermore
Ea^G^M- Since the set { Ea x : .rG^t, a^O } is dense in 3€^ we conclude
that ^n^i is dense in 9€^

With this preliminary material, we now consider a separable quasi-
Hilbert algebra 51 for which 1L (51) is type I. Let t be a faithful normal
semifinite trace on ^IL (51) and M the corresponding tracing operator.
According to well-known results on the decomposition of Hilbert algebras
(e.g., [10, 6.7.7 and the arguments in 8.8.5]), there exists a standard
Borel space Z, a positive measure y. on Z, and a measurable field ^ -> J<^ (g) J<^
of Hilbert spaces such that : if n = i^, then

/-r\

^n= ( ^(8)^^(0,
J!

/T\

U (n) - f ^ (JCQ (g) C: ̂  (S),
^z

ffi
V(u)=f C: (g) ̂  (^) ̂  (;),

^z

and 11(11)0^ (n) is the algebra of diagonalizable operators, [if ^€ is a
Hilbert space, ^6 denotes its conjugate space realized as follows :
9€ = { ^€^e : a .^ == a^, a€C, (^, Y])" == (Y), ^) }; if T is an operator or

a representation, then T denotes the same object considered as acting
on ^e]. More precisely, let us write U (T) : S — TS and V (T) : S -> ST,

<T\

Ten, Se0l(5l), rather than Ur, Vr. If T = f T (^ d^ (^), then
^z

/T\

U ( T ) = f T (;)(g)l^^(0,
^z

V ( T ) = f 1^T(0*-^(S).
^z

If 7 is the canonical involution on n and j (C) is the canonical involution
^ (g) T) -^ Y] (g) ^ on JC^ (g) ̂ , then

J = f J (0 ̂  (0.
^z

The measure ^ is of course uniquely defined up to equivalence.
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f9

Now the map Y = Y( is an isomorphism of 3€^ onto ^ J<< 0 J<^ rfp- (^)
^z

/T\

which carries 11 (51) to F ^ (JC;) (g) C; d^. (^), ^ (51) to

/T\

r C,-0-^ (5y ̂  (S) and ^(^n^W

to the algebra of diagonalizable operators. If a^3€^ (() and
/T\ /T\

U , = r U,(9^(0er ^(g)^d^(0;

that is, if

TMa==^ U.(S)d^(0,

then by Lemma 6.2 :
/T\

ru. r-^ = r u. (e) ® i: d^ (o,

rv,* r-i -f9!^ ® u, (o- ̂  (0.

Moreover, since Y is an isometry, we have for all a, &€<®M?

(M a, M 6) =FTr (U. (S) U, (Q*) dpL (S).

Note we have written CQ^ for the set of left bounded elements in CQ^
[previously called ̂  (t)}. By [7, p. 293-294], ̂  is a dense subset of ̂
and M ^i is a positive invertible symmetric operator whose closure
is M.

We wish to apply these results to the quasi-Hilbert algebra associated
to a locally compact group. Let G be locally compact with right Haar
measure dg and modular function A,

A (y) ffO^) ̂  = ff^) dx, yeG, feCo (G),gx) ax == i f (x) dx, y € (jr, / e Lo <
^G ^G^c, ^c,

ff (x-1) A (o-^) dx == ff(x) dx, f e Co (G).(a;-1) A (a-1) (te == f(x) dx,
^ ^Gi-7^ ^G

If we impose the operations

(f*/0(rc)= ff(xy-i)h(y)dy.
^G

r(x)=f(x-^^(x)-^,
r (x) == f(x) A (x)^
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and the inner product

(f,h)= ff(x)h(x)dx,
^G

then Co (G) becomes a quasi-Hilbert algebra whose completion is La (G).
Note (in this section only) /"* differs from the usual adjoint (defined in
Theorem 3.2 for example) by a factor of A-172. We can define the left
and right regular representations of G as follows :

^ (̂ ) f(y) = A (x)-1/2 f(x-1 y), x,yeG, /-eL, (G);
9^)f(y)==f(yx), x,yeG, feL,(G).

It is well-known that A (G)^ = U (Co (G)), p (G)77 = V (Co (G)), facts
which are easily seen from the equations

(6.2 a) (f * h) (x) =^A (y)^ f (y) h (y-^ x) dy = ^ (A-v^ f) h (x\

(6.2b) (f * A*) (.r) =ff(xy) h (y) A (y)-v^ dy = p (A-v^ A) f ̂ ).

Before stating the Plancherel theorem for non-unimodular groups,
we need one more idea. Let G( be the subset of G consisting of traceable
representations (see [10, 6.6] for this notion). Then TI€G( if and only
if IT (C* (G)) contains the compact operators [10, 6.7.5].

LEMMA 6.3. — G( is a standard Borel subset of G on which the Mackey,
Da^ies, and topological Borel structures coincide. Every Borel measure

on Qt ^s canonical (i. e., arises from a central decomposition of a unitary

representation), and G( is a To space which is invariant under every auto-
morphism of G.

Proof. — That G( is a standard subset of G on which the Mackey and
topological Borel structures coincide was shown by Guichardet [17, p. 22].
Since the Davies Borel structure lies between these in general [6, Theorem
4.1], it must also be the same. Therefore, by the main theorem of [13],
every Borel measure on G( is canonical. The natural map G -> Prim (G)
sending TT -> kernel n [the kernel formed in C* (G)] is continuous and open
[10, 3.1.5]. The image of G( is precisely the set of all JePrim(G)
which are kernels of precisely one irreducible representation. It follows
easily that the restriction of TT -> kernel n to G( is a homeomorphism.
Since Prim (G) is a To space, so therefore is G^. Finally, if a is an auto-
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morphism of G, then

a7r (C* (G)) = TT (a-i (C* (G)) = TT (C* (G)).

Hence ^ (C* (G)) contains the compact operators if and only if ail (C* (G))
does likewise.

Now comes the Plancherel theorem for non-unimodular groups.

THEOREM 6.4. — Let G have a type I regular representation. Then there
exists a positive standard Borel measure [^ on G concentrated on G, a measurable
field ^ ->- J<^ (^) J<^ on G, a measurable field of representations ^ -> ̂
acting on JC^ such that T^€^ for [^-almost all ^, and an isomorphism Y of

®

/T\r* '» /»w
La (G) onto ^ J<^ (g) J<^ dy. (^) which carries \ to ^ 0 1^ d\^ (^) and p

(o 1^ (^) ^^ d[^ (^). There exists a positive iwertible self-adjoint operator

M on La (G) such that : whenever f, h^(R^ A-172 f, A-172 heL^ (G),

(6.3) r(Mf)(C)==^(A-v^),

(6.4) fMf(x)Mh (x) dx = fTr (T^ (A-1/2 /•) TT^ (A-v2 h)*) d^ (Q.
^G ^

The measure p- 15 uniquely determined to within equivalence^ M is uniquely
determined to within multiplication by a positive invertible self-adjoint
operator affiliated with "U (Co (G)) r^V {Co (G)); and [̂  and M determine
each other uniquely. Finally, if the set ^M^^CS^M : A'^^eLi (G) }
is dense in La (G), then p. is concentrated in Gi.

Proof. — We apply the preceding results on decomposition of quasi-
Hilbert algebras to 51 == Co (G). There exists a standard Borel space Z,
a positive measure p- on Z, a measurable field ^ -> ^^ (^) J<^, and an iso-

r* ^

morphism Y of La (G) onto j 3^ (^) JC^ d\^ (^) which carries
^z

/T\

(6.5) U (C, (G)) to r ff (5C:) 0 G; d^ (:),

/T\

(6.6) ^(Co(G)) to r C^(g)^(x.)^(0

and 'U (Co (G))n'V (Co (G)) to the algebra of diagonalizable operators.
Let M be a tracing operator defining Y and t the corresponding trace. If

/T\

/*€(®M, then U/€n, and we have U/ = C Vf (^) dp. (C). By Lemma 6.2

ANN. 6C. NORM., (4), V. — FASC. 3 63
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then

ruyr-i=y u^(o 01^(0.
ffi

rv^r-i=J1 ^ ® Uy (o-dpL (;).

Because Y X (rr) Y~1 is a decomposable operator for all xGG,
x ->• Y X {x) Y~1 is a representation, and by (6.5) we may choose an operator
field ^ -> ̂  (^) such that

rr\

(6.7) r^)T-^==y ^(^ (8)1^(0

and x -> ̂  (x} is an irreducible representation for almost all ^. We
may replace the i^ which are not representations by the one-dimensional
identity representation. To obtain the decomposition of p, note that
p (x) = J X (x) J. Then by Lemma 6.2 and (6.7) :

r p (x) r-1 == rj ^ (x) jr-1

==jr^)r-^
/T\

=/ i;;(g)S^)<^(0.
Next, using the fact that

rUy Y-1 = T 1 (A-v2 /•) r-1 = /"A-1/2 (a;) /• (a;) T 1 (x) r-1 da;,

and using (6.7) we can compute : for g, h^O!^ and A^^/'GLi (G),

fTr ((^ (A-v2 /•) (g) 1;) U, (?) UA (:)*) ̂  (0
•^z

= fTr (^ (A-v2 /•) U, (0 UA (0*) ̂  (0
^z

= f FA-v2 (x) f(x) Tr (^ (a;) U, (S) U, (;)*) da; d^ (?)
^Z ^G

= fA-'A (a;) /-(a:) fTr (TCS (a:) U, (Q UA (0*) dy. (;) da-
^c ^z

= fA-'/2 (a;) /-(a;) rTr ((TT; (a;) ® 1;) U^ (0 U, (?)*) d^ (Q da;
^G ^Z

== fA-1/2 (a;) f(x) Q. (x) Mg, Mh) dxA-1/2 <
^G

== (^ (A-1/2 f) M g, M /Q
=(UyM<7,M/0 .

