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INTRODUCTION.

The purpose of this paper is to study the first De Rham cohomology
group Hpy(X) of a proper smooth scheme over a perfect field & of charac-
teristic p.

It was shown by Grothendieck [15] that if % is the field of complex
numbers, then H,,(X) is canonically isomorphic to H'(X,., k). The
spectral sequence

Ept=Hr(X, Q)= Ui (X)

(cf. Section 5) is degenerate when X is Kiihler, giving an exact sequence

(%) i o—HO (X, Qx,z) - Hjg (X) - H' (X, &) —o.

Moreover, the theory of harmonic forms gives a splitting of this exact
sequence.

(*) This paper is a modification of the author’s Doctoral Dissertation submitted to
Harvard University in June, 1967. The author was supported by the Peter Brooks
Saltonstall’43 Memorial Scholarship from 1964 to 1967.
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However, if p 5 o, this spectral sequence does not degenerate in general.
The first non-degeneracy comes in as d,. For example E;"* = H° (X, Q% /1)a=o
and E;'= H'(X, O)s=y may be smaller than E}'° and E'' in general
(cf. Mumford [28]). Thus instead of (%) we get an exact sequence

o — 0 (X, %) a=o— Hig (X) —H' (X, C’x)d:oi; He (X, Q3/z) a=o-

But d. may not be zero.

Here we may ask whether Hp(X) is small enough, or, more precisely,
whether Hyr(X) is closely related to the Picard variety Picyy .. of X.
The answer is no. The fact that the Picard scheme Picy,; may not be
reduced in characteristic p is one of the reasons (¢f. Igusa [20], [21]],
Serre [33] and Mumford [28], [29], lecture 27).

Then we may ask whether Hpi(X) is closely related to the Picard
scheme Picy;. The answer is still no. H;z(X) may still be too big.

The Cartier operator (Cartier [6] and Seshadri [36]) can be used to define
a canonical subspace of Hyu(X), which 1s closely related to Picyy,
(¢f. Corollary 5.12).

But before stating the result we have to clarify the term ““ closely related
to Picy,; ”’. This we can do using the Dieudonné modules. The subspace
of Hy(X) we canonically obtain is isomorphic to the dual of the Dieudonné
module of ,Picy,, the k-group-scheme theoretic kernel of the endo-
morphism p on Picy,.

The Dieudonné module is the major tool used to interpret finite commu-
tative group schemes over a perfect field k of characteristic p. Let A be
the ring W (k)[F, V] defined by the relations FV=VF =p, FA=2\"F
and AV=V2A° for all % in the ring W(k) of infinite Witt vectors with
coefficients in k&, where g is the Frobenius endomorphism of the ring W (k).

We generalize in Definition 3.12 the definition of the Dieudonné modules
given in Gabriel [13] and Manin [24]. We obtain an anti-equivalence M
from the category 9U, of finite commutative group schemes over k of
p-primary rank over k to the category of left A-modules of W (k)-finite
lerigth. The key tool here is the theorem of Dieudonné-Cartier given in
Sharma [37]. This functor M can easily be extended to one from the cate-
gory Ind(9t,) of inductive systems of objects in 9, to the category of
projective systems of left A-modules of W(k)-finite length.

We describe various fundamental properties satisfied by the Dieudonné
modules in Section 3. Especially, we express in Theorem 3.19 the Cartier
duals of group schemes in 9, in terms of Dieudonné modules. One
of the tools for this is the computation in Proposition 3.21 of the commu-
tative group functors

Homy_g (W, Gp)  and  Homy_g (W, Gy).
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The identification of the canonical subspace of Hx(X) as the dual
of the Dieudonné module of ,Picy,; i1s derived from the more general
Theorem 4.4, relating the dual of the Dieudonné module of the object,
,,mPicx/l.zli_n;,,,.Picx,k, in Ind(9,), to a left A-module I(X) of W(k)-
cofinite type (c¢f. Definition 4.1), which 1is described entirely in
terms of the cohomology of certain abelian sheaves on X in the Zariski
‘topology. When k is algebraically closed, this module I(X) contains all
the information about the classification of flat principal bundles over X with
finite commutative k-group scheme in 9, as the structure group. We
dualize I(X) to get a left A-module of W (k)-finite type H.(X,4.), which
has properties similar to those satisfied by the first homology group with
p-adic integral coefficitents H, (X, Z,) when k is the field of complex
numbers.

As a corollary to this we prove (cf. Theorem 4.12) the well known fact
that a flat principal bundle over a k-abelian scheme is again a k-group
scheme, if its structure group is a commutative algebraic k-group scheme
killed by some power of p.

When X is an abelian scheme over a perfect field k of characteristic p,
the spectral sequence for the De Rham cohomology i1s degenerate and we
have the exact sequence (%), which may not split canonically in general.
We can interpret this exact sequence in terms of the Dieudonné module
of the kernel ,X of the endomorphism py (c¢f. Corollary 5.11).

On the other hand, we can associate to X a p-divisible group X(p) =,.X,
which 1s an object of Ind(9t,). The Dieudonné module M(X(p)) of
X(p) is a left A-module which is W (k)-free and whose rank over W (k) is
equal to 2 dim(X).

From the definition of the Dieudonné module it 1s not difficult to see
that M(X(p)) 1s equal to Barsotti’s module of canonical covectors for X
(cf. Barsotti [2], [3], [4]).

Barsotti defines the Riemann form of a divisor on X on the module
of canonical covectors. We can define the Riemann form of a divisor
(or an invertible sheaf) on Xin a different way (¢f. Proposition 3.24), using
the Cartier duality theorem (Corollary 1.3). This theorem states that
the kernel of an isogeny from an abelian scheme to another is the Cartier
dual of the kernel of the transpose of the isogeny. This was first proved
over a field by Cartier [8]. Oort gave a proof in the general case over

a prescheme (cf. [31]) (*).

() M. Nishi also proved this duality theorem independently. We should have called
it the Cartier-Nishi-Oort duality theorem. Cf. M. Nisu1, The Frobenius theorem and the
duality theorem on an abelian variety (Mem. Coll. Sci. Univ. Kyoto, vol. 32, 1959, p. 333-350).

Ann. Ee. Norm., (4), 1I. — Fasc. 1. 9
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We give an entirely different proof using descent theory (FGA [16],
exposé 190). In this method we can prove that the duality between the
kernel of an isogeny and the kernel of its transpose is skew-symmetric
in nature. This fact is essential to proving the skew-symmetry of the
Riemann form of an invertible sheaf on X. We can prove as a corollary
to the Cartier duality theorem that abelian schemes have no torsion in
the Picard scheme. This fact was first proved by Barsotti.

The author wishes to express his gratitude to Professor D. Mumford
for his constant advice and encouragement as well as to Professors J. Tate,
F. Oort and J.-P. Serre for useful discussions of the subject during the
preparation of this paper.

SECTION 1.

CarTiErR Duarity THEOREM.

For the definition and basic properties of the Picard schemes Picyy,
Picys and Picgs of an S-prescheme X we refer the reader to FGA [16],
exposés 232 and 236, and Murre [30].

Let S be a prescheme. Let X and Y be abelian schemes over S
(cf. Mumford [27], Chap. 6) and 2: X —7Y be an S-isogeny. We get
an S-homomorphism

Picys :  Picy,s— Picx/s.

For an S-prescheme S’ we have a commutative diagram

0o —> Pic (§8') —> Pic (Xg/) —> Picys (S') —> o

|

0 —> Pic (8') —— Pic (Ys)) — Picy,s (S') — o0

whose rows are exact, where X, As and Y are the base extensions of X,
% and Y to S’. Hence we can easily see that

Picy g |
[ke[‘ (PiC)\/S)] (SI) = kerI:PicY/s (S,) J> Ple/s (SI)}
= ker[Pic (Ys) )—; Pic (Xs,)].
We now define the Cartier pairing

< s >)\ . ker (k) X keI‘(PiC)\/s) — Gm S

as follows : let S’ be an S-prescheme. Let z be in ker(A)(S’) and L be
in [ker(Pic,s)] (S'). From what we have seen above we can think
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of L as an invertible sheaf on Y, such that there exists an isomorphism «
of invertible sheaves on X, ’

[~
;\g' L < @xs,.

If we denote by T.: Xs — X the translation on Xy determined by the
element z in ker(A) (S'), then the composition

at o, * 3 % TX (%) ok
C’xs, ’.? lS' L= Tx XsrL = TA.L.C7XS,: @xs,

gives an Oy -automorphism of O, which we identify with an element
{axy, L of
e (XS” @;‘s'> =H (SI7 Og') - GmS (S/) .

It is obvious that {z, L) does not depend on «.

For a group scheme N finite and flat over S we denote by Ds(N) the

Cartier dual
Dg (N) — domg_g (N, GnlS)

(¢f. Oort [31] and Gabriel [12]).

Tueorem 1.1. — Let X and Y be abelian schemes over a prescheme S
and let % : X >Y be an S-isogeny. Then the Cartier pairing { , > is
a non-degenerate and biadditive pairing of group schemes finite and flat
over S, i.e. it defines a canonical S-isomorphism

vyt ker (Picys) — Dg (ker (24)).
Moreover vy is functorial in A, i.e. if
X 25y

oc’ {BJ(
¥

XI » Y’I

is a commutative diagram of S-homomorphisms of abelian schemes such that A
and ) are S-isogenies, then the following diagram is commutative :

ker (Picys) —> Dg (ker (1))

Plcﬁ/sT Dy ()

ker (Picy,s) —> Dg (ker (X))
Proof. — We show that
vyt [ker (Picys)] (8') = Dg (ker (1)) (8)

is an isomorphism for all S-preschemes S’. We first note that everything
1s compatible with base extension. Hence we may assume S'=S.
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The map
ker [Pic (Y) 25 Pic (X) ] - Dg (ker (3)) (S)
is defined as follows : let L. be an invertible sheaf on Y such that there

exists an isomorphism
a: AL—>0x.

Then v, (L) is an S-homomorphism from ker(%) to G, such that for
an S-prescheme S’ and an element z in ker(A )(S’) [X(S)—+ Y (8]
we have

v (L) () =T} (as) o as'.
Since AsoT,=Ti,ohs = A, the right hand side is the Ox -isomorphism

Ox CElsLs_T*oAsLs—-io
which can be identified as an element of H*(Xy, O )*=H"(S’, 04)"=G,,5(5').
Note that v,(L) does not depend on the choice of a. It is easy to see
that v, (L) 1s a homomorphism. Thus v,(L) 1s the canonical descent
datum on O with respect to A: X —Y induced by L on Y. But the
descent theory (c¢f. FGA [16], exposé 190) tells us that

ker[Pic (Y) 25 Pic (X)]

is isomorphis to the set of equivalence classes of descent data on O relative
to A : X > Y via the map sending L to 2A*L = O with its canonical descent
datum. Hence it remains to show that the latter set is equal
to Dg(ker(2)) (S).

For simplicity we write N =ker(A). If we denote by 7n:X —S the
structure morphism, p: XXX — X the group law, and by ¢: S — X the
zero-section, we have the following diagram :

(><mM, <X < 1)
. ory Bt

< (17X, N < W)
| CRES SIS $IN Pllailaliilalm, GUN PO\
A Ea L B )

//v
/1><S
/
X

A descent datum on Oy is an Oy, y-endomorphism ¢ of Oy, y such that
(10N, 03X p) (@) =X nX7n10X1Xn0)"(9)e (X0, 1XnXx1)"(9)

and
(1x&)"(9) =1,
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But since
Endox N (@x st) =H° (N, C’N)

and
End, g XSN<0X <N st) =H° (N =<sN, Oy st)

¢ 1s an element of H°(N, &,) such that

pH(e) = (1 1)" (9) o (n < 1)" (9)
and
& (9) =1.
Thus ¢ gives precisely an S-homomorphism from N to G,,s, 1.e. an element
of Ds(N) (S).
To prove the functoriality of v, in A it is enough to show that if x is an
S-valued point of ker(2) and if L’ is an invertible sheaf on Y’ such that

9: AL —0x

then we get
L, L = az, L' .

The right hand side is equal to T,,(¢)o¢~'. On the other hand
a*(0) : AMBL =oAL/ = 0.
Hence the left hand side is equal to
T3 (2(9)) 0 @' ()7 = 2* (Taa(9) 0 ¢) = Tic (9) 0 9~
since T;,.(9)e@~* is in H (X', Oy)*= H"(S, O,)*.

]

Q. E. D.

Derinition 1.2. — Let X be an abelian scheme over a prescheme S such
that Picys ts representable. We denote by X“® or simply by X' the dual
abelian scheme Picys. For an S-homomorphism % : X Y of two abelian
schemes such that X' and Y' are defined we denote by ' the induced S-homo-
morphism

Picss : Yl XU

For the definition of the canonical homomorphism ky : X - X" we refer
the reader to Lang ([22], p. 127).

Cororrary 1.3 (Cartier duality theorem). — Let S be a prescheme.
Then

(1) If X is an abelian scheme over S such that Picy, exists, then X has
no torsion, i.e.
Pic'ﬁ/s = Pic‘,';/s.
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() If »: X >Y is an S-isogeny of abelian schemes over S such that X'

and Y* exist, then there is a canonical S-tsomorphism

v ker (1Y) —}Ds(ker(k)).

i ts functorial in A, . e. if we have a commutative diagram

X2, Y

Lt

Xy
of S-homomorphisms of abelian schemes such that ) and ' are S-isogentes,
then the following diagram is commutative :

ker (1) —> Dy (ker (1))
ﬁ‘T Dﬁta)l

ker (A't) ¥—> Dg (ker (1))

Moreover the following diagram is commutative :

can.

ker (1) —> Ds Dg (ker (2))
kxlt zJ{—Ds(v-A)
ker (M) —-s Dy (ker (1))

Proof. — To prove (i) we may assume S to be the spectrum of an alge-
braically closed field. Since Picy, is an abelian scheme over S, we know
that the multiplication by a non-zero integer in Picy,(S) is surjective.
Hence Picy,s(S) is generated by Picys(S) and the elements of Picys(S)
of finite order. Thus it 1s enough to show that the elements of Picy,(S)
of order n are contained in Picg/(S) for all n. Since by the Theorem of
Square Pick/s 1s contained in the kernel of

PiCp_/S-— Picp,/S_' Picp,/S : PiCx/s——)- PiCx < X/S
we know that the multiplication by n on Picys coincides with Pic, /s

on Picy,s. Hence (i) is the consequence of (ii) applied to A = ny.
To prove the first part of (11) it suffices to show that

ker (PIC)\/s) C Yl.
We may assume S is the spectrum of a field. From Theorem 1.1, it follows

that ,
deg (A%) = deg (Pic);s) = rankg (Dg (ker2)) =deg(}).
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It is well known (c¢f. Weil [40] and Lang [22]) that there is an S-isogeny
A.Y - X such that AeA=my for a positive integer m. Hence
Mod''=my. Thus if we write g = dim X, then

m2 = deg (Ao X't) = deg (A?) .deg (1) = deg (1) .deg (}') = m?s.

Thus deg(%) = deg(2). The functoriality is obvious from Theorem 1.1.
To prove the second half of (ii) we need the following :

Let Py be the Poincaré invertible sheaf on Y XY’ normalized by
i,Py>~0y and i,Py> 0y, where i,: Y >YXsY* and 1,: Y/~ YXY
are the embedding into the first and the second factor respectively. Let
H[(A X 1)*Py] be the kernel of the S-homomorphism

AR < 1) Py] : X XYl (X xsY?)!

which can be identified with

I3
(‘; ﬁ) X g Yios Xt g Y

(A<X)* P

and let ¢! " be the alternating biadditive pairing

H[()L > l)*Py] XsH[(;L > 1)*PY:|*>G/1LS
(cf. Mumford [26], Section 1). Let < , > be the Cartier pairing given
in Theorem 1.1.

We also denote by i; and i, the embedding of ker(4) and ker(A’) into
the first and the second factor of

H[ (X < 1)*Py] =ker (}) xsker (1)

respectively.
Lemma 1.4. — The following diagram is commutative :
<5 M
ker(l) ><Sker(7\‘) “———>Gms
o |
FISTEN

H[ (% < 1)* Py] < H[ (&  1)* Py ] % Gius

Proof of Lemma 1.4. — Since everything is compatible with base exten-

sion, it 1s enough to prove the commutativity of the diagram for S-valued
points. Suppose that z is in ker(A)(S) and ¢ is in ker(AY)(S). Then
(1X¢)* Py is the invertible sheaf on Y corresponding to ¢. Al(y)=o0
implies that there is an isomorphism

9 A(rx ) Py 0x.
Then by definition (¢f. Theorem 1.1) we get
{xy o =Tz (9) 09",



72 T. ODA.
For simplicity let us denote L= (~Xx1)* Py. Then
' L= (A< 1) Py=Th o (A x 1)*Py="T}, , L.

On the other hand since (o, ¢) 1s also in H[L], there is an isomorphism
B: LT L.
Then \by definition the commutator of [(z, o), 1] and [(o, ¢), #] in the
group G[L] (¢f. Mumford, tbid.) is equal to o
e ((@,0), (0,0) =Th, 0 (NeBor 0T, (B7)
which is the automorphism

(%) T b= T oL L>Th L Th L.

