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INTRODUCTION.

The purpose of this paper is to study the first De Rham cohomology
group H^R(X) of a proper smooth scheme over a perfect field k of charac-
teristic p.

It was shown by Grothendieck [15] that if k is the field of complex
numbers, then H^X) is canonically isomorphic to I-T (X.iass? ^). The
spectral sequence

E^^=ir/(x,^/,)^n,;H(X)
(c/*. Section 5) is degenerate when X is Kahler, giving an exact sequence

(*) • O-.HO(X, i2x/,) ^HAn(X) -^H1 (X, t\) ->o.

Moreover, the theory of harmonic forms gives a splitting of this exact
sequence.

(*) This paper is a modification of the author's Doctoral Dissertation submitted to
Harvard University in June, 1967. The author was supported by the Peter Brooks
Saltonstair43 Memorial Scholarship from 1964 to 1967.
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However, if p ^z o, this spectral sequence does not degenerate in general.
The first non-degeneracy comes in as d?i. For example E^ ' 0 = H°(X, t2x//0rf=o
and E^^H^X, 0x)rf=o may be smaller than E ^ ' 0 and E;11 in general
(c/*. Mumford [28]). Thus instead of (*) we get an exact sequence

o-.lP(X, ^x/^o-^H^X)-^^ e\)^o^H«(X, ^x/^=o.

But d^ may not be zero.
Here we may ask whether HDR(X) is small enough, or, more precisely,

whether H^X) is closely related to the Picard variety Picx/ys:,red ot X.
The answer is no. The fact that the Picard scheme Picx/x: may not be
reduced in characteristic p is one of the reasons (c/*. Igusa [20], [21]],
Serre [33] and Mumford [28], [29], lecture 27).

Then we may ask whether Hj^X) is closely related to the Picard
scheme Picx/x:. The answer is still no. H^X) may still be too big.

The Cartier operator (Cartier [6] and Seshadri [36]) can be used to define
a canonical subspace of HDR(X), which is closely related to Picx//:
(c/1. Corollary 5.12).

But before stating the result we have to clarify the term " closely related
to Picx/yi5 ? . This we can do using the Dieudonne modules. The subspace
of HpR(X) we canonically obtain is isomorphic to the dual of the Dieudonne
module of ^Picx//,, the /c-group-scheme theoretic kernel of the endo-
morphism p on Picx//^.

The Dieudonne module is the major tool used to interpret finite commu-
tative group schemes over a perfect field k of characteristic p. Let A be
the ring W(/c)[F,V] defined by the relations FV = VF = p, F X = ^ F
and XV = VX0' for all X in the ring W(/c) of infinite Witt vectors with
coefficients in k, where o" is the Frobenius endomorphism of the ring W(/c).

We generalize in Definition 3.12 the definition of the Dieudonne modules
given in Gabriel [13] and Manin [24]. We obtain an anti-equivalence M
from the category 9tp of finite commutative group schemes over k of
p-primary rank over k to the category of left A-modules of W(/c)-finite
length. The key tool here is the theorem of Dieudonne-Cartier given in
Sharma [37]. This functor M can easily be extended to one from the cate-
gory Ind(5I^) of inductive systems of objects in 9tp to the category of
projective systems of left A-modules of W(/c)-finite length.

We describe various fundamental properties satisfied by the Dieudonne
modules in Section 3. Especially, we express in Theorem 3.19 the Cartier
duals of group schemes in 9tp in terms of Dieudonne modules. One
of the tools for this is the computation in Proposition 3.21 of the commu-
tative group functors

^Comk-gr^, Gm) and SCorn^r (W/,, G^).
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The identification of the canonical subspace of H^X) as the dual
of the Dieudonne module of jpPicx/x: is derived from the more general
Theorem 4.4, relating the dual of the Dieudonne module of the object,
^Picx//=lim^Picx/^, in Ind(^), to a left A-module I(X) of W(/c)-

n

co finite type (c/*. Definition 4.1), which is described entirely in
terms of the cohomology of certain abelian sheaves on X in the Zariski
topology. When k is algebraically closed, this module I(X) contains all
the information about the classification of flat principal bundles over X with
finite commutative /c-group scheme in 9'ip as the structure group. We
dualize I(X) to get a left A-module of W(/c)-finite type Hi(X^t), which
has properties similar to those satisfied by the first homology group with
p-adic integral coefficients Hi(Xciass, 2/0 when k is the field of complex
numbers.

As a corollary to this we prove {cf. Theorem 4.12) the well known fact
that a fla,t principal bundle over a /c-abelian scheme is again a /c-group
scheme, if its structure group is a commutative algebraic /c-group scheme
killed by some power of p.

When X is an abelian scheme over a perfect field k of characteristic p,
the spectrajh sequence for the De Rham cohomology is degenerate and we
have the exact sequence (*), which may not split canonically in general.
We can interpret this exact sequence in terms of the Dieudonne module
of the kernel pX. of the endomorphism px {cf. Corollary 5.11).

On the other hand, we can associate to X a, p-divisible group X(p) ==^X,
which is an object of Ind(c9l^). The Dieudonne module M(X(p)) of
X(p) is a left A-module which is W(/c)-free and whose rank over W(/c) is
equal to 2dim(X).

From the definition of the Dieudonne module it is not difficult to see
that M(X(p)) is equal to Barsotti's module of canonical covectors for X
{cf. Barsotti [2], [3], [4]).

Barsotti defines the Riemann form of a divisor on X on the module
of canonical covectors. We can define the Riemann form of a divisor
(or an invertible sheaf) onXin a different way {cf. Proposition 3.24), using
the Cartier duality theorem (Corollary 1.3). This theorem states that
the kernel of an isogeny from an abelian scheme to another is the Cartier
dual of the kernel of the transpose of the isogeny. This was first proved
over a field by Cartier [8]. Oort gave a proof in the general case over
a prescheme {cf. [31]) (1).

( J) M. Nishi also proved this duality theorem independently. We should have called
it the Cartier-Nishi-Oort duality theorem. Cf. M. NISHI, The Frobenius theorem and the
duality theorem on an abelian variety (Mem. Coll. Sci. Univ. Kyoto, vol. 32, 1959, p. 333-35o).

Ann. Sc. Norm., (4), II. — FASC. 1. 9
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We give an entirely different proof using descent theory (FGA [16],
expose 190). In this method we ca,n prove that the duality between the
kernel of an isogeny and the kernel of its transpose is skew-symmetric
in nature. This fact is essential to proving the skew-symmetry of the
Riemann form of an invertible sheaf on X. We can prove as a corollary
to the Cartier duality theorem that abelian schemes have no torsion in
the Picard scheme. This fact was first proved by Barsotti.

The author wishes to express his gratitude to Professor D. Mumford
for his constant advice and encouragement as well as to Professors J. Tate,
F. Oort and J.-P. Serre for useful discussions of the subject during the
preparation of this paper.

SECTION 1.

CARTIER DUALITY THEOREM.

For the definition and basic properties of the Picard schemes Picx/s,
Picx/s and Picx/s of an S-prescheme X we refer the reader to FGA [i6],
exposes 232 and 236, and Murre [30].

Let S be a prescheme. Let X and Y be abelian schemes over S
{cf. Mumford [27], Chap. 6) and X : X -> Y be an S-isogeny. We get
an S-homomorphism

Pic^/s : PiCY/s-^Picx/s.

For an S-prescheme S' we have a commutative diagram

o ——> Pic (S') ——> Pic (Xs.) ——> Picx/s (S') ——> o
A .̂

^'\ Pic^j

o ——^ Pic (S') ——> Pic (Ys,) ——> Picy/s (S') ——> o

whose rows are exa.ct, where Xs', ^s' and Ys/ are the base extensions of X,
A and Y to S'. Hence we can easily see that

[ker(Pic),/s)] (S') == ker[picy/s ( S ' ) ̂ Picx/s (S')]

=ker[Pic(Ys,)^Pic(XsQ].

We now define the Cartier pairing

< , > ) , : ker (^) Xs ker (Pic),/s) -> G,,, s

as follows : let S' be an S-prescheme. Let x be in ker(X) (S') and L be
in [ker(Pic^s)] (S'). From what we have seen above we can think
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of L as an invertible sheaf on Ys' such that there exists an isomorphism a
of invertible sheaves on Xs.

^L-^x,/.

If we denote by Tx : Xs. -> Xg/ the translation on Xs/ determined by the
element x in ker(X) (S'), then the composition

^x,^^s'L=T;^L^T*c)x =^x—••y' iw ij X 0 ^ .X "s' S'

gives an ©x^-automorphism of 0x^ which we identify with an element
<'r L\ of s

IP(Xs,, Bx^^H^S7, OsQ =G,,s(S').

It is obvious that <(a;,'L)>), does not depend on a.
For a group scheme N finite and flat over S we denote by Ds(N) the

Cartier dual
Ds(N)=^oms-^.(N,G^s)

(c/. Oort [31] and Gabriel [12]).

THEOREM 1.1. — Let X and Y be abelian schemes over a prescheme S
and let A : X -> Y be an S-isogeny. Then the Cartier pairing ^ , ^ is
a non-degenerate and biadditi^e pairing of group schemes finite and flat
over S, i. e. it defines a canonical ^-isomorphism

n: ker(Pic),/s)-^Ds(kerO)).

Moreover ^\ is functorial in ^, i. e. if

X——^Y

x'-^r

is a commutative diagram of S-homomorphisms of abelian schemes such that X
and X' are S-isogenies, then the following diagram is commutative :

ker(Pic^/s) ——^Ds(ker (^ ) )
A A

pic^ "sW

ker(Pic^/s)--^Ds(ker(^))

Proof. — We show that

n: [ker(Pio,/s)](S')->Ds(ker(^)) (S^)

is an isomorphism for all S-preschemes S'. We first note that everything
is compatible with base extension. Hence we may assume S' == S.
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ker[Pic (Y) -^ Pic (X)] -^Ds (ker^)) (S)

is defined as follows : let L be an invertible sheaf on Y such that there
exists an isomorphism

a : ^L^(9x.

Then ^(L) is an S-homomorphism from ker(A) to G//,s such that for
an S-prescheme S' and an element x in ker(X) (S') = ker[X(S') -VY(S')]
we have

^(L) (^)==T:(as/)°^1 .

Since Ag,oTa-== T/,^oXs,= Xg,, the right hand side is the (?x^-isomorphism

^ °̂  ̂ ' Ls- = T; o ̂  Ls, ̂  c ,̂

which can be identified as an element of H°(Xs/, (^^H^S', (9s,)*==G^s(S').
Note that ^(L) does not depend on the choice of a. It is easy to see
that V),(L) is a homomorphism. Thus v-^(L) is the canonical descent
datum on ©x with respect to A : X -> Y induced by L on Y. But the
descent theory (c/*. FGA [16], expose 190) tells us that

ker[Pic(Y)^Pic(X)]

is isomorphis to the set of equivalence classes of descent data on 0x relative
to X : X -> Y via the map sending L to X*L ̂  0x with its canonical descent
datum. Hence it remains to show that the latter set is equal
to Ds(ker(X))(S).

For simplicity we write N==ker (A) . If we denote by r^ : X -> S the
structure morphism, ^ : X x X - ^ X the group law; and by £ : S ~> X the
zero-section, we have the following diagram :

(^XYl^X^Xl)

v ^ v^——v T\J (ixTqxyi^xp-) „ „Y ^——X^__X XsN <———————X XsN XsN
^ /T (1X^X^1, irjXIXY])

- ^ - . ,

x

A descent datum on (?x is a.n 0xx,N-endomorphism 9 of (°xx .N such that

(i X 72 X r], Y] x p.y (cp) = (i x ^ X Yi, 7? x i x ^)* (q?) o (^L x Y?, 73 X r? X i)* (cp)

and
( ix s ) * ( c p ) =i^.
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But since
End^^^(-)^^)=IP(N,^)

and
E n de>xx,^x,^( c )xx,Nx,N)=Ho(N XsN, (^,)

9 is an element of H°(N, (9^) such that

^ ( C p ) = = ( l X ^ ) * ( c p ) o ( y , X l ) ' ( 9 )

and
£ * ( c p ) = I .

Thus 9 gives precisely an S-homomorphism from N to G,»s? i. e. an element
o f D s ( N ) ( S ) .

To prove the functoriality of Y), in X it is enough to show that if x is an
S-valued point of ker(X) and if L' is an invertible sheaf on Y' such that

9 : rL' -^ 0^
then we get

^^L^^a^L^/.

The right hand side is equal to TL(?) ° ?~1. On the other hand
a* (9) : r^L'==^^L'-^0^

Hence the left hand side is equal to

T;(a*(cp))oa'(cp)-i==a*(Ta,.(9)ocp^)=:Ta,(cp)o^

since TL(?)°?-1 is in H°(X', (9^)*= H°(S, (9s)*.
Q. E. D.

DEFINITION 1.2. — Let X be an abelian scheme over a prescheme S such
that Picx/s is representable. We denote by X^^ or simply by Xs the dual
abelian scheme Picx/s. For an S-homomorphism X : X -> Y of two abelian
schemes such that X^ and Y^ are defined we denote by V the induced S-homo-
morphism

Pic^/s : Y^X<.

For the definition of the canonical homomorphism A-x : X -> X^ we refer
the reader to Lang ([22], p. 127).

COROLLARY 1.3 (Cartier duality theorem). — Let S be a prescheme.
Then

(i) If X is an abelian scheme over S such that Picx/s exists, then X has
no torsion, i. e,

Pic;/s=Picx/s.
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(ii) If X : X -> Y 15 an S-isogeny of abelian schemes over S suc/i ^a( X^
one? Y^ e.ns(, ̂ M there is a canonical ^-isomorphism

n: ker(^)^Ds(ker(^)).