^a
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Note the use of Fubini's theorem is valid since A"172 f e. Li (G) and
^ -> Tr (U^ (^) U/, (^)*) is p.-integrable. We conclude that

and thus that

/T\

ruy r-^ = f ^ (A-V^ f) (g) i^ ̂  (s)
^z

ffl
U ^ = f 7r;(A-v^)^(0.

^z

If also fe^M, then U^ == YM /t and we have

TM f (S) = ̂  (A-1/2 /•) for almost all ;.

Moreover, by (6.2 a) whenever A^^^ELi (G), then U/ is left bounded.
Hence ^M^^M- This proves (6.3). Since Y is an isometry, (6.4)
follows immediately.

Next if M' is another tracing operator, M' = CM where C is a positive
invertible self-adjoint operator affiliated with 1L (Co (G))n^ (Co (G)).

/•»
Then C is diagonalizable, C = c (^) d\^ (^) where c (Q is a positive Borel

"z
function on Z. In that case, (6.4) is preserved with M replaced by M'
and [̂  by p-' == c p-. It follows easily that M and p- determine each other
uniquely.

Finally, we need only transfer the measure p- to G and choose the repre-
sentations TI^ so that r^e^EG — all of which we can do by arguing as
in the proof of [10, 8.4.2]. That p- is concentrated in G follows from
[10, 8.4.8] {see also [10, 7.3.6 (ii)]. To show that when ̂  is dense in
La (G) p- is actually concentrated in G^, we reason as follows. Let
E = G — Gt and f^(Q^. Then for any neE either TT (A-172 f) == 0
or Tr (ix (A-172/') TI (A-172/*)*) =00 [10, 4.1.10]. Therefore TI (A-172 f) = 0
for [^-almost all r^eE. But then v == [^-.(characteristic function of G,)
is a standard Borel measure on G which satisfies all the conditions of the
theorem. Therefore v is equivalent to p- which implies p- (E) == 0, that

./\

is p- is concentrated in G(.

Remarks 1. — If G is unimodular, then A =- 1, A = 1, and we may
choose M == 1. The corresponding Plancherel measure p. == p-^ is uniquely
determined up to a constant (which depends only on the normalization
of Haar measure on G). We thus obtain the usual Plancherel theorem [10,
18.8.1, 18.8.2] as a special case of our Theorem 6.4.
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2. Moore [27] and Tatsuuma [31] have each independently proven a
slightly different version of the Plancherel formula in the non-unimodular
case. We indicate briefly here how their and our results are essentially
the same. Replacing M by M A172 our Plancherel formula becomes

f M p =^Tr (^ (f) ̂  (/•)*) ̂  (S).

Let M-1 == D (^) dy. (^) be a decomposition of M-1; the D (^) are posi-

tive invertible self-adjoint operators. Letting /\ = M f, we obtain

f\ /"i I2 -/Tr (D (S) ̂  (/\) ̂  (f^ D (S)) ̂  (0.

Setting h (g) = j /\ (ggj fi (gi) rfgi, we get Moore's formula [27] :

h (e) ==^Tr (D (Q ̂  (7i) D (Q) dp. (;).

Note that although M has a degree of arbitrariness as general as a positive
invertible self-adjoint operator, the operators D (^) are uniquely determined
up to a constant. Moore has made some progress in computing these
D (^) for certain kinds of Lie groups.

The technique of Moore and Tatsuuma is more constructive [they get
the D (^) rather than M], but they need to make the additional assumption
that Go = { g€G : AG (g) = 1 } is type I and regularly embedded. Our
techniques do not seem to require that assumption. However, it appears
that the presence of some « reasonable » normal subgroup may be necessary
in order to show (J3^ is dense. For example, L. Pukanszky has proven
the density for connected solvable Lie groups {in [29, p. 592]) by using
the unipotent radical. E. Carlton has done likewise for certain p-adic
solvable groups. Unfortunately, we do not know to handle the general
case at this time.

7. THE PROJECTIVE PLANCHEREL THEOREM. — In order to deal with
the Plancherel formula for group extensions we must be able to handle
the Plancherel theorem, not only for non-unimodular groups, but also
for projective representations. We develop that material in this section.

Let G be locally compact as usual, and suppose co is a normalized
[o (^, x~1) == 1, x€G] multiplier on G. Consider the left regular co-repre-
sentation A^ of G and also the right regular oo-representation po> of G.
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These act on La (G) as follows : for ,z;€G, ^eLa (G),

^ (x) f(y) = A (:r)-v2 co (̂ , rr) /-(^ y),
pco (̂ ) f(y)=w (x~\ y~1) f(yx).

We can associate these projective representations of G with ordinary repre-
sentations of a group extension in the usual fashion. Let G (co) == T X G
with the multiplication

(t,x)(s,y) = (ts^(x,y),xy);

and the topology obtained by providing T X G with the product of Haar
measures and applying Well's theorem [23, Theorem 7.1]. G (co) is a
locally compact group having T as a compact normal subgroup and
G (co)/T ̂  G.

Consider the projection P on La (G (co)) defined by

P f (t, x) = t fs-1 f (5, x) ds, f € L2 (G (co)).
^T

Then imP is the subspace of La (G (co)) consisting of all /-€ La (G (cio))
satisfying

f(t, x) = tf(l, x), almost all X(EG.

The map f-^ /'(I, .) is an isometric isomorphism of im P with La (G),
and we use this map to identifiy La (G) with im P. Suppose A and p denote
the left and right regular representations of G (co). P commutes with A
and p, and one checks readily that

P ^ (t, x) = ̂  ̂  (x) P,
P p (/, x) == t ̂  (x) P.

Now assume that G (co) has a type I regular representation. Then we
can apply Theorem 6.4 to G (co) :

ffl (T)

MG(5)))^y ^(g)^d^(<;,)(0> ^(t,x)=f 7T((f,a;)01(d^(^(0,
<T\

P (t, X) =f 1; 0 7T; ((, XT d^(^) (;)

and

f M f(t, x) Mh (t, x) didx= f Tr (^ (A-^ /•) ̂  (A-v^ A)*) d^^ (;).
"0(3) aW



488 A. KLEPPNER AND R. L. LiPSMAN

We have written A for the modular function A / ^ {t, x) = A^ (^). But P
/T\

commutes with X and p $ so P is diagonalizable, P == f P (C) ̂  (C).
Because P is a projection P (^) = 0 or 1 almost everywhere. Set

E={^G(^y : P ( ^ = = i { .

E is well-defined up to a set of measure zero. Now P X (^ x) = t~1 P X (1, a;);
hence

j[* ^ ( ,̂ rr) (g) 1^ d^) (?) == ̂ \ (1, x) 0 1^ d )̂ (0.

Therefore E = { Tie G (oJ)" : TL (^ x} = r1 TI (1, x) } . It is straightforward
to check that corresponding to any oo-representation a- of G, the repre-
sentation IT (^, x) = t~1 (J {x) is an ordinary representation of G (oo). In
fact the correspondence o- -> n is a one-to-one correspondence between all
(o-representations of G and ordinary representations of G (co) having the
property TI (t, x) = t~1 TI (1, x). Note that unitary equivalence and irre-
irreducibility are preserved by this correspondence. It follows that
we may identify

E = 610 = equivalence classes of irreducible co-representations of G.

The Borel structure of G^ that is carried over from E agrees with the
Mackey Borel structure defined directly.

THEOREM 7.1. — Let (o be a normalized multiplier on G and suppose
G (co) has a type I regular representation. Then there exists a positive standard

Borel measure p. = ̂  ,o> on G (oJ) concentrated on G", a measurable field

^ ->- J<^ 0 J<^ on G (a)), a measurable field of representations ^ ->• ̂  acting
on JC^ such that T^G^ for [^-almost all ^, and an isomorphism Y of L^ (G)

/<e ^ ^© ^
ontoj JC^ 0 JC^ d\^ (C) wAic/i carr^5 X^ to j ^ (g) 1^ dy. (^) anrf pco to

G(S)

1^ (g) 71^ rf[j. (^). r/fcer^ emste a positive iwertible self-adjoint operator M

on L2 (G) such that : whenever /, Ae^p A-172/*, A-^/ieLi (G) :

(7.1) TMnO^TT^A-v^),

(7.2) fMf(x)Mh (x) dx = f Tr (̂  (A-v2 f) 7:̂  (A-v2 A)*) ̂  (S).
t7G J^

The measure [̂  15 uniquely determined to within equivalence; M is uniquely
determined to within multiplication by a positive iwertible self-adjoint
operator affiliated with U (Co (G (co))) U V (Co (G (^))); and y. and M determine
each other uniquely.
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Proof. — Set ^ = = = ^ / ^ . ^ , where ^e denotes the characteristic
function of E. Then by what we have already said, if a?€G,

^ (x) = f ̂  (a:) (g) 1,. ̂  (S),
J^

^(x)= f l^^(x)- ^(S).
G"

Note that if T^ is an (^-representation, then ^ is an co-representation.
More generally, the mapping TC -> % supplies a one-to-one Borel corres-
pondence between co and co-representations of G.