~

Note that .
(1< ) L=(1x)* (2 x1)"Py=2"(1 < ¢)* Py,

hence we have _
9: (1x¢)"'L—3o0x.
On the other hand since Py is normalized, we get
(1xe)*L=2"(1x ¢)*Py —?}@x,
where ¢ 1s the zero section S— Y. Thus if we apply (1Xe)* to the
sequence (%), we get a commutative diagram
To (1 ¢)* Liﬁ(’ﬂ Ox

Tx(1<e)* (B |2

" T3 (W)
T (1 &) L 28 oy
A

1] <, ey =1
X Y
(1< e)'L— 0
(1<e* (@) |2
v
(1< ¢)*L——> 0
1] <X, vy,

T < 0)* L2 o
We have
Tieo(xxe) (B)od™' |=go(1xe)* (B) o™

since the latter is the multiplication by an element of
I (X, Oy)*=H0 (S, Og)".

Hence
{xy o= (1x¢)" e ((x, 0), (0, 9)) =e"((x, 0), (0, ¢))
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Proof of Corollary 1.3 continued. — It is enough to prove

(o @) D= @, 037

for all z in ker (%) (S) and ¢ in ker(2/) (S). By Lemma 1.4 we get
o b (@) D= AP (0, 0), (0, i (2))
and
(o, o= (2, 0), (0, 0)).

By the definition of 2’ and the see-saw principle we get

(1< A)*Px=.(A < 1)*Py.
Hence it is enough to prove

BT (0, 0), (o, kx (@) = M (2, 0), (0, ).

We have the following commutative diagram :

] w MRy i
Y XsX =X sz
1><k2’l1 1l1><k;‘
N1
Yo X 225 X s X
EAR] l}s

X XsYt

1> R

¥
> X xgX¢

where s 1s the morphism which exchanges the factors.
By definition,
Py =[50 (1% kx")] Px.
Thus
I (0, 0), (o, hx (2)))
— e[(lxkx_’)*o.vto(lx)\l)x r,] ((r, 0), (0, kx (%))
= AV (50 (1 A5 (0, 0), 50 (1< AT (o, Ax (2)))

:e[“xl’)‘* Px] ((0, 9), (=, 0)).

(1< W)*

Hence the skew-symmetry of o ™) gives the required result.

Q. E. D.

Let S be a prescheme and let 9, be the category of commutative finite
flat group schemes over S whose rank is a power of the prime number p.
Ind (9t,) is the category of inductive systems of objects in 9T,

Derinition 1.5. — p-divisible group over S is an objet in Ind(9L,)
which can be given by
G=1im{Gy, i, ],
e

Ann. Ec. Norm., (4), 1I. — Fasc. 1. 10
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where i,: G, Gn.1 is an S-homomorphism sending G, isomorphically
to the kernel of p" in Gu.y such that there exists a positive integer h (called
the corank of G) satisfying

ranks (G,) = p™  for all n.

DerinttioN 1.6. — Let G=1im {Gy, i.} be a p-divisible group over S.
—
Let jn:Gnii— Gy be the S-homomorphism induced by the multiplication

by p. Then ’
]_11’;1 { Ds(Gn)7 DS(./") ;

n

is again a p-divisible group over S. We denote it by G' and call it the Serre
dual of G. To an S-homomorphism } : G - H of p-divisible groups over S
we assoctate an S-homomorphism of p-divisible groups »': H'—> G' in an
obvious way.

DeriniTioN 1.7. — Let X be an abelian scheme over S. We denote
by ,.X the kernel of px: X -~ X. We define a p-divisible group

X(p) :li_r_)n,,uX,

n

where 1, is the canonical injection. To an S-homomorphism A :X Y
we assoctate an S-homomorphism . (p): X(p) > Y(p) in an obyious way.

For more details we refer the reader to Serre [35] and Tate [38].

Prorosition 1.8. — Let S be a prescheme. Let X be an abelian scheme
over S such that X' exists. If p is a prime number, there is a canonical
isomorphism of p-divisible groups over S

vx 1 XY(p) SX(p),
where X (p)* ts the Serre dual of X(p).

vx is functorial in X, t.e. if A: XY ts an S-homomorphism, then the
following diagram ts commutative :

X!(p) —>X(p)!
A

A
A (p) A(p)t ’

Yy

Y (p) —=>Y(p)*
Moreoyer the following diagram is commutative :

kx
X(p) ——X"“(p)

can.l} \'xtll
_(vx)t

X(p)*—X(p)*
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Proof. — By definition X(p) =1lim ,.X and X'(p) =1lim ,.X‘. Applying
T *7
the functoriality in Corollary 1.3 (i1) to the diagram

X2 X

a:p’ \L =1
Y

X2 X

we get a commutative diagram

V],u—H
pn+1X’ —-——:-} DS (ﬁn.HX)

1% Ds(p)
-
p,.X‘ — ’>Ds (an)
We put vx=lim{v,.|. The functoriality of vy and the commutativity
_ X

n

of the diagram in the proposition are obvious from Corollary 1.3 (ii).

Q.E.D

Derinition 1.9. — Let A : X - X' be an S-homomorphism of abelian
schemes. We define an S-homomorphism ¢, of p-divisible groups over S
by the composite

p=woh(p) : X(p) HEX(p) X (p)"

Prorosrrion 1.10. — o, is additive in ) and compatible with base
extension. g, =o0 if and only if +~=o.- Moreover if a:X —>7Y is an
S-homomorphism of abelian schemes and »:Y — Y' is an S-homomorphism,
then we get

P[a‘o)\oa]:d(p)lOP)ﬁa(P)'

Proof. — First two assertions are obvious. It 1s clear that ¢y= o if and
only if A(p) =o0. But by Weil [40] A(p) =o if and only if A=0. By

Proposition 1.8 we have a commutative diagram

(xtohoa) (p)

X(p) Xt(p) —> X (p)"

a(p)l a‘(p)T o4(17)‘T
Ve

Y(p) — s Y (p) —5 Y ()

composite of the first row and the second row being equal to the left hand
side and the right hand side of the equality respectively.
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Derinttion 1.11. — We call an S-homomorphism 7 : X — X' symmetric
if the following dvagram ts commutative :

R
) G\l

e
k 4
xvl /,‘t
X[l

Prorosition 1.12. — Let X be an abelian scheme over a prescheme S
and let 7: X > X' be a symmetric S-homomorphism. Then the S-homo-
morphism ¢, of p-divisible groups is skew-symmetric, v. e.

() i=—np.
if we tdentify X (p) and X (p)" by the canonical map.

Proof. — By Proposition 1.8 we have a commutative diagram

X(p)! < X‘(P)’<——X(P)”
A H

_vxlz —vz

) e k
X'(p) eix“( )i)&

The composite of the first row is equal to (p:)* while the composite of the
second row is equal to % (p) by assumption.
Q. E. D.

An invertible sheaf L on X gives a symmetric S-homomorphism

A(L): X - X’ defined in Mumford [27], Chapter 6.

Derintrion 1.13. — We deﬁne a skew-symmetric S-homomorphism
of p-divisible groups ¢ (L) by

o (L) =oap: X(p) > X(p)!

and e call it the Riemann homomorphism defined by L.

It is clear from Proposition 1.10 that (L) = o if and only if A(L) = o.

‘Derinition 1.14. — An invertible sheaf L on X defines a compatible
system of skew-symmetric pairings
18r”]
,,,.\ Xbp X —)Gms

(cf. Mumford [26], Section 1), which gives a skew-symmetric S-homomorphism
of p-divistble groups
e(L): X(p)>X(p)-

We now show that these two ways of defining a skew-symmetric S-homo-
morphism are the same.
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Prorosrrion 1.15. — If L is an invertible sheaf on an abelian scheme X,
then (*)
o (L) =e(L).

Proof. — Since both are compatible with base extension, it is enough
to show that they coincide on the S-valued points of ,.X, 1. e.

Cay AL) D0 = 1B () )
for all  and y in ,.X(S). But by Lemma 1.4, we know
Cary A (L) = VB (2, 0), (0, A (L) ) = el (2, 0). (0, A (L) 3)).
Here we used the fact P$"= (my X1)*Py which can be proved easily
using the see-saw principle. But the last term can also be written as
<A wre®r7] ((x, 0), (0,))).

Since by definition
(1< ML) Py=p L pri L' @ pri L~

(?) As a consequence of Proposition 1.15, the descent theory of invertible sheaves on
abelian schemes developed in Mumford [26] can be expressed in terms of the Riemann
homomorphism as follows :

ProrosIiTION. — Let L be an invertible sheaf on an abelian scheme X/S. Then there exists
an invertible sheaf L’ on X such that

187"~ plt g I
if and only if the Riemann homomorphism

p(L)+ X(p)—~>X(p)
is trivial on pnX.
A. Weil [40] obtained this result when S is a field and p is different from the characteristic.
Once we know this proposition, we can prove the following theorem which M. Nishi
obtained independently using the purely inseparable descent. The author thanks
Nishi for pointing out to him the possibility of this application of the Riemann homo-
morphism. '

THEOREM. — Let ) : X — X! be a homomorphism of abelian schemes. Then  is symmelric
if and only if there exists an invertible sheaf L’ on X such that » = A (L’). - _

The sufficiency is obvious. For the necessity, consider the invertible sheaf L = (I, 1) % Py
“on X, where Py is the normalized Poincaré invertible sheaf on X x ¢ X! and
(1, »): X > X xgX¢ sending x in X to (z, » (x)). Then we can easily prove that when . is’
symmetric, we have A (L) = 2. Then taking p = 2, we get

2T T PALT e (L).
Hence ¢ (L) is trivial on ,X. By the previous proposition we get L®’= 2} L’ for an inver-
tible sheaf L’ on X. Then.
Gr=12A(L)=A(L8%) = A (2iL) = 4A (L).
Hence » = A (L").
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we can easily see that this is equal to et®”")(z, y). Here we used the
following fact several times : if « : X - Y 1s an S-homomorphism of abelian
schemes and if L is an invertible sheaf on Y, then a~'ker(A(L)) is
contained in ker A(«*L) and for S-valued points # and y in o' ker(A (L))
we have ‘

ez, y) =€ (az, ay).

SECTION 2.

SOME AUXILIARY RESULTS IN CHARACTERISTIC p.

Let S be a prescheme of characteristic p. Let X be a contravariant
functor from the category of S-preschemes to the category of sets (for
simplicity we call such X an S-functor). Then even if X is not repre-
sentable, we can define an S-functor X"/® and a canonical morphism of

S-functors
F: X— X@®/m

as follows : for an S-prescheme T, theré is a morphism of preschemes
7y : T — T, which is the identity map as a topological space and ©; takes
an element in the structure sheaf to its p-th power. m; is functorial
in T, i. e. for an S-morphism u : T, T, the following diagram is' commu-
tative :

T, T,

W

T, Ly T,

We write m = 1. For an S-prescheme T we denote by (T, n) the
S-prescheme whose structure morphism is the composite of the structure
morphism of T with n. The functoriality of m; implies that m; is an
S-morphism from(T, ©n) to T. We define an S-functor X”/® by

| XU/ (T) =X ((T, 7))
and the morphism F: X — X" by
X(m): X(T)—>X((T, n)).
It is easy to see that if X is representable, then X*/¥is represented by the
S-prescheme pry: X Xs(S,7) >SS and F:X - X?¥ is given by

(g, M) : X = X Xs(S, ®), where n: X — S is the structure morphism
of X.
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Prorosition 2.1. — Let S be a prescheme of characteristic p and let X
be an S-prescheme with a section € : S - X such that 1, Ox= Oy, where 1| is
the structure morphism X — S. Then there is a canonical tsomorphism « such
that the following diagram s commutative :

PICX/S —_> [Ple/s](p/S)
14 x|

. PiCF/S
Ple/s <

Picpx(rrs1/s)

Espeéially if Picys ts representable and flat over S, and F : Picy,s— [Picy]""®
is an epimorphism then (if we identify [Picys]|”’® and Picyyss) by o) we get

V[Pch/S] = PiCF/S.

(For the definition of V for flat commutative group schemes we refer

the reader to Gabriel [12], SGAD 1963-1964, exposé 7 A, Section 4.3.)

Proof. — Since everything is compatible with base extension, it is enough
to prove the commutativity of the diagram for S-valued points. But
by definition

Picx/s (8) = Pic (X/8),
[Picys]7/3 (S) = Picys (S, 7)) = Pic (X x5 (S, 7)/S)
and -
Pic[x(,,/s)/s] (S) = Pic (X»/9/S) = Pic (X x5(S, m)/8).

Moreover it 1s easy to see that by the identification above F is equal to
(pri/m)*: Pic(X/S) — Pic (X x(8S, ) /S).

On the other hand Picys 1s equal to
(F/1s)*: Pic(X7/9/8) - Pic (X/S).
We get (pri/n) o (F[15) = (ng/n). Thus
(Picp/s)..a.F = (F/Is)*. (I)l‘]/ﬁ)*: (71')(/77.')*.
Since mx and ©* are equal to the multiplication by p in the Picard groups
Pic(X) and Pic(S), we are done. If Picy, 1s representable and flat
over S, then V = Vprix/5) 1s defined and Vo F = p. On the other hand,
we have (Picys) o F = p.
Q. E. D.

CoroLLARY 2.2. — Let S be a prescheme of characteristic p and let X be
an abelian scheme over S such that X* exists. Then we have

V(xt): (Fx)l and F(xl): (Vx)[.
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Remark. — This corollary is stated in Matsumura-Miyanishi [25],
Lemma 3. The proof there is incomplete.

Prorosition 2.3. — Let S be a prescheme of characteristic p. If X s
an abelian scheme over S, then there are exact sequences of finite flat S-group
schemes

(i) 0= WXV S X090 X 0

(ll) o — FnX _l;an Iﬁ) v X(p"/s) — 0
such thati o f, = F"* and jeo ¢, = V" for all positive integers n.

Proof. — We have a commutative diagram whose rows are exact

R O (L PRoX s s
P
¥ oo

0 X X — X8 — 50

Since V" 1s an epimorphism the snake lemma implies that ¢, i1s an epimor-
phism and ker(¢,) = ker(V") = . X*”¥.  Thus we get (i). (i) is
similarly proved.

Q. E. D.

SECTION 3.

DIEUDONNE MODULES.

From now on we let k be a perfect field of characteristic p.
We write X(B) instead of X(Spec(B)) for a k-prescheme X and a
(commutative) k-algebra B.

We denote by W the k-ring scheme of infinite Witt vectors. Then W (k)
1s a discrete valuation ring. The Frobenius endomorphism F of W induces
a ring endomorphism o of W(k).

DerinitioN 3.1. — We denote by A the non-commutative ring W (k) [F, V]
defined by the relations

FV=VF=p,
Fi = 19F,
W=V

for all & in W (k).

The scheme W has a canonical structure of left A-module scheme over k.
Hence for a positive integer n the k-scheme W, of Witt vectors of length n
has a canonical structure of left A-module.
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DerinttioN 3.2. — Let M be a left A-module, and let n be an integer.
We denote by
(W (K), o) QwnM

the left A-module defined as follows : for A and )" in W (k) and z in M

AR =V iz,
AR x) =N R x,
FVQz) =41"Q Fe,
VIR z) =2V Q V.

Note that the map from M to (W(k), c") QwpyM sending & to 1Qx

1s ¢*linear.

DerinitioN 3.3. — For a positive integer n we denote by C_, the left
A-module scheme over k defined by

C_.= (W(k)7 a") ®W (I‘)VV’“

i. e. for a k-algebra B
Con (B) = (W (£) o) Qw s Wa (B).