YX is functorial in X, i. e. ijfwe have a commutative diagram

X——^Y

A 4
Y . Y

^—^r

o/* S-homomorphisms of abelian schemes such that X and X' are S-isogenies,
then the following diagram is commutative :

kerOQ-^Ds(kera))
^ ^

f^| ^(^l

ker(^)-^>Ds(ker(}/))

Moreover the following diagram is commutative :

^rO) -^-^DsDs(ker(^))

^ < < -W)
Y Y

ker(^)—^->Ds(ker(^))

Proof. — To prove (i) we may assume S to be the spectrum of an alge-
braically closed field. Since Pic^/s is an abelian scheme over S, we know
that the multiplication by a non-zero integer in Pic^/s(S) is surjective.
Hence Picl/s(S) is generated by Pic^/s(S) and the elements of Picx/s(S)
of finite order. Thus it is enough to show that the elements of Picx/s(S)
of order n are contained in Pic^/s(S) for all n. Since by the Theorem of
Square Picx/s is contained in the kernel of

Pi<V/s— Pic^/s — Pic^/s : Picx/s-^PicxxsX/s

we know that the multiplication by n on Picx/s coincides with Pic/, /s
on Picx/s- Hence (i) is the consequence of (ii) applied to X = n^.

To prove the first part of (ii) it suffices to show that

kei^Pic^cY^.

We may assume S is the spectrum of a field. From Theorem 1.1, it follows
that

deg(^)^deg(Pic),/s) = ranks (Dg (ke r^ ) ) =deg(^) .
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It is well known (c/*. Well [40] and Lang [22]) that there is an S-isogeny
^'. Y -> X such that X' o X == mx for a positive integer m. Hence
X ^ o X ^ = = m^t. Thus if we write g= dimX, then

w^==deg(^o^) =deg(^) .deg(^)^deg(7).deg(^) = m2^.

Thus deg(X^) = deg(X). The functoriality is obvious from Theorem 1.1.
To prove the second half of (ii) we need the following :

Let PY be the Poincare invertible sheaf on YXsY^ normalized by
^PY^^Y and i:PY^0^, where i i : Y - ^ Y X s Y ^ and ^- .Y^YXsY^
are the embedding into the first and the second factor respectively. Let
H[(^Xi)*Py] be the kernel of the S-homomorphism

A[0 x i^Py] : X XsY^-> (X XsY^

which can be identified with

( ° ^): XxsY^X^XsY
\A 0 /

and let ^ xl YJ be the alternating biadditive pairing

H[axi rpy]xsH[ax i rpY]-^G, , s
{cf. Mumford [26], Section 1). Let <^ , ^ be the Cartier pairing given
in Theorem 1.1.

We also denote by ii and 13 the embedding of ker(A) and ker(X^) into
the first and the second factor of

H[(?. x i )*PY]==ker(? . ) Xsker(^)

respectively.

LEMMA 1.4. — The following diagram is commutative :

ker (^) Xsker(^) -^——<—^———>G,,,s

\itX^
y [().XI)*P,.]

H[(^ x i rPY] XsH[(^ x iYP^————>G^

Proof of Lemma 1.4. — Since everything is compatible with base exten-
sion, it is enough to prove the commutativity of the diagram for S-valued
points. Suppose that x is in ker(X) (S) and v is in ker(^) (S). Then
( I X ? ) * P Y is the invertible sheaf on Y corresponding to v. X^) == o
implies that there is an isomorphism

c p : ^(IX^PY-^X.

Then by definition (c/*. Theorem 1.1) we get
<^p>^=T,(9)oc^.
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For simplicity let us denote L == ( A X i)* Py. Then

^^(^xirpv^T^.^^xirpY^T^^L.
On the other hand since (o, ^) is also in H[L], there is an isomorphism

P : L-^T^L.

Then by definition the commutator of [{x, o), i] and [(o, ^), P] in the
group G[L] (c/*. Mumford, ibid.) is equal toA?

L/, ^;, (0, ^^ —— J - { 0 , ^ } \ l ) ^ ̂ u 1 • " ^(.r.O)^((^,0), (o, ^)) ==T^^( i )opo i^oT^ .^ (p-')

which is the automorphism

(*) L^, P) Ll "^ (̂.r, o) L ̂  L •^ T^ p) L -^- T^ ^^ L.

Note tha.t
(i x r)*L = (i x vY 0 X i)' PY= A*( i x r)*I\,

hence we have
9 : ( ix ^L-^x.

On the other hand since Py is normalized, we get

( ix s )*L=^( ix s)*PY-t-c9x,

where £ is the zero section S -> Y^. .Thus if we apply ( iX^ to the
sequence (iAr), we get a commutative diagram

T;(ix.rL^^
T^(1X£)* (P- 1 ) [ ^

T^ix.srL1^^
I ^I ( ( <.r,£>^=l

Y ^,
( iX£) 'L—^^e \

(IX £)*(?) I
Y -

( I X F ) ' L — — ^ - > O X

I I ( \<x, i'>;

T:(IXF)-L^^

We have
T:.[(p o (i X £)* (;3) o ̂ -'] == (p o (i X £) ' (P) o ̂ -'

since the latter is the multiplication by an element of

R°(x,^r==w(s,^r.
Hence

<^ ̂ ^(ixs)^^ o), (o, ^))==eL({^, o), (o, (Q)

Q. E. D.



DE RHAM COHOMOLOGY AND DIEUDONNE MODULES. 78

Proof of Corollary 1.3 continued. — It is enough to prove

<r, A-x(^) >At==<^ , p>^1

for all x in ker(^) (S) and v in ker(^) (S). By Lemma 1.4 we get

<^, k^x) \^e^^^ ( (F , o) , (o, A x ( ^ ) ) )

and
^^^^((^oMo,.)).

By the definition of A^ and the see-saw principle we get

(ix^rpx^axirpy.
Hence it is enough to prove

e^x^ ((„ o), (o, /^)))=e^^^(^ o) , (o, .'))-'.

We have the following commutative diagram :

Y^XsX^^X^XsX^

l x A : x | ( < ixA-x'1
Y . Y

Y^XsX—^-^X^XsX

•u1
Y •̂

IX^^XxsY^—^-^XxsX^

where 5 is the morphism which exchanges the factors.
By definition,

px^^o^x/^rpx.
Thus

^^^((^o),^/^^)))
^,[(IX^)^(IX^P,](^^^ ( o , A x ( ^ ) ) )

^^^^^(^( ix/^i ) ( ^ o ) ^ o ( i x A x 1 ) ( o , A x ( ^ ) ) )
r( ixA' )* Pvl / / \ / \ \

=^ Kj (^, ^), (^, 0)) .

Hence the skew-symmetry of e' XJ gives the required result.
Q. E. D.

Let S be a prescheme and let 9tp be the category of commutative finite
flat group schemes over S whose rank is a, power of the prime number p.
Ind(^l^) is the category of inductive systems of objects in 9tp.

DEFINITION 1.5. — p-dwisible group over S is an objet in Ind(^I^)
which can be given by

G=lim { G n , in},
n

Ann. EC. Norni.^ (4), II. — FASC. 1. 10



74 T. ODA.

where in'-Gn—^Gn+i is an S-homomorphism sending Gn isomorphically
to the kernel of p71 in Gn+i such that there exists a positive integer h {called
the corank of G) satisfying

ranks (G,,) =pnh for all n.

DEFINITION 1.6. — Let G=lim[Gn,in} be a p-divisible group over S.
n

Let j n : Gn+i -> Gn be the S-homomorphism induced by the multiplication
by p. Then

lim{Ds(G,),Ds(y,) ;
n-

is again a p-divisible group over S. We denote it by G' and call it the Serre
dual of G. To an S-homomorphism X : G -> H of p-divisible groups over S
we associate an S-homomorphism of p-divisible groups ^ : W-^G1 in an
obvious way.

DEFINITION 1.7. — Let X be an abelian scheme over S. We denote
by pnX the kernel of p^: X -> X. We define a p-divisible group

X(p) =lim^X,
n,

where in is the canonical injection. To an S-homomorphism X : X -> Y
we associate an S-homomorphism X(p) : X(p) -> Y(p) in an obvious way.

For more details we refer the reader to Serre [35] and Tate [38].

PROPOSITION 1.8. — Let S be a prescheme. Let X be an abelian scheme
over S such that X^ exists. If p is a prime number, there is a canonical
isomorphism of p-divisible groups over S

^ x : Xt(p)^>X(p)\

where X(p)^ is the Serre dual of X(p).

YX is functorial in X, i. e. if X : X -^ Y is an S-homomorphism, then the
following diagram is commutative :

X^)-^X(^
^ ^^(P)\ h { p ) t \

^(^)-^Y(^

Moreover the following diagram is commutative :

. X(^)-^X"(^)
can. ( v^(. (

Y ~(\Y Y

X(p)^-^^(p)^
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Proof. — By definition X(p) === lim^X and X^(p) == lim^X^. Applying
7i /i

the functoriality in Corollary 1.3 (ii) to the diagram

X^X

x^x

we get a commutative diagram
^nn+l

^re-t-lX^ —— -̂>- Dg (^4-lX)

A A

^ . W^)

^X<—^DsO,nX)

We put V x = l i m | v ) . The functoriality of Vx and the commutativity
n

of the diagram in the proposition are obvious from Corollary 1.3 (ii).

Q. E. D

DEFINITION 1.9. — Let X : X -> X^ be an S-homomorphism of abelian
schemes. We define an S-homomorphism p>, of p-di^isible groups over S
by the composite

^=^a^(p): X{p)'K-(p^(p)-^>X(p)^

PROPOSITION 1.10. — px is additive in ^ and compatible with base
extension. p\ = o if and only if A === o. - Moreover if a : X -> Y is an
S-homomorphism of abelian schemes and X : Y -> Y^ is an S-homomorphism,
then we get

P[ y 1 o ^ o a ] = a (p)l o p^ o a (p) .

Proof. — First two assertions are obvious. It is clear that px= o if and
only if X ( p ) = o . But by Well [40] X ( p ) = = o if and only if X = o. By
Proposition 1.8 we have a commutative diagram

X^^^X'^^X^)'
I ^ ^a(/?) a<(^) a(/^

Y

Y(^)——^Y^)-^Y(^

composite of the first row and the second row being equal to the left hand
side and the right hand side of the equality respectively.

Q. E. D.
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DEFINITION 1.11. — We call an S-homomorphism ^ : X —^ X^ symmetric
if the following diagram is commutative :

x—>x<
^ < /{f^ /
x«

PROPOSITION 1.12. — Let X fee an abelian scheme over a prescheme S
and let A : X -> \1 be a symmetric S-homomorphism. Then the S-homo-
morphism p/. of p- divisible groups is skew-symmetric, i. e.

(p\Y=—?^
if we identify X(p) and X(p)^ by the canonical map.

Proof. — By Proposition 1.8 we have a commutative diagram

X(py^x^py^-X(p)-
^ ^-^ < -^^

/ (^) ^\(/^
X(p)^X^(p)^-X(p)

The composite of the first row is equal to (p/^ while the composite of the
second row is equal to A(p) by assumption.

Q. E. D.

An invertible sheaf L on X gives a symmetric S-homomorphism
A(L) : X -̂  X' defined in Mumford [271, Chapter 6.

DEFINITION 1.13. — We define a skew-symmetric S-homomorphism
of p-divisible groups p (L) by

o{L)=o^^•.X(p)-^X(p)i

and we call it the Riemann homomorphism defined by L.

It is clear from Proposition 1.10 that p (L) = o if and only if A(L) == o.

DEFINITION 1.14. — An invertible sheaf L on X defines a compatible
system of skew-symmetric pairings

JL®/^]
^nX X S pnX. ——————-> G,,̂

(c/*. Mumford [26], Section 1), which gives a skew-symmetric ^-homomorphism
of p-divisible groups

e(L): X(p)-^X{py.

We now show that these two ways of defining a skew-symmetric S-homo-
morphism are the same.
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PROPOSITION 1.15. — If L is an invertible sheaf on an abelian scheme X,
then (2)

p (L)=^(L) .

Proof. — Since both are compatible with base extension, it is enough
to show that they coincide on the S-valued points of ^.X, i. e.

<^A(L)y>^^"](^)

for all x and y in /^X(S). But by Lemma 1.4, we know

<^, A (L)^^^1)^]^ o), (o, V ( L ) j ) ) ^[P0/?"] ((^ o), (o, A ( L ) j ) ) .

Here we used the fact Pf^^ (m^ X i)*Px which can be proved easily
using the see-saw principle. But the last term can also be written as

^•^^(^oMo^)).

Since by definition
(i x ^(L^Px^^L^pr^L-'^pi^L-1

(2) As a consequence of Proposition 1.15, the descent theory of invertible sheaves on
abelian schemes developed in Mumford [26] can be expressed in terms of the Riemann
homomorphism as follows :

PROPOSITION. — Let L be an invertible sheaf on an abelian scheme X/S. Then there exists
an invertible sheaf L' on X such that

L^^p^V

if and only if the Riemann homomorphism
p(L) : X(p)-.X(pY

is trivial on />"X.
A. Well [40] obtained this result when S is a field and p is different from the characteristic.
Once we know this proposition, we can prove the following theorem which M. Nishi

obtained independently using the purely inseparable descent. The author thanks
Nishi for pointing out to him the possibility of this application of the Riemann homo-
morphism.

THEOREM. — Let X : X -> X^ be a homomorphism of abelian schemes. Then A is symmetric
if and only if there exists an invertible sheaf L' on X such that A = A (I/). -

The sufficiency is obvious. For the necessity, consider the invertible sheaf L == (/, X) ̂  P\
on X, where Px is the normalized Poincare invertible sheaf on X x s X^ and
(/, X) : X -> X x s X/ sending a- in X to (x, X (x)). Then we can easily prove that when X is'
symmetric, we have A (L) = 2X. Then taking p == 2, we get

^A^^^PAd^PW-

Hence p(L) is trivial on 2X. By the previous proposition we get 1®''== i^U for an inver-
tible sheaf I/ on X. Then.