Now let Mi be the tracing operator that defines the isomorphism Yi

of La (G (co)) onto f J<^ (g)J^ rf^ (C). If fe^ then
G(o))

T,(M,0(0=7r,(A-V^.

But Mi and P commute [since Mi is affiliated with V (Co (G (co))) and P
commutes p]. Therefore jfe^ ̂  P fe^M,. Furthermore if /'E^M,,
then U/€ti and Up^=PU/€n [7, p. 293-294]. Hence P/*e^ as
well. It follows that if we take

^ == ^i |L,(G), M = Mi |L,(G)»

then equations (7.1) and (7.2) are fulfilled. We observe that for
A-^/eLi (G), (TSG^, if we set F ((, x) = tf {x), ^ (t, x) = r1 a (^), then

o- (A-v2 0 = TT (A-v2 F) = f A-v2 (t, x) F (/, a;) 7: (/, a;) A drc
^(o?)

= fA-v2^)/'^)^^)^.
JG

The correspondence between M and p. is easily derived as in the proof
of Theorem 6.4. This completes the argument.

Remarks. — 1. It is an easy exercise to check that the results of
Theorem 7.1 depend only on the class of (jo. That is, if (Oi is another
normalized multiplier, similar to co, then the objects G (co), G^, p-^ trans-
form « isomorphically » onto G (001), G^, J^G,^*

2. If G is unimodular, we may choose M = 1 and then p^co is uniquely
determined up to a constant.
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3. With an appropriate density assumption, we can show that ^^

is concentrated inG (^HG", but we shall not need that in the following.

Example. — Let y be a non-zero real number, G = R2, and consider
the function on G x G defined by

^((^ l/)>&^)=^^T(^'^)/2•

It is straightforward to check that co is a normalized multiplier on G.
It is well-known that there is only one irreducible (Ov-representation o^
of G [24, § 9]. It can be realized on La (R) as follows

^ (x, y) f(u) = e^ (^.^) f(u + x), feL, (R).

The group R2 ((S!^) is easily seen to be isomorphic to a three-dimensional
nilpotent Lie group, and so is type I. Therefore, by Theorem 7.1, there
exists a constant Gy such that

f | cp (x, y) |2 dx dy = c^ Tr [^ (cp) ̂  (9)*], cp e L, (G) n L, (G).
^G

We wish to compute c^-
Now

^r (?) == jf ^ ( x ' y) ̂  ( x ' y)dx ̂  ^€ Ll (G)n L2 (G)-
Therefore

^ (?) /"(") = jf? (^ ̂  e^r(^^) f(u + x) dxdy

== (Te^y^^ 9 (x - u, y) /•(re) & dy

= j ^^ (u, x) f (x) dx,

where
^ (u, x) = f^Tr^^ cp (a; — u, y) rfy.

It follows from Lemma 3.1 that

Tv[^W^W]=f^(x)dx,

where

^(x)=f ^ (.r. z) |2 dz.
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But an easy calculation shows that

C <^ (x, z) |2 dz = f ^yx cpi (y) dy,
where

?i (V) = (J ^rz/si ̂ (z,y +-n)^ (z, -n) dz dr].

(pi is easily seen to be integrable and continuous positive-definite. There-
fore

Tr [̂  (cp) ̂  (9)*] =J\^y- ̂  (y) dy dx

== / ?i (T x) ^x

=lTl-l/?l^)^

= 2 TT | Y [-1 cpi (0)

== 2 TT | y |-1 ̂  I cp (z, y;) |2 dz dr].
Hence Cy = y [ /2 IT.

8. EXTENSIONS OF THE CENTER. — We give in this section another
case in which we can compute explicity the Plancherel formula for a group
extension. We maintain the notation of paragraphs 4 and 5 with the
additional assumption N = Cent (G). The action of G on N is then the
complete opposite of the transitive case (§5) , namely every point is an
orbit.

THEOREM 8.1. — Let G be unimodular and type I, and set N = Cent (G).

Assume that for almost all yeN, the group (G/N) (oo^) i8 type J. Then
for all y€ Li (G)nL2 (G) :

f\^9)?dg== f f || TT^ (9) \\ld^ (̂ ) dy.
JG ^'(c^

Proof. — We first note that G/N is unimodular, so that p. ^ is uniquely
defined. As in paragraphs 4 and 5, we may assume < p € C o (G). Then,
as before, we set ^ = y *c y* ^d 9 == ^ IN* The following computation

f\^(g) 2^^(e)=6(e)
^G

==r@(Y)dY^
(8.1) = f f Tr ̂  W dp. (a) dy,

Mo r̂ 1

constitutes a proof of the theorem, as soon as we justify equation (8.1).
ANN. 6C. NORM., (4), V. —— FASC. 3 64
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Now

^ W == (T' ̂ ) W = f(T' o^'/) (?) ^ (?) dg
^G

= I (l (n?) ̂  (ng) ̂  (ng) dn dg
^G/N ̂ N

==f f f^WY(9)^(ng)dn}^(g)dg
^G/N V ^ N /

= / +1 (?) <7 (?) rf?>
^G/N

where

+1 (?) = fr (̂ ) T' (?) + (̂ ?) ̂ .
c/N

In order to proceed we have to consider briefly the twisted group algebra
corresponding to the normalized multiplier (o. Let Li (G/N, 00) be the
collection of integrable functions on G/N with twisted convolution

(f *o) A) (x) = f a) (x, y-1) f (^-1) h (y) A/.
•^G/N

LEMMA 8.2. - The map T : ?-^ T^ (g) = fy (n) y'(g) y (ng) rfn
JN

is a homomorphism of Li (G) into Li (G/N, co).

Proof. — The only thing that is not obvious is that T is an algebra homo-
morphism. But in fact we can compute for y, ^p€Li (G) :

T (? * ̂ ) (?) == fr (n) r' (?) (cp * +) (ng) dn
JN

= fr (̂ ) T' (?) f? (n?A-1) + (A) dA dn
^N «>'G

==fT(^)T'(?)f ^(ngh^n-^^^^dn.dhdn
^N ^G/N ^N

(8•2) == f f fr (n) T' (?) ? (n^T1 ?^-1) ^ (ni A) dn dni dh
J G/N ^ N ^N

= f f fy (Wi) Y' (y) cp (ngh-1) ̂  (n, h) dn dn, dh
c/G/N »/N t/N

s=3 f f ̂  ̂  ^ (/zl) ̂ / (yA~l A) ^ (n?A~l) ̂  ̂ l A) dn d^ dh
1 - ^ G / N ^ N ^ N
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(8.3) = f f fy (n) y' (<y/i-1) 9 (n<?A-')
«^G/N ^N ^N^G/N ^ N ^ N

X y (Hi) y' (7Q + (ni A) dn dni ^ (^-1, A) ̂

(8.4) = f (T 9) (g h^) (T +) (A) co (^ T^-Q ̂
^G/N

=(TV*,T^).

We have used the fact that N is central in (8.2), that y' is an oo-represen-
tation in (8.3), and the fact that OD (.r, y) co (xy^ y~i) = 1 in 8.4 [a simple
consequence of the co-cycle identity for co and the normalization
co(z ,^)=l ] . ^ - ^ .

The twisted convolution-provides another service for us. Given an
co-representation a- of G/N, one checks easily that o- (f^w h*) == cr (^) o- {h)*,
f, hfsili (G/N, (o). Putting these ideas together with the results of Theo-
rem 7.1, we have

f _Tr7rv.,(4.)^^ (ff)=f _Tr^Od^,(<0
(<^ W.

=f TT^T^dy. (^
>/(^^

=f Tr[a(T9)^T?)*]d^^(ff)
'(^^

= f ITcp^)!2^
•^G/N

=(Tcp^(T9)*)(e)
=T+(e)

= fr (") + (") d"
./N

=§(T).

This proves (8.1), and so completes the proof of Theorem 8.1.

Example. — Let G be the Heisenberg group,

( / I x . z\ \
G = ( 0 1 y }:x,y,zeR .

( \ 0 0 I/ )

More precisely, G is the group of all real triples { (a;, y, z) : x, y, z€R
with multiplication

(x, y, z) (S. Y), 0 = (a; + \, y + -n, z + C + x n).
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We take Lebesgue measure dx dy dz for Haar measure on G. Let
N = Cent G = {(0, 0, z) : z€R } with Haar measure dz. Then

^ = = { T : ( 0 , 0 , z ) ^ e ^ , y € R } ,

and the Plancherel measure on N is normalized Lebesgue measure
d ^ / 2 7i. Clearly G^ == G for any y. When 7 = 0, we obtain the repre-
sentations 7io,(r, i. e., the one-dimensional characters o- of G/N ̂  R2 lifted
to G. When y 7^ 0, we obtain the following :

y' (x,y,z) =e1^-^

^T I (̂  y)» (S»^) 1 =e^r-^)A.