The k-group homomorphism ¢ : W, > W, sehding

] x = (&g, T4, --., Xn—) 1nW,(B)
to

0 (2) = (0, Zoy -+, Zp1) 0 Wyyy (B)

is not a W(k)-module homomorphism, but it induces a left A-module

homomorphism _
l‘n : C—n - C—(n+1)-

This defines an inductive system of left A-module functors
{Cny T}

DeriniTiON 3.4. — We denote by C the left A-module functor over k
C=1limC_,
—

n

defined by
_ C(B) =1lim C_, (B)
M

for a k-algebra B. After Barsotti we call C the left A-module functor over k
of Witt covectors.
Note that the W(k)-module homomorphism R : W,.,—~ W, sending
= (Zo, +..; Zn) In Wpy(B) to Rx = (20, ..., Zoy) iIn W,(B) induces
Ann. Ec. Norm., (4), II. — Fasc. 1. 11
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a o '-homomorphism of W(k)-modules C_;.1y—> C_,. The induced
o*-endomorphism of W (k)-module on C coincides with the multiplication
by V in the left A-module structure of C.

We can define C directly as follows : for a k-algebra B, C(B) is the set
of all sequences

x:(..‘, Lpy ooy Lo, (C_1),

where z_, is in B and all but a finite number of z_, are zero. We define
the sum 4 y of  and y in C(B) using phantom components by

(.T _|_y)(m): x(m)_'_y(m)

for all negative integers m, the phantom component 2™ of z being defined
by
2= (1/p") @h_,.

ix0

The action of W (k) is defined by

({a}x)yp=a"" 2,

for all @ in k and z in C(B), where { a { is the element of W (k) with a as
the o-th component and with o as the rest of the components. The action
of F and V 1is defined by

(Fz)=af,
(Vx) = Zimp—1
for all negative integers m.

It can be easily seen that the set of k-valued points C(k) is canonically
isomorphic as a W(k)-module to B(k)/W (k), where B(k) is the quotient
field of W(k) (Barsotti’s bivectors with wvalues in k). Moreover
the Frobenius endomorphism F:C — C defines a c-endomorphism of
W(k)-modules on C(k) which we also denote by o.

DeriniTioN 3.5. — Let M be a left A-module. We define a left A-module
D (M) as the set of W (k)-module homomorphisms from M to C(k), i. e.

D (M) = Homy (M, C(4)),

where elements of W (k) operate on D (M) in the usual way and F and V operate
as follows : for & in D(M) and x in M

(Fa) (@) =a (Va)?,
(Va) (z) =a(Fx).
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DeriniTioN 3.6. — Let M be a left A-module. We define a left A-module M*
by
Mt: HOmw(k) (M, W (k) ) 3

where elements of W (k) operate in the usual way and F and V operate as
follows : for « in M’ and x in M ’

(Fa) () =a(Va)°,
(Va) () = a (Fa)"".

DeriniTiON 3.7. — Let M be a left A-module. We define a left A-module

structure on
C(R) @QwwM  [resp. B (k) @wmnM]

by operating with W (k) in the usual way and operating with F and V in the
following way : for ¢ in C(k) [resp. in B (k)]

FleQz)=c"QFax,
V(e z) =c""' R Va.

DerinitioN 3.8. — Let M be a left A-module. We define a left A-module

structure on the p-adic Tate module

Tp (M) pumny HOva(k) (C (/\), i\'l)

by operating with elements of W (k) in the usual way and by operating with F
and V as follows : for ¢ in C(k) and « tn T,(M)

(Fa) (¢) =F (a(c"™)),
(Va) (¢) =V (a(c?)).
ProrposiTIiON 3.9.

(1) D induces an anti-equivalence between the category of left A-modules
of W (k)-finite type and the category of left A-modules of W (k)-cofinite type
[v. e. isomorphic to a sub-W (k)-module of a finite direct sum of C (k)]. This
induces an anti-equivalence between the category of left A-modules W (k)-free
of W (k)-fintte rank and the category of left A-modules W (k)-divisible of
W(k)-finite corank [uv. e. isomorphic as W (k)-module to a finite direct sum
of C(k)].

(11) D induces a dualizing functor from the category of left A-modules

of W (k)-finite length into itself, i.e. D ts a contravariant functor from the
category into itself such that DD tis tsomorphic to the identity functor.

(iii) ¢ induces a dualizing functor from the category of left A-modules

W(k)-free of W (k)- finite rank into tself.
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(iv) For a left A-module M there is a canonical homomorphism of left
A-modules
C (&) @wwTp (M) >~M

which is an vsomorphism when M is W (k)-divisible of W (k)-finite corank.

(v) For a left A-module M there is a canonical homomorphism of left
A-modules '
M T, (G (k) QwnM)

which ts an isomorphism when M is W (k)-free of W (k)-finite rank.

(vi) For a left A-module M of W (k)-finite type there are canonical isomor-
phisms of left A-modules :

M!% D (C (k) QwrM) 3 T,D(M).

(vii) For a left A-module M of W (k)-cofinite type there exists a canonical
isomorphism of left A-modules
(DM)¢ % T, M.
Proof. — Obvious.

DerintTion 3.10. — We denote by U the category of commutative affine
k-group schemes of finite type over k which are killed by some power of V
(t. e. commutative unipotent algebraic group schemes over k).

DeriniTioN 3.11. — We denote by I the category of commulative finite
k-group schemes. The Cartier dualizing functor D from 9U into itself is
defined by :
D (G) = #omigronp (G, Gmr),

schemes
i. e. for a k-algebra B
D(G) (B) = geomB-lgroup (Gp, Gp)-
It is well known (cf. Gabriel [13], Manin [24] and Oort [31]) that 9t can
be decomposed as a product

I =90, X Iy X< mll x mlr)

where 9, is the subcategory of commutative reduced finite k-group
schemes whose Cartier dual is also reduced, 9, is the subcategory of
commutative reduced finite k-group schemes whose Cartier dual is local
(1. e. the spectrum of a local ring), 97, is the subcategory of commutative
local finite k-group schemes whose Cartier dual is also local, and finally 9¢,,
is the subcategory of commutative local finite k-group schemes whose
Cartier dual is reduced.
I, and I, are subcategories of U.
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As defined in Section 1, 9, is the subcategory

I p =90, X Iy X Iy

consisting of commutative finite k-group schemes whose rank over k is
a power of the characteristic p.
D preserves 9t,,, 91, and I, and interchanges 9t,; and 9.

Finally we denote by < the category

=AU x 9y

of commutative k-group schemes of finite type over k killed by some
power of p.

For k-group schemes G and G" we denote by

Hom;_, (G, G')

the set of homomorphisms of k-group schemes from G to G’. We also
denote by "
Hom;_g, (G, C)

the inductive limit

lim Homy_g, (G, C_p),

7—}
where C is the covector functor in Definition 3.4 considered as an ind-object
of commutative k-group schemes.

DeriniTion 3.12. — For a k-group scheme G we define a left
A-module M(G) by

M (G) =Hom;, (G, C) d g W (k) Qg Hom;_ (G, G,2) %Gal(’T‘.’/k))

where k is an algebraic closure of k and Gal (k/k) is the Galois group. We give
the structure of left A-module on M(G) as follows : on the first factor we give
the left A-module structure induced from the structure of left A-module on
the functor C in Definition 3.4. As for the second factor let & be in W(k),
1 in W(k) and x in
Homg_ (Gp, G, .

Then

MR z) =N Q =,

FXQz) =2Q px,

V'Qz) =1 ® .

These induce a left A-module structure on the Gal(k/k)-invariants. We
call M(G) the Dieudonné module of G.
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Note that if G is a unipotent k-group scheme the second factor in M(G)
1s zero while if G is semi-simple k-group scheme the first factor in M(G)
1s zero.

Prorosition 3.13. — Let G be a k-group scheme. Then there is a canonical
tsomorphism of left A-modules

M (GP) > (W (K), o) QwuM (G).
If we identify those modules by this isomorphism, then the k-homomorphisms

F v
cLenia
become
M(V)

M(G) (W (h), 0) @M (G) “> M (G),
where M(F) sends a @ x to aFz for a in W(k) and z in M(G), while M(V)
sends x in M(G) to 1Q Va.

Proof. — As remarked in Section 2, ‘G is the base extension of G
by (k, o) over k. Hence there is a g-isomorphism of W (k)-modules

Homy_,, (G, C) & Homy_,, (G, Cir)y.
8 5 )

But we know that C» = C and that

2P oF =Fox,

2oV ="Voxlp

for all zin Hom, ., (G, C). The same is true for the second factor of M.
Thus we get a canonical s-isomorphism of W(k)-modules

M (G) )M (Gl

such that
M((F) 2zt =Fa,
M (V) 2 = Van

for all z in M(G). The rest of the proof is obvious.
Q. E. D.

Let K/k be a perfect extension field. We denote by M® and A" the
corresponding notions over K. Then there is a canonical homomorphism
of A®-modules

(%) W (K) QwnM (G) - M¥ (Gx)

for a k-group scheme G. We say the Dieudonné module M is compatible
with perfect base field extensions if (%) is an isomorphism for all K/k.
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Tueorem 3.14 (Dieudonné-Cartier).

(1) M induces an anti-equivalence from the category U to the category
of left A-modules of A-finite type killed by some power of V. M is compatible
with perfect base field extensions for L.

(11) M induces an anti-equivalence from the category 9, to the category
of left A-modules of W (k)-finite length killed by some power of V and on
which F acts bijectively. M ts compatible with perfect base field extensions
for 9C,,.  Moreover we have

(% %) rank; (G) :p[lengthw (k) (LG

for G in 9.

(111) M induces an anti-equivalence from the category 9, to the category
of left A-modules of W (k)-finite length killed by some power of F and V.
M s compatible with perfect base extensions for 9U,. Moreover the
formula (%%) holds for G in 9.

Proof. — The first part of (i) is proved in Sharma [37], exposé 11,
Theorem 8.4. Actually the Dieudonné-Cartier Theorem proved there
1s much more general, i. e. we can omit the finite type assumption both
from U and from the category of left A-modules. By devissage it is
enough to prove (%) when G is killed by V. Then, by definition,

M (G) = (W (k), 7) QwxHomy_g (G, Go).

Hence it is enough to prove that the canonical K-homomorphism

K ®k Homk—gl‘ (Gq Gn) - Iloml(—gr (GK7 GaK)

is an isomorphism. As remarked by F. Oort this can be proved as follows :
Hom,_. (G, G,) 1s equal to the kernel of the k-linear homomorphism

UX—pi—p3

H (G, 0g) ——— H* (G, ) Q«H* (G, O),

where 1 is the group law of G and p, and p., are projections. If we
apply K@ to this homomorphism we get the corresponding K-linear
homomorphism for Gx. Since K/k is flat we are done.

Except for (%), the assertions (i1) and (ii1) follow immediately from (i).
To prove (k%) in (ii) and (iii) we may assume by (%) that k is algebraically
closed and that G 1s a simple object. But (k%) can be easily checked
for unique simple object Z/(p) and «, in I, and I, respectively.

Q. E. D,
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Cororrary 3.15. — For G in 9, we get a canonical tsomorphism of
left A-modules ‘
M (G) = DMD (G),

where D on the right hand side is the Cartier dualizing funcior in
Definition 3.11, while D on the left hand side is the one in Definition 3.5.
In particular M induces an anti-equivalence from the category 9, to the
category of left A-modules of W (k)-finite length killed by some power of F
and on which V acts bijectively. M is compatible with perfect base field
extenstons for I,.. Moreover the formula (k%) holds for G in 9,,.
Proof. — By definition we get
Hom. (G, G =D (G) (X)=D (G)Z(YE).

When G 1s in 9, D(G) is in 9(,. Hence by definition and
Theorem 3.14 (1) we get

W (%) @wnM (DG) = M%(D (G)'Z>
= Homubelim\ (D (G)%</—\”) ,C (7\”))

groups

— tomy . (WD @D (1), C(R)

= DH(W (£) @2D (G) (¥)).
By canonicalness we thus get an isomorphism of left A-Gal (k/k)-modules

W (%) @wDMD (G) 22 DH(W (£) @w M (DG))
=~ W (k) ®zD (G) (k).
Taking Gal(k/k)-invariants on both sides we get a canonical isomorphism
DMD (G) = M (G).

Compatibility with base field extensions and the formula (k%) follows

easily from this and Theorem 3.14 (ii).
Q. E. D.

Cororrary 3.16. — M induces an anti-equivalence from the category 9,
to the category of left A-modules of W (k)-finite length. M is compatible with
perfect base field extensions for 9C,. The formula (%) holds for G in 9,.

Proof. — Immediate from Theorem 3.14, (i1), (i11) and Corollary 3.15.

Derinition 3.17. — M induces an anti-equivalence from the category
Ind (9t,) to the category Pro [left A-modules of W (k)-finite length] as follows :
for G = lim G, in Ind(90,) we put

—

" M (G) = lim M (Gy).

n

We also call M(G) the Dieudonné module of G.
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It is obvious that M is compatible with perfect base field extensions for G
in Ind(9%,) and that Proposition 3.13 also holds for G in Ind(9%,).

ProrosiTion 3.18. — Let G =1lim G, be a p-divistble group over k
—

(cf. Definition 1.5) of corank h. Then M(G) ts a left A-module W (k)-free
of rank h with the usual p-adic topology.

Proof. — Obvious.

Remark. — On the subcategory Ind(9(;) our Dieudonné module M(G)
gives rise to the Dieudonné module over W (k) [[F, V]] defined in Gabriel [13]
The definition of the Dieudonné module on Ind(9t,) is given in Manin [24]
when k is algebraically closed.

TusorEM 3.19. — Let G be in 9U,. Then there exists a canonical isomor-
phism of left A-modules
d(G): MD(G)—>DM(G),

where D on the left hand side ts the Cartier dualizing functor in Definition 3.11,
while D on the right hand side is the one in Definition 3.5. Moreover the
folloswing diagram vs commutative :

M (can.) N

M (G) 2 MDD (G)
can. |2 | d(D(G)

DDM (G) 2“9 pMD ()

~

where can. denotes the obyious canonical tsomorphism.

Proof. — It is enough to prove the Theorem in the following three cases
separately : (1) Gis in 90,5 (11) Gis in 9y, and (ii1) G is in IL,..  The cases (1)
and (ii1) follow easily from Corollary 3.15. It remains to prove in case (i1).

We define the dualizing functor T from the category of left A-modules
of W(k)-finite length into itself by

TM(G))=M(D(G))
for all G in ¢,

Lemma 3.20. — Let A and B be left Netherian rings.

(1) Let T be a contravariant additive functor from the category of left
A-modules of finite type to that of left B-modules. Then there is a morphism
of functors

B: T-—T =Hom,(? T(A)),

where T (A) is a left A-module via T(R,) for a in A (R, is the right multi-
plication by a) and the right hand side is given the structure of left B-module
ota that of T(A). T is left exact if and only if B is an tsomorphism.

Ann. Ec. Norm., (4), II. — Fasc. 1. 12
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(11) Let T be a contravariant additive funclor from the category of left
A-modules of finite type to that of left B-modules of finite type, and let S be
a coniravariant additive functor from the category of left B-modules of finite
type to that of left A-modules of finite type such that there is a morphism of

functors
p: IS8T

(I is the identity functor on the category of left A-modules of finite type).
If we denote by «:S—~>S" and 3: T — T* the morphisms of functors we get
from (1), then the following diagram is commutative :

[— 5 ST
‘,’\!/ ‘ aT
2
s 58 g

where Y is defined as follows : let ¢ be the B-homomorphism T (A)— S(B)
which is the tmage of 1, by

o (T (A))

U'S'T (A) = Homy (T (A), S(B)).

A—L5ST(A)

Then for a left A-module M of finite type Y ts the A-homomorphism
M —> S'T' (M) = Homy (Tom, (M, T (A)), S (B))

such that for x in M and f in T’ (M) = Hom, (M, T(A))
v(@) (NH=0¢(f(@)).

(iii) Suppose {m;} is a decreasing sequence of two-sided ideals in A.
Let T be a contravariant additive functor from the category of left A-modules
of finite type annihilated by one of the two-sided ideals to the category of left
B-modules. Then there ts a morphism of functors

T = Hom, (2, T (A/my) ),
> T (

where as in (1), imT (A[m;) is a left A-module via T(R.) for a in A and the
—
i
right hand side is given the left B-module structure via that of lim (T(A[m,)).
—

T is left exact if and only if B is an isomorphism. l

(iv) Suppose {m;} and {n;} are decreasing sequences of two-sided ideals
in A and B respectively. Let T be a contravariant additive functor from the
category of left A-modules of finite type annihilated by one of the two-sided
deals to the category of left B-modules of finite type annihilated by one of the
two-sided ideals. Let S be a contravariant additive functor from the latter
category to the former category such that there i1s a morphism of functors

p:1 — 8T,
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If we denote by @ : S— 8" and 3 : T T’ the morphisms of funciors we get
from (1i1), then the following diagram is commutative :

I—° 58T
*{l ‘al‘
s P g

where y is defined as follows : let 9; be the B-module homomorphism

T (A/m;) —1lim S (B/n;)
7

which ts the image of 1 by
A/m; 5 ST (A/my) 25 ST (A/my).