4 X = 2A (L) = A (L02) = A (a^L 7 ) == 4 A (I/).
Hence X == A (L').
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we can easily see that this is equal to e^^(x, y). Here we used the
following fact several times : if a : X — Y is an S-homomorphism of abelian
schemes and if L is an invertible sheaf on Y, then a-^ke^A^)) is
contained in ker A(a*L) and for S-valued points x and y in a^ke^Af^L))
we have

^(^J) =^(0^ 07).

Q. E. D.

SECTION 2.

SOME AUXILIARY RESULTS IN CHARACTERISTIC p.

Let S be a prescheme of characteristic p. Let X be a contravariant
functor from the category of S-preschemes to the category of sets (for
simplicity we call such X an S-functor). Then even if X is not repre-
sentable, we can define an S-functor X^^ and a canonical morphism of
S-functors

F: X-> X^/8)

as follows : for an S-prescheme T, there is a morphism of preschemes
T^T : T ->- T, which, is the identity map as a topological space and T^ takes
an element in the structure sheaf to its p-th power. TC^ is functorial
in T, i. e. for an S-morphism u : Ti-^ T2 the following diagram is commu-
tative :

T " s, T1 i ————> 1 a

-4 1^
' T.-^T,

We write TI == Tig. For an S-prescheme T we denote by (T, 11) the
S-prescheme whose structure morphism is the composite of the structure
morphism of T with TC. The functoriality of ^ implies that Tiy is an
S-morphism from(T, 71) to T. We define an S-functor X^7^ by

XWS)(T) = = X ( ( T , T T ) )

and the morphism F : X — X^ by

X ( T T T ) : X(T)-^X(^(T, 71)) .

It is easy to see that if X is representable, then X^is represented by the
S-prescheme pra: X Xs(S, 71) -> S and F : X -^ X^ is given by
(^x? ^l) : X -^ X Xs(S, TT:J, where Y] : X -> S is the structure morphism
of X.
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PROPOSITION 2.1. — Let S be a prescheme of characteristic p and let X
be an S-prescheme with a section £ : S -> X such that ^}^0^= ^s? where r\ is
the structure morphism X ->- S. TTieM (Aer^ 15 a canonical isomorphism a suc/&
(/fca^ f/^ following diagram is commutative :

Picx/s^tPicx/sP^

• ^ 1 ^•̂  .•^-
Picp/s

Picx/s^—— Pic[x(/VS)/s]

Especially if Picx/s is representable and flat over S, and F : Picx/s—^ [Picx/s]^
is an epimorphism then {if we identify [Picx/s]^7^ cind Pic[x(/^/s)/s] by a) we get

^Picx/s^^F/s-

(For the definition of V for flat commutative group schemes we refer
the reader to Gabriel [12], SGAD 1963-1964, expose 7 A, Section 4.3.)

Proof. — Since everything is compatible with base extension, it is enough
to prove the commutativity of the diagram for S-valued points. But
by definition

Picx/s(S)=Pic(X/S),

[Picx/s]^ (S) == Picx/s ((S, TT) ) = Pic (X Xs (S, 7r)/S)

and
^[x^/s] (S) = Pic (X(/^)/S) ̂  pic (X xs (S, TT)/S) .

Moreover it is easy to see that by the identification above F is equal to

(prj /TT)' : Pic(X/S)->Pic(Xxs(S, TT)/S).

On the other hand Picp/s is equal to
(F/ ig)*: Pic (X^/S) -> Pic (X/S).

We get (pri/Ti) o (F/is) = (^x/^). Thus

(Picp/s). a.F = (F/is)'. (pr^/Tr)^ (7Tx/7r)\

Since ̂  and TI* are equal to the multiplication by p in the Picard groups
Pic(X) and Pic(S), we are done. If Picx/s is representable and flat
over S, then V = V[picx/s] is defined and V o F = p. On the other hand,
we have (Picp/s) ° F == p.

Q. E. D.

COROLLARY 2.2. — Let S be a prescheme of characteristic p and let X be
an abelian scheme over S such that X^ exists. Then we have

^^(Fx^ and F^^OW.
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Remark. — This corollary is stated in Matsumura-Miyanishi [25],
Lemma 3. The proof there is incomplete.

PROPOSITION 2.3. — Let S be a prescheme of characteristic p. If X is
an abelian scheme over S, then there are exact sequences of finite flat S-group
schemes

(i) o -> v-X^ -^X^ -^ F.X -> o;

(ii) o^X-^X-^v-X^^o

such that i o f^= 'Pn and j ° Vn== ̂ n for all positive integers n.

Proof. — We have a commutative diagram whose rows are exact

o ——>^X.^n/^ ——> W/^ -pn-^ X^"/8) ——-> o

'^n ^" p.
o ——> ynX ———> X ————> X^"/8) ——> o

Since V is an epimorphism the snake lemma implies that Vn is an epimor-
phism and ker(^) == ker(V^) = v-X^ Thus we get (i). (ii) is
similarly proved.

Q. E. D.

SECTION 3.

DIEUDONNE MODULES.

From now on we let k be a perfect field of characteristic p.
We write X(B) instead of X(Spec(B)) for a /c-prescheme X and a
(commutative) /c-algebra B.

We denote by W the /c-ring scheme of infinite Witt vectors. Then W(/c)
is a discrete valuation ring. The Frobenius endomorphism F of W induces
a ring endomorphism o" of W(/c).

DEFINITION 3.1. — We denote by A the non-commutative ring W(/c) [F, V]
defined by the relations

FV==VFz=/?,
FA===A^F,
/v=:v^

for all X in W(/c).

The scheme W has a canonical structure of left A-module scheme over /c.
Hence for a positive integer n the /c-scheme W^ of Witt vectors of length n
has a canonical structure of left A-module.



DE RHAM COHOMOLOGY AND DIEUDONNE MODULES. 8l

DEFINITION 3.2. — Let M be a left A-module^ and let n be an integer.
We denote by

(W(/:) ,^)(g)w^)M

the left A-module defined as follows : for X and X' in W(/c) and x in M

yW(g).r==^(g)?i.r,
^(^(g)^) ==}iA'(g)^
F(}/(g)^) ^X^F^,

V(^(g).r) ̂ '̂ (g)^.

Note that the map from M to^(W(/c),cr^ (g)vv(A:)M sending x to i ( ^ ) x
is crMinear.

DEFINITION 3.3. — For a positive integer n we denote by C-n the left
A-module scheme over k defined by

c^=(W(k)^n)^^r^
i. e. for a k-algebra B

C_.(B) == (W(k) ̂ ) (g)w(,)W,(B).

The /c-group homomorphism ^ : 'Wn-> Wn+i sending

x= (^o, ^i, • . ., ^/z-i) i nW^(B)

to
^ (.c) == (o, ^o, . • • , ^-i) in W^+i (R)

is not a W(/c)-module homomorphism, but it induces a left A-module
homomorphism

i^'. G—/i—>-G—(^4-i) .

This defines an inductive system of left A-module functors

{ C-^, In}'

DEFINITION 3.4. — We denote by C the left A.-module functor over k
C == lim C—n

defined by
C(B) ==limC-^(B)

for a k-algebra B. After Barsotti we call C the left A.-module functor over k
of Witt covectors,

Note that the W(/c)-module homomorphism R : W^+i-> Wn sending
x == {xo, . . . , Xn) in W^+i(B) to Rx = {xo, . . . , Xn-i) in Wn(B) induces.., Xn) in

Ann. £c. Norm., (4), II. — FASC. 1.>, II. — FASC. 1. 11
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a cr^-homomorphism of W(/c)-modules C^n+i)-> C-^. The induced
cr^-endomorphism of W(/c)-module on C coincides with the multiplication
by V in the left A-module structure of C.

We can define C directly as follows : for a /c-algebra B, C(B) is the set
of all sequences

X := ( . . . , ^—n<) . . . , ^—2, ^—l) ,

where x^n is in B and all but a finite number of x^n are zero. We define
the sum x + y of x and y in C(B) using phantom components by

(x + y ) (m) == ^(m) 4- j(^)

for all negative integers m, the phantom component ^(m) of x being defined
by

^-)=^(i/^X_,.
z^o

The action of W(/c) is defined by

({ a} x^nt^^x^

for all a in k and x in C(B), where { a} is the element of W(/c) with a as
the o-th component and with o as the rest of the components. The action
of F and V is defined by

(F^===^

{\x) == a-^-i

for all negative integers m.
It can be easily seen that the set of k- valued points C(/c) is canonically

isomorphic as a W(/c)-module to B(/c)/W(/c), where B(/c) is the quotient
field of W(/c) (Barsotti's bivectors with values in /c). Moreover
the Frobenius endomorphism F : C -> C defines a cr-endomorphism of
W(/c)-modules on C(/c) which we also denote by o".

DEFINITION 3.5. — Let M be a left ^.-module. We define a left A-module
D(M) as the set of ^N (k)-module homomorphisms from M to C(/c), i. e.

D ( M ) = = H o m w ^ ) ( M , C ( ^ ) ) ,

where elements o/*W(/c) operate on D (M) in the usual way and F and V operate
as follows : for a in D(M) and x in M

(Fa) (^) =a(V^)^

(Va) (^) ==a(F^)'7-1.
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DEFINITION 3.6. — Let M be a left A-module. We define a left A-module ]VP
by

M^Homw(, ) (M,W(^) ) ,

where elements of W(/c) operate in the usual way and F and V operate as
follows : for a in W and x in M

(Fa) {x) =a[.(yxV,

(Va) (^) ^o^F^)^'.

DEFINITION 3.7. — Let M be a left A.-module. We define a left A.-module
structure on

C(A-) (g)w^M [resp. B ( A - ) (g)w^M]

by operating with W(/c) in the usual way and operating with F and V in the
following way : for c in C(/c) [resp. in B(/c)]

F(c(g)^) =c(7(g)F^,

V(c(g).r) =cr7-l(g) V^.

DEFINITION 3.8. — L^ M 6e a /̂*( A-module. We define a left A-module
structure on the p-adic Tate module

T ^ ( M ) = = H o m w ( , ) ( C ( A ' ) , M)

by operating with elements ofW(k) in the usual way and by operating with F
and V as follows : for c in C(/c) and a in Tp(M)

(Fa) (c)=:F(a(^-1)), •

(Va) (^^(o^)).

PROPOSITION 3.9.
(i) D induces an anti-equivalence between the category of left A-modules

of ̂ IV(k)-finite type and the category of left A-modules of ̂ f{k)-co finite type
[i. e. isomorphic to a sub-^N {k)-module of a finite direct sum of C (/c)]. This
induces an anti-equivalence between the category of left A-modules 'W{k)-free
of ^N(k)-finite rank and the category of left A-modules ^N{k)-divisible of
^f[k)-finite corank [i. e. isomorphic as W{k)-module to a finite direct sum
of C.W].

(ii) D induces a dualizing functor from the category of left A-modules
of ̂ N(k)-finite length into itself^ i. e. D is a contra^ariant functor from the
category into itself such that DD is isomorphic to the identity functor.

(iii) t induces a dualizing functor from the category of left A-modules
W(k)-free of^W(/c)- finite rank into itself.
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(iv) For a left A-module M there is a canonical homomorphism of left
A-modules

C(k)^(k)Tp(M)->M

which is an isomorphism when M is "W'(/c)-divisible of 'W{k)-finite corank.

(v) For a left A-module M there is a canonical homomorphism of left
A.-modules

M-^(C(/:)(g)w(A)M)

which is an isomorphism when M is W(/c)-/r<°(° of ̂ N{k)-finite rank.

(vi) For a left A-module M o/*W (/c)- finite type there are canonical isomor-
phisms of left A.-modules

M < - ^ D ( C ( A - ) ( g ) w ( A - ) M ) - ^ T ^ D ( M ) .

(vii) For a left A-module M of W(/c) -co finite type there exists a canonical
isomorphism of left A.-modules

(DMy^TpM.
Proof. — Obvious.

DEFINITION 3.10. — We denote by "U the category of commutative affine
k-group schemes of finite type over k which are killed by some power of V
{i. e. commutative unipotent algebraic group schemes over /c).

DEFINITION 3.11. — We denote by 91 the category of commutative finite
k-group schemes. The Cartier dualizing functor D from 91 into itself is
defined by

D(G) =S€omk.sronp (G, Cw),
schemes

i. e. for a k-algebra B
D (G) (B) == ^ComB-group (GB, G,^).

schemes

It is well known {cf. Gabriel [13], Manin [24] and Oort [31]) that Of can
be decomposed as a product

sn == 91^ x yiri x yen x ycir'>

where 9trr is the subcategory of commutative reduced finite /c-group
schemes whose Cartier dual is also reduced, 91ri is the subcategory of
commutative reduced finite /c-group schemes whose Cartier dual is local
(i. e. the spectrum of a local ring), 9tu is the subcategory of commutative
local finite /c-group schemes whose Cartier dual is also local, and finally 9tir
is the subcategory of commutative local finite /c-group schemes whose
Cartier dual is reduced.

91ri and 9'iu are subcategories of 'U.
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As defined in Section i, 9tp is the subcategory

yCp == src,,i x yen x fftir

consisting of commutative finite /c-group schemes whose rank over k is
a power of the characteristic p.

D preserves 9trr, S^ii and 91?, and interchanges 9tri and ffiir.
Finally we denote by ® the category

S = U x .9̂

of commutative /c-group schemes of finite type over k killed by some
power of p.