Note that this multiplier is precisely a^ = (D_^ in the notation of the example
in paragraph 7. Taking o^ as in that section, we obtain a one-parameter
family of infinite-dimensional representations

^T^r = T'®^
^ (̂  y, z) f(u) == e^-^-) y(u 4- ̂  ^L2 (R).

According to Theorem 8.1 and the example in paragraph 7, Plancherel
measure on Gis exactly the image of (2 Ti)-2 | y | rfy under the map y -^ n^^
(compare e. g., [9, § 4] where the normalizations of Haar measure are
less precise).

9. THE SELECTION LEMMA. — In this section we prove the crucial mea-
sure-theoretic result that we need for the proof of our general Plancherel
formula. The selection lemma is involved with the choice of measurable
sections and, as one might expect, is quite technical. Another matter
with which we will be concerned here is to generalize the results of [24, § 8]
by dropping the type I assumption on N in favor of the (< type I subset "
N< of N.

For each cardinal n, 1 ̂  n ̂ oo, let 9€n be a fixed n-dimensional Hilbert
space. We let Repn (G) be the set of all (continuous unitary) represen-
tations of G on 9€n, with the usual topology [the weakest for which all
the maps IT -> (u {x) $, Y)), xeG, $,Y]€^, are continuous]. If we set
Rep (G) =Un Rep/i (G) with the sum topology, then Rep (G) is a polo-
naise space [10, 3.7.1]. Let Irr^ (G) denote the subset of Repn (G) consis-
ting of irreducible representations, and set Irr (G) = \Jn Irr^ (G). Since
Irr^(G) is a Go set in Rep^ (G) [10, 3.7.4], Irr (G) is polonaise.
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Let M (Irr (G)) be the space of all finite Borel measures on Irr (G).
Now the topology of Irr^ (G) arises from embedding the space in a countable
product of discs (as in [10, 3.7.1]). Thus Irr^ (G) is a Go subset of a
compact metric space Sn, and Irr (G) is a Go subset of a locally compact
metric space S = \Jn Sn (where S has the sum topology). Let C^ (S)
be the space of all bounded continuous real-valued functions on S with
the uniform norm. Then C& (S') may be identified with the space of all
finite Borel measures on S, and M (Irr (G)) is the subspace of C& (S)' consis-
ting of measures concentrated in Irr (G).

We provide C& (S)' with the weak ^-topology. This induces a topology
on M (Irr (G)) which may be described as the weakest for which all the

functions v -> <^ v, /* )>== f d?v, f^Cu (Irr (G)), are continuous — where

CM (Irr (G)) is the space of all bounded real functions on Irr (G) whose
restriction to each Irr^ (G) is uniformly continuous, i. e.,

C.(Irr(G))={/ l |^(G): /•eC,(S)}.

Let M^ (Irr (G)) be the subset of all positive measures of norm ̂  1.

LEMMA 9.1. — M^ (Irr (G)) is a Borel subset of the unit ball ofCb (S)'.
In particular, M^ (Irr (G)) is a standard Borel space.

Proof. — The space of positive measures of norm ̂  1 is weak lAr-compact
in C& (S)'. Thus to show M^ (Irr (G)) is Borel, it is enough to show
M (Irr (G)) is Borel. But Irr (G) = r\n Tn, where each Tn is open in S.
Furthermore, it is easily seen that M (Irr (G)) = Fin M (T^), where
M (Tn) is the space of measures concentrated in T^. Thus it is enough
to show that for any open subset T of S, M (T) is Borel.

Let fo be the characteristic function of T, and let { fn} be a sequence
of continuous bounded functions on S such that fn ->- fo pointwise. Then

^eM(T) ^ (1 -/o)^ =lim(l-/^=0.

Let {hj }^i be a countable dense subset of the unit ball in C& (S). Then

l im(l- /^=0 <=> l im<( l—/ . )^>=0 ( j=l ,2 , . . . ) .

It is clear that the last condition defines a Borel subset of C& (S)'; hence
M (T) is Borel.

Next let m : Irr (G) -> {1, 2, . . .,oo } be a Borel function. We have
in mind a certain function which we will describe explicitly later. If
ixe Rep (G), we shall denote by m (11) TI tl)e representation irnw (^) ^ on
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the space 9€^w (g) ̂ , where ^ = ̂  if it € Rep,, (G). The represen-
tation TO (ri) TC is of course equivalent to m (11) copies of TI. For each
v€Mf( I r r (G) ) , we put

r*

o-v == ^ m (n) TT ̂  (7r).
•Arr (G)

^ is a representation on

^© ^®
J m (7:) ̂  rfv (7T) = / )̂ 0 ̂  A (7:) = ̂ .

We set rf (v) = dim cr,. If v = 0, we let ^ be the one-dimensional identity
representation.

LEMMA 9.2. — For each v€Mf (Irr (G)) it is possible to choose a unitary
operator Ay of 9€^ onto 9€^^ such that the map

v -> Av o-^ A71,
Mf (Irr (G)) -̂  Rep (G)

is Borel.

The proof of this lemma is extremely technical and we postpone it.
Now let H be a closed subgroup of a locally compact group G. Write

x == H x, xeG, as usual, and let s : G/H -> G be a Borel cross-section such
that s (e) == e. Assume ye Rep (H) and set ^ = Ind^ y. In paragraph 3
we have shown how to realize TC on the space La (G/H; ̂ ) with respect
to a quasi-invariant measure dg on G/H. In this form the group action
becomes

^ (y) f (^) = T (P (^ y)) f (^B) [q W-^q (x)}^
where ? {x, y) : G/HxG -> H is the Borel function

PC^) ==s(x)ys(xy)-\

and q is an equivariant function defining the quasi-invariant measure.
If TGRep^ (H), then

L. (G/H; ̂ ) == L, (G/H) (g) ̂

and we may suppose, by abuse of notation, that this is one of our fixed
Hilbert spaces; that is, we may suppose n == Ind^ y€ Rep (G).

LEMMA 9.3. — The map y -> n == Ind^ y is a Borel map from Rep (H)
to Rep(G).
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Proof. — It suffices to show (y -> Ind^ y) |Rep,(H) is Borel for each n.
Therefore, by the definition of the topology of Rep (G), what we must
show is that for each /, /"eLa (G/H$^€n), yeG, the map

(Indg Y (y) f, f) = f (y ((3 (x, y)) f(xy), f (x)) [q (xy)lq (x)]1^ dx
«^G/H

T -> (inas
'G/H

is Borel. We may write f, f as countable sums

f = & ft ̂  ft e Ls (G/H), $< e «'„,
/" = S/ f'j ri,, /-;eL,(G/H), n/eaen;

and so

(Indg T (y) /; f) = &,, f (y (p (̂  y)) $„ ̂ ) A (£y) ̂  (̂  [q (xg)lq (x)}^ dx.
•^0/H^G/H

Replacing /'(^y) by /'(^y) [q {xy)fq (re)]172, we see it is enough to show that

T->f ^ ^ ( ^ y ) ) ^ ^ f ( x ) r ( x ) d x-> (Y (P {x, j/)) a. ^) f (x) r ix)
-'G/H^d/H

is Borel for fixed ^ r\e9€n, i/SG, f, feLa(G/H) .
Now there exists an ordinal r such that for each y, x ->- (3 (^, ?/) is a Borel

function of class F (in fact F depends only on the Borel class of s). Thus
(y, x) -^ (7 (P (a;, y)) ^, Y]) is of Borel class F in ^, and continuous in y.
It follows from [19, § 27, V] that (y ((3 (re, y)) $, IQ) is a jointly Borel function
of (Y,^). We may assume that/*, /*' are Borel functions, and then

(T» ^) ̂  (T (P (^ y)) £, ^) /' (x) f (x)

is Borel. By the Borel version of the Fubini theorem

T ^ f ^ ^ ( ^ y ) ) ^ ^ f ( x ) f f ( x ) d x
^G/H^G/H

is also Borel. That completes the proof.
We return once again to the general group extension situation as described

in paragraph 1. Let G be locally compact, N a closed normal subgroup,
76 Irr (N), and suppose the stability group G^ is closed; let y' be an exten-
sion of Y to GY with normalized multiplier (o^. Denote by Repn (Gy/N, o^)
the set of (^"representations of Gy/N on 9€n and

Rep (G^/N, c^) ==Un Repn (G-^/N, ^),
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We identify Rep (G^/N, co^) with a subset of Rep ((G^/N) (co^)) as in
paragraph 7, and we use this identification to topologize Rep (Gy/N, co^).
If ere Rep (GY/N, co^), then ?€ Rep (Gy/N, OD^), and as usual we write ^ff

for the lift of 5 to G^. By an abuse of notation we write y' 0 Sr^e Rep (Gy).

LEMMA 9.4. — The map o" -> Ind^ y'(^) 577 15 a Borel map from
Rep (G^/N, (^) to Rep (G).