Then { 9;} are compatible and definies a B-homomorphism

9: limT(A/m;)—>1limS (B/n;).
—> —

i i

Then for a left A-module M of finite type annihilated by one of the two-sided
wdeals v is the A-homomorphism

M —>S'T (M)
such that for x in M and f in T’(M)‘
Y (@) (=9 (f(2)).

Proof of Lemma 3.20. — This is just a generalization of the result in
Grothendieck [18], Section 4 to the non-commutative case. Let M be a left

A-module. Let A be a homomorphism from M to Hom, (A, M) defined
by h,(a) = ax. Then we get a homomorphism

M X Homg (T (M), T (A))
sending x to T (h;). Hence we have a homomorphism of B-modules
T (M) % Hom (M, T (A))

defined by f(u)(2)=T(hy)(uv) for w in T(M) and 2 in M. Since
R..=R.°R,and h,oR,= h,. for @ and &’ in A, v in T(M) and z in M,
we get 3(u) (ax) = T(R.) B (u) (z). Thus if we give T(A) a left A-module
structure by T(R,), we see that the image of § is in Hom, (M, T(A)).
The rest of (1) 1s straightforward.

As for (11) the diagram i1s commutative by definition for free A-modules
of finite rank. Hence it i1s also commutative for any A-module of finite
type, since an A-module of finite type 1s a quotient of a free A-module
of finite rank.
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(111) Let M be aleft A-module of finite type annihilated by m,. Then (1)
implies that we have a homomorphism of B-modules

B:: T(M)—Homy (M, T (A/m;))

for ¢ greater than n. It is easy to see that f; are compatible with the
inductive system {T(A/m;)}. Thus we have a homomorphism of
B-modules

B: T(M) ——>]_iin>Hom‘\(M, T (A/m;)).

l

The right hand side is equal to HomA<M, limT(A/mi)), since M 1s an
—>

A-module of finite type. The rest of (ii1) and (iv) is clear.
Q. E. D.

To apply Lemma 3.20 to the proof of Theorem 3.19 we need the following :
as before let W be the k-group scheme of infinite Witt vectors. We denote
by W’ the subfunctor of W (considered as a contravariant functor from
the category of k-algebras to the category of sets) defined by

W'(B):§ b=1(by, by, ...)

b,— o for all but a finite number of n,
b, nilpotent element in B for all n

for a k-algebra B. W’ (B) is an ideal in W(B). In fact the addition and
multiplication in W(B) is defined by

(+Y)n=3u(Zo, -y Zn3 Yos -y Vn)

(Zy)n=mp (24, ..., Zn Yoy -5 Vn)»
where if we define the weight of z; and y; to be both equal to p/, s, is
isobaric of weight p* in {z, ..., %a, Yo, ..., Ya} and m, 1is isobaric of
weight p® both in {z, ...,2,} and in {y,, ..., y.}. The Artin-Hasse
exponential series E defines a homomorphism of k-group functors

E: WG,
as follows : let e(z) be the formal power series in one variable z defined by
e(5) =exp <—2 (x/pH) z/’i).
Then it is well known (cf. Serre [32]) that
e (Z) — 11 (I . zm)p.(m)/ln’
(m, p)=1

where (.(m) is the Mébius function. Thus e(z) is a formal power series
with coeflicients in Z,. For a k-algebra B, e(z) defines a map from the
set of nilpotent elements in B to G,.(B) = B*.
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The Artin-Hasse exponential series is the series

E(x):ne(xn)

n>xo

93

in an infinite number of variables z =(z,, 2;, ...). It is easy to see

that

E () = exp <—2 (/p™) x(m)),

m>0

where

for a non-negative integer m. Thus E(z) defines a homomorphism from

the additive group W’(B) to the multiplicative group G..(B).
From the definition it is easy to see that E(Vz) = E(z).
We now define a biadditive pairing

W x WG,

by sending (u, ) in W/ (B) @ W(B) to E(uz) in G,(B). Here we use the

fact that W’'(B) is an ideal in W(B). We can easily see that
E((Vu) z) =E(V(«Fa))=E (u(Fx)),
E(uVa)=E(V([Fu]x)) =E((Fu) z).
Hence we get a homomorphism of k-group functors .
Er W domy_gr (W, Gp).
ProrosiTion 3.21.

1) The homomorphism % of k-group functors is an isomorphism.
P group p

(11) & induces an tsomorphism of k-group functors:
Bt pW S Bomu_gr (W, G
(1) Let Wy, be the kernel z.W,. Then the biadditive pairing
Wm, n X ‘Vn, m—> Gm

sending (u, ) in Wun(B) X W, n(B) to E(gn(u)g.(z)) in G.(B) for

a k-algebra B is non-degenerate, 1. e. defines an vsomorphism

E}l,m : va,n‘“"> D (Wn,m)7

where g, is the section from W, to W sending

= (Zoy ++.y Xn—) in Wy(B) to En(x)= (20, ..., Tn—1, 0,0, ...) n W(B).
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Moreover if we denote by ¢ and f the homomorphisms (for n=n" and m = m')

v Wanm = W,
f M val,n/—+ Wm,n

sending &= (To, ..., ¥ny) 0 Wpn(B) to va=(0,0,...,0, %, ..., Tn4)
in Wy (B) and

U= Uy «oy Up—qg) 1 Wy (B) to SJu= ("7 wm Y e W, , (B,
then the folloswing diagram s commutative :

W<t W

m'yn’

,
Enym Entymr

D(v)

D (Wn,m) <D (Wn’,m’)

Proof of Proposition 3.21. — £ is injective. In fact if z=(¢t, 0, 0, ...)

then ux=(uot, wst’, ust”’, ...). Hence E(ux) =He(unt”"). If w; 1s the
first non-zero component of u, then ' .

E (ux) =1— u;t" moder'+1,

£ 1s surjective. In fact for a k-algebra B an element L of

geomlc—gr (W7 Gm) (B) - Homk—gr (WB’ G/n B)

1s given by a polynomial L(X) in B[X,, X, ...] such that
L(X-+Y)=L(X)L(Y)

and L(o) =1 (here X + Y is the Witt addition). We have a commutative
diagram
L

Wy —m—m—— GA,,, B

A
v V=1

B .
WB: W;{)/ ) m Gslll]én) - G/n B
L

where L”® is given by the polynomial L*(X) whose coefficients are
p-th power of the corresponding coefficients of L(X). Thus we get
L(VX)=Lr(X). Since L(X) contains only a finite number of variables,
there exists an integer n such that L(V*X) =1. Thus

L (X)=1,
i. e. the coefficients of the non-constant terms are all nilpotent in B. Let

us write
L(X)=1+ L, (X)+ L' (X),
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where L, (X) is the sum of terms of the least positive weight m and L’(X)
1s the sum of terms of higher weight (where as before weight of X, is p”).

Then we get
L (X +Y) =Ly (X) + Ln (Y),

i.e. L, defines a homomorphism L, : Wy;— W, ;. By the commutative
diagram,

Lo
"VR e W1 B
A
vV ‘ V=0
g/
B > Wi,

we conclude that L, (VX)=o0. Hence L, factors through the canonical
projection R : Wy— W, ;, i.e. L,(X) is a. polynomial only in X, which
is additive and of weight m. Hence there exists a positive integer A and
a nilpotent element « in B such that

L, (X) = aX»"
Then since
E((Vi{a}) 2)=E ({a}Frz)=1— ax" mod weight > p"
we get

L(z)=E((V'{—a})x) mod weight > p~.

If we proceed in this fashion, we finally get

L(z)=E (ux)
for some u In W(B).

We still have to show that w is actually in W'(B). But first of all
since L(x) only involves a finite number of variables, we get

o=L(Viz)=E(uV'x)=E ((Fru) z)

for some positive integer n. Thus F"u = o, hence the components of u are
all nilpotent. We now show that all but a finite number of components
of u are actually zero.

. Ql . .
Since x =Z V' {a.|, we have
r=o0

E (ux) :]] E((Fru) {«, -

r=0

Therefore it is enough to show that given u in W(B) such that F*u=o
for some positive integer n, then the formal power series E(u{t}) in one
variable t is a polynomial in ¢, if and only if all but a finite number of
components of u are zero.
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Let A (m) be the coefficient of ¢ in E(u{t}), and let the weight of A (m)
be m. As before the weight of u, is p. Then A(m) is a polynomial in
{Uo, Ui, ...} isobaric of weight m. Conversely u, is a polynomial in
{A(0), A(1) ...} isobaric of weight p” (¢f. Serre [32], chap. V, No. 17,
and Bergman [29], lecture 26, Section E).

Our assertion follows immediately from this fact.

We now prove (i1). The exact sequence
0o>WIEW W, >0
and E((Fu)z) = E(u(Vz)) give a commutative diagram
0 —> Homp—yr (W, G) —> Bomp—_gr (W, G,) AN Homp—_gr (W, G,)

A )
TE,. 2 ’ 4 1T&

o W/ W . > W

whose rows are exact and whose two vertical arrows on the right hand side
are isomorphisms. Hence &, is an isomorphism.

As for (111) we note that }
Wm,n: F"VV;IL

and
D (W,,n) = #om—_gr (smWa, Gp,).

Thus we have a commutative diagram

Fﬂlﬂ
JCO’”/:—;{I‘ (\Vn, Gm) e gcomk—gr (Wn7 Gm) —>D (Wn,m)
A
Enym

p W/ W/ W o

| & v &,

whose rows are exact and whose vertical arrows on the left are isomorphisms
by (ii). Hence &, 1s an injection. But W, , and D(W,,) are finite
k-group schemes of the same rank p™", hence ,,,, is an isomorphism.

The second half of (ii1) follows immediately from

gw (v(2)) = V""" g (2),
Sm (f(u)) = F/u_né,m, (u) mod VW',
Q. E. D.

Remark. — Dieudonné [11] proved Proposition 3.21 (i) in the formal
group case. The proof given here is a slight modification. Cartier [7]
proved Proposition 3.21 (ii) when n=1. He also announced (iii) without
proof in the same paper. See also a recent paper of Cartier [41].
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Proof of Theorem 3.19 continued. — We apply Lemma 3.20 (ii1) and (iv)

to A=B=W(k)[F, V] and m;=n;= A(F, V'), since, for G in 9,

M (G) 1s annihilated by some m;. Thus there is an isomorphism of functors
B: T3T'=Hom,(? L),

‘where L =1im T(A/A (F*, V*)). But we know that A/A (F", V*) = M(W,.)
—>

and the canonical surjection A/A(F*, V*) > AJA(F", V") for n=_n' 1s
equal to M(¢), where ¢ : W, ,—~ W, , 1s as defined in Proposition 3.21 (ii1).
Hence by Proposition 3.21 (i11) we get

T (A/A (F2, V?)) =MD (W, ,) & M (W,,) = A/A (F7, V)

and the commutative diagram
L),

T (A/A (Fr, V7)) —= T (A/A (F*, V7))

MD (v)

MD (W) >MD (W, )

X Rt

M (W) — o M (W)

AJA (Fn, Vry — L5 AJA (B, V'),

where for n=_n', f: Wy = W, , 1s as defined in Proposition 3.21 (ii).
It is easy to see that ¢ is the A-module homomorphism which sends the

coset of 1modA(F", V*) +to the coset of p”""modA(F", V*).

L= lirg A/A(F", V") has two structures of left A-modules; (i) wusual

left A-module structure and this 1s used to define a left A-module structure
on the functor T'= Hom, (?, L); (i1) new left A-module structure defined
by T(R,) for a in A. This is the structure by which we take Hom,.
Since Ry=M(F), we get T(R;)=MD(F)=M(V)=R,. Similarly
we get T(Ry)=R; and T(R))=Ri for A in W(k). Hence by the
second left A-module structure the multiplications by F, V and A are the
usual right multiplications by V, F and A respectively. Thus we finally
get an isomorphism of functors
' u 1s additive
\ u(Fz)=u(x)V
u(Vz)=u(x)F

u(dz) =u(x)A (’
for z in M
and 7 in W (&)

T AT My={u: ML

the left A-module structure on the right hand side being given by

(Fu) (2)=Fu(2), (Vu) () =Vu(x) and (Aw) (z)=2u(x).
Ann. Ec. Norm., (4), I1I. — Fasc. 1. 13
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It is also clear that ¢ : L - L defined in Lemma 3.20 (iv) is equal to
the identity map, hence y: M — T'T’(M) = Hom, (Hom, (M, L), L) is the
canonical isomorphism of functors defined by vy(z) (f) =f(z) for z in M
and fin Hom, (M, L). Thus we have a commutative diagram

M —22 5 TT (M)
can.ll llp'l‘
T8

T'T (M) 5 T'T (M)

We can express the module L more explicitly as follows : let { (V/p)’; i >0}

and { (F/p)/; > o} be just abstract symbols. Then we have an isomor-
phism of two-sided A-modules

L={& (V/p)'C(k) D C (k) D (9, (F/p)7C (k) 1,

i1

where we give two-sided A-module structure on the right hand side as
follows :

i>o0: V[(V/p)ie]=(V/p)/* pc =[(V/p)c"]V,
J>1: V[(F/pye]=(F/p)~tc =[(F/p)/c"]V,
i>1: F[(V/p)ic] =(V/p)~'c =[(V/p)ic°]F,
J>o: F[(F/p)ic] =(F/p)/+pc =[(F/p)/c°]F,
i>o: A[(V/p)ie] =(V/p)iac =[(V/p)ic]d”,
J>o0: A[(F/p)ec]l =(F/p)/2Te=[(F/p)/c]d’

for ¢ in C(k) and A in W(k). Under this isomorphism the submodule
A/A(F", V") is mapped isomorphically onto the submodule

g @ (V/p)ic—n+i (k) ! @ C—-n (’I‘) @,‘ @ (F/P)ic—n+1‘ (/l) !
n>i>0 § logj<n )
of L.

If we write an additive map u: M~ L as

w (@)= (V/p)lu_i(2) + uy (@) + ¥, (F/p) u; (@),
I>1 1
then it 1is easy to see that u(Fz)=u(2)V, u(Vz)=u(x)F and
u(Az) = u(z) A for all z in M and A in W(k) if and only if u, is a homo-
morphism of W(k)-modules from M to C(k) and

wi(x)=u,(F/z)" for j>o,
u_i(z)=u,(Viz)®  for i>o.
Moreover
(Fu)o(z) =[us (V)% (Vu)o (z) =[uo (F) ]

and (Au)o(z) = Au,(z) for all zin M and A in W (k).
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Thus we get a canonical isomorphism of left A-modules
T (M) 5 D (M)
sending u to u,. The commutativity of the diagram

M— 5 TT (M)

ll : l

DD (M) —> DT (M)

1s obvious from the corresponding diagram for T and T’.
Q. E. D.

Prorosition 3.22. — Let G=(Gy, tn, Jn) be a p-divisible group over
a perfect field k of characteristic p. Let G'=(D(G,), D(j.), D(in)) be
is Serre dual (cf. Definition 1.6). Then there is a canonical isomorphism

of left A-modules
d(G) : _M(G‘) S M(G)¢

such that the following diagram s commutative :

M (can.)

M (G) —— M (G*)
can. | 2 e
M(G)“M“‘” M(Gt)t
Proof. — By definition,
M(G) = lim [ M(D (Ga)), M(D (/) }-
But by Theorem 3.19 there is a canonical isomorphism
M (D (Gr)) 22 D (M (Gy)).

Since i,°j,= pq,,,, We have the following commutative diagram :

0—>M(G) 25 M(G) M (G,) o

| b

o—>M (G i)—+ M (G) —>M (GIH—I) —>0

Thus we get a canonical isomorphism
]_"2 {M(Gr), M(jn) | = C(k) QwnM(G),
where M(G,) corresponds to the submodule Con(k) QwryM(G) and M(j,)
corresponds to the inclusion. Thus we get from Proposition 3.9 (vi)
M (G =D (C (k) QwrM(G)) =M (G)".
The commutativity of the diagram in the proposition is obvious.

Q. E. D.

We now interpret Proposition 1.8 in terms of the Dieudonné modules.
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ProposiTioN 3.23. — If X is an abelian scheme over a perfect field k
of characteristic p. Then there is a canonical tsomorphism of left A-modules

M(vx) o d(X(p))~*: M(X(p))'5>M(X (p))
such that the following diagram s commutative : |
M(X(p)) «— B M (X4t (p))

canil l\l{M (Vx l)od (X1 (p)
—[M(Vx)od (X (P)—]
MX(p))t————>M (X (p))*

Proof. — Obvious from Proposition 3.22 and Proposition 1.8.
We now interpret the Riemann homomorphism defined at the end of
Section 1 in terms of the Dieudonné modules.

