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BRAUER GROUPS OF ABELIAN SCHEMES

BY RAYMOND T. HOOBLER 0

Let A be an abelian variety over a field /c. Mumford has given a very
beautiful construction of the dual abelian variety in the spirit of Grothen-
dieck style algebraic geometry by using the theorem of the square, its
corollaries, and cohomology theory. Since the /c-points of Pic^n is
H1 (A, G^), it is natural to ask how much of this work carries over to
higher cohomology groups where the computations must be made in the
etale topology to render them non-trivial. Since H2 (A, Gm) is essentially
a torsion group, the representability of the corresponding functor does not
have as much geometric interest as for H1 (A, G^). On the other hand,
it is closely related to the Brauer group of A and to the arithmetic of A.

The purpose of this paper is to extend the theorem of the cube and several
other results about Pic (X) to the corresponding assertions about H2 (X, G^),
where X is a proper, smooth scheme over S and then to apply this to the
question of determining the image of the Brauer group of X in H2 (X, G^).
Since H2 (X, G^) is essentially torsion, many of the results follow from
Kunneth type computations if S == Spec A-, k an algebraically closed field.
The suprising observation is that so many of these results hold for H^X, G,,,)
if X is defined over a regular or normal base scheme S.

Let p : X -> S be a proper, smooth morphism, I a prime distinct from
the residue characteristics of S. The first section shows how various
assumptions on the Neron-Severi sheaf of groups of X over S, which is
the " non-primitive " piece of PiCx/s, can be used to describe the behaviour
of the Z-primary component of R2 p^ G^. While this section is primarily
devoted to preliminary results for the main theorems in the next section,
Corollary 1.3 shows that Pic^s is a closed subfunctor of PiCy/s which partially
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46 R. T. HOOBLER

answers a question raised by S. Kleiman ([II], Remark 4.8). In the second
section, these preliminary results are combined with a duality theorem of
Grothendieck's to extend the above mentioned results on Pic to H2. As an
immediate application of the generalized theorem of the cube, we describe the
behaviour of the Z-primary component of H2 (A, Grn) under various isogenies
where A is an abelian scheme over S. In the third section, the generalized
theorem of the cube is combined with some non-abelian sheaf cohomology to

- . ;, 0 v

show that the il-primary component of H^ (A, G^) is contained in the Brauer
group of A for an abelian scheme A over S. We also show that under
strong restrictions on the (< non-primitive " elements of Pic (X), the primitive
piece of H2 (X, G^) is contained in the Brauer group of X. In particular
for abelian schemes over a regular base S this establishes (up to p-torsion
where p == char (F (S, 0g))) M. Artin's conjecture on Brauer groups
which was stated in his 1966 Moscow talk.

The questions answered here arose from reading D. Mumford's beautiful
book on abelian varieties [13]. The generalization of the Weil-Barsotti
formula comes from L. Breen's thesis [2]. In addition I would like to
thank L. Breen for several very useful discussions without which I would
not have had the tools, e. g., Theorem 2.3, to answer the questions men-
tioned above.

If p : X -> S is a morphism of schemes, we let p^ : XT — T denote the
morphism coming from base change by T -> S. Moreover p is proper if
it is formally proper, formally separated, and of finite presentation where
formally proper and formally separated means that the functor of points
of X over S satisfies the valuative criterion for properness and separation.
Finally if H is an abelian group or a sheaf of abelian groups, we let /H,
H (Z), Htors? I H, and H^ stand for the Z-torsion elements of H, the Z-primary
component of H, the torsion subgroup of H, the image of H under multi-
plication by L and the cokernel of multiplication by I on H respectively.

SECTION 1

Let S be an arbitrary scheme. We will be working with the global
etale and fppf (fidelement plat de presentation finie) topologies on S which
will be denoted Seig and Spig respectively. The former is the topology [1]
on the category of schemes over S generated from the pretopology for
which the set of coverings of T consists of families { Ui: : Ti -> T }, where Ui
is etale and T = U u,:(Ti) (set theoretically). The latter is generated
from the pretopology for which the set of coverings of T consists of families
{ U i : Ti: -> T}, where Ui is flat and locally of finite presentation and
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T == U ui (T,) (set theoretically). We will indicate the various cohomo-
logy groups, etc. by the appropriate subscript. S^, and S* will denote
the category of sheaves and presheaves on S^ respectively. If there is
no subscript, the etale topology is to be understood.

Many of the results we need are stated in terms of the etale or fppf
site on S, Sei and Spi respectively. These are defined by putting the
corresponding induced topologies on the full subcategory of ((Schemes/S))
consisting of those T which are etale or flat and locally of finite presentation
over S. The translation of most of these results follows from the obser-
vation that ?(8, F) ^ H" (S^ F SJ for any F€§ and similarly for the
fppf topology. Note that there is an obvious morphism cr : Spi -> Ser
Grothendieck has shown ([9], §11) that if FeSpi is representable by a
smooth group scheme in the etale topology on S, then R/1^ F = (0) for
n > 0 and so IP (Sei, cr^ F) -> H71 (Spi, F) is an isomorphism. We will
usually delete the cr^ for such F since its cohomology is independent of these
topologies. In particular these hypotheses are satisfied for G^, the sheaf
of units, and ^, the sheaf of M^-roots of unity, if n is relatively prime to all
of the residue characteristics of S.

We will want to use the technique of evaluation of fibre functors. If
we define a geometric point of S to be a morphism ^ : Spec (/c) -> S where
k is a separable algebraic closure of x(^(Spec (fr))), then a geometric point
over a given y€S is determined uniquely up to S-isomorphism and the
results of Expose VIII of [1] carry over to analogous results for FeS. If
2/CS, we will let y denote the corresponding geometric point of S over y
and y the corresponding strictly local scheme defined by the strict hense-
lization of 0g,y with respect to y. Recall that FeS is said to be locally
of finite presentation if

lim F (Spec (Aa)) -> F (Spec (Urn Aa))
—> . •—>

is an isomorphism for all filtered inductive systems of affine schemes over
S ([5], Chapter IV, 8.8). Thus F (y) is the fibre of F over y for any FeS
which is locally of finite presentation.

Given two geometric points y and yi of S, recall that a specialization
map of y to y , is an S-morphism y -^ yi ([I], Expose VIII). If a specia-
lization map exists, y^ is called a specialization of y. This is equivalent
to y^ being a specialization of y in S since a specialization map is the same
as giving an S-morphism y -> f/r In particular our procedure of selecting
an essentially unique geometric point y for each yCS determines the
specialization map uniquely up to an S-automorphism.
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DEFINITION. — A set valued presheaf F on S^ is constantly increasing
on T if F is locally of finite presentation and for any two geometric points y
and yi of T with yi a specialization of y, the specialization map F (|/i)-^ F {y)
is monic. F is constantly increasing if it is constantly increasing on T for
all T over S.

Before stating the generalized theorem of the square (which becomes a
triviality in this rarefied setting), we need one more definition.

DEFINITION. — If F is presheaf of groups on the category of S-schemes
with a section, define F^ (X) = Ker (F {q) : F (X) -> F (S)) where X is
a scheme over S with section q.