Proof. — The map a -^ 5r is a homeomorphism of Rep (G-^/N, co^) onto
Rep (Gy/N, coy). Furthermore the map 5 -^ ^// is a homeomorphism of
Rep (G^/N, ci^) into Rep(GpCo^). Next, for each ^, Tje^tg)^,
o?€ Gp the function V -> (y' (^) 5" (a;) ^, Yj) may be expressed as a countable
sum of Borel functions of the form (y' (x) $1, $2) (^ / /(^) ^i, ^2); thus, it
is Borel. But the Borel structure generated by the weak topology agrees
with the Borel structure generated by its matrix coefficients. Therefore
V —^ y' (^) Sr" is a Borel map from Rep (G-p (So^) to Rep (Gy). Applying
Lemma 9.3 finally, we conclude that o- -> Ind^ Y'^ ^// ls Borel.

Now we define a function m on Irr (G) as follows. For Ti€ l r r (G) ,
we set m (7i) = p if n ^ is of uniform multiplicity p, l^p^oo, and
yn (11) = 1 otherwise. This is the function alluded to prior to Lemma 9.2.

LEMMA 9.5. — m is a Borel function.

Proof. — The map TT -> TI \y is a continuous map of Rep (G) into Rep (N).
Thus all we need to show is that for each p, the subset

Mp (N) = { y € Rep (N): y is of uniform mutiplicity p }

is a Borel set. For each 7, let Mp,j == Mp (N)n Repy (N). Then of course
it suffices to show Mp,j is Borel for anyj and any p . We choose a unitary
operator Ap,j of p 9€j (== <^y © <^ ©. . ., P times) onto 9€jp. Then
Y -> A.p,j.p Y-A^1 / is a Borel isomorphism of Mi,y onto ]Mp,y. Since
Repy (N) is standard, it will follow that Mp,j is Borel once we can show
that Mi,y is Borel [23, Theorem 3.2 and Corollary 1].

Let 51 {9€j) be the Borel space of von Neumann algebras on 9€j intro-
duced by Effros [12]. This is a standard Borel space and the maps
( A , B ) - ^ A n B , A—^A', are Borel [12, Theorem 3, Corollaries 1, 2].
It follows from this that the set

4Mi,y = { A€^I (^C/): A' abelian )
' == { A e a O ^ r A n A ' ^ A ' i -
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is a Borel set. But the map y -> y (G)" is a Borel map from Repy (N)
into ^{^€j) [12, Theorem 4, Corollary 1]. Since Y € M , , y if and only
if T (G^eiMi,^, it follows immediately that Mi,y is a Borel set.

Our next lemma is an almost obvious result, so we omit the proof.

LEMMA 9.6. — Let X be a standard Borel space, Y a separable metric
space and /*, h : X -> Y two Borel functions. Then { xe X : f (x) = h (x) }
is a Borel set.

In order to proceed we have to weaken the assumption « N is type I »
in [24, Theorem 8.1]. We accomplish this by restricting our attention
to N,.

LEMMA 9.7. — Let yeN(. Then G^ is closed. For any ^(G^/N^,
the representation

7;^= Ind^y^cr"

/ ^~\^ \ W Y
is irreducible. Also if o-i, (jae^Gv/N; , ̂  ̂  (T^, or if 71 and ^2 are not
in the same G-orbit, then 11^̂  =^ ^.,(T,. Finally ^,^\y is of uniform
multiplicity dim o".

Proof. — It follows from Lemma 6.3 that N< is G-invariant. Since N<
is standard, the stability groups G^, Y€N( , are necessarily closed [1,
Proposition 3.7]. Next we remark that the arguments used by Mackey
in [24, Theorem 8.1] to show the TI^ are irreducible and pairwise inequi-
valent will be valid if we know that 11̂  |^ is of uniform multiplicity.
In Mackey's work this comes about because N is type I [24, p. 293]. We
give an alternate proof here.

We have already seen several times how to realize 11^0 on La (G/Gv;
9€^ 0 S€a)' It we restrict the representation to N, we obtain the following
formulas

TT^ (n) F (g) == Y (gng-^ (g) !<, F (g), FeL^ (G/G^; ̂  0 ̂ ).
That is

^»©
^ T ^ I N = ^ T-^^®1^

^G/G.

y*

and so it suffices to show that ^ y . g r f g is multiplicity-free. By [23,
^G/GY

Theorem 10.5] it is enough to show that the representation 7ii is type I,
where

/T>

(9.1) TT, = f ^ . g d g .
^G/G^

ANN. ^C. NORM., (4), V. —— FASC. 3 65
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For that is it enough to establish that (9.1) is the central decomposition
of TXi . But G/G^ is Borel isomorphic to the orbit y .G^N^ and so this
is an immediate consequence of Lemma 6.3.

Now let Z be a Borel subset of Irr (N) such that its image in N is contained
in N( and for each "y€Z the right regular representation of (Gy/N) (co^)
is type I. We already know that

Indg T = Ind^ Indgr y == Ind^ (y' 0 ̂ )

where py is the right regular ojy-representation; and by Theorem 7.1,
we have

r*

Py = j 1(7 ® ^ d /̂N,(̂  (0^)•w
Writing [̂  for ^G/N,^ ? we see that

/r\

(9.2) Ind§ T = f lo ® Ind^ (y' (g) S^) d^ (<7).
(Or

We write ^ = Indo y'0 Sr^ and since, 11 is irreducible (Lemma 9.7),
we may suppose ii€ Irr (G). Once again, letting m (11) be the multiplicity
of 7i N? we see from Lemma 9.7 that m (11) = dim a. Therefore we have

/^
Ind§ Y = m (n) n d^ (n),

where Vv is the image of ^ under the map o- -> TI = Indl y' (g) 577, which
is Borel according to Lemma 9.4.

LEMMA 9.8. — For each y € Z it is possible to choose a measure
Vv€M^ (Irr (G)) such that :

/T\

(i) IndSy^J^ m ̂ ) ̂  d^ (^);

(ii) T/i<° map y -^ Vy /yom Z ^o M^" (Irr (G)) 15 universally measurable.

Proof. — We know from Lemma 9.2 that for each v€M^ (Irr (G)),
there exists a unitary operator Ay such that

v-^Av<7,A71 , Mf (Irr (G)) -> Rep (G)

is Borel. By Lemma 9.3 the map

Y -> Ind§ y. Rep (N) -> Rep (G)
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is also Borel. Let X = Mf (Irr (G)) X Z, Y = Rep (G) and set

f: X-^Y, f(v, y) = Ay ̂  A71,

/!: X-^Y, A(^T) = Ind§y.

Clearly /* and h are Borel; therefore, by Lemma 9.6 the set

Q = { (^ T)€X : A. <7, A71 == Indgy }

is Borel. According to the previous calculations, for each ye Z there
exists some v ^ e M ^ ( I r r ( G ) ) such that ( V p Y ) e Q . Applying the cross-
section Lemma [8, Appendice 5, § 5] there exists a universally measurable
function y-^ Vy such that (^,y)€Q, i. e., such that

/T\

Ind§ Y ̂  f m (n) n dv^ (TT).

That completes the proof.

If CeN and yeC, then the unitary equivalence class of Ind^ y depends
only on ^ and may be denoted Ind{? C. At times we write ^ = [y]. We
are now ready for the main result of this section.

LEMMA 9.9 (Selection Lemma). — Let [^Q be a Borel measure on N concen-
trated in the standard Borel subspace N()CN(. Suppose that for all CeNo
there exists v € M ^ ( I r r ( G ) ) such that IndS ^ == [Oy]. Then for ^-almost
all C € N Q it is possible to choose a measure v^€SM^ (Irr (G)) such that

(i) Ind^=[^j;

(ii) C ~> ̂  is y^o-measurable.

Proof. — Let Zo = { y€ Irr (N) : [7] € No } . By deleting a ^o-null Borel,
set in No if necessary, we may suppose there exists a Borel section s : ̂  -> ̂
No -> Zo [1, Proposition 2.15]. Set Z == s (No). Since No is standard Z
is a Borel set in Irr (N) [23, Theorem 3.2]. Let ( : 7 -> ̂  Z -^ Mf (Irr (G))
be the universally measurable map whose existence is guaranteed by
Lemma 9.8. Finally set w = t o s : No -> M^ (Irr (G)). Then ^ -^ ^ = w (^)
is Oo-measurable and

Ind§ C == [IndSyJ = [f^m (n) n ^(TT)I =[^J,

since by definition Vy == v^.
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We devote the remainder of this section to the proof of Lemma 9.2.
First we introduce the following objects :

SC^ = complex vector space of countable dimension;
T == metrizable space;

( . ^ . ) ( = = = positive semi-definite inner product on 9€o such that tor all
^yi€^eo^-> (^y])<, T ^ C is Borel;

gt^ == separated completion of 9€o with respect to ( . , .)(;
T^ = { (€T : dim^e^/c}, 1 ̂  k < oo ;
T, = T, - T,_i, 1 ̂  k < oo, To = 0;
T, = T -U;0 T,.