We first note that for a W(k)-module M free and of finite type we get
canonical isomorphism

HOm‘v (k) (I\Il, M) = M ®“'(k) I\I = HOmw T3} (Mt ®\v (k)M[, W (/l) )‘-

If M is a left A-module W (k)-free of finite rank, then a homomorphism
of A-modules r: M‘> M corresponds by the above isomorphisms to an
element ¢ in MQw M and to a W(k)-bilinear form b on M’ with values
in W(k) such that

(VD (e)=0QF) (¢») and  (1QV) (e)=(FQ1) (¢¥)

in the diagram

v® .
M ®\v(k)M ———1—'—‘) M(/’) ®‘v (k) NI

1®vl T1®F
M v iy M) <22 MP) @y 1y M) = (M @ry 1y M) ()
and such that
b(Fz,y)=b(=, V}')G»
b(x, Fy)=b(Vz, y)°

for all z and y in M“. It is obvious that if r is a skew-symmetric homo-
morphism, then ¢ is a skew-symmetric tensor, and b is a skew-symmetric
bilinear form.

Prorosition 3.24. — Let X be an abelian scheme over a perfect field k
of characteristic p. Then :

(1) If % : X > X" ts a k-homomorphism, there is a left A-module homo-
morphism
n=M(p)ed(X(p))™: M(X(p))'—>M(X(p))
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an element ¢, in M(X(p)) QwuM(X(p)) and a W(k)-bilinear from b,
on M(X(p))" with values in W (k) such that

(V1) () =(QF) (7)),

(1@ V) (a)=(F Q1) (¢))

and
b)\(an J’) - b)\(‘rv V)’)",
by(z, Fy)=b0(Va, y)°

for all z and y in M(X(p))’.
r, ¢, and by are additive in .. They are zero if and only if A is zero.
(1) If X is a symmetric k-homomorphism, then r, ¢ and by, are skew-

symmetric.

Proof. — It follows 1mmediately from Proposition 1.10 and
Proposition 1.12.

Q. E. D.

In particular, if L is an invertible sheaf on X, we have a skew-symmetric
homomorphism of left A-modules

rly=rag . M(X(p)'—>MX(p))
a skew-symmetric element

c(Ly=cap in M(X(p)) QwwM(X(p))
such that
(V®1) (c(L))=0QF) (c(L))
and a skew-symmetric W (k)-bilinear form

b(LY=baq on M(X(p))! with values in W (k)

such that .
b(L) (Fz, yy=0b(L) (2, Vy)°

for all z and y in M(X(p))"-.

r(L), ¢(L) and b(L) are additive in L. Moreover they are zero if and
only if L is contained in Picy}; (k).

DerinitioN 3.25. — We call r(L) the Riemann homomorphism of the
Dieudonné modules, ¢(L) the fundamental class of L, and b(L) the Riemann
form of L.

We can also interpret Proposition 2.3 in terms of the Dieudonné
modules,
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Prorosition 3.26. — Let X be an abelian scheme over a perfect field k of
characteristic p. Then we have
vaM (,nX) = F2M (,»X),
M (X)) = Vi M (,X)
for all positive integer n.

Proof. — Immediate from Proposition 2.3.

Remark. — The Dieudonné module 1s closely related to the ¢ module of

canonical covectors ”’ in the sense of Barsotti [3], Chap. I and Chap. IIL
In fact if we define a ““ formal group ” cov by using ® in [3], Th. 1.11, then
cov 1s a left A-module in a natural way ([3], I, Section 6). We can easily
show that the “ module of canonical covectors ” (ibid., Section b5)
Hom,_ (G, cov) is isomorphic to M(G) for G in Ind (2). In[3], Chap. VI
and Chap. VII Barsotti defines in a method different from ours, the Riemann
homomorphism and the Riemann form for a divisor on an abelian scheme
over an algebraically closed field of characteristic p.

SECTION 4.

PicaArRD scHEMES AND DIEUDONNE MODULES.

Let k be a perfect field and let X be a k-prescheme. The left A-module
functor C of covectors defines a sheaf of left A-modules Cx on X in the
Zariski topology. The multiplicative group scheme G defines a sheaf

of abelian groups G,,x= Ok on X. We denote by X the base extension X;
to an algebraic closure k of k.

DerinitioN 4.1. — Let X be a prescheme over a perfect field k of charac-

teristic p.  Let 1(X) be the left A-module defined by
[(X) =H! (X, Cx) ®{W() ®z,-H (X, G,x) }G“‘W“),

where H' (X, Cx) 1s given the left A-module structure induced by that of Cy,
while the second factor is given the left A-module structure by

AR z) =WR =,
FNVQz)=V°Qpax,
VQz)=V""Q=x

for % in W(k), .’ in W(k) and z in ,.H* (X, G,5). We define left A-modules

by
H, (Xp—nu) = D (I(X)),

H! (Xp—rl:n) - Tp (I (X))
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Note that the second factor can also be expressed as
fW () @z p-Pic (X) Jo H.

I defines a contravariant functor from the category of k-preschemes to the
category of p-torsion left A-modules.

Note also that H'(X,n.) = Hi (X na)’, 1if I(X) is of W(k)-cofinite
type. The p-adic flat homology and cohomology notation is used here
just to indicate the properties which these A-modules have and which
we prove below (¢f. Prop. 4.2, Th. 4.4, Prop. 4.9, Prop. 4.12, and Cor. 4.13)

ProrositioNn 4.2. — Let X be an abelian scheme over a perfect field k
of characteristic p. Then there are canonical tsomorphisms of left A-modules
M (,X) 22, (X),
I(X) = C (k) @wmM (X (p)),
M (X (p)) =T, ((1(X)) =H" (Xp—na) -

Proof. — We have a commutative diagram

pr+t
o) pn+1X X X o

T

X XX o

(o)

pn

whose rows are exact. Since Hom,_,,.(X, C_y) = o0 and Horn;_g,.()—(, G,,,;) =0
for all positive integers N, we get commutative diagrams

o —> Hom (,nrX, C_y) -—6+ Ext! (X, C_y) 27 Exv (X, C_n)
g L
0 ——> Hom (,nX, C_y) — > Ext! (X, C_y) > Ext! (X, C_y)

and
0o—> Hom ( X, sz) —a> Ext! (Y, G,,[,E) 2 Bt (K, G,,@)

E ‘ lll “
\4

) > Hom (,,,X, G,.7) — S Ext (X, G,%) s Ext! (f, G,,,;)

But by Serre ([32], VII, No. 18, Th. 8) we know that

Ext! (X, C——-N) = H (X, C—N,X)-
Thus we get
' Hom;_. (,-X, G) 22 ,.H! (X, Cx).
On the other hand Serre ([32], VII, No. 16, Th. 6) shows that

Ext' (X, G,;7) = ker | Pic (X) =122 pic (X < X) |.
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But Lang ([22], IV, Section 2, Cor. 3 to Th. 4) and the Theorem of Square
shows that the right hand side is equal to Pic*(X). This in turn is equal
to Pic’(X) by Corollary 1.3 (Cartier duality theorem). Thus we get
Hom;_g, (],5(, sz> = ,Pic (X) = ,-Pic (X)
Thus by the definition of the Dieudonné module we get a commutative
diagram
M (pretiX) 22 ol (X)
M) »
M(,X) = 0 (X)
Q. E. D.
For the sake of completeness we now interpret the left A-module

H* (X, Wy) studied by Serre ([33], [34]) in terms of the Dieudonné modules.
See also Barsotti ([3], Chap. VI).

Prorosition 4.3. — Let X be an abelian scheme over a perfect field k of
characteristic p. Then for every positive integer n there is a commutative
diagram of left A-modules whose rows are tsomorphisms

M (yreX) =5 H' (X, Wiy x)

M (i) | R

M (v-X) ——>H' (X, W, x)

Thus there ts a canonical left A-module tsomorphism

M <lim v,.X> ~ Tt (X, Wy).
—>

Proof. — The commutative diagram for a positive integer n

Va1 )
8} vn—HX X Xp=" —>0

A
in v
"" 4 —— 71
(o} an X X(p— o

gives a commutative diagram

0—> Hom (yar:X, C) —= Ext' (X7, C) Y5 Exv (X, )

B

0 ——» Hom (v.X, C) — s Ext! (X, C) ——» Ext! (X, C)

However there is a canonical isomorphism
Ext' (A, B) 2 Exv (A%, B)

for commutative k-group schemes A and B such that (V,)*= (V;),c(p)
(¢f. Matsumura-Miyanishi [25], Lemma 2). On the other hand the
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isomorphism of k-group schemes W, C_, is a ¢"-isomorphism as left
A-module functors. Since Ext!'(X, C)=H!(X, Cx) as in the proof of

Proposition 4.2 we get the following commutative diagram whose rows are
exact :

0— H' (W,y x) —> Extt (X, C) Y25 Exv (X, C)

\r NG N
LN N B A
0 {1 (W, ) —> Extl (XP=, G) 5 Exu (X, C)
(prer L e (p) .
o——> H! (C_n_j)%x) — H (Cx) _}Ill(Cx)
N NN N i
N Ny o N\
0——HI (C_y x) S (Cx) — 5 HY (Gy)

Thus finally we get a commutative diagram

M (yuX) —2> H! (X, Wops, x)

M (in) R
v
M(VnX) —= > (X’ WIL,X)

Q. E. D.

For a proper scheme X over a perfect field k of characteristic p, such
that Pic; is proper over k we define objects in Ind (9t,) by

. BT o
p"PlCX/k— hm,,nl 1CX /%y
—
n
T .
I)le/k: lim FuPle/k,
—>
n
)./\ . s
1 1CX /£, red — lim Fn (l 1Cx /£, l'cd) .
—>

n

The last two objects-are the formal grbup obtained by the usual completion
at the origin of the corresponding group schemes.

Tueorem 4.4. — Let k be a perfect field of characteristic p. Let X be
a proper k-scheme such that X (k) is non-empty, H" (X, Oy) = k and Picy, s
proper over k (e.g. X is proper normal k-scheme, cf. Murre [30] and

Chevalley [9](*)). Then there are following canonical isomorphisms of left
A-modules :

(1) DM (Picy ;) & Hi (X, Cy).

¢) It 'is’ also an easy consequence of the valuative criterion of properness. Cf. EGA [19],
chap. II, 7.3.

Ann, Ec. Norm., (4), 1I, — Fasc. 1. 14
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In particular, H* (X, Cy) ts of W (k)-cofinite type,

(2) DM (,-Picx ;) > 1(X), M (,-Picx/i) 22 Hy (Xp.0a) -

In particular, 1(X) ts of W (k)-cofinite type,

T~ . . .
(3) DM (Picy o) 2 () VAL (X, Gy) 2 G () @i H' (X, Wx)
and
/\
M(PiCX/k, red) ~ H' (X, Wx),
(4) DM (¢(Picx/i, rea)) = (k, &) @:[H! (X, W) /VH! (X, Wy)].

In particular the urregularity of X (i.e. the dimension of the Picard
variety Pick . ..qa) 15 equal to dim,H* (X, Wy)/VH* (X, Wy).

(5) DM(,-(Pickz roa)) is isomorphic as an A-module to the submodule of
p-divisible elements of 1(X).

Remark. — If X is an abelian scheme over k, then (2) follows from Propo-
sition 4.2 and Corollary 3.23 noting that

L Picxp=X(p).
(4) recovers the computation of irregularity in Mumford [29], lecture 27.

Proof. — For simplicity we write P =DPicy,;. Then (1) implies (2).
In fact since k is perfect, there is a p-primary etale object G in Ind(9%,,)
such that

»P=GxP
and
=P (7() = G(/_f)
Then M(,.P) =M (P) @ M(G). But since by the proof of Corollary 3.15
we get
M (G) = limHomy_y (,+G, C) = Homya (G(K), C(R)* (#/5)
P

= { DF(W(F) @G (%)) |5 F¥
=D({W(F) @G (%) 5 F+))
as a left A-module, we obtain an isomorphism of left A-modules
DM (G) = { W (%) ®g P (%) |5 /%)

The rest of (2) is clear.
(1) implies (3). In fact there is a finite group scheme N such that

A oY
0—>Pg—>P—-+N-—>o
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is exact. Nis killed by some power of F. Hence we get an exact sequence
of A-modules

oe«M(f’md)eM<f)><—M(N)<—o.

Since lsm, is a direct factor of the p-divisible group Pr,(p)=,-(Prd),
P.. itself is a p-divisible group. Hence M(P,,) is W(k)-free of finite

rank. Thus M(N) can be identified as the submodule of M(P) of F-torsion
elements (1. e. killed by some power of F). Hence

M(P,pq) = limM(P)/p.M (P)
e

= lim Coimage[M(f)) = (W (k), o) Qw (k,M(f’)].
—_

n

On the other hand by (1) we know that

_ DM (P) >~ 1 (X, Cy).
Hence
DM(f’rcd> = D(]im Coimage [M (p) L (W (k), o) QwnM (ﬁ>]>
_

= limImage [ (W (%), =) ®w DM (P) 3 DM(D)]
<~ .

= Lﬁw DM (P) =~ n V2H! (X, Cy).

Thus we get the first isomorphism of (3). On the other hand we have

VeH! (Cx) = lim VeH' (Cirn %)
O (Cx) %}O (Ct—n, x)

But we have

ﬂ VAH' (C_i_p x) = Image [12{ (W (&), o) QwmH! (C_i_nx), V] H! (c_i,x)],

where { (W(k), ™) QwwH! (C__. x), V] is the projective system
S (W (£), o) @wnH! (Ciin,x) < (W (K), o) @w i H' (Coins,x)-

Since by definition C_,_,= (W (k), ™) Qw & Wi, this projective system
1s equal to '

S (W (£), ) @w @ H! (Win,x) < (W (£), 6) @wpH! (Winas,x) <
where R 'is the canonical projection R: Wiy - Wi,. Thus we get

() V'H (Coicn, x) = (W (K), o) @w [ 11 (W) /VIHE (Wy) 1.
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Since the injection C_;— C_;_, is equal to

(W (£), 3) ®wg Wi (W (£), 751) @ oy Wi
we get
n VeH! (Cy) :En;{ (W (), o) Qwu[H' (Wx)/VIH' (Wy)], V.

n

Lemma 4.5. — Let X be as in Theorem 4.4.  Then H'(X, Wy) is
W(k)-free of finite rank.

Proof of Lemma 4.5. — This is a slight generalization of the result
of Serre ([33], p. 20, Prop. 4). First of all H'(Wy) is V-torsion free (i. e. no
non-zero element is killed by any power of V), since H*(Wy) - H*(W, )
1s surjective. By Serre ([33], p. 15, Prop. 3), H*(Wy) is W(k)-finite type
if and only if H!(Wy)/FH'(Wy) is of W(k)-finite length. This latter

condition 1s satisfied. In face we have

H' (Wy)/FH' (Wy) = iﬁ [H* (W, x)/FH' (W, x) ]

and an exact sequence

0 0 (W, x/FW,. ) = ' (W, x) > H1 (W, x),

where H' (W, ) 1s of W(k)-finite length. Hence we get
lengthy [ H! (W, x) /FH! (W, <) ] = lengthy [ H* (W,,, x/FW,, x) |-

But by definition
HO (W, x/FW, x) = (W (k), ") Qw @ H° (C_,x/FC_p,x)

and we know that H°(C_,</FC_,x) 1s imbedded canonically in
‘H°(Cx/FCx) =¢H"(Cx). From (1) we know that this is isomorphic
to DM(;P), which is of W(k)-finite length. Hence the W(k)-length
of H' (W, y)/FH*(W, ) is bounded in n. Hence we are done. We know
from Serre ([33], p. 13, Prop. 2) that for a left A-module of W(k)-finite
type on which V acts topologically nilpotently in the p-adic topology,
the set of V-torsion elements is equal to the set of p-torsion elements.

Q. E. D.

Lemma 4.6. — Suppose M s a left A-module which ts W (k)-free of finite
rank and on which V acts topologically nilpotently in the p-adic topology.
Then there is a canonical tsomorphism of left A-modules

]i‘g{ (W (£), 0%) @w iy M/VIM, V} 5 C (k) Qw M.
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Proof of Lemma 4.6. — We denote by ¢; the projection ¢;: M — M/ VM.
Then for z in M we define

(1@ pi (@) = (1/p) @ Flr.