PROPOSITION 1 .1 . — Let F€S be a sheaf of groups which is constantly
increasing on the S-scheme T. If xS H° (T, F), then W === {^€:T : x ~= 0\

is open and closed in T where x ^ is the image ofx in F (t). Moreover if T
is connected, has a section q over S and F (q (s)) -> F (^ {s)) is monic for some
5€S,t/iwHS(T, F) == (0).

Proof. — If ti is a specialization of ( in T, then x ~ == 0 if and only if
x ^ = 0 which shows that W is open and closed. The rest follows from
the observation that q (s) = s.

We will use the base change theorem and the specialization theorem of
etale cohomology to produce examples of constantly increasing sheaves,
but first to fix notation, let p : X -> S be a proper map. Recall that
R1 p^ Gyn = PiCx/s (in the etale topology), PiCx/s is the subfunctor whose
T-points are elements of PiCy/s (T) which define invertible sheaves alge-
braically equivalent to zero on all geometric fibres of XT -> T, and PiCx/s
is the subfunctor whose T-points are those elements of PiCx/s (T) which
define invertible sheaves r-equivalent to zero, i. e., some tensor power of
the invertible sheaf is algebraically equivalent to zero, on all geometric
fibres of XT -^ T. Let NSx/s, the etale Neron-Severi sheaf of X/S, be the
quotient sheaf (PiCx/s)/(PiCx/s) € S. It is immediate thai

(NSx/s)tors=(Pic^)/(Pic^)

and if we let FNSx/s = (NSx/s)/(NSx/s)^€=S, then

FNSx/s == (PiCx/s)/(Picx/s).

PROPOSITION 1.2. — Let p : X -> S be a proper map with p^ 0x === 0s«
universally and let I be a prime distinct from the residue characteristics of S.
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(1) There is an exact sequence in S

0 -> FNSx/s (g) (Q//Z/) -^ R2 p^ ̂  -> R2 ?„ G,, (Z) -> 0,

where fA/- == lim fA/n. J/* S 15 strictly local and H° (S, /NSx/s) == 0, ^n

H° (S, Picx/s) 1,9 l-di^isible.

(2) Suppose p is also smooth. Then FNSx/s, (FNSx/s)/", ^rf (PiCx/s)/"
are constantly increasing. Moreover if T is an S-scheme and FNSx/s (^) Qz/Z/
15 locally constant when restricted to Tei, then R2 p* GS^ (^) 15 also constantly
increasing. In particular if T is connected and has a section over S, then
HS(T, R2 p. G,, (;))-(()).

Proof. — It is well known that Picx/s, Picx/s? ^d Picx/s are locally
of finite presentation. Consequently so are all of their quotients formed
from them and their tensor products with the constant sheaf Q//Z^. By
standard results on etale cohomology, R2 p^ y^i. and R2 p^ G^ (^) are also
locally of finite presentation.

(1) The Kummer sequence 0 -> ̂  -> Grn -> Grjn -^ 0 is exact on Xeig.
Take the higher direct images under p ^ y break up the resulting long exact
sequence into short exact sequences, and then take lim to get

0 -> lim (Picx/s)/" -> R2 p* ̂  -> (R2 p^ Gr,,) (/) -> 0.

There is a map lim (PiCx/s)/"—^ P^x/s^) (Q//Z/), defined in the usual way,

which is an isomorphism of sheaves since it is an isomorphism at all stalks.
Since the functors involved are all locally of finite presentation, it is enough
to verify (1) when the functors are evaluated at S and S is a strictly local
scheme with So the closed subscheme corresponding to the separably
closed residue field of S and Xo === X X s S o . In this case we have an
exact, commutative diagram

0-^H"(S, Picx/s^Qy/Z^H^X, ^)->W(X, G^(l)-^0

(1-1) . i
0 -> H° (So, Picx/s) (g) Q//Z/ -> H2 (Xo, p^) -> H2 (Xo, G.Q (/) -> 0

where the middle map is an isomorphism by the etale base change theorem
([I], Exposes XII et XIII). Since H° (So, Picl/s) is an extension of an
Z-divisible group by a finite group, the map between

H° (So, Picx/s) (g) Q//Z/ and H° (So, FNSx/s) 0 Q//Z/
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si an isomorphism. Since the left hand vertical map of (1.1) is monic,
the map between these functors evaluated at S is a monomorphism and so
is an isomorphism which proves the first part of (1).

The diagram analogous to (1.1) derived from the Kummer sequence
with n < oo replaces Q//Z/ with Z/^ Z. An argument just like the one
above then shows that

H° (S, Picx/s) 0 Z/Z^ Z ̂  H° (S, NSx/s) ® Z/Z^ Z

and also that H° (S, NSx/s) 0 Z/^ Z is contained in H° (So, NSx/s) 0 Z/^ Z.
Now PiCx/s is an open subfunctor of Picx/s ([11]? Theorem 4*7) and
so H° (S, FNSx/s) contained in the finitely generated group H° (So, FNSx/s).
Thus it is a finitely generated free abelian group. Consequently if
H° (S, /NSx/s) = 0, then

H° (S, Picx/s) ® Z/Z Z -> H° (S, Picx/s) (g) Z/Z Z

is monic and hence H° (S, Pic^/s) (S) Z/? Z = 0 as desired.

(2) Since Picx/s (S) Qi^i = (0)? an easy induction argument shows
that [Picx/s (l)]i- is isomorphic to (Picx/s)/- Sincep^ 0^.= (9s universally,
^^/s (1) ̂  R1 P* P-/- Now the specialization theorem for etale cohomo-
logy ([I], Expose XVI) says that R^p*^ and R ^ p ^ ^ / n are locally
constant sheaves on Set for all m and n. This and the above remarks show
that a specialization map induces an isomorphism of groups for (PiCx/s)/"
and so that (FNSx/s)/~ is constantly increasing as is FNSx/s.

Under the additional assumption that FNSx/s 0 Q//Z/ is locally constant
"when restricted to Tet, the specialization theorem for R2 p^ pi^ and the
5-lemma show that a specialization map induces an isomorphism on
R2 p* G-^ (?) and so it is constantly increasing. Now if q : S -> T is the
section and t = q (s) for some s € S, then ( -> ? has a section by the univer-
sal mapping property of strictly henselian rings. Hence

Ho (!, FNSx/s ® Q//Z/) -> H° (?, FNSx/s ® Q//Z/)

is onto. Since x(?) === x((), (1.1) shows that this map is monic as well.
Consequently H° (^, R2 p^ G/^ (Z)) -> H° (?, R2 p^ G^ (Z)) is an isomorphism
by the 5-lemma and so Proposition 1.1 shows that H^ (T, R^G^)) = (0).

COROLLARY 1.3. — Let p : X ->- S be a proper, smooth morphism such
that p^ 0x = 0s universally. Then Picx/s is an open and closed subfunctor
^Kcx/s.
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Proof. — Let T be any S-scheme, ^€H° (T, Pic;/s). Since FNSx/s is
constantly increasing, Proposition 1.1 shows that

W - { feT : x T = 0 in H° (7, FNSx/s)}

is open and closed in T where x is the image of x in H° (T, FNSx/s). Since
the condition for x to belong to H° (T, Pic^/s) is phrased in terms of geo-
metric points, we see that Picx/s is indeed an open and closed subtunctor.