For /c-group schemes G and G' we denote by

HomA-^(G, G')

the set of homomorphisms of /c-group schemes from G to G'. We also
denote by

Hom^(G,C)

the inductive limit
limIIom^,.(G, C-,0,
n

where C is the covector functor in Definition 3.4 considered as an ind-object
of commutative /c-group schemes.

DEFINITION 3.12. — For a k-group scheme G we define a left
^.-module M(G) by

M (G) = Horn,.,,, (G, C) © \ W© ®z Hom^(G^ G^) IGal?A\

where k is an algebraic closure of k and Gal (k/k) is the Galois group. We give
the structure of left A-module on M(G) as follows : on the first factor we give
the left ^.-module structure induced from the structure of left ^.-module on
the functor C in Definition 3.4. As for the second factor let X be in W(/c),
X' in W(/c) and x in

Horn- fG-, G -YX:—y/-\ / - ' ink}

Then
^(^(g).r) ==^0^

F(?/(g).r) ̂ ^(g)^

V(^(g).r) ̂ ^^(g)^.

These induce a left A.-module structure on the GoA^/k^-invariants. We
call M(G) the Dieudonne module of G.
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Note that if G is a unipotent /c-group scheme the second factor in M(G)
is zero while if G is semi-simple /(--group scheme the first factor in M(G)
is zero.

PROPOSITION 3.13. — Let G be a k-group scheme. Then there is a canonical
isomorphism of left A-modules

M(G^) -^ (W(A'), a) ^)w^M(G).

If we identify those modules by this isomorphism^ then the k-homomorphisms

G-^G^-^G
become

M(G)^(W( /0^ ) (g )w( . )M(G)^M(G) ,

where M(F) sends a(^)x to aFx for a in W(/c) and x in M(G), while M(V)
sends x in M(G) to i 0 Vrr.

Proof. — As remarked in Section 2, [G^ is the base extension of G
by (/c, cr) over k. Hence there is a cr-isomorphism of W(/c)-modules

Hom,_^(G, C) ̂ Hom^G^ C^).

But we know that C^ = C and that

x^ o F = F o x,
x o V == V o x^

for all x in Honu_^,(G, C). The same is true for the second factor of M.
Thus we get a canonical cr-isomorphism of W(/c)-modules

M(G) ^ M ( G ^ )
such that

M ( F ) ^)==F.r,
M ( V ) ^ = = V ^ ^ )

for all x in M(G). The rest of the proof is obvious.
Q. E. D.

Let K//c be a perfect extension field. We denote by M^ and A^ the
corresponding notions over K. Then there is a canonical homomorphism
of A^modules

(^r) WCK^WO^G^M^GK)

for a /c-group scheme G. We say the Dieudonne module M is compatible
with perfect base field extensions if (-Ar) is an isomorphism for all K//c.



DE RHAM COHOMOLOGY AND DIEUDONNE MODULES. 87

THEOREM 3.14 (Dieudonne-Cartier).

(i) M induces an anti-equivalence from the category "U to the category
of left A.-modules of A-finite type killed by some power of V. M is compatible
with perfect base field extensions for "U.

(ii) M induces an anti-equivalence from the category 9'iri to the category
of left A.-modules of 'W(k)-finite length killed by some power of V and on
which F acts bijectively. M is compatible with perfect base field extensions
for yCri' Moreover we have

(**) rank, (G) = p[^^ W^}

for G in 51,.̂

(iii) M induces an anti-equivalence from the category 9'in to the category
of left A.-modules of ^N{k)-finite length killed by some power of F and V.
M is compatible with perfect base extensions for 91 u. Moreover the
formula (*'*') holds for G in Stii.

Proof. — The first part of (i) is proved in Sharma [37], expose 11,
Theorem 8.4. Actually the Dieudonne-Cartier Theorem proved there
is much more general, i. e. we can omit the finite type assumption both
from ^LL and from the category of left A-modules. By devissage it is
enough to prove (*) when G is killed by V. Then, by definition,

M ( G ) = (W(A-) , (7) ®w^Hom^(G, G,).

Hence it is enough to prove that the canonical K-homomorphism

K(g)^Honu_^.(G, G,,) -^HomK-^(GR, G^)

is an isomorphism. As remarked by F. Oort this can be proved as follows :
Hom/^/ (G, Go) is equal to the kernel of the /c-linear homomorphism

IP (G, t\) ̂ ~^~^ H« (G, c^) ®^ (G, ̂ ),

where p- is the group law of G and pi and pa are projections. If we
apply K(^)h to this homomorphism we get the corresponding K-linear
homomorphism for GR. Since K//c is flat we are done.

Except for (*^), the assertions (ii) and (iii) follow immediately from (i).
To prove (**) in (ii) and (iii) we may assume by (*) that k is algebraically
closed and that G is a simple object. But (**) can be easily checked
for unique simple object Z/(p) and a^, in 9'iri and 9\u respectively.

(?. E. p.
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COROLLARY 3.15. — For G in 9'iir we get a canonical isomorphism of
left ^'modules

M ( G ) ^ D M D ( G ) ,

where D on the right hand side is the Cartier dualizing functor in
Definition 3.11, while D on the left hand side is the one in Definition 3.5.
In particular M induces an anti-equivalence from the category yiii. to the
category of left K-modules of W(/c)- finite length killed by some power of F
and on which V acts bijectively. M is compatible with perfect base field
extensions for c l̂/,.. Moreover the formula (*-*') holds for G in 91ir.

Proof. — By definition we get
Horn- ( G . G -) = D (G) (A-) = D (G)-(A-).k—ffr\ k' mkj v / \ / \ / ^ . \ /

When G is in 91^ D(G) is in 91^ Hence by definition and
Theorem 3.14 (i) we get

W(^)(g)w^)M(DG) ^Mi(D(G),^

=Hom^iian(D(G),(A-) ,C(A-))
groups v /

= ̂ vOO^® ®zD(G) (^ C(^))
^D^W^^^G)®).

By canonicalness we thus get an isomorphism of left A-Gal(^//c)-modules

W(A-) (g)w(,)DMD (G) ^ D^W® (g)w(,)M (DG))

^W®0zD(G)(7c).

Taking Gal ( J f / k ) -invariants on both sides we get a canonical isomorphism
DMD(G) =M(G) .

Compatibility with base field extensions and the formula (^) follows
easily from this and Theorem 3.14 (ii).

Q. E. D.

COROLLARY 3.16. — M induces an anti-equivalence from the category 01.,
to the category of Ie ft A-modules of W(/c)- finite length. M is compatible with
perfect base field extensions for 91^ The formula (**) holds for G in 01^

Proof. — Immediate from Theorem 3.14, (ii), (iii) and Corollary 3.15.

DEFINITION 3.17. — M induces an anti-equivalence from the category
Ind(^) to the category Pro [left ^.-modules of W(/c)- finite length} as follows :
for G == lim Gn in Ind(c9l^) we put

M(G) ==l imM(G^) .
n

We also call M(G) the Dieudonne module of G.
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It is obvious that M is compatible with perfect base field extensions for G
in Ind(^Z^) and that Proposition 3.13 also holds for G in Ind(^l^).

PROPOSITION 3.18. — Let G == lim Gn be a p-divisible group over k
—->-

n

{cf. Definition 1.5) of corank A. Then M(G) is a left ^.-module ^N{k)-free
of rank h with the usual p-adic topology,

Proof. — Obvious.

Remark. — On the subcategory Ind(5l^) our Dieudonne module M(G)
gives rise to the Dieudonne module over W(/c) [TF, VJJ defined in Gabriel [13]
The definition of the Dieudonne module on Ind(3I^) is given in Manin [24]
when k is algebraically closed.

THEOREM 3.19. — Let G be in ^ip. Then there exists a canonical isomor-
phism of left A.-modules

d(G) : M D ( G ) ^ D M ( G ) ,

where D on the left hand side is the C artier dualizing functor in Definition 3.11,
while D on the right hand side is the one in Definition 3.5. Moreover the
following diagram is commutative :

^(Q)^^^j^^

can. ( 11 d (D (G))

.DDM(G)D^)DMD(G)

where can. denotes the obvious canonical isomorphism.

Proof. — It is enough to prove the Theorem in the following three cases
separately : (i) G is in Olri.; (ii) G is in c9t^ and (iii) G is in 91ir. The cases (i)
and (iii) follow easily from Corollary 3.15. It remains to prove in case (ii).

We define the dualizing functor T from the category of left A-modules
of W(/c)- finite length into itself by

T ( M ( G ) ) = M ( D ( G ) )
for all G in ^1,,

LEMMA 3.20. — Let A and B be left Noetherian rings.
(i) Let T be a contravariant additive functor from the category of left

A-modules of finite type to that of left B-modules. Then there is a morphism
of functors

P : T^T=Hom^(? ,T (A) ) ,

where T(A) is a left ^.-module via T(R,t) for a in PL (R^ is the right multi-
plication by a) and the right hand side is given the structure of left B-module
via that o/*T(A). T is left exact if and only if ? is an isomorphism.

Ann. EC. Norm., (4), II. — FASC. 1. 12
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(11) Let T be a contravariant additive functor from the category of left
^.-modules of finite type to that of left ^-modules of finite type, and let S be
a contravariant additive functor from the category of left B- modules of finite
type to that of left ^.-modules of finite type such that there is a morphism of
functors

p : I -> ST

(I is the identity functor on the category of left A-modules of finite type).
If we denote by a : S -^ S' and ^ : T -> T-' the morphisms of functors we get
from (i), then the following diagram is commutative :

I ——> ST
aT

•̂  -^•

S'T-^S^T

where 7 is defined as follows : let 9 be the B-homomorphism T(A)-^S(B)
which is the image of i^by

A ——^ ST (A) a^ S'T (A) = Homa (T (A), S(B)) .

Then for a left ^.-module M of finite type y is the k-homomorphism

M -> S^ (M) = Home (Hom.v (M, T (A)), S (B))

such that for x in M and f in T'(M) = Hom^M, T(A))
Y ( ^ ) ( / ) = ( p ( / ( ^ ) ) .

(111) Suppose {mi} is a decreasing sequence of two-sided ideals in A.
Let T be a contravariant additive functor from the category of left ^.-modules
of finite type annihilated by one of the two-sided ideals to the category of left
^-modules. Then there is a morphism of functors

P: T-^T=Hom,f?, l lmT(A/^)V
\ i /

where as in (i), limT(A/m,) is a left K-module via T(FL) for a in A and the
i

right hand side is given the left ^-module structure via that of lim (T(A/m,)).

T is left exact if and only if^ is an isomorphism.

(iv) Suppose { m i } and {ni} are decreasing sequences of two-sided ideals
in A and B respectively. Let T be a contravariant additive functor from the
category of left A.-modules of finite type annihilated by one of the two-sided
ideals to the category of left B-modules of finite type annihilated by one of the
two-sided ideals. Let S be a contravariant additive functor from the latter
category to the former category such that there is a morphism of functors

p : l ->ST.
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If we denote by a : S -> S' and ^ : T -> T' ̂  morphisms of functors we get
from (in), then the following diagram is commutative :

I —'—-> ST
T | a T
^ S '6 ^

S^^——'^S'T

where y 15 defined as follows : let y^ &e </ie tS-module homomorphism

T (A/m,) -^ lim S (B//iy)

which is the image of i 627

A/m, 4 ST (A/m,) a^ S^ (A/m,).

Then [ ̂ i} are compatible and definies a ̂ -homomorphism

( p : l imT(A/^)—limS(B/^) .
i i

Then for a left ^.-module M of finite type annihilated by one of the two-sided
ideals y is the A^-homomorphism

M->S'T(M)

such that for x in M and f in T' (M)

y(^) (/)==cp(/(^)).

Proof of Lemma 3.20. — This is just a generalization of the result in
Grothendieck [18], Section 4 to the non-commutative case. Let M be a left
A-module. Let h be a homomorphism from M to Hom^A, M) defined
by hx{a) = ax. Then we get a homomorphism

M-^HomB^M), T ( A ) )

sending x to T(/^). Hence we have a homomorphism of B-modules

T(M)- tHom(M, T (A) )

defined by ?(u) {x) =- T(^) (u) for u in T(M) and x in M. Since
R^,= R^oR^ and h^oRa=h,w for a and a in A, u in T(M) and x in M,
we get P(u) {ax) = T(R,,) ? (u) (^). Thus if we give T(A) a left A-module
structure by T(R^), we see that the image of ? is in Hom^(M, T(A)).
The rest of (i) is straightforward.

As for (ii) the diagram is commutative by definition for free A-modules
of finite rank. Hence it is also commutative for any A-module of finite
type, since an A-module of finite type is a quotient of a free A-module
of finite rank.
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(iii) Let M be a left A-module of finite type annihilated by rrin' Then (i)
implies that we have a homomorphism of B-modules

(3, : T (M) -> HoniA (M, T (A/m,))

for i greater than n. It is easy to see that ^i are compatible with the
inductive system {T^A/m;)}. Thus we have a homomorphism of
B-modules

(3 : T (M) -> }im Henry (M, T (A//n,)).

The right hand side is equal to HomA/M, HmT(A/m,)V since M is an

...v "̂  . -A-module of finite type. The rest of (iii) and (iv) is clear.
Q. E. D.