Our first task is to prove that each T\ is a Borel set, or equivalently
that each T^. is a Borel set. Let U be the vector space over Q (i) of complex
rational linear combinations of a basis of ^Co- For each /c, 1 ̂  k < oo, set

Vk = ( (Ui, . . . , Uk) : U /€U j,

R , = = { 0 - i » . . . ,^):r;eQ(0, 1/2^2|7-; 2^!
Then

foeT^ <=» (V ueU^.) (V m, 1 ^m < oo) (3 reR^H 7-1 Ui +.. • + ̂  ̂  ||̂  < 1/m
^ /o€n^€u,n^=iUr€R,i ^ : ||ri ui +. ..+^^|l< < i/m},

where ||.||( is the norm on 9€t deduced from (., .)(. Since

{ t e T : \\r,u, +..,+rkUk\\t< l/m }

is a Borel set in T, it follows that T^_^ is also Borel.
Now fix n, 1 ̂  n ̂ oo, and let 9€n be as in the beginning of the section.

We shall show that for each t^Tn, there exists an operator A( : 9€o -> 9€n
such that for ^€^60, t -> A($ is Borel and A( is unitary for ( . , .)c It will
follow that A( extends uniquely to a unitary operator A( of 9€t onto 9€n.
For this, let { ^ i , 6 2 , . . . } denote a basis for ^60. For each (, let
{ ^i (<)? ^2 (^)) . . . } be the result of applying the Gram-Schmidt procedure
to { < ° i , ^2, . . . } with respect to ( . , . )< . Then

^ J O , if K||,=0,
) ei/]| 61 ||<, otherwise;
( 0, if || 62 - (62, 6i (0), ei (0 |[< = 0,

^2 (0 == 62 - (e2, d (Q). ei (Q otherwise;
62 — (6s, 61 (Q)< 61 (0 ||^

The non-zero vectors among this set form an orthonormal set for ( . , . )< ,
and their images in 9€t form an orthornormal basis in that space. For
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each (, let {j\ (t),j'2 ( ( ) , . . . } be the indices of the non-zero vectors among
{ ei ((), ^2 ((), . . . }. Let { /i, /a, . . . } be an orthonormal basis of 9€n'
We define A( by setting

A( e (t) = [ ^kf if J = J h ̂  for some k9

(0 , otherwise

and then extending to all of 9€o in the obvious fashion. If we denote
^y ^ or ^ ^e image in ^ of a vector ^€^0, then we can define A( by
setting A( Sj (t) = A( Cj {t) and extending to ^ by continuity. It is a
triviality to check that A( is a unitary map of SCt onto 9€n.

To show the Borel property, since each ^ € 3€o is a finite linear combi-
nation of { <?i, ^2, . . . }, we need only prove that ( -> A( €j is Borel on T,z.
But in fact, once we carry out the (tedious) solution of the Gram-Schmidt
equations for the ej as functions of the ej (t), the fact that t -> A^ ej is
Borel is immediately clear.

Since Tn is a Borel set, we can conclude : given (€T there is an operator
At : 9€o -> ^€n, n = dim ̂ , such that for any ^€^0, t -> A(^,
T -> \Jn ^n is Borel, and A( extends uniquely to a unitary operator of 9€t
onto 9€n' U,i S€n is of course given the sum topology.

We are now going to apply these results to the situation described in
Lemma 9.2. Let T == M^ (Irr (G)) provided with the weak ^-topology
defined by Ca (Irr (G)). For each T;€ Irr (G), let JC^ be a fixed separable
Hilbert space. Denote by d3 = { (TI, ^) : ̂ €J<^ } the Hilbert bundle
with base Irr (G), fibres J<^ and Borel structure defined by a sequence
of sections ^1 ,^2 , . . . such that

(1) E^I r r (G) is Borel if and only if P""1 (E) is Borel, where
p : d3 ->- Irr (G) is the natural projection;

(2) (^, ^) -> (e, (n), ^) is Borel, j = 1, 2, . . . ;
(3) TT -^ (^ (TI), ̂  (n)) is Borel, 7, k = 1, 2, . . . ;
(4) the functions (11, ^) -^ (e^• (r.), $) separate points;

5<°e, e. g., [25, § 9]. Multiplying each ej by a suitable scalar-valued function
if necessary, we may suppose TT -> [| ej {^) || is a bounded function,
j' = 1, 2, . . . . Let ^Co be the vector space consisting of complex linear
combinations of the sections ^i, ^2, . . . . For each vGT, we define an
inner product on ^60 by

(f,h).=f(f(^h(n))d.(^

The separated completion <%v of ^Co is precisely JC^ riv (ri). We need
to show v -^ (/*, /i)^ is Borel.
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Now whenever S is a locally compact separable space, M (S) = C& (S)'

with the weak ^-topology, the mapping v -> < a, v > = ( a (s) d^ {s)

is Borel, for any bounded Borel function a on S. Indeed the bounded
Borel functions for which this is true contains Q, (S) and is closed under
the formation of bounded pointwise limits. Now since Irr (G) is a Borel
subset of a separable locally compact space S, and M(I r r (G) ) is a Borel
subset of M (S), it follows that for any bounded Borel function a on Irr (G),
the map v -> ^ a (7i) dv (ir) is Borel.

Returning to our set-up, we conclude that for all j, k ̂  1,

v —y^/Or), Ck (TT)) dv (TT)

is Borel. Hence for every /', /i€^o, the map

^ ->f(f^),h (TT)) ̂  (T:) = (/-, h).

is also Borel. Therefore we may appeal to our earlier results to conclude
that for each v, there exists a unitary operator Ay of S€^ onto ^w, where
d (v) = dim 9€^ and 9€dw is one of our fixed Hilbert spaces, such that
v -> A, fis Borel, f^3€,.

Let m : Irr (G) — { 1, 2, . . .,oo } be a Borel function, and take for ̂
the Hilbert space J<^ = ^m(n) 0 ̂ . Again we put

/•
<7y = m (Ti) TT dv (TT), ^ e Mf (Irr (G)).

Let Tn = { v : d (v) == n }, a Borel subset of T. What we must show to
finish the proof of Lemma 9.2 is that : for all y€G, $, T)€^, the map
v -> (Ay ̂  (y) A^ $, Yj) is Borel on Tn.

For each v, let { ^i (v), ^ (v), . . . } be the result of applying the Gram-
Schmidt procedure with respect to ( . , .),, to the set { ^ 1 , ^ 2 , . . . }. It
is obvious from the Gram-Schmidt formulas that there are certain complex-
valued Borel functions cjk (v), j^ 1, 1 ̂  k^j such that

^ (y) = SLi Cjk (v) .̂
But then

(A, (7, (y) Av1 ,̂ Y?) = (c7, (y) Ay1 ^ A71 y?)v
= ̂ i (o-v (y)A^ S, tj M)v (6, ̂ ), Av1 7)),.

For each j, we have

(e; (v), A^1 y?)v ^= 2Li c^ (v) (Av e^ Y?)

and by our previous remarks this is a Borel function of v.
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It only remains to show that

v -> (o\ (ff) A7' S» e/ 00)v == (A^1 S> ̂  OT1) ̂  C0)v

is Borel. Hence it suffices to prove v -> (Ay1 $, dy (y"1) ^/)v is Borel.
But then

(A71 S. ̂  Or1) ^)v == 2 (A71 S, ^ M)v (̂  M, ^v (y-1) ey)..

The function v ->- (A71 $, ^ (^))v == (^, Ay ei, (v)) is Borel and

(ek (v), o-v (z/-1) ey)v == £/ c/:/ (v) (e/, <7v (y-1) ̂ v.

Hence it only remains to consider v -> (^ (z/) ^i, ey^. But finally we have

(o-v (y) ei, e/)v == f (m (n) n (y) ̂  (n), e; (TT)) dv (TT);

and since n: -^ (zn (7i) T: (y) ^ (7i), ^ (TT)) is a bounded Borel function,
our proof is at last completed.

10. THE PLANCHEREL FORMULA FOR GROUP EXTENSIONS. — In this

section we prove our most general formula. Under fairly broad hypo-
theses, we will compute the equivalence class of the Plancherel measure of
a group G in terms of the Plancherel measures of a closed normal subgroup N
and the little groups Gy/N.

We begin with some material on automorphisms and equivalent repre-
sentations. Let G be a locally compact group and a a (bicontinuous)
automorphism of G. Let H be a closed subgroup of G such that a n
is an automorphism of H. If y (respectively ir) is a unitary representation
of H (respectively G), we write ay (respectively air) for the representation
ay (A) == Y (a~1 -h) [respectively an (g) = n (a"1 g)]. Our next result is
considerably more general than we need, but we present it partially for
its own sake.

LEMMA 10.1. — With the above notation^ we have a Ind^ y == IndS ay.

Proof. — For functions f on G, we put a f \x) == f (a"1 ^), ^G G. Denote
by A (a) == A^ (a) the modulus of a, i. e.,

A (a) f(a f) (x) dx = ff(x) dx, /•€ Co (G).
JQ JQ
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If ^ (y) == x-'yx, then A (i,,) = A (a;) = Ac (a;), the usual modular function
{see § 6). Now for i/SG, we compute

y/-(a;) da; = A (a y ) J ' f ( ( a y) x) dx

=A(ay)^ f ( a ( y » - l x ) ) d x

= A (a y)^-! /•) (y a-» a:) da;

= A (a y) A (a)-^(a-i /•) (yc) da;

= A (a y) A (a)-' A (y)-*j'(a-i /•) (a;) da;

=A(ay)A(y)-*y/-(a-)(fa.
Therefore

(I0-!) A ( a y ) = A ( y ) , yeG.