COROLLARY 1.4. — Let p : X —^ S be a proper, smooth morphism such that
p^(9x = ®s universally and let I be a prime distinct from the residue charac-
teristics of S. If T is an S'scheme with section y, then

H§ (T, /- (Pic^,)) -> HN (T, /«Pic^) -> /.HA (T, Picx/s) -> 0

is an exact sequence for any n.

proof. — If (€T, then H° (^ FNSx/s) -> H°(t, FNSx/s) is monic by the
base change theorem. Moreover

H° (^ (Pic^/s)/n) ̂  H° {T, (Pic;/s)/») since (Picx/s)/" = [Picx/s (Ol^-

Hence the base change theorem for R2 p^ ^in shows that

H° (f, (FNSx/s)/") ̂ H° {t, (FNSx/s)/")

is monic. Now if 0 -> F7 -> F -> F77 -> 0 is exact in S and H^ (T, F77) == 0,
then H^ (T, F7) n Ker [H1 (T, F^ -> H1 (T, F)] is clearly (0). Since
FNSx/s and (FNSx/s)z are constantly increasing, Proposition 1.1 and the
above remarks show that H^ (T, PiCx/s) {1) -^ H^ (T, Picx/s) (0 is an
isomorphism and so Picx/s can be replaced by PiCx/s in the last cohomology
group of the assertion. (Picx/s)^ is also constantly increasing and so the
same argument shows that H^ (T, ^ (Picl/s)) -> H^ (T, PiCx/s) is monic.
The desired result now follows by taking the cohomology of the sequence

0 -^ /nPicx/s -> Picx/s -> ̂  (Picl/s) -^ 0

gotten from factoring multiplication by ^ on Picx/s.

SECTION 2

In this section we prove a generalized version of thet eorem of the cube
and a generalization of the Weil-Barsotti formula. We then extend the
result Pic° (X) ̂  Pic° (A) where A is the Albanese variety of a smooth
scheme over a field k. One of the key tools in this program is Grothen-
dieck's duality theorem ([4], Expose XI). Since the only published proof
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of this theorem ([17], [18]) is not sufficiently general for our purposes,
we will outline one here.

Recall that p : X -> S is locally free if p is finite and p^ C\ is a locally
free (9s-module.

PROPOSITION 2.1. — Let H be a locally free commutative group scheme
over a connected scheme S. Then Ext^(H, G^) = 0.

Proof. — Since Ext^ (H, G^) is obtained by sheafifying the presheaf

U-^Ext^(U;H;G,,)

it is enough to show that any element E'eExt^S; H, G^) can be split
by an fppf covering of S. Moreover E' may be interpreted as a short,
exact sequence of group schemes over S ([15], § 17, Chapter III). Given
such an exact sequence we get a commutative exact diagram of group
schemes over S since n == rank (H) annihilates H [16].

E': 0——>G,,—>L——>H—>0
^ ^ ^
\n \n | o

0——>G,n—^L——>H——>0
^ 4- -^

E: 0——^—^^-^H——>04 t t
0 0 0

If the sequence E can be split by an fppf covering of S, then so can E'.
Let E1' be the Cartier dual of the exact sequence E. This gives another
exact sequence of group schemes over S, and it is enough to split this by
a covering in Spi since E"" == E. But ^ = Z/nZg and so it is enough
to find an fppf covering { T, -^ S } and y^W (T,) such that ^ (y,) = 1,
the generating section of Z/nZg. Since a" is surjective in Sp,, this can
always be done.

COROLLARY 2.2. — Let H be a locally free group scheme over a connected
scheme S with H" an etale group scheme. Then Ex<4 (H, G,^) = 0.

Proof. — The morphism o- : Spi — Sei gives two spectral sequences conver-
ging to the same abutment ([I], Expose V) :

R^Ext, (a*(H),G,.) and Ext£ (H, R^ ̂  G,,).pi s
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Since H is representable cr* (H) == He Spi, and since R/7 c^ G^ == 0 for
^ > 0, the second spectral sequence collapses. The exact sequence of
low degree terms then gives an isomorphism

R1 cr^ Hom^ (H, G^) = R1 ̂  W 4 Exts (H, G,,).

But H0 is etale and so R1 ̂ H0 == 0.
Grothendieck's duality theorem now follows from spectral sequence

computations. Since we are primarily dealing with the etale topology,
we will prove an etale version of it.

THEOREM 2.3. — Let S be a connected scheme, p : X -> S a proper map
with p^ ©x = (°s universally, H a locally free etale commutative group
scheme over S. Then for any T/S, there is an exact sequence natural in T
and H and also natural in X/S

0 -> ExU (T; IP, Gm) -^ H1 (XT, Hx) -> Hom^ (H0, Picx/s) (T).

If p has a section, the last map is surjective and H^ (X^ Hx) is naturally
isomorphic to Hom-p (H", Picx/s).

On the sheaf level, there is an injection
0 — R1 p^ (H) -^ Hom^ (H", Picx/s)

which is an isomorphism if p has a section locally in Seig.

Proof. — There are spectral sequences ([I], Expose V)

HP (XT, Ext^ (Hx, G,.)) =» Ext^Xr; Hx, G,,)

and
ExK (T; H", (R^) G,.) -» ExK (XT; Hx, G^)

since p * ( H ) = H x € X . We get an exact diagram (2.1) by piecing
together the exact sequences of low degree terms, recalling that
H0 = Hom^ (H, G^), observing that p^ G,,̂  ^G-^s? and using Corol-
lary 2.2,

0i
Extl(T;H",G,,,)

s 4
(2.1) 0 —> H- (Xi, Hx) —> Ext^ (XT ; H^, G,,) —> 0

?!
Hom^ (H0, Picx/s) (T)

ANN. iSc. NORM., (4), V. —— FASC. 1 8



54 R. T. HOOBLER

If p has a section, a has a splitting map, defined from the section, which
identifies Horn? (H1', Picx/s) with H^ (XT, Hx) by the naturality of (2.1)
and the fact that ^ is onto since the next map in the exact sequence of
low degree terms defining the vertical column also has a splitting map.
The statements about sheaves follow from the statements about presheaves
by sheafifying and Corollary 2.2. The naturality in X follows from
the observation that an S-morphism y : X7 -> X induces mappings between
the two spectral sequences for X/S and the corresponding ones for X'/S.

We are now ready to prove the theorem of the cube. Suppose we
are given a family { X; } of schemes over S indexed by a finite set I together
with structure maps pi : X; -> S and sections qi : S -> X^ For
J = {Jo, . . . ? J m } c I == {1, . . ., n }, let

pr;,, ...,^ : Xi x . . . X X,, -> X/, x . . . X Xy^

denote the projection map and

s/., ...,7,» : Xy, X . . . X Xy,, -> Xi X ... X X,,

the map which inserts q/, into the k^ factor for all /c€l — J, where the
products are always taken over S. Following Mumford a quadratic
functor on a category of S-schemes with section to abelian groups is a
contravariant functor F such that

(2.2) F (Xi x X, x X3) -> IIjF (X, x X;)

is monic where J == { (1, 2), (2, 3), (1, 3) } and the map is the product of
the F(^,,), ( i ,7)€J.