Then o; is an A-module homomorphism from (W(k), ") @w,M/V'M
to C(k)@wwM. In fact

% (AQpi(2) =a(1@p: (1" @) = (1/p") @ F (17" z)
=(1/p") @ AFix = ha; (1 Q p:i(x))
for 2 in W(k), and o; obviously commutes with F and V. 'We now show
that «; 1s well defined and injective. In fact «; (1@ pi(z))=o0 if and
only if Fiz is in p'M. Since M is W(k)-free, there is no element in M
killed by F. Hence 2;(1&)pi())=o0 if and only if z is in V'M, i.e.
1 pilz) = o.
{a;} are compatible, since
21 (1Q Vpi (7)) = 2 (1 Q 011 (V&)) = (1/p1) @ Fiv' (Vi)
=0a/p) @Fx—=a,(1Qp:(x)).
Thus we get an injective A-module homomorphism 2. Now we show
that « is surjective. Let (1/p")@y be an element of C(k)QwuM.
Since V acts topologically nilpotently on M, there is an integer ¢ sufficiently
large and an element z in M such that
Vi}/ :pmz.
Multiplying F’ on both sides we obtain p"(p~™y — F'z) =o0. Since M
is W(k)-free we get p~"y=F'z. Then
(1@ pi(2)) = (1/p") @ Fla = (1/p") @ p="»=(1/p") Q-

Q. E. D.
Proof of Theorem 4.4 continued. — We now apply Lemma 4.5 and
Lemma 4.6 to M = H*(Wx) and get the second isomorphism in (3). The

rest is trivial.
(4) follows from (3). In fact we have
DM (¢ (Prea)) = D (coker[(W (£), 2) @w ity M (Prea) > M (Pren)])
— ker[ DM (Proa) > (W (£), &) Qw iy DM (Proa) |
~ ker[ () V21 (C) S (W (), ) @i () VoI (Cx)]
= TImage [Ligl{ (W (£), 5) @i T (C_y_y), V> I (c_m)]

n

= (k, o) @«[H' (Wx)/VH' (Wy)].
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It 1s not difficult to see that we have a homomorphism of left A-modules
M (s (Prea)) = (K, 3) @' (PRea/A),

where w!(P.,,/k) denotes the vector space of invariant differential forms
of the abelian scheme P;,,. F acts trivially and V acts through the Cartier
operator (cf. Section 5 and Seshadr: [36]). Hence we get an isomorphism
of left A-modules

DM (¢ (Preq)) = (£, o) Qi Lie (Pr/k),

where V acts trivially on the right hand side and F acts through p-operation
of the p-Lie algebra structure.

(5) follows from (2) and the exact sequence
0> po(Pled) = p-P > N'—o0,

where N’ is a finite k-group scheme killed by some power of p.
We now prove (1) of Theorem 4.4. Since P =lim P we get
-

DM(P) = D(ET M (F..P)> = IEEDM (P) h_m> M (D (g:P))

n n

by Theorem 3.19. But we can write

D (g.P) = Spec (H, (P)), v
where H,(P) is the dual vector space of O,,/0, ,F*(0N,,), ©,, and
OM,, being the local ring of P and the maximal ideal respectively

at the origin. H,(P) can be identified with a sub-bialgebra of the bialgebra
of invariant differential operators :

H(P) :U H, (P)

of P (i.e. the hyperalgebra of P). If we denote by i, the imbed-
ding z.P — p...P, then the epimorphism D (z,) : D (g P) = D (z.P) corresponds
to the canonical inclusion H,(P)— H,.,(P). Hence (1) becomes

(1) H' (X, Cx) =2 lim Hom;_g, (Spec (H, (P)), C).
. —>

To prove (1) it is enough to prove that for each positive integer N

H' (C_y,x) = lim Homy_g, (Spec (H, (P)), C_y)
_

= Homy_g, (Spec (H (P)), C_xy).

Since C_y= (W (k), 5*) @wn Wy by definition, it is enough to prove
(") H' (X, Wy x) = Homg_g, (Spec (H(P)), Wy)
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as left A-modules, where the structure of left A-module on the left and
right hand sides of (1”) is induced by that of Wy.

Let R be an augmented Artinian local k-algebra. We denote by M
and  the maximal ideal and the augmentation R — k respectively. Let E
be the dual k-vector space of M. Then the dual k-vector space
Hom, (R, k) = kn P E has the structure of augmented unitary commutative
k-coalgebra. Hence the symmetric algebra S(E) which canonically
contains kn @ E has the structure of commutative, cocommutative,
augmented and unitary k-bialgebra.

Lemma 4.7. — Spec(S(E)) is a commutative group scheme over k, whose
B-valued points for a k-algebra B are given by Spec(S(E)) (B) =1+ BQ:M,
where the right hand side ts the multiplicative group which is the kernel of the
homomorphism

(B ®:R)* 85 (B @ik)*= B,

Proof of Lemma 4.7. — 1f we call a vector space B over k unilary when B
is given a homomorphism %k — B, then a k-algebra B is a unitary k-vector
space with the canonical injection of k in B and k=P E = Homy (R, k) 1s
also a unitary k-vector space with the map sending 1 to n. Thus we get

Spec(S(E)) (B) = Homzm,ary (S(E), B)

-algebra

= Homynyrary (km DE, B)

k-vector space

e Homunitary (Homk (Ra 'l‘)a B)

k-vector space

=@ m)~t (1) =1+ BR:M

Spec(S(E)) thus gives the abelian sheaf
Spec (S(E))x=1+ OxQ:M

on X in the Zariski topology.

LemMma 4.8. — There are canonical isomorphisms

H' (X, Spec (S (E))x) = ker[P (R) 2P (k)]
=~ Hom;_, (Spec (H(P)), Spec (S (E))).

Proof of Lemma 4.8. — Since X(k) is non-empty and H°(X, &) =k
by assumption, we get
ker[P (R) 5 P (k)] = ker| ! (Xn, 0%,) 5 H! (X, ox) |

= ker|H! (X, (0x®:R)*) > H' (X, 05) ]
=H! (X, 1+ Ox®:M) = H' (X, Spec (S (E))x).
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Thus we get the first isomorphism. On the other hand if we write © = 9, ,

then
ker[P (R) % P (k) ] = Homugmented (O, R)

unitary
k-algebra

= Homyygmentea (Homy (R, &), H(P))
unitary
k-coalgebra

— Homaugmenwd (S (E) ) H (P) )
;fllf;:{gyebra

— Homy_g, (Spec (H(P)), Spec (S (E))).

Thus the second 1somorphism is obtained.
Q. E. D.

Proof of Theorem 4.4 (1) continued. — We now apply Lemma 4.7 and
Lemma 4.8 to the special case where
R AL0)/(0).
Then S(E) =k[A1, A, ..., Ap"——1:|’ where 1f we put A;=1, then {A;}
is the dual basis of {¢#}. The comultiplication is given by
A= Y AQAw

J+k=i

Thus Spec(S(E)) is the group scheme over k of truncated power series
of length p" and with 1 as the constant term, i.e. B-valued point is an
element of the form

1+b1t+b2t+...+bpx_1tp“—1.

But according to Serre [32], V, No. 17, and Bergman [29], lecture 26, there is
a canonical decomposition

Spec(S(E) = [ | Wa=Waxx [ Wo,

o<i<pt 1<i<pt
{tp)=1 (,p)=1

where r;=min[r; p’>> p"/7]. Thus from Lemma 4.8 we get (1”).
Q. E. D.

Let X be as in Theorem 4.4. Then the Albanese variety Alb(X)
of X is defined by (¢f. Chevalley [9])

Alb (X) = (Pic;”(/k,,ed)’.
There is a canonical k-morphism t: X — Alb(X) unique up to the trans-

lation by k-valued points of Alb(X). This defines a canonical homo-
morphism of left A-modules

#: T(AIb (X)) - 1(X)
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which does not depend on the translation of ¢ by k-valued points of Alb(X).
In fact by the results of Serre [32] quoted in the proof of Proposition 4.2
the homomorphism

*

w— pi—pi: 1(Alb(X)) —1(Alb (X) x Alb (X))

is equal to zero. Thus the translation of Alb(X) by a k-valued point
induces a trivial action on I(Alb(X)). From this we also see that the
canonical homomorphism of left A-modules

i, 0 Hy (X,qa) = Hy (Alb (X) pqa)

¥

does not depend on the translations (¢f. Definition 4.1).

ProrositioN 4.9. — Let X be as in Theorem 4.4. Then :

(1) the canonical homomorphism of left A-modules

1 T(Alb (X)) = 1(X)

is injective and the tmage ts equal to the submodule of p-divisible elements
of 1(X);
(11) the canonical homomorphism of left A-modules

i H H] (Xp-llat.) - Hi (Alb (X)p-ﬂat)

¥

is surjective and the kernel is equal to the submodule of p-torsion elements
of Hy(Xpau):
Proof. — (11) follows trivially from (i). By (2) of Theorem 4.4 we have
a commutative diagram of left A-modules
DM (,,-Picy 1) —=—>1(X)

DM (p-u (Pic?w., l'cd)) = DM (p"PiCAlb (X)/k) —-‘:’—> I (Alb (X) )

By (5) of Theorem 4.4 the left vertical arrow is injective and the image
is equal to the submodule of p-divisible elements in DM(,.Picy/;).
Hence i* satisfies the same properties.

' Q. E. D.

" Derixtrion 4.10. — Let G be an object of & = U XN, t.e. commutative
k-group scheme of finite type killed by some power of p. As in SGA [17],
1960-1961, exposé XI, we define

nt (Xﬂat) GX)
to be the commutative group of equivalence classes of principal homogeneous

spaces over X with group Gy.
Ann. Ec. Norm., (4), II. — Fasc. 1. 15
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This is a covariant functor from % to the category of abelian groups,
and 1s a part of the flat cohomology theory of X. 1If G is smooth and
connected over k, then we get

l{l (Xﬂa[’ Gx) - ll' (X, G\) 5
where the right hand side 1s in the Zariski topology by SGA [17], tbid.,
Prop. 5.1 ().
We recall that for G in <

M (G) = Homyy, (G, C) @ | W(A) @z Homg_ (Gg, G, ) 1Y,
We also remark that

LX) =H! (X, Cy) @ { W (F) @g,-H (X, G, ) & Y
=1 (Xﬂah CX) @ { \V(/_‘) ®z II”H] (Xﬂala G/ni) }G‘il Ol

by the remark above and by the fact that C=1imC, and that C.,

—

n

and G,, are smooth and connected.

Derinttion 4.11. — Let G be in . Then we define a homomorphism
of commutative groups

w: H' (X, Gx) — Homy (M (G), I(X))

as follows : let x be an element of H'(X,., Gy). Then the homo-
morphism u(x) from M(G) to 1(X) ts defined in the following way : an element f
in Homy—, (G, C) tnduces a homomorphism

f; : III (Xﬂilh G)) ﬁ'I‘Il (Xﬂaty C)) S] (X)

Then we put u(z)(f)={[.(x). On the other hand an element f in
Hom; (G G, ;) induces a homomorphism

—gr

S Hl(inm, Gi) —>-H! (X““" Gy, Y>

since G ts killed by some power of p. Hence if x ts the image of x by
H' (X, Gx) = H‘(Xnm, G, f), then we have a homomorphism

u(x) : VV(/T‘) Rz ]longgl,((}z, Gu@) — \V(/T') Rz -1l (Xﬂal, G 7>

m X

by u(z) (L@ f)=" ®f¥(7v) We put u(x) to be the restriction of u(x) to the
Gal(k/k)-invariants.

(*) See also A. GROTHENDIECK, Le groupe de Brauer II1I : Exemples et complements,
Appendice (Notes miméographiées, 1. H. E. S., mars 1966). Cf. Ad. St. in pure Maths.,
vol. 3, 1968, p. 88-188, North-Holland Pub.
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It is easy to see that u(z) is a homomorphism of left A-modules. We
remark that if I(X) is of W(k)-cofinite type and G is in I, i.e. finite
k-group scheme whose rank over k is a power of p, then

Hom, (M (G), 1(X)) = Homy (H, (X,.40), DM (G)).

Thus the following Theorem justifies the notation H* (X, 4,). A slightly

different formulation of the same statement is in SGA [17], exposé XI,
Section 6, and Milne [42], Section 2 (?).

Tueorem 4.12. — Let k be an algebraically closed field of characteristic p.
Let X be a k-prescheme such that H° (X, Oy) = k, and let G be a commutative
group scheme of finite type killed by some power of p. Then the canonical
homomorphism of commutative groups

w: H'(Xju, Gx) = Homy (M (G), 1(X))
is an isomorphism.

Proof. — Since k is algebraically closed and H°(X, &) =k, the flat
cohomology theory assures us that H'(X,, Gy) 1s left exact in G. On the
other hand since M is exact, Hom,(M(G), [(X)) is left exact in G.
Since G 1s in ¢ and k is algebraically closed G can be written as the kernel
of a homomorphism '

| 1Sl | IT20ng | Kewsy | 073
i i i !

where the products are finite in number. Hence it is enough to prove
the theorem when : (i) G=0C_, or (11) G=y,. for all n. In case (1),
we have M(G) = A/AV" and the residue class of 1 modAV" corresponds
to the canonical embedding C_,— C. This defines an isomorphism
from H'(X, C_,y) to the submodule of H'(X, C) killed by V”. Hence
we are done in case (1). In case (1), M(G)=A/A(V —1, F*) and the
residue class of 1modA(V—1, F") corresponds to the canonical
embedding {J./,,: —> G,,.  This defines an isomorphism from H'(X,,, ,.) to
the subgroup of W(k)Q,,.-H'(X, G, x) killed by V—1 and F*, 1.e. the
subgroup 1) ,.H" (X, G, y).

Q. E. D.

CoroLrary 4.13. — Let X, be an abelian scheme over an algebraically
closed field of characteristic p. If G is a commutative group scheme of finite
type over k killed by some power of p, then the canonical homomorphism

Ext' (X, G) > 11" (Xpu, Gy)
s an tsomorphism.

() Sec also M. MivAaNi1sHI, Quelques remarques sur la premiére cohomologie d’un préschéma
affine en groupes commutlatifs (to appear in J. Math. Kyolo Univ.).
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Remark. — This was first proved by Lang-Serre [23], for a finite etale G,
and by Miyanishi [43] for a finite G.  See also Milne [42], Section 2.

Proof. — Since by Proposition 4.2 we have
[(X) = C(h) Qww M (X(p)),
Theorem 4.12 gives an isomorphism
H' (Xga, Gx) & Homy (M(G), C (k) Qw M (X(p)))-

On the other hand since M(X(p)) is W (k)-free, we have an exact sequence
of left A-modules

o—>M(X(p)) > B () QwuMX(p)) - C(k) QwmM((X(p)) —>o.

Since M(G) 1s killed by some power of p, the long exact sequence gives an
1somorphism
Hom, (M(G), G () @w M(X(p))) % Exth (M(6), M(X(p))).-
The right hand side is equal to Extyq g (X(p), G). We now show that
the canonical homomorphism ‘
EXt.1 (X, G) —> Extfnd(g,,) (X(l)), G)

1s an isomorphism. The following argument is due to F. Oort.

Suppose G is killed by p™. Then for n>>m the commutative diagram

0 X X25X— o

Lo

14
1
0—> X —> X5 X —50

gives a commutative diagram

0— Ext (X, G) — Ext! (,,X, G) —» Ext? (X, G) — >0

N I I

0— Ext! (X, G) — Ext! (X, G) —— Ext? (X, G) —> o

Taking the projective limit for increasing n we get an isomorphism

Ext! (X, G) 3 lim Ext' (X, G)
4—

n

since Ext? (X, G) is killed by p™. Similarly from the commutative diagram

o——+p"X——+X(p)—”'-l+X(p)—>o

I

0 —> puruX —> X(p) iI—i;X(p) —>0
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we get an isomorphism

Extfnd (@) (X(p) 5 G‘) ':>Lllil Exlfml(m (an, G) .

n

The right hand side is equal to lim Ext*(,.X, G).
.é___

n

SECTION 5.

De RHAM cOHOMOLOGY AND DIEUDONNE MODULES.

Let X be a scheme over a ring k. Let (Qy,, d) be the complex of
sheaves of Kéhler differential forms on X. Then the De Rham cohomology
of X is defined by

Hig (X) =H* (X, (Qx/x, 4)),

where the right hand side is the hypercohomology of the functor H*(X, )
with respect to the complex of abelian sheaves (Qx;, d) (¢f. EGA, oy,
Section 11.4).