To apply Lemma 3.20 to the proof of Theorem 3.19 we need the following:
as before let W be the /c-group scheme of infinite Witt vectors. We denote
by W the subfunctor of W (considered as a contravariant functor from
the category of /c-algebras to the category of sets) defined by

( bn== o for all but a finite number of n.)
W(B)=\ b=(b^b^ . . . ) , ., , • p , n( bn nilpotent element in B for all n)

for a /c-algebra B. W (B) is an ideal in W(B). In fact the addition and
multiplication in W(B) is defined by

{x^-y)n-=Sn{x^ ...,^;Jo, . . . ,J/z)

{xy)n=rnn{x^ ...,^:jo, ...,J^),

where if we define the weight of xi and yi to be both equal to p', Sn is
isobaric of weight p71 in { x o , ...,^, 2/05 . . . 5 ? / n } and mn is isobaric of
weight p71 both in [ x o , . . ., Xn} and in { ? / o ? • . • ? yn}» The Artin-Hasse
exponential series E defines a homomorphism of /c-group functors

E : W->G^

as follows : let e[z) be the formal power series in one variable z defined by

^) =:exp/-^ (V/^A
\ ^0 /

Then it is well known (c/*. Serre [32]) that

e^)= f[ (i-^)^1[m)/m

(m,p)==l

where \^{rn) is the Mobius function. Thus e[z) is a formal power series
with coefficients in Z,,. For a /c-algebra B, e{z) defines a map from the
set of nilpotent elements in B to G,^(B) = B*.
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The Artin-Hasse exponential series is the series

E(^)^fp(^)
71^0

in an infinite number of variables x={xo,Xi, . . . ) . It is easy to see
that

E (x) = exp /- ̂  (1/7^) ̂ )V
\ m^O J

where

xw= v ĵ r""'
O^i^m

for a non-negative integer m. Thus E(.r) defines a homomorphism from
the additive group W'(B) to the multiplicative group G^(B).

From the definition it is easy to see that E(Vrc) == E(^).
We now define a biadditive pairing

W^W-^G^

by sending (u, x) in W(B)(g)W(B) to E(ux) in Gm(B). Here we use the
fact that W(B) is an ideal in W(B). We can easily see that

E ((V^) x) == E (V (uYx)) = E (u (¥.v) ),
E (u\x) = E (V ([¥u] x) ) = E ( (¥u ) x).

Hence we get a homomorphism of /c-group functors

\: W->S€omk-^(W,G,n).

PROPOSITION 3.21.
(i) The homomorphism ^ of k-group functors is an isomorphism.

(ii) $ induces an isomorphism of k-group functors

^ : FnW-^ ^omk-gr (W,,, G^).'

(iii) Let W,i,/n be the kernel prnW^. Then the biadditwe pairing

T v 771, Ti X W /^ ,̂  —^- t-T/^

sending (u, x) in Wm,n(B) X W^(B) to E(g^(u) gn(o;)) in G^(B) /or
a k-algebra B 15 non-degenerate, i, e. defines an isomorphism

i-ft,m • " m,n~~^ 1J (Wn,m) ?

wAere g^ 15 (Ae section from W^ to W sending

x==(xo, . . . , ^_i) ^ W^(B) to ^(^)==(^o, • . . , ^-i, o, o, . . . ) m W ( B ) .
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Moreover if we denote by v and f the homomorphisms {for n^n and m^_m}

^ W,̂  ->W^,
/: w^/->w^

sending x={x^ ...;^_i) m W^^(B) <o ^==(0,0, . . . ,o , .To , ...,^_i)
in Wn',m'(B) anrf

^ == O/o, . . ., ^/-i) m W,,,/^/ (B) to fu = {u^'~\. . ., <"71) //z W,,̂  (R) ,

^AeM <Ae following diagram is commutative :

w < f w" w,^ ^
 vv ,„» „/^1 \^^ • ^ '

D(W^)^M-D(W^/)

Proof of Proposition 3.21. — ^ is injective. In fact if x == {t, o, o, . . .)

then ux={uot, U^P, u^, . . .). Hence E{ux) =^[' e^Unt^). If u, is the
/z

first non-zero component of u, then

E (u^c) == i — i/itP'modt^-^^.

^ is surjective. In fact for a /c-algebra B an element L of

S€om^(W, G,n) (B)=Hom,_^(WB, G,,B)

is given by a polynomial L(X) in B[Xo, Xi, . . .] such that

L ( X + Y ) = = L ( X ) L ( Y )

and L(o) = i (here X + Y is the Witt addition). We have a commutative
diagram

We———'——>G^
t ^v v=i

W^=W^^GW=G^

where L^ is given by the polynomial L^(X) whose coefficients are
p-th power of the corresponding coefficients of L(X). Thus we get
L(VX) = L/'(X). Since L(X) contains only a finite number of variables,
there exists an integer n such that L^VX) = i. Thus

L^(X)=i,

i. e. the coefficients of the non-constant terms are all nilpotent in B. Let
us write

L(X)=: i+L, , (X)+^(X) ,
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where L,^(X) is the sum of terms of the least positive weight m and L'(X)
is the sum of terms of higher weight (where as before weight of X^ is j/1).
Then we get

L ^ ( X + Y ) = L ^ ( X ) + L ^ ( Y ) ,

i. e. L,n defines a homomorphism L^ : WB-^WJ,B. By the commutative
diagram,

WB-^W^B
^ -^

v v=o
LW8) I

WB-'^W,,B

we conclude that L^(VX) == o. Hence L,,, factors through the canonical
projection R : WB->W.J,B? i- e. L^(X) is a polynomial only in Xo which
is additive and of weight m. Hence there exists a positive integer h and
a nilpotent element a in B such that

L,,(X)=aX^.

Then since
E ((V 7 ' •{ a } ) ^) == E ([ a \ F7^) =E i — ax^1 mod weight > p11

we get
L (x) ==: E ((V7 ' j — a { ) x) mod weight >p/t.

If we proceed in this fashion, we finally get

L(^)=E(if^)
for some u in W(B).

We still have to show that u is actually in W(B). But first of all
since L(a^) only involves a finite number of variables, we get

o = L (V^) == E (^V^) = E ((F^/.) x)

for some positive integer n. Thus Fnu= o, hence the components of u are
all nilpotent. We now show that all but a finite number of components
of u are actually zero.

Since x =.^^ff'{xr}, we have
r=o

E(^)=[JE((P^){^{. ) .

Therefore it is enough to show that given u in W(B) such that F"u==o
for some positive integer n, then the formal power series E ( u { t } ) in one
variable t is a polynomial in (, if and only if all but a finite number of
components of u are zero.
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Let A(m) be the coefficient of F1 in E ( u { ^ ) , and let the weight of A(m)
be m. As before the weight of Ur is p'. Then A(m) is a polynomial in
{ u o , U i , . . . } isobaric of weight m. Conversely Ur is a polynomial in
{ A ( o ) , A ( i ) . . . } isobaric of weight p1' (c/1. Serre [32], chap. V, No. 17,
and Bergman [29], lecture 26, Section E).

Our assertion follows immediately from this fact.
We now prove (ii). The exact sequence

o-^W-^W-^W^o

and E((Fu) x) == E(u(V^)) give a commutative diagram

o ——> QComk-^r (W,,, G/.J —-> ^oink-gr (W, G^) -̂ > ̂ Com^^ (W, G,,,)
^ ^ AT^ < i ^ ^^ A

1 ^ f

o ——————> F-W^ ————————————^ W —————-—————> W

whose rows are exact and whose two vertical arrows on the right hand side
are isomorphisms. Hence ^n is an isomorphism.

As for (iii) we note that
W^^=F«W;/,

and
D (W,,,,) == ^€omk-gr (F'»W^, G,,).

Thus we have a commutative diagram

SComk-^r (W^, G,n) -F^ SCorn^-sr (W^, G,,) ——> D (W^n)
A A 4.

< ^ m. ,̂,«

p.W7—————^————^F.W————————^W/,,.——>o

whose rows are exact and whose vertical arrows on the left are isomorphisms
by (ii). Hence ^n,m is an injection. But Wm,^ and D(Wn,^) are finite
/c-group schemes of the same rank p^1, hence ^n,m is an isomorphism.

The second half of (iii) follows immediately from

^/(P(^))=V^-^(^),

^ (f(u) ) FEE F^-/̂ , (^) mod V-W^
Q. E. D.

Remark. — Dieudonne [11] proved Proposition 3.21 (i) in the formal
group case. The proof given here is a slight modification. Cartier [7]
proved Proposition 3.21 (ii) when n= i. He also announced (iii) without
proof in the same paper. See also a recent paper of Cartier [41].
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Proof of Theorem 3.19 continued. — We apply Lemma 3.20 (iii) and (iv)
to A=B=W(/c) [F , V] and m,= m= A(F', V), since, for G in ffiu,
M (G) is annihilated by some mi. Thus there is an isomorphism of functors

(3: T^T'=HoiM?,L),

where L = limT(A/A(F», V")). But we know that A/A(F», V") = M(W»,^)
——->-

11

and the canonical surjection A/A(F\ V^) -> A/A(F", V71) for n^n' is
equal to M(^), where ^ : Wn,n->^Vn',n' is as defined in Proposition 3.21 (iii).
Hence by Proposition 3.21 (iii) we get

T (A/A (F^, V^)) = MD (W,,,) ̂  M (Wn,n) == A/A (F^, V71)

and the commutative diagram
T(A/A(F^V-))

T ( M ( ^ ) )
T(A/A(F^,V^))

MD(W^) MDM --^MD(W^)

n,n)————^———^M(W^M(W,,,

A/A(F^ V^) ——'——>A./A(¥n\ V71'),

where for n^n\ f: W^,^-^W^,n is as defined in Proposition 3.21 (iii).
It is easy to see that i is the A-module homomorphism which sends the

coset of imodA(F^V^ to the coset of p 7^r-7^modA(F^ V^).
L =limA/A(F /\ V71) has two structures of left A-modules; (i) usual

n

left A-module structure and this is used to define a left A-module structure
on the functor T'== Hom^?, L); (ii) new left A-module structure defined
by T(Ra) for a in A. This is the structure by which we take Hom^.
Since Rp=M(F), we get T(Rp) = MD(F) = M(V) = Ry. Similarly
we get T(Ry)=R, and T(R).)=R), for X in W(/c). Hence by the
second left A-module structure the multiplications by F, V and X are the
usual right multiplications by V, F and X respectively. Thus we finally
get an isomorphism of functors

T ( M ) ^ T ( M ) = = < u : M->L

u is additive
?/(F^)==^(^)V
u(yx)=u{x)^
u (},x) == u {x) ^
for x in M

and ^ in W(A-)

the left A-module structure on the right hand side being given by

(¥u) (x)=¥u(x), (Vu) {x)=\u(x) and (^u) {x)=tu(x).
Ann. EC. Norm., (4), II. — FASC. 1. 13
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It is also clear that y : L -> L defined in Lemma 3.20 (iv) is equal to
the identity map, hence y : M-^T'T^M) = Hom^Hom^M, L), L) is the
canonical isomorphism of functors defined by y {x) (/*)== f{x} for x in M
and fm Hom^M, L). Thus we have a commutative diagram

M——^L-^TT(M)
can. I l P T

Y Y

rT^M)-^'?!^)

We can express the module L more explicitly as follows : let { (V/p) ' ; i ̂  o}
and {(F/p)7 ; /> o] be just abstract symbols. Then we have an isomor-
phism of two-sided A-modules

L = \ © ( y / p v c w \ © c w © s © (F/^)/C (/:) L(^i ) (/^i ) ,
where we give two-sided A-module structure on the right hand side as
follows :

^o : V[OWc] =(V/p)^pc =[^/pYc<7-i] V,
y^i: ^[(¥/p)fc]==(¥/p)^c ^[(F/^)/^-1]^
^i: F[(V/p)^J ==(\/p)^c =[(V/p)-^]F,
y^o : F[(F/p)/c] =^/p)^pc =[(¥/pV'c-]¥,
^o: ^[(V/p)^]=(V/p)-^c =:[(V/p)^]^,
y^o: ^[(¥/p)fc] =(F/p)/^-^=[(F/p)^]^-/

for c in C(/c) and X in W(/c). Under this isomorphism the submodule
A/A(F/^5 V") is mapped isomorphically onto the submodule

( © CW-C- .̂ (^ I ©C-^ ( / : )©{ © (F/p)/C-^(/:)(
( /z>^->0 ) ( 0</<n )

ofL .
If we write an additive map u: M -> L as

u {x) ==^ (V/7?)^_, (^) + ̂ o (^) +^ (F/p)^-y (^),
<^l 7^1

then it is easy to see that u(Frc) =u{x) V, u(V.r) === u(^) F and
u(kx) == u(x) X for all ^ in M and X in W(/c) if and only if Uo is a homo-
morphism of W(/c)-modules from M to C(/c) and

^/y(^)=:^o(F^)CT-/ "for y'^o,
u_i(^)=Uo(\^.c)Gi for ^o.

Moreover
(F^o (^) = [^o (V^)]^ (V^)o (^) = [^o (F^)]^-1

and (X ^)o (n;) = Xuo (^) for all a; in M and X in W(/c).
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Thus we get a canonical isomorphism of left A-modules
r ( M ) ^ D ( M )

sending u to Uo. The commutativity of the diagram

M ^ > TT(M)
can.\l (

-^ ^
DD(M)—^->DT(M)

is obvious from the corresponding diagram for T and T'.
Q. E. D.

PROPOSITION 3.22. — Let G={Gn, in, J ' n ) be a p-divisible group over
a perfect field k of characteristic p. Let G^==(D(G^), D(/^), D(^)) be
its Serve dual (cf. Definition 1.6). Then there is a canonical isomorphism
of left A.-modules

d(G) : M(G1) -M>M(G)t

such that the following diagram is commutative :

M(G) M ^M(G^
can. | { { | (/(G').

M(G)" l^M(GQ'
Proof. — By definition,

M ( G ' ) = H m i M ( D ( G , ) ) , M ( D ( y , , ) ) j .
n

But by Theorem 3.19 there is a canonical isomorphism
M ( D ( G , ) ) ^ D ( M ( G , ) ) .