THEOREM 2.4. — Let pi : X; -^ S be proper morphisms over a locally
noetherian scheme S such that pi^. 0^ == 0^ universally, 1 ̂  i ̂  3, and
pa and P:} are smooth. Suppose that I is a prime distinct from the residue
characteristics of S and that FNSx^/s (^) Q//Z/ is locally constant when restricted
to Xi X Xa ef Then the natural map

H2 (X, x X, x X,, Gn,) (Z) -> IIj H2 (X, x Xy, G,,) (I)

defined as in (2.2) is monic.

Proof. — We may assume that S is connected and so Xi X X^ and Xi
are connected by Zariski's connectedness theorem. The Leray spectral
sequence for pr^a gives an exact diagram (2.3) where there are zeros
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at the left and right because pri,2 has a section

0

^
0 -> H2 (Xi x X,, Gtm) ̂  F1 H2 (Xi X X, x X3, G,.) —> H1 (Xi x X^, Pic^/s) -> 0i

(2.3) H^XiX X^ xXs,G^)
^1,2

H0 (Xi x xl R2 p3^ G/,}

Note that (2.3) is functorial in X i X X ^ .
Suppose t /€H 2 ( X i X X a X X a , G^) (?) with </(27) === 0 for all (i, 7')€J.

Then s* 7^,2 (y) = ^i 51*3 (y) = 0 in H° (Xi, R2 p^ G^ (Z)), where r^ :
H'2 ( X i X X a , G^) -^ H0 (Xi, R2 p^^ G,^) conies from the Leray spectral
sequence for pri. The assumption on the restriction of FNSx,/g (^) Q//Z^
to Xi X X^ei and Proposition 1.2 then show that ri^ 3 (y) = 0.

Regarding y as an element of F1 H2 (Xi X XaX Xa, Gr,n) (I) which is
isomorphic to pr*,, (H2 (X,xX,, G^) (;)) © H1 ( X ^ x X ^ Pic^/s) (I), we
see that the component of y in the image of pr^ is o since 5*2 (z/) === 0.
Thus it is enough to show that t (y) = 0 where s* (t (t/)) == s^ (t (y)) == 0
by the functoriality of (2.3) in X i X X 2 .

By Corollary 1.4, the sequence below is exact and so t[y) == p i ,2 (js)
for some z€ H^ (Xi X X^, ^(Pic^/s)),

HS (X, x X,, /- (Picx^/s)) ̂ > HA (Xi x X,, zn(PiCx,/s)) ̂  i.m (X, X X,, PiCx./s) -̂  0.

Since 5* (^(y)) == 5* (< (y)) == 0, there are

^eHW^Picx^)), i = l , 2 ,

with ai (j2i) == 5* (z) and aa (^2) === 5* (z). Then

?i,2 [^ — ̂  (pr* (̂ i) + pr? (z.))] = f (y)
and

sT [z — ̂  (pr* (z,) + pr; (2.2))] ̂  0 for i =^ 1, 2.

Thus we may assume that z restricted to H^ (X/, /.(Pic^/s)) along the
section Si is zero.

On the other hand multiplication by ^ is 6tale on PiCx,/s by the base
change theorem. Since p;j is proper and smooth, Pic^/s is formally proper
and formally separated over S, and so /nPiCx,/g is represented by a finite,
6tale group scheme over S of order I" which we will denote by H [14].
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By Grothendieck's duality theorem, there is an isomorphism functorial
in Xi X X.

m (X, x X,, H) -> Hom^ (IP, /.Picx,xx./s) (S) = Hom^IP, ^Picx.xx./s),

where we have observed that I ' 1 annihilates H". On the other hand

/nPicx,/s = R1 p.* P^1 and /"Picx.xx./s == R1 (pi pTi)^ ^1-

and the maps pr* and pr^ induce a homomorphism

(2.4) /"Picx,/s X /"PiCx,/s -> /"Picx, xx,/s.

Note that for a proper smooth morphism p : X —^ S with p« <?x == ^s

universally, the Leray spectral sequence for p and Proposition 1.1 show
that the sequence below is exact

0 -> H1 (S, p )̂ - H1 (X, ̂ n) -> H1 (Xp ̂ ),

where y is any geometric point of S. This observation shows that (2.4)
is an isomorphism if S is strictly local. Hence (2.4) is an isomorphism,
and so

Hom^ (IP, /.Picx,xx,/s) ̂  Hom^ (FP, /.PiCx,/s) X Hom^ (H°, /.Picx,/s).

Thus { z€. H^ (Xi,,, H) : 5: (^) = 5: (z) = 0 } = { 0 }, and so t (y) = 0 as
desired.

COROLLARY 2.5. — L^ S be a connected, regular noetherian scheme^ I a
prime different from char (F (S, C?^)). TTien H2 ( , G^) (^) 1*5 a quadratic
functor on the category of smooth geometrically connected proper S-schemes
with a section.

Proof. — Let p i : X,• -^ S, 1 ̂  i ̂  3, be proper, smooth morphisms. First
note that p^ 0^ = (?s universally since pi is proper, smooth, and geome-
trically connected. Let T] be the generic point of S. If Y is any smooth
scheme over S, then H2 (Y, G,,,) -> H2 (Yy, G,,,) is monic since Y is
regular ([8], Corollary 1.8). Hence it is enough to establish the corollary
when S == Spec k and k is a field of characteristic unequal to I. But then
FNSx^/g ® Q//Z/ is locally constant when restricted to Xi X Xs ei since it
is constantly increasing and H° (y, FNSx^/s (^) Q//Z/) is contained in
H° (y, FNS^/s 0 Q//%) which is to equal to H° (s, FNS^s (g) Q//%) for
all i/€ Xi X Xo where s is the unique point of S.

Recall that p : A -> S is an abelian scheme over S if it is a proper,
smooth group scheme with geometrically connected fibres. In this case
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Pic^/s = Picl/s is formally smooth ([12], Proposition 6.7) and if S is
noetherian, Grothendieck and Murre have shown that NS^^) is repre-
sented by an unramified, essentially proper group scheme [14] where
NSA/s(fpqc) is the quotient in the faithfully flat, quasi compact topology.
(T is essentially proper over a noetherian scheme S if T is locally of finite
presentation and satisfies the discrete valuation ring criterion for separa-
tion and properness.) Since Pic^/s is locally of finite presentation, NS^s(fpqc)
is the same as the quotient in the fppf topology. Moreover if Pic^/s is
representable, then R'c^ Pic^/s = 0 by Grothendieck's theorem and so
^A/scfpqo is the same as NS^. If Pic^/s is representable, it is called the
dual abelian scheme and denoted by A. The Grothendieck-Murre represen-
tability theorem shows that A is projective (and so A exists) if S is a
reduced, connected, geometrically unibranch noetherian scheme. Note
finally that (NS^)to.s = 0 and so NS^ = FNS^.