We denote by a the homeomorphism of G/H obtained by passage to
the quotient. Fix a choice of right Haar measures dg, dh, and let q be
an equivariant function defining a quasi-invariant measure on G/H (see § 3).
We use the notation of that section : for /'eCo (G), f (x) = ff(hx) dh,

and

f f ' ( x ) d y . ( x ) = ff(x)q(x)dx.w
^/H «^G^G/H ^C.

Now if we set An (a) = An (a n), then we have

(a /•)' (x) = ( (a f) (hx) dh== C /•(a-1 h a-i x) dh

= AH (a)-1 f f (h a-i ̂ ) d/i = AH (a)-^ f (oF )̂

=AH(a)-i(an(^).

Let a^. be the measure
<f,a^>=<ar.^>.

We wish to compute the Radon-Nikodym derivative of a p. with respect
to p.. By the preceding

f a^=AH(a) f (a/-/^.
^G/H ^G/H
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Then making use of the definition of p-,

M^O ( (a/7^=AH(a) f(^f)(x)q(x)dx
^G/H ^G

= AH (a) Ac (a)-i f /• (x) (a-i )̂ (a;) ̂
^G

= AH (a) Ac, (a)-1 C f (x) q (a x) dx

= An (a) Ac (^ff(x)q^q (x) dx.

But by (10.1) and (3.2), for A€H, .r€G,

g (^ (hx)) ̂  q^haix) ̂  An (oc /t) AG (a A)-^ q (^ x) _ q (a x)
q (hx) q (hx) AH (h) A^ (A)-1 q (x) ~ q (x) '

Thus q (a a;)/gr (^) depends only on x. Therefore

f af^=AH(a)AG(a)- f /•'(^)^a^^(^.
^G/H ^G/H V W

From this it follows that

d^ (r\ - ̂ ^ ̂ ^^
d^ w Ac (a) q (x) '

We rewrite this slightly

^•^ ^f^^^J^^^-ff^^^' /-eCo(G/H),

and go on to see how it figures in the proof of the lemma.
Let y be a unitary representation of H and set i^ == Indn y. For

/*€^e (T^) === ^e (a^), we put

T f(x) == (a /•) (a;) [^ (a-^ .r)/g (x)}^ [^ (^/AH (a)]V^.

It follows immediately from (10.2) that T is a unitary mapping of ^€ (OCT^)
onto 9€ (7i^). Moreover T intertwines the representations a^ and 71 ,̂
because

Ta7^,(z/)/•(.r)=T7^,(a-^)/>(^

= ^ (̂  (a-l l/) />) ̂ ) [^ (a-1 ̂ )^ (^l172 [AG (a)/An (^)]1/2

= f{^x^y)[q{^x^y)lq ̂ -lx)]^[q^-ix)|q(x)]l/2[^^)|^(^}i/2

while

^ (V) T f (x) = T /• (rq/) [ ̂  (a:z/)/^ (rr)]V^

= /'(^-1 (̂ )) ̂  (^)/^ (x)}^ [q (a-^ (^))/y (.ry)]V^ [^ (a)/An (a)]V^.

The two are the same and the proof is complete.
ANN. 6C. NORM., (4), V. —— FASC. 3 QQ
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Given an automorphism of G, it is clear how to obtain an action on G
and thus on the measures on G. With this in mind we have a

COROLLARY. — Let OQ be the right regular representation of G, and let
PG =j^ Tl d\^ (7i) be its central decomposition. If a is an automorphism

G

of G, then ^ and a^ are equivalent.

Proof. — Let H == { e } and let yo be the one-dimensional identity
representation of H. Then pc = IndSyo. But by Lemma 10.1,

Then
ape = Ind§ ayo = Ind§ yo = PG.

PG = \ ow dp. (n) == j n d (a^i) (n).
^G ^G

It follows from the essential uniqueness of the central decomposition
that p. and a p. are equivalent.

We are finally ready for our main result on extensions. Let G be
locally compact, N a closed normal subgroup. Our first assumption
is :

(I) The right regular representation p^ of N is type I and ^ is concen-^\
trated in N(.

Then, according to Theorem 6.4, we may write

p
PN = / lT0?d^N(T),

^

J^N is a representative of the Pla.ncherel measure class on N, which we
may (and do) take to be finite. ^ is concentrated in the G-invariant,
standard Borel subet N(; and by the corollary to Lemma 10.1, ^ is also
quasi-invariant under the action of G. Our next assumption is that
up to a p-N-null set, N is regularly embedded {see [15, Theorem 1]) :

(II) The measure y.y is countably separated.
But then we may apply Theorem 2.1 to write ^ as an integral of quasi-
invariant measures each concentrated on an orbit. Explicitly

/r\ /r\

^f f (lT<2>?)^dr(?)^N(T),
v^ 1^ •^G/ft..'^/G t'G/GY



THE PLANCHEREL FORMULA 509

where d^ (g) denotes a quasi-invariant measure on G/Gy. Since

(IT® 7 )^=^®?-^
we have

ffl ffipN=r r i^(g)7.^(<7)dMT)-
^/G "^

Next let PG denote the right regular representation of G. Then
/T\ /T^

PG = Ind§ p,, = f f Indg (1^0?. ff) d, (ff) d^ (•[•).
^a./G*70/^

But

Indi;(l^ (g) 7.<y) =1^® Ind§7.y = l.<g) (Indg ^).g = lv 0 Indg? = 1^ (g) (Ind§ y)-.

Therefore
/T\

f Ind§ (1, (g) ? .^ d, (^) = i (y) (1, (g) (lnd§ y)'),
^G/Gv

where
i (y) = min ([G : G^], oo).

Thus
/T\

(10.3) PG = f i (T) (IT ® (IndS T)') d^ (y).
^./G

We wish next to appeal to a formula from paragraph 9, and for that
we make our third assumption :

(III) For [^-almost all y, the group (G-^/N) (o^) has a type I regular
representation.

Then by formula (9.2), we have
/T\

(10.4) IndS T = f lo (g) Indg. (y' (g) ^) d^ (^
(c^)-

/ ̂ \ \^
where u-y is a Plancherel measure on ^G^/N^ .

Now by assumption II, p^ is concentrated in a standard Borel set S, for
which we may assume by [1, Propositions 2.15 and 2.5], that there exists
a standard Borel subset Si of N which meets each G orbit over S in exactly
one point. As in the proof of the Selection Lemma [see the paragraph
containing (9.2)], we use Lemma 9.4 to identify the measures [^ with
their images on Irr (G). Then we use the Selection Lemma 9.9 (applied
to Si) to choose a [^-measurable family f -> p-v.yeSi. Putting ̂  == [ ,̂
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y€S, we obtain a ^-measurable family. Combining (10.3) and (10.4)
then, our formula for p^ becomes

®

/T\
/* /»W

PG = / / _ i (y) (1^ (g) !<, (g) (Indg y' (g) ̂ y) ̂ - (̂  d^ (y).
^G (G^

Note we have employed the Borel isomorphism cr -> 5 of (Gy/N)^ onto

^G^/N) to adjust the notation slightly.
Now since v -^ ^ is ^-measurable, it follows that rf^y (cr) dp^ (Y) is

in fact a measure on Irr (G). We transfer it to G via the Borel map
Irr (G) -^ G. (Note we have written d^ (d) d^ (y) to stand for the

measure j ^ ̂  (7) in the sense of [3].) We note also that

i (y) dim f dim o- = dim (Ind^ y' 0 o-").

As usual we write 71̂  = Ind^ 7' (g) cr77. Finally we set 1̂  == 1̂  ^.
Then we have proven most of the following

THEOREM 10.2 (Plancherel Formula for Group Extensions). -— Let G
and N satisfy the assumptions J, I I , I I I . Then we have the direct integral
decomposition

/T\

(10 •5) PG = f ly, o 0 7^, ̂  d^ (̂ ) d^^ (Y).
"G

//* in addition we have

(IV) Re i5 /̂pe I.

T/ien the measure d^ (a) ^[1^ (y) 15 m^erf ^e Plancherel measure ĵ .

Proo/*. — There is very little left to show. By the preceding arguments,
formula (10.5) is valid whenever assumptions I, II, III are satisfied. If
IV also holds, then by Theorem 6.4 there is a unique measure (class)

^©
^G on G such that pc = / 1^0 ^ d^ (r.). Since the ^ ^ are irreducible

^G

and the ̂ multiplicities are < < correct 55 in formula (10.5), the measure
dy-G (<7) d^ (y) must be in the Plancherel measure class.

Examples. — 1. We give a brief computation of the Plancherel formula
for the group of affine transformations of the line. Let

G=j(; ^):a,6eR,^oj
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with the usual topology and matrix multiplication. The modular function
of G is A^ (a, b) == [ a . Take for the closed normal subgroup

-{(; O—!-
Then

H î O^"".-̂
and one checks easily that

( G if T = O ,
1 I N if Y ̂  0.