There 1s a spectral sequence
Ep7=H7(X, Qf,)= Hir (X).
Let U ={U (?)} be an affine open covering of X. Then we have a first

quadrant double complex
{ (0 (uv 9;(/7:)7 da 0 },

where C7(U, Qf,) is the set of all g-cochains a={a(is, 1, ..., Iy},
where (i,, 14, . . ., i,) runs through g-nerves of the covering U, and «(z,, ..., I,)
isin H (U (3, ..., t,), Q§,x). The coboundary operators are

d: CI(U, QF,)— C7(U, QL)

sending « to da defined by

(da) (;‘0, by ooy dy) = d (@ (i By ey i)

and
0 Gr(U, Q) —Crt (U, F)

sending « to o defined by

. ™ .
(30) Glos iy +oos Bgun) =y (1Pl ey Ty oy ).

0Lr<=q-+1
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It is easy to see that d*=c*=di+cd=o0. We define the hyper-
cohomology of the covering U with coefficients in (Qy ,, d)

Hﬁﬂ (w() — Hn (‘ﬂL 9;(//:)

to be the cohomology of the associated simple complex
Con (W) ={C (U, L), d+3d}.

By the generalized Leray spectral sequence proved in EGA oy,
Corollary 12.4.7 we get a canonical isomorphism

Higg (U) 2 Hip (X).

(The assumption in EGA that the differentials of the complex are Os-linear
1S unnecessary.)

The exterior product QL Qi Q% — Q4" induces the cup product
on H;(X). We can express it explicitly as follows (¢f. Godement [14])

U’('l[ Q1 /A)®ACI(‘111 Q{(/A)%Cf/w (AU, Q{(’ﬁp)

sending « @ {3 to «. [ defined by
(%.B) (boy ooy Tgug) = (=D Ta(loy ooy @) N By o ooy Tgugr).
Then it 1s easy to see that

d(a.f) = (da) .3 + (—1)7*7a. (dB),
0 (a.B)=(0a).8 + (—1)"*7a.(3B).

Thus according to Cartan-Eilenberg [5], Exercises of Chapter XV, the
complex (E”7 d,) obtained from the double complex {C7(U, Qf,), d, ¢}
1s an associative and anti-commutative doubly-graded Fk-algebra with
differentiation, 1. e.

EraQEL T — Errrha+q

sending « @ 3 to «.f, is associative and

B.a = (_. I)(P‘HI)(P'—H]')@.@’
d(2.8) = (dva) B+ (— )P+ a. (d.B).

Prorosition 5.1. — Let X be an abelian scheme over a field k. Then
the spectral sequence

17 (X, Q¢,) = Hin (X)
is degenerate, i.e. d. : EV7—> E"7""" 4s zero for all positive integers r.

Proof. — The method is entirely similar to Serre ([32], VII, No. 22, Th. 11).
We prove the proposition by induction on r. Using the induction hypo-
thesis and the Kiinneth formula we get a canonical isomorphism

E; (X > X) = E; (X) @ E; (X).
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The law of composition p: X X X — X thus induces a comultiplication
e EN(X) - EN(X) ®:E, (X). Moreover each E”7(X) is finite dimen-
sional, E)' =k, E’"=01if p4¢g>2dimX, and

dim[EL P ERY | =2 dimX.

Thus by Borel-Hopf’s theorem, we have an isomorphism of Hopf algebras
’ Bl A[EL @ ES .

Especially E'"@ E!" is the set of all primitive elements in E. Thus
to prove d, is zero it is enough to prove d.(z) = o0, when z is primitive,
e prr=zQ@i1+1@ax Since d,. is functorial, we have d, o = *od,.
Thus

' prod () =d () 1+1Q d-(x),

1..e. d.(z) is also primitive. But z is in E"@E)", hence d.(z) is in
E""7"@E?"*", whose intersection with E!'"@E)" is zero. Thus
d.(z)=o.

Q. E. D.

Cororrary 5.2. — Let C be a proper smooth curve over a field k. Then
the spectral sequence
H7(C, f,0) = Hj (C)
is degenerate.

Proof. — Only non-trivial part is to prove that d, : E{"' - E}"" is equal
to zero. This map is equal to d: H'(C, O;) - H'(C, Q;,). We may
assume k is algebraically closed. Let ¢:C—J be an imbedding into

the Jacobian variety. Then by Serre ([32], VII, No. 19, Th. 9) there is

a commutative diagram whose first column is an isomorphism

(G, 0¢) =25 11 (C, QL)
A

i T

H' (J, 0)) —2> H' (J, Qi)

13

By Proposition 5.1 the bottom row is zero, hence the top row is zero.

Q. E. D.

For later purposes we now describe H,;(X) in terms of Cech cocyles
explicitly. Let U= {U(:)| be an affine open covering. Then as we
remarked above we have a canonical isomorphism

Hjg (X) = Zir (W) /B (W),
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where Zyg (W) is the set of pairs (f, w) for fin C* (U, &) and o in C°(U, Qg,)
such that
of =o, df —dw=o and dw=o,

f(./.a k) _f(i) k) +f(l) J)=o,
af(i, j)=ow(@)—u(),
dw({)=o

for all 7, j and k, while B}, (W) is the set of pairs of the form (3g, dg) for g
in C°(U, &), where
(98) (&) =8 (1) —&(/),
(dg) (() =d (5 (1))

Suppose k is a ring of characteristic p. Let X be a scheme over k. Then

1t is easy to see that
Hjr (XP) = (&, ) @+Hpr (X).

Hence the k-morphism F:X - X" induces a homomorphism of
k-modules
P (ko) @icHin (X) —> Hip (X)

or a g-homomorphism F from H,(X) into itself sending « in Hjz(X)
to Fe=F*(1Qa). In particular, if k is a perfect field of characteristic p,
we can give Hyx(X) a structure of left k[F]-module, where k[F] is the
non-commutative ring defined by FA = A°F for all A in k.

The homomorphism F*Qy,— Qy,; induced by F coincides with
taking p-th power in degree o and is equal to zero in higher degrees. Using
this fact it is easy to express F in terms of Cech cocycles. For example,
if (f, w) is an element of Z;, (W), then the class of (f, w) modByx(U) is sent
to the class of (f7, 0) mod By (W), where (f?) (¢, j) = (1, )P

Derinttion 5.3. — For a scheme X over a field k of characteristic p,

we define a homomorphism of k-vector spaces

F : (A, O') ®/CI‘I1 (X, @x) —}Hfm (X)

or a g-homomorphism of k-vector spaces

F: H! (X, Ox) —}H%R(X)

as follows : if f ts in Z* (M, O) for an affine open covering U, then F sends
the cohomology class of f to the class of (f”, o) in Zyx ().

It is well defined. In fact if f=2g for some g in C°(, O), then
(3gP, o) = (3g?, dg?). If X is normal, then F is injective. In fact if
(f*, 0) = (2g, dg) for some gin C°(U, ©y), then passing to a finer covering
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if necessary, we may assume that g= h* for some hin C°(U, &) since X is
normal. Hence f= ch.

From now on we are only interested in Hpz(X). Note that
E"=H"(X, Q,) and E]"=H"X, &). Hence E}’ is equal to
the kernel of d: H°(X, Qg,) -~ H"(X, Q§,) and E;' is the kernel
of d:H'(X, &) H'(X, Q). The exact sequence of terms of low
degree of this spectral sequence 1s ‘

(1) o — H (X, Q%/k)u=s— Hpr (X) - H' (X, Ox).

It can be easily seen that the map F in Definition 5.3 coincides on the
image of the third arrow in (1) with the map induced by the map F defined
before Definition 5.3, since this latter F kills E}"’. 7

If X 1s an abelian scheme over k or a proper smooth curve over k, then
by Proposition 5.1 and Corollary 5.2 we have an exact sequence

(1) o—H (X, Q%) = Hjg (X) - H' (X, 0x) —o.
Prorosition 5.4. — If X is a normal k-scheme, then the sequence

(2) 0= HY (X, Q44)a=0—> Hbn (X) = (, 5~) @i Hin (X)

is exact.

Proof. — We prove it in terms of Cech cocyles. Suppose U is an affine
open covering of X. Suppose (f, ®) is in Zps(U) such that F(f, o) = (3g, dg)
for some g in C°(U, Oy), i.e. f’=0g and dg=o0. Then by passing to
a finer affine open covering if necessary we may assume that g= h” for
some hin C* (U, O), since X is normal. Hence f=Sh. On the other hand
since df 4 ¢w = o and dw = o by definition, there is an ©, in H°(X, Q)0
such that w =dh + ©,. Thus (f, w) = (o, ®,) + (5h, dh).

Q. E. D.

The Cartier operator is defined in Cartier [6] and Seshadri[36] as follows (°) :

Derinition 5.5. — Let k be a perfect field of characteristic p artd let X
be a k-prescheme such that O, has a p-base for all poinis z in X (e. g. X ts
smooth over k). Then there is a surjective homomorphism of sheaves of rings

Vi Qx/ka=o—> x/x
characterized by :
(1) the kernel of V is equal to the subsheaf of exact differentials;

(i) V coincides in degree o to the extraction of p-th root (noting that
Q;’(/k,d:oz @)1;);

. (°) See also P. CARTIER, Questions de rationalité des diviseurs en géométrie algébrique
(Bull. Soc. math. France, vol. 86, 1958, p. 177-251).

Ann. Ec. Norm., (4), 11. — Fasc. 1. 16
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(i) if o s in Qi a0 for a point x of X, then V(w)= o if and only
ar

if there exists an element f in O, such that © = -

The point here is that if {y,, y., ..., y.| is a p-base of the local ring Oy .
at a point = of X such that y; are units in O ,, then

d Vi

9;{/1',.7*,1/:0:(16}\‘,:::@ 2 04:,(%)'

1200

In particular if X is a smooth scheme over a perfect field k& of charac-
teristic p, then from Definition 5.5, we have an exact sequence

v
(3) 0> dOx—> Q% y—o—> Q%> 0

of abelian sheaves, where V is a o '-homomorphism from the ©§-module
to the Og-module.

DerinitioN 5.6. — Let X be a smooth scheme over a perfect field k of
characteristic p (or more generally X has a p-base at every point). We define
a homomorphism of k-vector spaces

Vi Hip(X) > (k, o) Q:H (X, Q%)

or a 3 '-homomorphism of k-vector spaces

Vi Hpe(X) = H (X, Q)

as follows : if (f, ®) ts in Zyn(W) for an affine open covering U, i. e.

S k) — f@, k) ""‘f(l.v J)=o,
df(i.j) =ow() —w(/),
dw ({) =0

for all 1, j and k, then V sends the cohomology class of (f, ®) to Vw
in H* (X, Q).

In fact dw(t)=o0 hence Vw(i) is well defined. The second equality
implies that Vw (i) = V() for all i and j. Moreover if (f, o) is in B, (U),
i.e. if there exists g in C°(U, @) such that f=23g and w=dg, then
Vw=V(dg) =o.

Prorosition 5.7. — If X is a smooth scheme over a perfect field k of
characteristic p, then the sequence
4 0> (ky @) @ (X, Ox) > T (X) > (&, o) @1 (X, Q)
is exact.

Proof. — The injectivity of F is shown in Definition 5.3. Suppose (f, )
is an element of Z,; (1) for an affine open covering U, such that V(f, w) = o.
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Then passing to a finer covering if necessary, we may assume that
w (1) = dg (1) for all ¢ for some g in C°(U, O) by Definition 5.5 (i). Since
df + 6w =0, we get d(f —Cg) =o0. Hence passing to a finer covering
if necessary we have f—dg=h? for some h in Z'(U, ©). Thus
(f, ©) = (h”, 0) + (cg, dg) and we are done.

Q. E. D.

There is an example of a smooth scheme X over a perfect field k of
_ characteristic p, for which
0 (X, Q)03 HO (X, R41)
(cf. Mumford [28]).
By definition 5.6 we have a 5~ '-homomorphism

Hip (X) > HO (X, Q%) -5 HO (X, Q3.

We can define V? from the kernel of doV in H;,(X) to H*(X, Q).

Hence we have a o—*-homomorphism
ker (do V) ~> TI0 (X, QL) -5 T (X, Q).

Similarly we can define a o~"*"-homomorphism V™' from the kernel
of doV" in Hu(X) to H'(X, Qy,). V(ker[doeV"]) 1is contained
in ker(d- V*~"). Hence

n ker (doVr) in Hip(X)

is stable under V, where H°(X, Qg,).-s 1s considered as a subspace
of Hjn(X) by (1).
There is an example of a smooth scheme X over a perfect field k of charac-

teristic p, for which '
ker (d o V*—1) L ker (do V7).

The following is due to Mumford. Start from the projective plane P,
and consider the rational differential

,,<d,v‘
w=ual" | == >7
)/

where (z, y) is the affine coordinate of P,. Then
do = o, Vw:x”"“(Q—), dVw =o, ceey V”'—'m:x/’<d—y>s
Y . Y

dVr—w =o, 'V"w::x<%>, dVrew = dx A\ (%)# 0.

We now apply the method in Mumford [28] to this w.
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Derinition 5.8. — Let X be a smooth scheme over a perfect field k of
characteristic p. We define a left A-module structure on n ker(d- V")

in Hyp(X) by operating with W (k) through reduction mod p and the canonical
k-vector space structure, by operating with F in the manner described before
Definition 5.3, and by operating with V via the Cartier operator.

This is well defined by Proposition 5.4 and Proposition 5.7. If X is an
abelian scheme over k or a proper and smooth curve over k, then by
Proposition 5.1 and Corollary 5.2 we get a left A-module structure
on Hpjx(X) itself. Furthermore Proposition 5.4 and Proposition 5.7
imply that

H" (X, Qx/1) = VHpr (X)) =¢Hjr (X)
and
FHjg (X) =vHir (X).

Let k be a perfect field of characteristic p. As before we denote by C
the contravariant functor of Witt covectors from the category of
k-preschemes to that of left A-modules.

DeriniTioN 5.9. — We define a morphism of set functors (not of group
functors)
S: C—=C
by
. o Jor m=—1,
(Sx)m— L1 fOl‘ mé—z

for all k-preschemes T and points x in C(T).
It 1s not difficult to see that

(5) VOS:I.dC;
(6) SoF=FoS;
(7) Sofa}l={ar}oS forall ain £,

where {a} is the element in W(k) whose first component is a and the rest
of whose components are zero;

24 for m=—1,
for m=Z—2

(8) (x —SVa&),,—=

for all k-prescheme T and z in C(T);

(9) [S(x+y) —Sz—Sy]l.=o for mZ—2

for all k-preschemes T and # and y in C(T).
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Let X be a k-prescheme. The functor C defines a sheaf of left A-modules
Cx on X in the Zariski topology. We define a homomorphism of abelian
sheaves

A: Cx—Qxp
by
Au— cfu(—'):E w’ ~hdu_y_,

ino

for an open set U of X and a section u in C(U).
It 1s easy to see that

(10) . doA=o;

(11) Ao{al=ar™A foraink,

where the right hand side is the scalar multiplication by an element of k
on Q.

We remark here that the Cartier operator is well defined on the closed
rational differential forms even if X is not smooth over k, e.g. X 1s

normal, 1. e.
Vi Qfxyka=o—> Qbxi/ke

However it is not guaranteed that V(Qg...—,) 1s contained in Q..

- From (10) the image of A is contained in Qg ,_,. From the form of A
it is easily seen that VoA sends Cy into Qg,, even if X is not smooth,

(12) - ‘ VoA=AoV.

In fact for an open set U on X and a section u in C(U) we get

A(Vu) :2 (Vuyr'—rd (VU)_’*"ZE W' du_y

ix0 in0
= V[Z"’—’i1_—; du_1_i] =V (Au);
o0

(13) AoF —o.

Moreover if X is normal, then the kernel of A is equal to FCx.

In fact suppose Au = o for an element win Cy ,. If up=o0 for m =— 2,
then Au = du_,, hence u_,= ¢”, for some ¢_, in k(X). But ¢_, is actually
in O, since it is normal. We prove by induction on the length of w.
Suppose we already proved the statement for u of length no more than n.
Then AVu= VAu=o0. Hence by induction hypothesis we get Vu=Fw
for some w in Cx,. Then u —FSw=u— SFw=u— SVu has length 1,
since V(u — SVu)=o0. Moreover A(u — FSw)= Au=o0. Hence
u— FSw=Fu' for some w'. Thus we are done.
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Similarly we can define a homomorphism of abehian sheaves
(dlog) 1 Gx—> Qx
by
du

(dlog) (1) = —

u

for an open set U of X and a section win G,,(U).
It is easy to see that

(14) do (dlog) = o;
(15) V leaves image elements of (dlog) fixed;
(16) (dlog) o F —o.