COROLLARY 2.6. — Let S be a connected, reduced, geometrically unibranch
noetherian scheme, p : A -^ S an abelian scheme over S. Then for any
prime I, FNS^/g (g) Q//Z/ is locally constant when restricted to Ae'i and so if I
is distinct from the residue characteristics of S, then

H2 (A3, G,,) (Z) -> n, H2 (A2, G,,) (Z)

is monic where the map is defined as in (2.2) by using the zero section of A
over S.

Proof. — From the above remarks it is enough to show that an essen-
tially proper, unramified group scheme G over a connected, reduced,
geometrically unibranch, noetherian scheme T defines a locally constant
sheaf on T,i. Since T is noetherian, it is enough to show that the specia-
lization map induces an isomorphism H° (Tj, G) -> H° (7^, G), where ti
is a strictly local scheme with generic point T] ([I], Expose IX). Since
taking the strict henselization preserves the properties S has, we may
assume that T is a strictly local, reduced, geometrically unibranch, noethe-
rian scheme with generic point TJ. If y is any point of G lying over TI,
the schematic closure Y of y maps onto T since G is essentially proper.
On the other hand Y is quasi-finite over T and so, being irreducible, is
finite over T ([5], IV, 18.12.3). But then Y is finite and unramified over
T and maps onto the strictly local scheme T and so must be isomorphic
to T.

Remark. —- If Grn is replaced by ^ / " in the statement of Theorem 2.4,
then the conclusion holds without any assumption on FNS^/s 0 Q//Z/.
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The argument proceeds just as above but uses the etale base change
theorem and the specialization theorem for R2 p^ ̂  instead of the
computations in the first section. Moreover, as L. Breen has remarked,
if S == Spec (/c), k a separably closed field, then this modification of Theo-
rem 2.5 follows immediately from the etale Kunneth formula.

As an application of the generalized theorem of the cube we can begin
to describe the behaviour of H2 (A, G,,,) (;) for an abelian scheme A over S.
We will say that A satisfies the generalized theorem of the cube for I if I
is a prime and the map

H2 (A^, G,,) (0 -> n, H2 (A2, G,,) (0

defined in Theorem 2.4 is monic.

PROPOSITION 2.5. — Let p : A -> S be an abelian scheme satisfying the
generalized theorem of the cube for I, y€H 2 (A, G^) (?).

(1) Given S-morphisms /*, g, h : T -> A,

(/• + g + A)* (y) - (f + gY (y) - (g + /O* (y)
~(f+ A)* (y) + /•* (y) + ?* (y) + ̂  (y) == o,

in W (T, G,,) {I).

(2) Let n^ : A -> A denote the isogeny gwen by multiplication by n. Then

nl(y) = ̂  y + (^l^-^) ((- 1.)* {y) - y).

(3) Given sections /v, g' ; S -^ A, let T/., T^ : A -> A &e translation by f^
g' respectively. Then

T;,^(;/)=T;/(y)+T^(y)—y+p*(z) /br some zeH^S, G^)(0.

Proof. — We see that

(pri + pr, + pra)* (y) — (p^ + pr,)* (y) — (pri + pr3)* (y)
— (pr. + pra)* (y) + pr* (y)+ pr? (y) + pr; (y)

is zero when restricted to SxAxA, A x S x A , and A x A x S , and so it
is zero in H2 (A3, G,,,) (Z) : (1) then follows by the definition of (/* + g + h) :
T -> A, etc; (2) follows by induction on n, and (3) follows from (1) by
setting f == f p : A -> A, g = g' p : A -> A, and h = i^ : A -> A since
T^=l ,4 - fp , etc.

COROLLARY 2.8. — Let A be an abelian scheme over S satisfying the gene"
ralized theorem of the cube for I. If I ̂  2, then

i'^ (A, Gm) C Ker [(/y : I-P (A, G,,) -> H2 (A, G,,)].
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If I =^ 2, (Aen
^ (A, G,.) ^ Ker [(2r1)* : H2 (A, G^) -^ H2 (A, G^)].

Next we will give an interpretation of the " primitive " elements of
H2 (X, G,).

DEFINITION. — Let p : X -> S be a morphism with a section, F an etale
sheaf on the category of S-schemes. Define

H^n. (X, F) == Ker [H,. (X, F) -> H° (S, R- ?„ (p* F))].

This is functorial on the category of S-schemes with a section since the
Leray spectral sequence for p is functorial in X. Note that this spectral
sequence shows that

H§, p. (X, G,,) -^ H1 (S, Picx/s).

If A is an abelian scheme over S, there is an alternative way of defining
< ( primitive 9 ? elements.

DEFINITION. — Let A be an abelian scheme over S, FeS. Define

Fp.in, (A) = Ker [F (m) — F (pr,) — F (prQ : F (A) — F (A2)],

where m : A2 -> A is the multiplication map. For notational purposes
we will denote F (m) — F (pri) — F (pra) by p*.

The work of L. Breen enables us to compare these two definitions of
primitive elements as well as to prove an analogue of the Weil-Barsotti
formula.

THEOREM 2.9. — Let p : A -> S be an abelian scheme o^er a quasi-compact,
quasi-separated scheme S such that A exists. There is an exact sequence

0 -> NSA/S (S)/PicA/s (S) -> Ext2 (S; A, G^) -> Hpnni (A, G,,) -> H -> 0,

where H is a 2-torsion group. For any prime I distinct from the residue
characteristics of S,

2 Hp,in. (A, G,.) (Z) C H§,p, (A, G/.) (Q.

If moreover H4 (S, A) {1) -> H1 (S, Pic^/s) {I) is surjecti^e, then

Hip, (A, G/,) (I) C Hp2,̂  (A, Gm) (0.

Proof. — L. Breen [2] has constructed two spectral sequences from which
the exact sequence (2.5) follows where H is a 2-torsion group,

(2.5) 0 -> NS^/s (S) /PicA/s (S) -^ Ext2 (S; A, G,,) -> Hp2,̂  (A, G,,) -> H -^ 0.
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His construction is done in the fppf topology, but it works equally well
in the etale topology. He proves the exactness of (2.5) when the base
is regular and then concludes that Ext2 (S; A, G^) is torsion. Since the
regularity assumption is only used for this conclusion, (2.5) is exact
without this hypothesis. The first inclusion relation between the two
definitions of primitive elements follows from the exact sequence

0->^A->A-^A->0

and Corollary 2.2 since these imply that Ext2 (A, G,,,) (;) = (0).
For the reverse inclusion let us first show that

H^p, (A, ̂ ) -^ H§,p, (A, G,,) (0

is surjective. The Kummer sequence and the Leray spectral sequence
for p give the exact commutative diagram (2.6)

(2.6)
0 —> H2 (S, p^) ——> F' H2 (A, ^..) ——^ H' (S, R1 p^ p^) — > 0

0 —> H2 (S, G,,) —> F1 H2 (A, G,,) ——> H1 (S, Pic^/s) ———> 0

where the right hand terms are the primitive elements in the sense of
the first definition. The assumption on I shows that R1 p^ ̂  = /"A,
and so the exact cohomology sequence coming from

0->//A-^A^A->0

and the hypothesis on H2 (S, Pic^) (?) give the desired surjectivity. It
remains to show that for all n,

HN,pr (A, f^n) C Hpi.̂  (A, pî ).