Since ^o^==p^^ we have the following commutative diagram :

o ——> M (G) -^ M (G) ——-.M (Gn) ——-> o
\P M ( / , ) [

-t-i Y ^
o —-> M (G) •f—^ M (G) •—^ M (G^+i) —> o

Thus we get a canonical isomorphism
l i m { M ( G , ) , M ( y , ) } ^ C ( / : ) ( g ) w ( , ) M ( G ) ,

n

where M(Gn) corresponds to the submodule C-^(/c) 0w^M(G) and M(/^)
corresponds to the inclusion. Thus we get from Proposition 3.9 (vi)

M(G / )=D(C(A•) (g )^ )M(G))=M(G) ^ .

The commutativity of the diagram in the proposition is obvious.
Q. E. D.

We now interpret Proposition 1.8 in terms of the Dieudonne modules.
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PROPOSITION 3.23. — If X is an abelian scheme over a perfect field k
of characteristic p. Then there is a canonical isomorphism of left A-modules

M^)od(X(p))-1 : M(X(p))t^M(Xt(p))

such that the following diagram is commutative :

M(X(p))^__^^———M(X"(^))
can. I ( M^^oc^X^))

-rM/^)0^^))"'^M(X(p))^ l v x / ,——— l>M(X t(p)y

Proof. — Obvious from Proposition 3.22 and Proposition 1.8.
We now interpret the Riemann homomorphism defined at the end of

Section i in terms of the Dieudonne modules.
We first note that for a W(/c)-module M free and of finite type we get

canonical isomorphism

Homw(^) (MS M) = M (g)w^M = Homw^) (M^w^MS W ( k ) )..

It M is a left A-module W(/c)-free of finite rank, then a homomorphism
of A-modules r : M ^ - ^ M corresponds by the above isomorphisms to an
element c in M0w^)M and to a W(/c)-bilinear form b on Mt with values
in W(/c) such that

(V(g)i) (c)=:(i(g)F) (c^) and (i (g) V) (c) = (F 0 i) (c^)

in the diagram
M (g)w W M ————^——-> M ̂  (g)w (,) M

1®V| 1®F

M(g)w(,)M^<F-^-MW(g)w?M^=(M(g)w?M)^

and such that
b(^x,y)=b(x^y)^
b{x, FJ)=:6(V^,7) (7

for all x and y in M^. It is obvious that if r is a skew-symmetric homo-
morphism, then c is a skew-symmetric tensor, and & is a skew-symmetric
bilinear form.

PROPOSITION 3.24. — Let X be an abelian scheme over a perfect field k
of characteristic p . Then :

(i) If ^ : X ->- X^ is a k-homomorphism, there is a left A-module homo-
morphism

n=M(^)ad(X(p))-^: M(X(p)y-^m(X(p))
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an element c\ in M(X(p)) (g)w(A:)M(X(p)) and a W{k}-bilinear from &>
on M(X(p)y with values in W(/c) such that

and

(V(g)i)(^)=(i(g)F)(^)),
(i(g)V) (^)=:(F(g)I)(6^)))

^(F^J^^^VJ)^
^(^•, F^^^V^j)^

/or aH x and y in M(X(p)/.

r\, c\ and b\ are additive in X. They are zero if and only if^ is zero.

(ii) If X is a symmetric k-homomorphism, then r-^y c\ and b\ are skew-
symmetric.

Proof. — It follows immediately from Proposition 1.10 and
Proposition 1.12.

Q. E. D.

In particular, if L is an invertible sheaf on X, we have a skew-symmetric
homomorphism of left A-modules

. r ( L ) = r A ( L ) : M(X(p)Y-^M{X(p))

a skew-symmetric element

C(L)=C^L) i n M ( X ( p ) ) ( g ) w ^ ) M ( X ( p ) )

such that
(Y(g)i)(c(L))=(i(g)F) (c(L)W)

and a skew-symmetric W(/c)-bilinear form

b(L)=zb,\(L) on M(X(p))1 with values in W(^)

such that
^ ( L ) ( F ^ J ) = ^ ( L ) ( ^ V J ) ^

for all x and y in M(X(p)y.
r(L), c(L) and 6(L) are additive in L. Moreover they are zero if and

only if L is contained in Picx^ (A*).

DEFINITION 3.25. — We call r(L) the Riemann homomorphism of the
Dieudonne modules^ <?(L) the fundamental class of L, and &(L) the Riemann
form of L.

We can also interpret Proposition 2.3 in terms of the Dieudonne
modules.
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PROPOSITION 3.26. — Let X be an abelian scheme over a perfect field k of
characteristic p. Then we have

ynM(^X)=F-M(^X),
^nM(,nX)=:y-M(,nX)

for all positive integer n.

Proof. — Immediate from Proposition 2.3.
Remark. — The Dieudonne module is closely related to the " module of

canonical covectors 9 ? in the sense of Barsotti [3], Chap. I and Chap. III.
In fact if we define a " formal group 5) cov by using <& in [3J, Th. 1.11, then
cov is a left A-module in a natural way ([3J, I, Section 6). We can easily
show that the " module of canonical covectors " [ibid., Section 5)
HomA-^.(G, cov) is isomorphic to M(G) for G in Ind (^). In [3], Chap. VI
and Chap. VII Barsotti defines in a method different from ours, the Riemann
homomorphism and the Riemann form for a divisor on an abelian scheme
over an algebraically closed field of characteristic p .

SECTION 4.

PICARD SCHEMES AND DIEUDONNE MODULES.

Let k be a perfect field and let X be a /c-prescheme. The left A-module
functor C of covectors defines a sheaf of left A-modules Cx on X in the
Zariski topology. The multiplicative group scheme Gm defines a sheaf
of abelian groups G,n^= ^x on X. We denote by X the base extension X7,
to an algebraic closure k of k.

DEFINITION 4.1. — Let X be a prescheme over a perfect field k of charac-
teristic p. Let I(X) be the left A-module defined by

I (X) = IF (X, Cx) ® { W(I) 0z^I-r (X, G,,x) }G•Alwk\

where H^X, Cx) is given the left A-module structure induced by that of Cx,
while the second factor is given the left A-module structure by

^(^(g)^) ̂ ^(g)^,
F(^(g)^) ̂ ^(g)^,
V^®^):^'^^

for X in W(/c), X' in W(/c) andx m^ocH^X, G/^x)- W^ define left A-modules
by

H i ( X ^ _ n a t ) = D ( I ( X ) ) ,
H^X^.O^T^HX)).
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Note that the second factor can also be expressed as

{W^^^PicCx)^1^.

I defines a contravariant functor from the category of /c-preschemes to the
category of p-torsion left A-modules.

Note also that H^X^) = H^X^ai)', it I(X) is of W(/c)-cofinite
type. The p-adic flat homology and cohomology notation is used here
just to indicate the properties which these A-modules have and which
we prove below {cf. Prop. 4.2, Th. 4.4, Prop. 4.9, Prop. 4.12, and Cor. 4.13)

PROPOSITION 4.2. — Let X be an abelian scheme over a perfect field k
of characteristic p. Then there are canonical isomorphisms of left A.-modules

M(^X)^J(X),
I ( X ) ^ C W ( g ) w ( , ) M ( X ( ^ ) ) ,

M ( X ( ^ ) ) ^ T ^ ( I ( X ) ) = H ^ ( X ^ n , 0 .

Proof. — We have a commutative diagram
/?»+i

o ——> /?"-+-iX ——> X ——> X ——> o

whose rows are exact. Since Hom^_^(X, C_y) = o and Hom^_^(X, G^k) = °
for all positive integers N, we get commutative diagrams

o ——> Horn (^.+iX, C_N) -—^ Ext1 (X, C^) p^ Ext1 (X, C-N)

^ -i
(^,«X, C_No ——> Horn (/,,X, C_N) —6-^ Ext' (X, C_r<) -p:•» Ext' (X, €_„)

and
o .—> Horn (/,^.X, G,^) -^ Exti (X, G,^) ̂ ^ Ext' (X, G,,,,)

"^ •+•
o ——^ Hom(/,,.X, G,,.,) ̂ -> Ext' (X, G,^) ̂ ^ Ext' (X, G.,,,)

But by Serre ([32], VII, No. 18, Th. 8) we know that

E x t • ( X , C _ N ) = H l ( X , C _ N , x ) .
Thus we get

Hom^r (^"X, C) ^ p»H' (X, Cx).

On the other hand Serre ([32], VII, No, 16, Th. 6) shows that

Ext' (X, G,^) = ker [Pic (x) '± 1̂̂  pic (x x X)].
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But Lang ([22], IV, Section 2, Cor. 3 to Th. 4) and the Theorem of Square
shows that the right hand side is equal to Pic^X). This in turn is equal

/—\
to Pic°(XJ by Corollary 1.3 (Cartier duality theorem). Thus we get

Hom,_^(^X, G,,,) ==^Pic°(x) ==^Pic(x).

Thus by the definition of the Dieudonne module we get a commutative
diagram

M(^X)^+J(X)
M(^) | \p

M(^X) ^ ^I(X)
Q. E. D.

For the sake of completeness we now interpret the left A-module
H^X, Wx) studied by Serre ([33], [34]) in terms of the Dieudonne modules.
See also Barsotti ([3], Chap. VI).

PROPOSITION 4.3. — Let X be an abelian scheme over a perfect field k of
characteristic p. Then for every positive integer n there is a commutative
diagram of left K'modules whose rows are isomorphisms

M(v^X)-^Fr(X,W^,x)
M (in] I R^ ^
M(vnX)-^-^H'(X,W,,x)

Thus there is a canonical left A.-module isomorphism

M/lim y«X\ ^ H1 (X, Wx).
\^ }

Proof. — The commutative diagram for a positive integer n

o——^y"+iX——>X-^>X^~"~^——^o
^ A

.. r
o——>y^X——>X——^X^-")——>o

gives a commutative diagram

o ——> Horn (y.+iX, C) -^ Ext' (X^-"-1), C) Y"^ Ext1 (X, C)

k I - - |
Y p Y , * II

o——>Hom(y.X, C)—^-^Ext1 (X^-"), C) -"—^Ext1 (X, C)

However there is a canonical isomorphism

Ext1 (A, B) --^> Ext1 (A^ B^))

for commutative /c-group schemes A and B such that (VA)*== (Vp^o (p)
(cf. Matsumura-Miyanishi [25], Lemma 2). On the other hand the
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isomorphism of /c-group schemes W^->C_^ is a c^-isomorphism as left
A-module functors. Since Ext1 (X, C) == H^X, Cx) as in the proof of
Proposition 4.2 we get the following commutative diagram whose rows are
exact:

- H- (W/^, x) ——> Ext1 (X^——1), C) Ext' (X, C)
^

II'(W,,,x)—>Ext|' (X^-"), C) -—>||Ext' (X, C)
(P- (P-) :(/?"+!) : (pn)^

ir(C_,_,jx)——^(Cx) - H ' ( C x )

-H^C^x)
^

-^H'(Cx) -HKCx)

Thus finally we get a commutative diagram

M(v^X)-^>I^(X,W^,x)
M(!j | R

M(v.X)———>H 1 (X ,W, ,x )
Q. E. D.

For a proper scheme X over a perfect field k of characteristic p, such
that Picx/^: is proper over k we define objects in Ind(3l^) by

-Picx/x-==lim^Picput ICx/^

Picx/^==limF.Picx//:,

^ICx/^rcd^liinF^PiCx/^rcd)-

The last two objects are the formal group obtained by the usual completion
at the origin of the corresponding group schemes.

THEOREM 4.4. — Let k be a perfect field of characteristic p. Let X be
a proper k-scheme such that X(/c) is non-empty^ H°(X, 0x) === k and Picx/y^ is
proper over k {e. g. X is proper normal k-scheme, cf. Murre [30] and
Chevalley [O]^)). Then there are following canonical isomorphisms of left
A-modules :

( i ) DM(picx^)^H l(X,Cx).

(3) It is also an easy consequence of the valuative criterion of properness. Cf. EGA [19],
chap. II, 7.3.

Ann. EC. Norm., (4), II. — FASC. 1. 14
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In particular, H^X, Cx) is of^V(k)-co finite type,

W DM^JPicx/,) ^ I (X) , M^ooPicx/,) ^Hi(X^).

JTZ particular, I(X) ^ of "W{k)-co finite type,

(3) DM (Picx/^7d) ̂  ̂  V^H1 (X, Cx) ^ C (A-) ®w(,)H1 (X, Wx)
/^

anrf

M(picx^:d)^H^(X,Wx)^
(4) DM(F(Picx/,,.ed)) = (^, ̂  ^-[H^X, Wx)/VH^(X, Wx)].

JM particular the irregularity of X (i. e. the dimension of the Picard
variety Pic^.ed) is equal to dim^H1 (X, Wx)/VH1 (X, Wx).
(5) DM(^(Pic^red)) i8 isomorphic as an A.-module to the submodule of
p-di^isible elements of I(X).

Remark. — If X is an abelian scheme over k, then (2) follows from Propo-
sition 4.2 and Corollary 3.23 noting that

^Picx/^X^).

(4) recovers the computation of irregularity in Mumford [29], lecture 27.

Proof. — For simplicity we write P == Picx/^. Then (i) implies (2).
In fact since k is perfect, there is a p-primary etale object G in Ind(5l^)
such that

^P == G x P
and

^P(7c)^G(7c).

Then M(^P) = M(P) © M(G). But since by the proof of Corollary 3.15
we get

M(G) ==limHom^,(^G, C) = Hom^eiX0^ C^))^^
-<—— gr

n

^D^WO^GOO)}0^

=DOwoo®2G(i)^laA•))
as a left A-module, we obtain an isomorphism of left A-modules

DM (G) ^ { W (k) ®z .-P W }^1 a / k } •

The rest of (2) is clear.
(i) implies (3). In fact there is a finite group scheme N such that

0 -> ̂ red -> p -> N -> 0
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is exact. N is killed by some power of F. Hence we get an exact sequence
of A-modules

o <- M (P,.ed) <- M (P) <- M (N) <- o.