Moreover if X is normal, then the kernel of (dlog) is FG,.x.
Let I(X) be the left A-module given in Definition 4.1.

Tueorem 5.10. — Let k be a perfect field of characteristic p.

(i) Let X be a k-scheme such that H°(X, Ox) = k. Then there is a cano-
nical homomorphism of left k[F]-modules

o LX) ﬁ'_“fm(x)
such that ¢(.1(X)) ts contained in H" (X, Q).

(1) If X is a normal k-scheme such that H* (X, ©y) =k, then ¢ is injective.
Moreover ¢ is a homomorphism of left A-modules in the sense that in the
image of ¢ the Cartier operator V ts well defined, and that if we give the image
of @ the left A-module structure by operating with NV through the Cartier operator,
then ¢ is a homomorphism of left A-modules. ¢ maps 1(X) injectively

into H' (X, Qg/x)i=o-

1) If X is a k-scheme proper and smooth over k, then © is injective and the

prop ¢ ]

image. is equal to m ker(deV"). ¢ maps L(X) isomorphically onto
n ker(do V' ynH" (X, Q). Moreover @ ts a homomorphism of left
A-modules.

Proof. — We recall that

LX) = (X, Gy) + {E®@g (X, Gy ) |50,
We first define the map
Gy (X, G,x) > He (X, sz_g/k.>

d=0-

Let a= (i, j)! be a 1-cocycle representing an element of H'(X, G, )
with respect to an alline open covering U={U(:)} of X. Then by
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definition there is a o-cochain 3= {3(i)| such that «(i, j)’= 3(i)/B())
Then dB(i)/B(i) = d3(j)/3(j) determine a global section of Q¢ 2, sends
the cohomology class of « to this global section. This map 1s well defined.
In fact if for a cohomologous 1-cocycle a.2% = {a(i, j) %(i)/~(j)| we have

[ (Z, /) M (/A () JP=B"()/B"())

for some o-cochain 3’, then we get ~ ()" 3(2)/B' (i) = ~(;)"3(j)/B' (j) which

determine a global section of G, x, thus by assumption an element of k*.
Thus we can write 3' (1) = = (z)” 3(1) for a o-cochain ©. Thus

A3 (0)/3' (1) = d3 (£)/3 (0).
This map is obviously additive. We extend ¢, by linearity to
Gtk Qg H! <X Goux ) — H (X QX/k)d—

Since g,oF=TFoq, and V[dB(1)/B(i)] =dp()/F(i), we conclude that
@ is A'-linear. If X is normal, then ¢,(1®a)=o 1mphes that df3 (1)

Then passing to a finer covering if necessary, we may assume that 3( ) 18
in FG,y(U(i) = O (U()%.  Hence a(i, ) = 3(iy [3(j), thus x is
cohomologous to o. Finally since H,',,l<§<)= kQ, Hyy(X) and since 0y 18
canonical, 1t descends to a canonical homomorphism of A-modules ¢, we
are looking for.

We next define the map ¢, : JH'(X, Cx) » Hjp(X). Let a=ja(i, j)|
be a 1-cocycle representing an element of ,H'(X, Cy) with respect to an
affine open covering U= {U(t)} of X. By definition there is a o-cochain
B={P(t)} such that pa(i, j)+ 3(:) — B3(j) =o0. Since p= VF, there
exists a 1-cocycle p={p(s, )} such that p(v, j),=o0 for m < — 2, and

Fa(i, ) +8S3() =SB =p(,))-
Applying A on both sides we get
ASB () — ASB()) = Ap((, ).
But the right hand side is equal to du.(i, j) ;, hence (1., AS(3) determines
an element of Z,;(U). We define
@, (o) = the class of (p_;, AS3) mod By (A1),
where the bar denotes the cohomology class. This map is well defined.
In fact if for a cohomologous 1-cocycle ' '

‘ a—+ou="{a(l,f)+a(()—ua(f)}
we have
plat, ) +ali) —a()) |+ )—=3()=0
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for a o-cochain ', then
B (&) =B () +pa(d)=PL'()) — B()) + pel))

determine a global section of Cy, i. e. there is an element p in C(k) such
that ('(s) — f(i) — ¢+ pa(i)=o0 for all i. Hence there exists a
o-cochain b= {b(1)| such that b(i)n= o0 for m = — 2 and

SB'({) —SB () —Sp+Fa (i) =0b().
If we define p/ = {p/(i, j)| by

) =Fla(l, ) +ai) —a()) |+ S5 () —SE())
we get
) =6 ) +b(0) —b())
and
SB'({) =SB (¢) +Sp —Fa(i)+b(i).
Thus we get ASP' (i) =AS(3(:) + Ab(i). Noting that Ab(:)=db(:) i,
we get (p ,, ASB) = (p_,, ASP)+ (¢b_,, db_,). Thus they determine

the same element in H;,(X). ‘
We now claim that for a in k, ¢,({a}a)=a9,(x). In fact we have
piaja(i,j)+{afp() —iajB(j)=o. Then
Flala(, /) +S{afp @) —=S{a}B()={a|p( ).
Since
[{er}p( ) a=ap(, /) and  AS{aiB())=A[ar|S3 (i) =aldSE(0),

we get
91 ({a}a) = the class of (ap_y, ¢ ASB) = aq¢, (a).

¢, 1s obviously additive. Next we claim that ¢, (Fa) =F ¢,(«). In fact
we have pFa(t, j) + F (i) —FB(j) =o0. Thus

F(Fo(i, /) +SFB() —SFBE(/) =Fp(, ).

Hence o,(Fa)=the class of ((Fp)_,, ASF{)=the class of ((p._,)", 0)=

i

the class of F(y._,, AS@) =Fo,(x).
Finally we claim that ¢,(Va)= V¢,(«). In fact we have

p(Va(i ) +VB(@E)—VE(/)=o.
Thus

F(Va(i,j)) +SVB() —SVB(/) =[SVE () — B (&) —[SVB(/) —BW)]
If we denote b(¢) =SV §3(:) — f(z), then b(i)n=10 for m=—2. Hence

9, (V&) = the class of (0b_,, ASVf3)
= the class of (0, A3 + (0b_,, Ab) = the class of (o0, AB).
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On the other hand,

Vo, (a) = the class of V (p_;, ASfB)
= the class of (0, VASB) = the class of (o, AVS3) = the class of (0, AB).

Hence we are done.

Suppose X is normal and ¢,(2)=o0. Then (p_,, ASB) = (Sc_,, dc_,)
for a o-cochain ¢={c(t)| such that ¢(i), =0 for m=—2. We get

(g, J) =c (&) — c()) and ASB(Iy=Ac(s).

Hence Fa (i, j) + SB (i) — SB(j) = ¢(i) — ¢(j) and there exists a o-cochain
a={a(t)| such that SB(i)=c(:) + Fa(i), if we pass to a finer covering
if necessary, since X 1is mnormal. Thus F[a(i, j) 4+ a(t) —a(j)]=o.
Since X is reduced we conclude that « is cohomologous to o. Thus ¢, is
injective when X is normal.

We now show that ¢,(zH'(X, C)) 1s contained in H°(X, Q,)/—
In fact if a={a(i,j)} i1s a representing 1-cocycle of an element
of \H*(X, Cx) with respect to an affine open covering, then there exists
a o-cochain A={A(i)} such that Fa(i,])+ 2(i)—~(j)=o0. Hence
pa(i, j)+ VA (@) —VAi(j)=o0. Therefore we get -

Foa (i, /) +SVA() —SVA() =[SVA() —A(O)] = [SVA() —2()) ].

If we denote b(i) = SVA (i) — 2 (i), then we have b(i), =o for m< — 2,

BE)=VX(i) and (i, 7)=0b(t) — b(j). Hence
9, (o) = the class of (_;, AS(3) = the class of (d6_,, ASV])
— the class of [ (0, A2) + (0b_,, db_,)] = the class of (o, AZ).

Taking the sum of ¢, and ¢, we have a canonical homomorphism of left
k[F]-modules (left A-modules, if X is normal)
9 LI(X)—>Hjp (X)

such that 9(:I(X))CH* (X, Qk4)i—. Moreover we have shown that
if X is normal, then

(%) (kerg) N ,H' (X, Cx) =05
(% %) (kerg) n: 1 Qg H <'X, G, o }Gal(?/k)zo.
¢ is injective if and only if the base extension ¢ is injective. Hence

we may assume k is algebraically closed. Since ker ¢ is an A-submodule
of ,I(X) and since V acts byjectively on kQz,H'(X, G,x) we see that

(% % %) (kero) Nn{ £ @z ,H' (X, Gux) }
is generated over k by elements left fixed by V, i.e. elements in (k%),

which is zero. Hence (%%%) is zero. On the other hand V acts nilpo-
Ann. Ee. Norm., (4), 1I. — Fasc. 1. 17
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tently on ,H'(X, Cx). Hence for all u in kerp there exists an integer N
such that V'u is in k@, ,H*(X, G,x). But V'u is also in kero. Hence
VYu is in the intersection (kx%) which is zero. Thus u is in (%) which
1s also zero.

We now identify the image of ¢, when X is smooth and proper over k.
We may obviously assume k is algebraically closed. For simplicity we write

L= n ker (do Vn).

Then since X is proper, L is finite dimensional. Thus there is a canonical
decomposition L = L, @ L., where V acts nilpotently on L,, while it acts
bijectively on L,. L, 1s moreover generated by V-invariants.

Suppose the cohomology class of (f, w) in Zjy (M) 1s V-invariant. Then
there is g in C°(U, O) such that (o, Vo) = (f, o) + (3g, dg). Replacing
(f, w) by (f, ) + (3°g, dg), we may assume (o, Vo) = (f, ®). Hence f=o0
and Vo =w. Passing to a finer open covering if necessary, we see that
w(i) =dB()/3(t) for some B in C° (31[ Gm) (1) __(u(j) implies that

d(B(1)/(B7)) =o0. Hence B(1)/B(j)=wa(i,])” for some a in Z'(U, G,y).

On the other hand suppose the cohomology class of (f, w) in Zyy (M) is
killed by V”, 1. e. (0, V'w) = (Sg, dg) for some g in C*(U, O ) Applying V
again we get (0, V"*'w)=o,1.e. V"' w=0. We now show that passing
to a finer covering if necessary, there exists some u in C°(U, Cx) such
that o (1) = Au(t). Since V(V'w(i)) =o0, we get

Vew (§) = du (§) —p—y = V* (e ()220 du (1) —p—1) .
Hence

Vo (4) — u (1)1 dit (i) —ns] = o.

We can proceed in this way and get the required result.

By definition we have df (i, j) = Au(i) — Au(j). If we denote by y the
element of C'(U, Cy) such that y,,=o for m= — 2 and y(s, j)-s= (3, J),
then we have Ay(i, j) = Au(i) —Au(j). Hence passing to a finer open
covering if necessary, there exists some « in Zyg (U) such that

y(& ) —u(@+u()=Fa(i,)).
If we write (1 — SV)u = b and 8 = Vu, then b,, = o for m = — 2

S =[Fa(i,))+SEE)—SE(Y)+b(@)—b()) ],
w () = AS B (¢) + Ab (i)
and
pali)+BE)—LY)=
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Hence
the class of (f, w) = o () + the class of (0b_;, db_,) = ¢ ().

Q. E. D.

Cororrary 5.11. — Let X be an abelian scheme over a perfect field k of
characteristic p. Then there is a canonical tsomorphism of left A-modules

b M(,X) 3 Hj(X).

Moreover under U the submodule M(,X)=VM(,X)2> (k, 57') Qi M(;X)
is mapped onto the subspace H* (X, Q\,), i. e. under { the exact sequences
0> (ky o) @M (4X) > M (,X) M (yX) — o

and
o—>Ho(X, Q4/r) = Hjr (X) - H" (X, O) —>o.

correspond.
Remark. — This was conjectured in Grothendieck [15].

Proof. — As was proved in Proposition 4.1, there is a canonical 1somor-
phism of left A-modules M(,X)2,I(X). By Theorem 5.10 the right
hand side is canonically isomorphic by ¢ to Hjx(X) as left A-modules.
Hence by composition we get .

Q. E. D.

Cororrary 5.12. — Let k be a perfect field of characteristic p. Let X be
a smooth and proper k-scheme such that X (k) ts non-empty. Then there is
a canonical injection of left A-modules

£ DM (,Piex) T, Hig(X)
such that the image of £ is equal to n ker(do V™). Moreover

[ DM (vPicx /) | = 1 (X, %) N [ m ker (do'V?) ] .

n

If X ts an abelian scheme, then £ is an tsomorphism and
£[DM (yPicxs) | = 0 (X, Q).
Proof. — By Theorem 4.4 the left hand side is isomorphic as a left

A-module to ,I(X) and DM(,Picy;) 1s mapped onto (I(X). The rest
1s obvious from Theorem 5.10.
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Remark. — Let X be as in Corollary 5.12. Then we have a commutative
diagram

(/\', O"_l) ®k DM (I“I’icx/k) = (ll\, O'—l) ®k \‘l (X) SEE— ¢ (X, (qx)
Ff FA A
| | |
DM (,Picy 1) e LX) ? . ﬂ ker (do V")
/t\ ) N n N
| | |
DM (yPicy /) ~ L (X) L H(X, QL )n[ n ker (o V ,,)]
| | |
(o] (o] o

of left A-modules whose columns are exact and whose rows are isomorphisms

Remark. — d, is a homomorphism from H'(®) to H'(Qy,). From
the ker(d,) there is a homomorphism d, to H°(€Q%,). ker(d.) 1s the
image of Hjx(X) under the canonical projection to H'(®). Let X be
a proper smooth scheme with a k-valued point. Then from ker(d.) we have

a homomorphism do V to
H, (R30) /doV [ker () in T (Q4,1)]-

From ker(do V) we have a homomorphism do V? to H®(Q%,)/d° V? [ker(dV)
m H°(Qy,)]. Proceeding in this fashion we get a homomorphism do V"

from ker(do V") to H® (Q%,)/d o V' [ker(d o V") in H (Q4 ,)]. ﬂ ker(do V")
1s the image of n ker(doV") in Hjx(X) under the canomcal projection

to H'(Oy).
On the other hand if we denote by « the composite homomorphism

Ox=(k, o) QkC_,.x — (W (&), o) Qw sy Cx > (k, o) @i Cx/FCx,

where ¢ is the canonical injection and ¢ is the canonical projection, we get
a commutative diagram of homomorphisms of sheaves of k-vector spaces

OX —i——> (/\, O'_'l) ®/\‘ C\/FC\
AN .
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Hence we get a homomorphism of k-vector spaces

' (Ox) — (k, o) @i H' (Cx/FCx)

N\
‘/1\ A
AN
AN

SH (@)

It is not difficult to see that an element fin H'(Oy) is killed by « if and
only if fis in (") ker(doV"), i.e. f is in the image of [)ker(doV")

n

in Hjx(X) under the canonical projection.
On the other hand we have a commutative diagram

o —> HO (Q}“b(x)/k) —_— H[’)R (Alb (X)) —_— H' (@Alb(x)) —> 0

M N
v ¥

o—>H* (Q)'(/k)rl:()—")'llli)ll (X) — (OX)
whose rows are exact and whose columns are injective. The image of
H' (O0) . H' (&) is characterized as () ker(B,) = H*(Wy)/VH! (Wy)

where {83,} are the Bockstein operators (cf. Serre [33], and Mumford [29],
lecture 27). Since by Proposition 5.1 all the cohomology operations d.,

da, {doV" { are zero for Alb(X), we see that the cohomology opera-

tions d,, d», |doV"{ are dependent on {B,}. We can prove this fact
directly as follows. From the remark above, 1t is enough to prove that the
elements of H*'(O) killed by B, for all n are killed by «. From the proof
of Theorem 4.4 (3) 1t 1s enough to prove that

o (C_1,x)n[ N v'zul(cx)] £ (Cx/FCy)

n

is a zero map. More generally we can prove that the homomorphism

() VI (Cx) I (G /FCy)

n
1s zero. Since we have the exact sequence

(‘y(ﬂ), O') ®W(K‘) [EL (C‘) j—; 3L (Cx) "r:\' o (C\'/FCx)

it is enough to prove that m V*H' (Cx) CFH* (Cy).

n



134 T. ODA.

But since H*(Cy) is W (k)-cofinite type and V-torsion by Theorem 4.4 (1),
the argument dual to Serre ([33], p. 13, Prop. 2) shows that V-divisible
part of H'(Cy) 1s equal to the p-divisible part of H'(C). But the latter
1s obviously contained in FH* (Cy).
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