Let i/eH^p, (A, f^"). Using the notation of (2.3), the Leray spectral
sequence for pri : A2 — A gives an exact diagram (2.7),

(2.7)
0 -> H-2 (A, ^n) ̂  F- H-2 (A-2, ^n) —^ H1 (A, /-A) ——> 0

H2 (A2, ̂ r)
7:!

t

H0 (A, R2 ?„ ̂ )
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Since y can be split by an etale covering of the base S, we see that
7:1 (p* (^/)) = 0. Regarding p* (y) as an element of F1 H2 (A2, pi/"), its
component in H2 (A, ^) is s* (p* (y)) which is immediately seen to be
zero. Thus to finish the proof it is enough to show that ( ( p * (t/)) = 0
in Hi (A, /"A). But /"A is represented by a finite, etale group scheme
over S, and so by Theorem 2.3,

H^ (A, ^A) -^Hom^ (/"A", Pic^/s).

Since ( (p* (t/)) is split by an etale covering of S, t (p* (y)) = 0 as desired.

COROLLARY 2.10. — Let p : A ~> S be an abelian scheme over a regular^
noetherian^ connected base S, I a prime distinct from char (F (S, <?s))« Then

2 Hp,,, (A, G,,) (0 C H§,p, (A, G,,) (Z).

If, moreover, H1 (/], A) ( I ) --> H1 (T], Pic^,) (^) ^ surjecti^e where T) 15 </^
generic point of S, t/^n H^p, (A, G^) (;) C Hp,^, (A, G^) (I).

Proof. — Since S is regular, A exists. Moreover, the map Ar. -> A
induces an injection on H2 (A, G,,,), Hp^,, (A, G^), and H^p,(A, G^). Thus
we see that

Hp,,, (Ar, Gm) n m (A, G,,) = Hp2,, (A, G,,)

and
H§,p, (A,., G,,) n H§ (A, G,,) == Hip, (A, G,,)

by Corollary 2.6 and Proposition 1.2. Hence we may replace S by ^
and the corollary becomes Theorem 2.9.

Remark. — Suppose that S is a regular, noetherian scheme and I is a
prime such that either I is distinct from the residue characteristics of S
or that S is an excellent, Jacobsen, Dedekind scheme, i. e., noetherian,
integral, normal of dimension 1, with 2 distinct from all of the residue
characteristics. Given an abelian scheme A over S, let

H| (A2, G,.) - { y e H2 (A2, G,.): y = S* (y) }

where S* is the map on cohomology induced from the map S : A2 — A2

which interchanges the two factors. Using Breen's spectral sequences,
results from [2], and some of his unpublished work, one can show that
there is a subgroup H in H2 (S, A) (?) and a map

H ~-> [Hi (A2, G,,)/p* (H2 (A, G,,))] (/)

whose kernel and cokernel are 2-torsion.
ANN. EC. NORM., (4), V. —— FASC. 1 9
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Finally we want to investigate the behaviour of primitive elements
under the Albanese map. Let p : X -> S be a proper morphism with a
section such that p* (9x ̂  ^s universally. Following Grothendieck we
say that A (X), the Albanese scheme of X/S, exists if PiCx/s exists and
there is a (necessarily unique) abelian subscheme Picx/°s which as a point
set is Pic^/s whose dual abelian scheme and its dual abelian scheme exist.
The universal mapping property of PiCx/s shows that (Pic^s) is universal
for maps of X into abelian schemes over S where X -> (PiCx/°s) is defined
from the universal sheaf on X X s P^x/s pulled back to X X s P^xjs- Since
(Pi.Cx/°s) satisfies the universal mapping property for Albanese schemes,
we will denote it by A (X). Conditions for its existence are investigated
in paragraph 3, Expose 236 of [6].

PROPOSITION 2.11. — Let p : X -> S be a proper morphism with a section
over a noetherian scheme S such that p^ (?x =^ ^s universally. Suppose
that A (X) exists and I is a prime such that either I is distinct from the residue
characteristics of S or I is an arbitrary prime and PiCx/s is represented by an
abelian scheme over S. If

H1 (S, Picx/s) (0 -^ H' (S, Picx/s) (0

is onto, then H^p, (A (X), G^n) (1) -> H^pr (X, G^) [1) is onto. If moreover
H1 (S, Pic^x)/s) (0 -> H- (S, Pic^xvs) (0

is onto, then Hx (?)/H^x)(0 1s the kernel of the map on primitive elements
where Hy ^ H° (S, NS^)/H° (S, PiCy/s) for any Y over S.

Proof. — Let f : X -> A (X) be the Albanese map. f defines a spectral
sequence homomorphism from the Leray spectral sequence for A (X) -> S
to the Leray spectral sequence for X -> S. The identification of HN,PI.(X, G^)
with H4 (S, Picx/s) and similarly for A (X) shows that the map on primitive
elements induced by f

H'(S,Pic^x)/s)-^H'(S,Picx/s)

comes from Pic^xys —^ Pi^x/s- The duality theorem for abelian schemes and
the definition of A (X) shows that PiCx/°s may be canonically identified
with Pic^x)/s- The exact cohomology sequences coming from the short
exact sequences defining NSx/s and NS^xys give a commutative exact
diagram (2.8),

0 —-> HA(X^ (0 —> H' (S, Picx/s) (0 -^ Hl (s5 ̂ ^w/8) (z)

<2-8) a.. ^ 4
0 —> Hx (Z) ———> H1 (S, Picx/s) (0 ——> H- (S, Picx/s) (0

where ^ comes from the inclusion j : Picx/°s -> PiCx/s*
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In the first case if Q is the cokernel of j in S, then multiplication by I
on Q is an isomorphism since it is surjective on PiCx/°g and the etale group
schemes ^PiCx/°g and ^PiCx/g are equal. In the second case j is the identity
map. Thus P is an isomorphism in either case and the 5-lemma gives the
desired result.

Finally the next proposition gives a set of conditions which will insure
that the hypothesis " H1 (S, PiCx/g) (;) -> H1 (S, PiCx/g) (;) is onto 5? is
satisfied.

PROPOSITION 2.12. — Let p : X -> S be a proper morphism over a noetherian
scheme S. If /NSx/g = 0, H° (S, PiCx/s) — H° (S, NSx/s) has torsion
cokernel, and

W (S, FNSx/s)/ ̂  H° (S, (FNSx/s)0

is an isomorphism, then H1 (S, PiCx/s) (^) -> H1 (S, PiCx/s) {I) is surjective.

If A is an abelian scheme over S such that A exists, then the kernel of
( /\. \ _

H1 S, AJ -> H1 (S, Pic^/g) is 2-torsion. The map is surjective on l-primary
components if and only ifH° (S, NS^g)/ -^ H0 (S, (NS^/g^) is an isomorphism.