Since Pred is a direct factor of the p-divisible group Pi°ed(p) ==/^(P?ed)?
Pred itself is a p-divisible group. Hence M(Pred) ^ W(/c)-free of finite
rank. Thus M(N) can be identified as the submodule of M(P) of F-torsion
elements (i. e. killed by some power of F). Hence

M(P,ed)=limM(P)/p,M(P)
n

=lmiCoimage[M(P)-^-(W(/f), <7-") (g)wwM(P)].
n

On the other hand by (i) we know that

DM(P)^ IP (X ,Cx) .
Hence

DM(P,ed) == D/lim Coimage [M(P) -^ (W(/c), ^-n) (g)w(^M(P)]\
\ n )

=UmImage[(W(A:)^-) (g)w(,)DM(P) ̂ DM(P)]
n

=limVnDM(P)^ /^SV^H^X, Cx).
n n

Thus we get the first isomorphism of (3). On the other hand we have

- (^ V-TP (Cx) =^r\ V^P (C_^,x).
n i n

But we have

F|V-I-P (C_,_,,x) = Image r H m { (W(/c), ̂ ) (g)w(,)H^ (C_,-,,x), V } -> W (C-,x)1,
n L n J

where {(W(/c) , o-") (g)w^H1 (C_,_^x)? V} is the projective system

^•(W(/c), a--) ̂ ^(C-i-n,x) ^(W(/:), ^-n-1) (g)w(,)Hi(C_,_^,x).

Since by definition C_f_^=== (W(A*), a'^) 0w(^)W,+,,, this projective system
is equal to

^ (W(^), ^•)'(g)w(,)H1 (W^,,x) ^- (W(/c), ^) (g)w(,)H1 (W^^,x) ^-

where R is the canonical projection R : Wwn-i -> W^^. Thus we get

^V-IP (€_,_,, x) = (W(^) , o-Q (g)ww[H^(Wx)/V-m(Wx)] .
71

•
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Since the injection C_t-> C-;_i is equal to

(W(A-) , aQ (g)w(,)W,-^ (WW, ̂ ) (g)w^)W,^
we get

^V-H'(Cx) =l imS (W(^) , ^) ®w( , ) [H^(Wx) /V- I I ' (Wx) ] , V j .
71 i

LEMMA 4.5. — Le^ X be as in Theorem 4.4. Then H l(X,Wx) is
'W(k)-free of finite rank.

Proof of Lemma 4.5. — This is a slight generalization of the result
of Serre ([33], p. 20, Prop. 4). First of all H^Wx) is V-torsion free (i. e. no
non-zero element is killed by any power of V), since H°(Wx) -> H°(Wi,x)
is surjective. By Serre ([33], p. i5, Prop. 3), H^Wx) is W(/c)-finite type
if and only if W (Wx)/FH1 (Wx) is of W(/c)-finite length. This latter
condition is satisfied. In face we have

IT (Wx)/FIT (Wx) ==lim[H^(W,,x)/FH1 (W,,x)]
n

and an exact sequence

o -> W (W/, x/FW,, x) ̂  H- (W,, x) -̂  H^ (W,, x),

where H^W^x) is of W(/c)-finite length. Hence we get

lengthw^[H1 (W,,x)/FIT (W,,x) ] = lengthw(,)[H° (W/,x/FW,,x) ].

But by definition

H°(W,,x/FW,,x) = (W(/:), a-) (g)w^) H» (C_,,x/FC_,,x)

and we know that H°(C_^x/FC_^x) is imbedded canonically in
H°(Cx/FCx) ==FH l(Cx). From (i) we know that this is isomorphic
to DM(vP), which is of W(/c)-finite length. Hence the W(/c)-length
of H^W^xVFH^W^x) is bounded in n. Hence we are done. We know
from Serre ([33], p. i3, Prop. 2) that for a left A-module of W(/c)-finite
type on which V acts topologically nilpotently in the p-adic topology,
the set of V-torsion elements is equal to the set of p-torsion elements.

Q. E. D.

LEMMA 4.6. — Suppose M is a left A.-module which is '\V(k)-free of finite
rank and on which V acts topologically nilpotently in the p-adic topology.
Then there is a canonical isomorphism of left K-modules

lim { (W(A-) , ^) (g)w(,)M/V-M, Vj .4C(^ 0w(,)M.
;
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Proof of Lemma 4.6. — We denote by p^ the projection p^ M -> M/V'M.
Then for x in M we define

aKi(g)p,(^)) =^/P1) (g)F^.

Then a, is an A-module homomorphism from (W(/c), cr') (^w^M/VM
to C (/c) (^)w (^ M. In fact

a, 0 ® P< (^)) ̂  ̂ -(i (g) pz (A^-'^)) == (i/V) (g) F (/^-'.r)

= (i/ '̂) ® ̂ F^ = ̂ .(i 0 p, (^))

for X in W(/c), and a^ obviously commutes with F and V. We now show
that v.i is well defined and injective. In fact 0^(1 (g) fi{x)) === o if and
only if F ' x is in p'M. Since M is W(/c)-free, there is no element in M
killed by F'. Hence a,(i(g) p,(a;)) = o if and only if x is in V'M, i.e.
i(g)p^)=o.

{ a , } are compatible, since

a^l(I(g)Vp,(.r))=a^(I0p^(V^))==(T/^ l)(g)F^•(V^)

== {i/p1) ® F^ = a,(i (g) p, (^)).

Thus we get an injective A-module homomorphism a. Now we show
that a is surjective. Let (i/p^1)®?/ be an element of C(/c) (^)w(/i)M.
Since V acts topologically nilpotently on M, there is an integer i sufficiently
large and an element 2 in M such that

^iy=pmz.

Multiplying F' on both sides we obtain ^"(p^y — ¥ ' z ) = o. Since M
is W(/c)-free we get pi-my=Fiz. Then

^•(i ® pi 00) = (i/^') (g) F^ == (i/p1) (g)^-^-== (i/^) (g)y.
Q. E. D.

Proof of Theorem 4.4 continued. — We now apply Lemma 4.5 and
Lemma 4.6 to M = H^Wx) and get the second isomorphism in (3). The
rest is trivial.

(4) follows from (3). In fact we have

DM(F(P,ed)) =D(coker[(W(A-), a) (g)w^) M(P,ed)-I>M(^ed)])

=ker[DM(P,ed)-^ (W(^) , ^) (g)w^ DM(P,ed)]

^ ker f Fl V- HI (Cx) -^ (W (k) ̂ ) ®w w Q V H1 (Cx) 1
L " n J

=Imageriim { (W(A-), T-») (g)ww H1 (C_,_,,,x), V } -> I-I1 (C_,,x)1

L " J
=(^ff )<g) , [m(Wx)/VH'(Wx)] .
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It is not difficult to see that we have a homomorphism of left A-modules

M(F(P,ed)) = (^ CT) (g)^(P^dA),

where ^(P^/^) denotes the vector space of invariant differential forms
of the abelian scheme P^ed. F acts trivially and V acts through the Cartier
operator (c/*. Section 5 and Seshadri [36]). Hence we get an isomorphism
of left A-modules

DM (p (P,ed)) = (^ a) 0, Lie (P^i/A-),

where V acts trivially on the right hand side and F acts through p-operation
of the p-Lie algebra structure.

(5) follows from (2) and the exact sequence

0-^(Pr°ed)^<P-^N'-.0,

where N' is a finite /c-group scheme killed by some power of p.
We now prove ( i ) of Theorem 4.4. Since P^limp.P we get

n

DM (P) = D /lim M (pnP) \ •==. lim DM (p,P) ^ lim M (D (p.P))
\ n / n n

by Theorem 3.19. But we can write

D(p.P)=Spec(H,(P)) ,

where H^(P) is the dual vector space of 0p,o/<9p,o F^JTIp^), 0p^ and
t5Tlp o being the local ring of P and the maximal ideal respectively
at the origin. HL(P) can be identified with a sub-bialgebra of the bialgebra
of invariant differential operators

H(P)=^JH, (P)
n

of P (i.e. the hyperalgebra of P). If we denote by in the imbed-
ding F"P-^F"+iP, then the epimorphism D(^) : D^n+iP) -> D(p.P) corresponds
to the canonical inclusion HL(P) -> Hn+i (P). Hence (i) becomes

(i') H^X, Cx) ^ lim Hom^ (Spec ( H ^ ( P ) ) , C).
n

To prove (i') it is enough to prove that for each positive integer N

H^CL^x) ^ lim Hom^ (Spec (H/,(P)) , C_N)
—^-

71

=Hom^._^(Spec(H(P)), C_N).

Since C_N== (W(/c), i?1*) (^W^WN by definition, it is enough to prove

(i") H' (X, WN.X) ^HomA_^(Spec(H(P)), WN)
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as left A-modules, where the structure of left A-module on the left and
right hand sides of (i7 7) is induced by that of WN.

Let R be an augmented Artinian local /c-algebra. We denote by M
and IT the maximal ideal and the augmentation R -> k respectively. Let E
be the dual /c-vector space of M. Then the dual /c-vector space
Hom^R, k) = /CTI (3^ E has the structure of augmented unitary commutative
/c-coalgebra. Hence the symmetric algebra S(E) which canonically
contains /CTI Q) E has the structure of commutative, cocommutative,
augmented and unitary /c-bialgebra.

LEMMA 4.7. — Spec(S(E)) is a commutative group scheme over k, whose
B-valued points for a k-algebra B are given by Spec(S(E)) (B) = i + B (^)/(M,
where the right hand side is the multiplicative group which is the kernel of the
homomorphism

(B^Rr^B^^PA

Proof of Lemma 4.7. — If we call a vector space B over k unitary when B
is given a homomorphism k ->- B, then a /c-algebra B is a unitary /c-vector
space with the canonical injection of k in B and kr: (f) E == Hom/,(R, k) is
also a unitary /c-vector space with the map sending i to TT. Thus we get

Spec(S(E)) (B) ^Honwary (S(E) , B)
A-algebra

=Hom^ltary (^7T © E, B)
^-vector space

= Hom^itary (Honu- (R, k), B)
A-vector space

=(i07r)-*(i)=i+B(g)AM
Q. E. D.

Spec(S(E)) thus gives the abelian sheaf
Spec(S(E))x==i+<9x0*M .

on X in the Zariski topology.

LEMMA 4.8. — There are canonical isomorphisms

H'(X,Spec(S(E))x)^ker [P(R)^-P(A-) ]
^ Homi_^ (Spec (H(P) ) , Spec ( S ( E ) ) ) .

Proof of Lemma 4.8. — Since X(Zc) is non-empty and H°(X, C?x) == It
by assumption, we get

ker[P(R)^P(A:)]=ker[H'(XK,0^)^H'(X,Ox)]

=ker[H'(X, (0x(g),R)*)^H'(X,0x)]
^H^X, i + 0 x ® A M ) = = H > ( X , S p e c ( S ( E ) ) x ) .
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Thus we get the first isomorphism. On the other hand if we write 0 == 0p ̂
then

ker[P(R) -^P(^)] = Hom^ented (<^ K)
unitary
^--algebra

= Homaugmented (Hom^- (R, k ) , H (P) )
unitary
A'-coalgebra

= Hom,^ented (S (E) , II (P))
unitary
A-'bialgebra

=:IIonu_^ (Spec(H(P) ) , Spec (S(E) ) ) .

Thus the second isomorphism is obtained.
Q. E. D.

Proof of Theorem 4.4 ( i ) continued. — We now apply Lemma 4.7 and
Lemma 4.8 to the special case where

R=:^]/(^).

Then S(E)==/c[Ai, As, . . ., A^_J, where if we put Ao= i , then { A , }
is the dual basis of { t 1 } . The comultiplication is given by

oA,== V Ay(g)A^.
/+k=i

Thus Spec(S(E)) is the group scheme over k of truncated power series
of length pN and with i as the constant term, i. e. B-valued point is an
element of the form

14- b^t-^-b.^ t-\-. . .-^b y_^-^

But according to Serre [32], V, No. 17, and Bergman [29], lecture 26, there is
a canonical decomposition

Spec (S (E)) == f^ W^= WN x JJ W/,,
(^^/^ i-O'̂ ^
(^)=1 (i,P)==l

where ri= min[r; p^p^]. Thus from Lemma 4.8 we get (i7 7).
Q. E. D.

Let X be as in Theorem 4.4. Then the Albanese variety Alb(X)
of X is defined by (c/1. Chevalley [9])

All^^PiCx/^ed^.

There is a canonical /c-morphism i: X-Alb(X) unique up to the trans-
lation by k- Valued points of Alb(X). This defines a canonical homo-
morphism of left A-modules

^ : I ( A l b ( X ) ) — I ( X )
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which does not depend on the translation of i by /c-valued points of Alb(X).
In fact by the results of Serre [32] quoted in the proof of Proposition 4.2
the homomorphism

^-P'i-pl •• I (Alb (X))-. I (Alb (X) xAlb (X) )

is equal to zero. Thus the translation of Alb(X) by a /c-valued point
induces a trivial action on I(Alb(X)). From this we also see that the
canonical homomorphism of left A-modules

^ : Hi (X^O -> Hi (Alb (X)^na0

does not depend on the translations (c/*. Definition 4.1).

PROPOSITION 4.9. — Let X be as in Theorem 4.4. Then :
(i) the canonical homomorphism of left A.-modules

^: I (Alb(X) ) -^ I (X)

is infective and the image is equal to the submodule of p-divisible elements
ofl{X};

(ii) the canonical homomorphism of left A.-modules

<;: H,(X^t)-.Hi(Alb(X)/,.n,i)

is surjective and the kernel is equal to the submodule of p-torsion elements
o/*H,(X^).