There are two orbits in N : 0i = { 0 }, 02 = N — { 0 }. Let f be a strictly
positive Borel function on N with total integral 1. Then we may take
f (T) ^T f01* I^N. The quotient measure on N/G is ̂  which assigns 0 to 0i
and 1 to ©a. The irreducible representations of G are the one-parameter
family of characters cr'7, ere (G/N)", and the single infinite-dimensional
representation

/ 1 7» \
TTi == Ind§ Yi, Y i ( . 1)=^-

According to Theorem 10.2, the Plancherel formula for G takes the form

PG == 1 ® ^i = 1 ®^

that is, the regular representation is a multiple of the irreducible repre-
sentation iii. We understand that Calvin Moore has shown that the
operator D (7ii) is 7ii (^fc) [27].

2. The inhomogeneous Lorentz groups. For n ̂  2, let Hn denote
the neutral component of the group of transformations of R^ leaving
invariant the quadratic form — x\ + ̂  + • • • + ^- The Hn are the
so-called (homogeneous) Lorentz groups. We shall use the notation
of [20, § 2] in describing the structure of H^. The groups Gn = R714'1. Hn
are called the inhomogeneous Lorentz groups. As usual, we identify
R^1 with its dual and consider the orbit space R^/Hn. It is well-
known that there are four families of orbits : { 0 },

C+ = { (xo, Xi, . . . , Xn) : xl = x\ + • . . + ̂ S, rco > 0 },
e- = { (rco, rKi, . . . , Xn) : xl = x\ +... + x\, Xo < 0 j;
J^ = ( (.To, x,, ..., Xn) : - xl + x\ +... + ̂  = - r\ x, ̂  r {, r > 0,
^ = { (n-o, x,, ..., Xn) : - x2, + x\ +... + x\ = - r\Xo ̂  — r }, r > 0;

and
Or = { (^o, x,, . . . , Xn): - xl + x\ +... + ̂  = ̂  }, r > 0.
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e^ and e~ are the light cones, J^U<^7 constitutes a two-sheeted hyper-
boloid, and Or is a hyperboloid of revolution. Using the notation of
[20, p. 941-942] one computes readily that the stability groups are as
follows : for Y = 0, H^ = Hn; for Y = (1, 1, 0, . . ., 0)€<^, H^ = MN
a n d f o r y — (- 1,1,0, . . . ,0)ee-,Hv == MV; fo rv = (±r,0, . . . ,0)€J;,
My = K$ and finally for y == (0, 0, ..., r), H^ ~ Hn_i. Now the base
B'^/Hn of our " fibre space " has (up to a set of measure zero) three rays
^, Or, meeting at a point. The orbit 0, (the others are similar) can be
parametrized

Xo = r sh u,
(a-i, ..., Xn) == r ch u (9i, . . . , 9^i),

(9i, ..., 9n-i) == polar coordinates on S71"1. The Jacobian of this trans-
formation has the form r71 J (u, Oi, . . ., 6^_i). Therefore (at least the
equivalence class of) the measure on the base is ^ dr on each of the three
rays. Finally the fiber over the points of ^ carry the Plancherel measure
of K" == SO (n)^ , a discrete fibre; and the fibre over the points of Or carry

^s

the Plancherel measure of Hn_i — a well-known split-rank one semi-
simple Lie group. We note that the case n == 3 has been studied in [30].

Remarks. — 1. The above groups are type I, but not CCR {see,
e. g., [1, p. 172]). We tried, without success, to give an example of a
Plancherel formula for a non-unimodular CCR group. In fact, we do not
know any example of a non-unimodular CCR group.

2. A reasonable alternative to assumption III would be
(III') For ^ almost all y, the right regular (iJ^-representation of Gy/N

is type I.
However, we have not yet been able to replace III by III' in the proof
of Theorem 10.2.

3. We suspect, but have not been able to prove, that assumptions I,
II, III imply the truth of assumption IV. Using the results of Effros [13]
as we did in paragraph 9, one sees that what is needed is a proof of : y, o-
traceable ==> ^,0 is traceable.

4. Another matter which we have touched skimpily here — and which
we feel is quite important — is to give a complete description of the Borel

structure of G in terms of those for N and the (Gy/N) .

5. If G is unimodular, Theorem 10.2 does not specify which is the
Plancherel measure in the measure class of dp.y (o") dy^ (y). Even it all
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the groups G^/N are unimodular (a fact which is not necessarily true),
we have only determined the measure class. The explicit determination
of the precise measure in the class has of course been carried out under
various general assumptions (§ 4, 5 and 8). It is in these cases that the
< ( appropriate 55 choice of the pseudo-image of ̂  is evident. What is needed
in general is a method for determining the correct choice of ̂

We hope to return to some of these matters at a later time (5).

11. DISCRETE SERIES. — W e close this paper with some remarks on the
relation of discrete series representations of G to those of N and the little
groups GY/N. We begin with a general

DEFINITION. — Let G be locally compact with a normalized multiplier (o.
We call the discrete series (respectively co-discrete series) of G the collection
of IT € G (respectively Ti € G^) such that v. is equivalent to a subrepresen-
tation of the left regular representation (respectively left regular (o-repre-
sentation) of G.

If the left regular representation of G [respectively G (co)] is type I,
then by Theorem 6.4 (respectively Theorem 7.1) and [10, 8.6.8], a repre-
sentation IT € G (respectively n e G") is in the discrete series (respectively
co-discrete series) if and only if [̂  ( { 7 l } ) > 0 [respectively P-c.co ( { ^ i ) > 0].
If furthermore G is unimodular, then TI € 6 (respectively ^ e G'0) is in the
discrete series (respectively co-discrete series) if and only if its matrix
coefficients are square integrable functions.

Having these notions, we obtain immediately the following consequence
of Theorem 10.2.

COROLLARY 11.1. — With assumptions I-IV of Theorem 10.2, the
representation ^,rj = IndH. (7' (g) o^) is in the discrete series of G if and
only if both (i) o- is in the ̂ -discrete series o/'G^/N, and (ii) the orbit containing
Y has positive measure, i. e., ^ (T-G) > 0.

Proof, — This follows from (10.5) as soon as we observe that the positi-
vity of [ ^ G ( { ^T,^} ) is independent of the choice of representative of p-c?
ditto for ^G(o») ( { a } ) ? ^d ^at the positivity of ^(T.G) also does not
depend on which quasi-invariant measure in the class of ^ is chosen.

Note that if 7 is in the discrete series of N, then ̂  (f.G) > 0$ but the
converse is false. This is illustrated by the first of the following examples.

(5) Added during proof. The authors have solved the problems posed in 3 and 5.
See their article in the Proc. 1972 AMS Summer Inst. E. Carlton has settled 2,
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Examples. — 1. Let N = Qp == the field of p-adic numbers, U == the
(multiplicative) subgroup of units in Qp. Set G = N. U where U acts on N
by multiplication. Identifying N == N, we see that N/G consists of
{ 0 }u UL:-oo ^, where On = { ^ € N : | x \ = p""} is a compact-open orbit.
Moreover, an easy calculation shows that ^ (0n) == p"" [1 — (!/?)]•
Also, the stability groups are

p ( G if T=O,
(jTv == <T ( N if y ̂  0.

Thus aside from the 0-orbit (to which corresponds the characters of G
trivial on N ~ U), all the other irreducible representations n^ == Ind^ y,
] Y | == p~m^ are in the discrete series of G-this in spite of the fact that N
has no discrete series. Note also that inf { ^ ( { ' K } ) ; ^ in the discrete
series of G } = 0. This is contrary to a difficult and significant conjecture
of Harish-Chandra's for reductive algebraic groups to the effect that
inf { [^G ( { TC }) : IT in the discrete series of G } > 0. Of course, the group
G = N. U is solvable.

2. Instead of the Heisenberg group G (see the example of paragraph 8),
let us consider Gi == G/D, where D is the discrete central subgroup

( / I 0 27:n\ )
D = { ( 0 1 0 ) : neZ }.

(\0 0 1 / )

Take for N the image of the center of G under the canonical projection
G -> Gi. N is a compact central subgroup of Gi. N is free abelian on one
generator and Gy == G, all y€ N. The representations of G fall into two
classes : ̂ o,a = the one-dimensional characters o- of G/N == R2 lifted to G,
and ^n == the unique irreducible (infinite-dimensional) representation
of G, whose restriction to the center acts via z -> z71, n ^zz 0. Without
bothering about the precise normalization of Haar measures, we see
easily that the Plancherel formula in this case is

f I ? (9i) I2 ̂ i == ( I ^o, (T (?) I2 ̂  + S^o | n | Tr (^ (cp) T^ (cp)*), cp e Li (Gi) n L^ (Gi).
^Gi ^R2

This illustrates the fact (which is apparently not widely-known) that
unimodular groups other than reductive groups can have discrete series.

3. We observe finally that in the example of paragraph 10 (the < ( ax + b??

group), the sole infinite-dimensional irreducible representation constitutes
the discrete series of that group.
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