Proof. — The sequence 0 -> FNSx/g -> FNSx/g -> (FNSx/g)/ -> 0 gives the
exact sequence

0 -> H° (S, FNSx/s)z -^ H° (S, (FNSx/s)0 -> /H1 (S, FNSx/s) -> 0.

Thus the exact sequence defining NS^/g and the isomorphism I :
(NSxyg)tors -^ (Nsx/s)tors defined by multiplication by (give the first assertion.

The assertion for an abelian scheme A over S such that A exists follows
immediately from the fact that H° (S, NS^/g)/!!0 (S, Pic^/g) is a 2-torsion
group which we will now prove. Given an invertible sheaf L on A,
m* (L) — pr* (L) — pr^ (L) defines an element of H° (A, Pic^/g) and so a
homomorphism A (L) : A -> A, where m : A2 -> A is the multiplication map.
Moreover A (L) = 0 if and only if LeH° (S, Pic^/g). If y€H° (S, NS^/g),
there is an etale covering T — S and a representative Lr^H 0 (T, PicA/g)
for y . By descent A (Lr) : AT -> AT defines a homomorphism A (y) :
A -^ A. In this manner we may regard H° (S, NS^g) C Hom^ (A, A)-

But then if P is the universal sheaf on A X s A, we have

2 A ( i / ) = A ( 2 y ) = A ( M ) , where M = (1.4, A (y))* (P), (1 ,̂ A (y)) : A -^AXsA,

by the rigidity lemma ([12], Proposition 6.1) and the observation that
this is true over the geometric points of S [13].
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SECTION 3

In this section we will apply the generalized version of the theorem
of the cube to obtain a strengthening of the Grothendieck-Auslander-
Goldman theorem [8] that H2 (X, G,n) = Br (X), where Br (X) denotes
the Brauer group of X [7], when X is a regular, noetherian scheme of
dimension ^- 2.

We begin by introducing a new topology. Let S/, the finite topology, be
the topology on the category of locally free schemes over S generated from
the pretopology for which the set of coverings of T is the set of single mor-
phisms u : T' -^ T such that u is locally free and T == u (T') (set theore-
tically), i. e., u is affine and u^ (9p is a coherent, faithfully flat (^-module.
Note that there is an obvious morphism of sites T : Spi -> S/ and so a Leray
spectral sequence for any F € Spi. If F € S, let

F (T)/ == { y e F (T): there is a covering u: T -> T in S/ with F (u) (y) == 0 (.

Thus F (T)/" consists of those elements which can be split by a locally free,
faithfully flat covering.

Before stating the key proposition of this section, let us recall the rela-
tionship between Br (S) and H2 (S, G,,,). Let S be a quasi-compact,
quasi-separated scheme, and let GL^ be the sheaf of automorphisms of
(])^ (9s on Spi. The exact sequence (3.1) of sheaves of groups on Spi

(3.1) 0 -> G,n — GL, -> PGL,_i -> 1

is a central extension of sheaves of groups, and so there is a boundary
map ([3]; [10] if we work in S)

d1: H1 (Spi, PGL,-i) -» H2 (Spi, G,,).

By fppf descent, H4 (Spi, GL,,) classifies locally free coherent (9s-modules
of rank n and H1 (Spi, PGIin-i) classifies sheaves of Azymaya algebras
of rank n2 [7]. Thus by the exact sequence of cohomology sets and taking
lim over n, we get a natural injection

Br(S)->H2(S^G^,

where Br (S) is the Brauer group of the scheme S.

PROPOSITION 3.1. — Let S be a quasi-compact, quasi-separated scheme.
__ -V V __ V

Then H2 (Spi, G^)^ C Br (S), where H2 (Spi, F) is the second Cech cohomology
group of the sheaf F € Spi.
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Proof. — Let f : T —^ S be a locally free, faithfully flat morphism. Since
any invertible module over a semi-local ring is free, R1 f^ G^ = 0 in Spi.
Thus the Leray spectral sequence for f shows that

H2 (Spi, f^ G,n, i) -> H2 (Tpi, G,, r)

is monic. The spectral sequence comparing Cech cohomology with sheaf
cohomology shows that

H^Spl.F^H^Spl.F)

is monic for all S and all F € Spi, and so

H2 (Spi, ̂ , Gm, i) -> H2 (Tpi, G^, r)
is monic.

Now if y€H 2 (Spi, G^s) is split by a locally free, faithfully flat mor-
phism f : T^S, then yeKer [H2 (Spi, G,^) -> H2 (Spi, A G^,)]. Let
i '• G^m,s -> A ^T be the inclusion. Then we can choose a quasi-compact

v

covering map 9 : X -> S in Spi and a Cech 2-cocycle u€H°(X 3 , G,^s)
representing y such that there is a Cech 1-cochain

v € H° (X2, f^ G^, T) = H° (X^, G^, r), with o1 (u) = i (u) e H° (X3, ̂  G^, i),

where
31 : C1 (X -> S, ̂  G,., r) -> C2 (X -> S, ̂  G,, T)

is the Cech coboundary map on Cech cochains defined, of course, by the
usual formula (3.2)

(3.2) 31 (v) == pr?, 3 (u) — pr?, 3 (u) + pr?,2 (u).

Let 31 be the faithfully flat, locally free, coherent ©s-module f^ and
denote W* 37 by 3 '̂ where ^V : S' -> S. Note that ^s'. is naturally isomor-
phic to (/s')* (^TX s') since f is a finite, faithfully flat morphism in the
cartesian diagram (3.3)

TXsS '——>T

(3.3) ^ [fY w Y

S' ——>S

Consequently we will identify Fs. with (/s')* (^ix^s')-
We have an exact sequence of presheaves of groups on Spi

(3.4) Q-> G^,s4Aut^ (^)4Aut (End^ (^)) -^1.
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Where the first two presheaves are sheaves and Aut (End^ (F)) is the
presheaf whose values at T' are those algebra automorphisms of End^ (^,)
defined by conjugating any (fV-endomorphism of ^ by an (fV-automor-
phism of ^p- J is the map sending a unit to the automorphism defined
by multiplication by the unit. Now there is an injection

k : ^G^T-^Aut^(^)

since H° (S', f^ Gr^i) = H° (S 'XsT, G,,̂ ) and multiplication by any
element of this group defines an (9s,-automorphism of ^s- Identifying

•V

f^ G^T with a subsheaf of Aut^, (^'), the Cech 1-cochain v becomes an
automorphism k (^) : S^y -> 3^y and so k (v) is in C1 (X -> S, Aut^ (^)).
Then

prj; 3 (A- 00) o pri* 3 (k {u)) o pr*, 3 (k (y))-1 : ^x3 -^ ̂

is precisely j (i (u)) by (3.2) and the assumption on v and u. Thus using
non-abelian Cech cohomology [10],

c (k (v)) e Z1 (X -> S, Aut (End^ OQ)),

the Cech 1-cocycles of Aut (End^ (^r)) for the covering X -> S. Let y\. be
the corresponding cohomology class in H1 (Spi, Aut (End^ (^))). Since
(3.4) is a central extension of presheaves of groups on Spi, we have a boun-
dary map

^ : rii (Spi, Aut (End^ (^))) -> ̂  (Spi, G^)

defined in the obvious manner [10], and the calculation above shows
that d1 Q/i) = y.

On the other hand sheafifying the sequence (3.4), we get a central
extension of sheaves of groups on Xpi [compare with (3.1)]

0 -^ G,, s ̂  Aut^ (^) -> Aut (End^,^ (^)) -> 1,

where the cokernel of j is now the usual sheaf of Og-algebra automorphisms
of End^ (^) in Spi ([7], Theorem 5.10). If y , is the image of yi under

H1 (Spi, Aut (End^ (^))) -> H1 (Spi, Aut (End^ (^))),

then Giraud's construction [3] of the boundary map

d1 ; H1 (Spi, Aut (End^ (^))) -^ W (Spi, G,,)
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shows that d1 (y\) = y, where H2 (Spi, G^CH^Spi, G^). The final
observation needed to finish the proof is that H1 (Spi, Aut (End^, (^)))
classifies Azumaya algebras locally isomorphic to End^ (^) in Spi and the
above map is compatible with the construction sketched after (3.1) which
gave the inclusion Br (S) C H2 (Spi, G,,) == H2 (S, Gj.

The next lemma enables us to describe some of the elements in
v

H2 (Spi, Gtjn)f in a more reasonable way.

LEMMA 3.2. — Let S be a scheme, T : Spi -> Sy the corresponding morphism
of sites. Then T* : H2 (S/, G^) -> H2 (Spi, G^) factors through the inclusion
H2 (Spi, G,) -> H2 (Spi, G,).

Proof. — The morphism of sites T gives a commutative diagram (3.5),
up to natural transformations, of categories and functors where the maps
in the right hand square are Hpi and H° respectively and Ab is the category
of abelian groups,

Spi —'-> Spi —> Ab
(3.5) -.| .̂\ ' ^ ..

S /• -L> §/• ——> Ab

T^ is the direct image morphism on the category of presheaves of abelian
groups on Spi and i, j are the respective inclusion maps of sheaves into
presheaves. The upper and lower lines define the spectral sequence
comparing Cech and sheaf cohomology on Spi and S/ respectively, and so
we have a morphism

[HP (S/, ̂  (G,,)) => H" (Sy, G/,)] -^ [PP (Spi, ̂  (G/.)) => H^ (Spi, G.,)],

where 2€^ (G^) (T) = W (T^, G,^). This gives a commutative, exact
diagram (3.6) by noting that 3€^ (G,^) == Pic,

(3.6)
0 —> H2 (S^, G/.) ——> H2 (Sf, G,n) —> H1 (Sy, ̂  (G,.))

I 'It ^ . ^
0 ——> H2 (Spi, G,.) —> H2 (Spi, G/,) ———^ ft1 (Spi, Pic)

Now ^ factors through H1 (S/, Pic) -> H1 (Spi, Pic). But given any locally
free, faithfully flat morphism T -> S and an invertible sheaf L on T X s T,
i. e., any element of C1 (T -> S, Pic), there is a Zariski covering { V i } of
S such that L |^-i(u») is trivial for all i, where p : TX s T -^ S is the structure
morphism since any invertible module over a semi-local ring is free. Thus
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v _
given any 1-cochain L € C4 (T -> S, Pic), there is a refinement of T -> S in Spi
which trivializes L, and so A factors through the zero map which gives the
desired result.

THEOREM 3.3. — If p : A -> S is an abelian scheme over a noetherian
scheme S satisfying the generalized theorem of the cube for ?, then
H^(A,G,) ( ; )CBr(A) .

Proof. — We will show that ^ (H2 (Ay, G,,,))3H^(A, G^) (?). Since
R1 T^ pi/" is the sheaf on A/ associated to the presheaf Y -> H1 (Yp,, ^/.")
and this latter group classifies principal homogeneous spaces in Ypi for
the finite, locally free group scheme pi/", we see that R1 T^ pi/" == (0). Hence
the Leray spectral sequence for T shows that H2 (Ay, pi/") maps onto
II2 (Api, ^ ( " ) f and so it is enough to demonstrate that H^ (Api, ^i^)f maps
onto H^ (A, G,,,) (;).

Suppose ? /eH^(Api , G^) with I ' 1 y == 0. The filtration on the Leray
spectral sequence for T and the Kummer sequence gives an exact commu-
tative diagram (3.7),

Pic (A) ———>W (Af, (R1 ̂  G^n)

'1 'I^ ^
(3.7) Q -> H2 (Api, pi/")/ —> H2 (Api, pi/") ——> H0 (Ay, R2 ̂  pi,.)

I ^ ^
0 —> H2 (Api, G,.)/ —> H2 (Api, G^) ——^ H° (A^, R2 ̂  G,.)

Choose ^ / i€H;(Api , ^/") with i^ (1/1) = z/. The isogeny ;̂  : A -̂  A
splits y by Corollary 2.8, and there is js€Pic,s (A) == Pic^s (S) with
§71' {z) = n (^")* (i/i)eH° (A/, R 'T^pi / " ) . But one of the corollaries of
the theorem of cube for PiCy/s is the formula of Proposition 2.7, (2).
Thus (l^)* (z) = ̂  Zi for some Zi ePic^/s (S). Hence -n'(z) = 0 and so
Tl ((^T(2/i)) =:: (^D* (Tc (?/i)) ==: 0- Thus T- (2/1) == 0 as desired.

COROLLARY 3.4. — L^ p : X -> S &e a proper morphism with a section
over a noetherian scheme S such that p^ (9x == ^s universally. Suppose that
H1 (S, Pic^/s) (?) -^ H1 (S, Picx/s) (?) ^ onto and either A (X) exists and
satisfies the generalized theorem of the cube for a prime I distinct from all the
residue characteristics of S or that Pic^/s is represented by an abelian scheme
over S satisfying the generalized theorem of the cube for I. Then
H^,(X,G^(;)CBr(X).

Proof. — In either case H^p,(A (X), G^) (?) -> H^.p, (X, G,,,) {I) is onto
and the former group is contained in Br (A (X)).
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Remark. — (1) By using the results of this section, the corollary can be
proven for X proper over a noetherian scheme S under the assumptions
that the presheaf T — PiCx/s (T)/PiCx/s (T) is constant when restricted to
S/ and I is a prime distinct from the residue characteristics of S such that
H1 (S, Picx/s) (0 -> H4 (S, Picx/s) (0 is onto.

(2) Suppose p : X -> S is a proper, smooth morphism with p^ 0x = 0g,
where S == Spec (Z) or a curve over a finite field, such that NSx/g is constant
and Picx/s (S)-> NSx/s (S) is surjective. It p has a section and PiCx/s
is represented by an abelian scheme over S, then H^pr (X, G^) is the
" Tate-Safarevic " group of PiCx/s restricted to the generic point T] of S;
that is, H^pr (X, G^) classifies principal homogeneous spaces forPiCx^
which have a point in all completions of primes of S. Thus the second
part of Corollary 3.5 may be viewed as a generalization of M. Artin's
result ([9], § 3) which interpretes the Tate-Safarevic group of a curve X
over S as the Brauer group of X.
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