Proof. — (ii) follows trivially from (i). By (2) of Theorem 4.4 we have
a commutative diagram of left A-modules

DM(^Picx/,)——^-^I(X)
A AI r

DM (,,«(Picx/,, ,ed)) = DM (^PicAih (x)/,) -^ I (Alb (X))

By (5) of Theorem 4.4 the left vertical arrow is injective and the image
is equal to the submodule of p-divisible elements in DM(^Picx//0.
Hence i* satisfies the same properties.

Q. E. D.

DEFINITION 4.10. — Let G be an object of ̂  = ̂ U X ̂ ir, i-e. commutative
k-group scheme of finite type killed by some power of p. As in SGA [17],
1960-1961, expose XI, we define

H1 (Xn,,, Gx)

to be the commutative group of equivalence classes of principal homogeneous
spaces over X with group Gx.

Ann. EC. Norm., (4), II. — FASC. 1. 15
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This is a covariant functor from ^ to the category of abelian groups,
and is a part of the flat cohomology theory of X. If G is smooth and
connected over /c, then we get

H'(Xfl^ Gx)=:n ' (X, Gx),

where the right hand side is in the Zariski topology by SGA [17], ibid,,
Prop. 5. l^) .

We recall that for G in '£

M (G) = Hom,_,, (G, C) © .| W(A-) ̂  Hom^,(G^ G^) ̂ a/k).

We also remark that

I ( X ) =W(X, Gx) ®{w(^)(g)z,JP(x, G^x)}^^

= H1 (X^, Cx) © { WOO (g)^JT (X^, G/,x) {^^

by the remark above and by the fact that C = lim C-^ and that C_^
—>^

and Gm are smooth and connected.

DEFINITION 4.11. — Let G be in ^?. Then we define a homomorphism
of commutative groups

u : H ' (Xn^ Gx)-^Honu(M(G) , I ( X ) )

as follows : let x be an element of H^Xn^Gx). Then the homo-
morphism u(x) from M(G) to I(X) is defined in the following way : an element f
in Hom/,- /̂ (G, C) induces a homomorphism

/,: H ' ( X ^ , G x ) - ^ H ' ( X n ^ C x ) C I ( X ) .

Then we put u{x) {f) = f^{x). On the other hand an element f in
Horn- fG-, G -} induces a homomorphismA"—}^r \ K. jii k/ 1

/. : Hi (Xn,,, G^) ->^ (X^ G,, ̂

since G is killed by some power of p . Hence if x is the image of x by
H^Xflat? Gx) —^ H^XH^, G^^), then we have a homomorphism

u(^) : W(^)(g)znom^^(G^ G^)-^W(^)(g)^jr(Xn^ G^

by u(x) (A0/*) =X(g)/^(^). We put u{x) to be the restriction of u{x) to the
Gal(/c//c) -invariants.

(4) See also A. GROTHENDIECK, Le groupe de Brauer I I I : Exemples et complements,
Appendice (Notes mimeographiees, I. H. E. S., mars iy66). Cf. Ad. St. in pure Maths.,
vol. 3, 1968, p. 88-188, North-Holland Pub.
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It is easy to see that u{x) is a homomorphism of left A-modules. We
remark that if I(X) is of W(/c)-cofinite type and G is in ^, i.e. finite
/c-group scheme whose rank over k is a power of p, then

Horn,, (M (G), I (X)) = Horn,, (Hi (X^aO, DM (G) ) .

Thus the following Theorem justifies the notation H^X^nJ. A slightly
different formulation of the same statement is in SGA [17], expose XI,
Section 6, and Milne [42], Section 2 (5).

THEOREM 4.12. — Let k be an algebraically closed field of characteristic p .
Let X be a k-prescheme such that H°(X, 0x) == k, and let G be a commutative
group scheme of finite type killed by some power of p. Then the canonical
homomorphism of commutative groups

u : H- (Xnat, Gx) -^ Horn, (M (G), I (X))

is an isomorphism.

Proof. — Since k is algebraically closed and H°(X,e\)=/c, the flat
cohomology theory assures us that H'' (Xn;^, Gx) is left exact in G. On the
other hand since M is exact, HomA(M(G), I(X)) is left exact in G.
Since G is in c? and k is algebraically closed G can be written as the kernel
of a homomorphism

n^/.xn^'^n0-^]!^^
/ i ' r

where the products are finite in number. Hence it is enough to prove
the theorem when : (i) G == C-n or (ii) G == ̂ n for all n. In case (i),
we have M ( G ) = A / A V / < and the residue class of i modAV7' corresponds
to the canonical embedding C_^—^C. This defines an isomorphism
from H^X.CL^x) to the submodule of H^X.Cx) killed by V". Hence
we are done in case (i). In case (ii), M(G) == A/A(V — i, F7') and the
residue class of i modA(V — i, F7') corresponds to the canonical
embedding [J^n -^ G,n. This defines an isomorphism from H^Xnai,!^) to
the subgroup of W(/c) (g)z^H-' (X, G,,x) killed by V - i and F^, i.e. the
subgroup Kg^H^X.G^x).

Q. E. D.

^COROLLARY 4.13. — Let X/, be an abelian scheme over an algebraically
closed field of characteristic p. If G is a commutative group scheme of finite
type over k killed by some power of p, then the canonical homomorphism

Exf(X, G)->H'(X,,ai, Gx)
is an isomorphism.

(') See also M. MIYANISHI, Quelques remarques sur la premiere cohomologie d'un preschema
affine en. groupes commutatifs (to appear in J . Math. Kyoto Univ.),
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Remark. — This was first proved by Lang-Serre [23], for a finite etale G,
and by Miyanishi [43] for a finite G. See also Milne [42], Section 2.

Proof. — Since by Proposition 4.2 we have

I ( X ) = C ( ^ ) ( g ) w ' w M ( X ( ^ ) ) ,

Theorem 4.12 gives an isomorphism

H^Xna^Gx) ^HomA(M(G) , G (k) (g)w(,) M (X(p))).

On the other hand since M(X(p)) is W(/c)-free, we have an exact sequence
of left A-tnodules

o - ^ M ( X ( ^ ) ) - > B ( ^ ) 0 , v ^ ) M ( X ( ^ ) ) - > C ( / c ) ® w w M ( X ( ^ ) ) - > o .

Since M(G) is killed by some power of p, the long exact sequence gives an
isomorphism

HomA(M(G), C ( / 0 ® w ^ ) M ( X ( / j ) ) ) ^ E x t l ( M ( G ) , M ( X ( ^ ) ) ) .

The right hand side is equal to Ext^d(^)(X(p), G). We now show that
the canonical homomorphism

Exti(X, G)-.Ext^)(X(^), G)

is an isomorphism. The following argument is due to F. Oort.
Suppose G is killed by j^. Then for n^m the commutative diagram

o——^/,X——>X-^X——>o

^
'/;'o ——^ +,X ——> X -/^ X ——> o

gives a commutative diagram
o ——> Ext' (X, G) ——^ Ext1 (p,.X, G) ——> Ext2 (X, G) -——> o

o ——^ Ext1 (X, G) ——> Ext' G,.+iX, G) ——> Ext2 (X, G) ——> o

Taking the projective limit for increasing n we get an isomorphism
Ext1 (X, G) -^limExt1 (^.X, G)

n

since Ext2 (X, G) is killed by p'". Similarly from the commutative diagram

o——>^X——>X(p)-p ^ t^X(p)——>o

o——>pn+iX——>X.(p) ——>X(p) -—>o
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we get an isomorphism

Exti^ (^) (X(/?), G) -^ lim Exti1,̂ ) (^nX, G).
n

The right hand side is equal to limExt^nX, G).
71

Q. E. D.

SECTION 5.

DE RHAM COHOMOLOGY AND DIEUDONNE MODULES.

Let X be a scheme over a ring k. Let (t2x//i, d) he the complex of
sheaves of Kahler differential forms on X. Then the De Rham cohomology
of X is defined by

Hf;K(X)==H-(X, (^x/^)),

where the right hand side is the hypercohomology of the functor H°(X, )
with respect to the complex of abelian sheaves (OX/A? d) (c/*. EGA, Oni,
Section 11.4).

There is a spectral sequence

E^:=:H^(X,^)^HgK(X).

Let H = { U ( i)} be an affine open covering of X. Then we have a first
quadrant double complex

{CCM,^),^},

where C7 (HI, OX/A:) is the set of all y-cochains a = = { a ( i o , ii, . . . , iq)},
where (^'o, ii, . . . , iq) runs through gr-nerves of the covering HI, and a(i*o,..., iq)
is in H°(U(io, . . ., iq), 0^). The coboundary operators are

d : C^M,^)-^C^(M,^1)

sending a to c?a defined by

(<^a) (?o, ii, . . . , iq) =d(a(io, ?i, ..., iq))

and
^ : C^(1ttl,^)->C^(^^)

sending a to Sa defined by

(^a) (;o, h, ..., ^+1) == ^ (—I)^+^(^, ...^r, ..., ^+1).
O^r^y-M
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It is easy to see that d2 = o^ == do-{-od== o. We define the hyper-
cohomology of the cohering ^l with coefficients in (^x//b d)

H^W^H^^^x//.)

to be the cohomology of the associated simple complex

C,n(^)={C-(l(, I^x//.), d + o } .

By the generalized Leray spectral sequence proved in EGA Oni,
Corollary 12.4.7 we get a canonical isomorphism

Hi^(m)^Hi^(X.).

(The assumption in EGA that the differentials of the complex are (?x-linear
is unnecessary.)

The exterior product ^^/,Q^-^Siy induces the cup product
on H^(X). We can express it explicitly as follows (cf. Godement [14]) :

c^(ii, ̂ )(g),c^(^ ̂ )->c^(i(, ̂ /Y')

sending a (g) ? to a. p defined by

(a.(3) (<o , . . . , iq^i') === ( — i ) ^ y a ( 4 , . . . , ^) A (3(^, . . . , ^4-7').

Then it is easy to see that

' ^(a.P)=:(^a).p+ (-i)^ya.(6/P),
^(a.P) == (§a).3 + (—i)/^a.(3(3).

Thus according to Cartan-Eilenberg [5], Exercises of Chapter XV, the
complex {W;\ rf,) obtained from the double complex {C^(ll, ti^.), d, S ]
is an associative and anti-commutative doubly-graded /c-algebra with
differentiation, i. e.

E^^E^'^Ey-^y4--^

sending a 0 j3 to a. ?, is associative and

(3. a == (— i ̂ y^ ̂ +^) a. [3,
^(a .(3)==(^,a) . (3+(- i)^ '7a.(^(3) .

PROPOSITION 5.1. — Let X &e an abelian scheme over a field k. Then
the spectral sequence

n^(x,^/,)^HKK(X)
is degenerate, i.e. dr : W,:'1-> E^'^-^ is zero for all positive integers r.

Proof. — The method is entirely similar to Serre ([32], VII, No. 22, Th. 11).
We prove the proposition by induction on r. Using the induction hypo-
thesis and the Kunneth formula we get a canonical isomorphism

E;: (XxX)=E; : (X)(g) ,E; : (X) ,
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The law of composition ^ : X X X -^ X thus induces a comultiplication
[̂  : E::(X)^E';(X)(g),E';(X). Moreover each E^X) is -finite dimen-
sional, E;.'0 = k,W; <1 == o if p + q > 2 dim X, and

dim^[E/1' ° © E,0'1 ] == 2 dimX.

Thus by Borel-Hopf's theorem, we have an isomorphism of Hopf algebras

E^A^eE;^].
Especially E^°®E^ 1 is the set of all primitive elements in E'/.. Thus
to prove d, is zero it is enough to prove d,.{x) = o, when x is primitive,
i. e. [^x= x(^)i + i 0^. Since dr is functorial, we have rf,.°[^*== ^*oc?,..
Thus

^o^(^) =:^(^) (g)i+i(g)4-(^L

i. e. c^.(.r) is also primitive. But x is in E^,'0® E,0'1, hence rfr(^) is in
E^'^'QE^2-7 , whose intersection with E;.'°®E°;1 is zero. Thus
d,.{x) = 0.

Q. E. D.

COROLLARY 5.2. — Let d be a proper smooth curve over a field k. Then
the spectral sequence

W(C,^)^Hi;K(C)
is degenerate.

Proof. — Only non-trivial part is to prove that di : E ^ — ^ E i ' 1 is equal
to zero. This map is equal to d : H^C, ©(^""^H^C, H^). We may
assume k is algebraically closed. Let i: C -> J be an imbedding into
the Jacobian variety. Then by Serre ([32], VII, No. 19, Th. 9) there is
a commutative diagram whose first column is an isomorphism

II. (C,^)-^]!1^^)
'̂  ^

^ . IH ' ( J , Oj )——>H'(J ,^} / , )

By Proposition 5.1 the bottom row is zero, hence the top row is zero.
Q. E. D.

For later purposes we now describe HpR(X) in terms of Cech cocyles
explicitly. Let H l = = { U ( i ) { be an affine open covering. Then as we
remarked above we have a canonical isomorphism

num=^w/Ruw^
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where Z^W is the set of pairs (/; (D) for /'in C^HH, 0x) and (o in C°(11l, tl^)
such that

y==o, <^/'—^GO == o and ^Cn)=o,
i. e.

/(./^•)-/(^^+/(^./)=o,
df(^J)=w(l)—^(j).

dw (?')== o

for all i, 7 and /c, while B^pClll) is the set of pairs of the form (Sg, dg) for g
in C°(ll, 0x), where

(^) (/,y)=^(/)_^(^
(^)(/)=^(0).

Suppose /c is a ring of characteristic p. Let X be a scheme over /c. Then
it is easy to see that

H,R(X^)==(^)(g),H;R(X).

Hence the /c-morphism F : X -^ X^ induces a homomorphism of
/c-modules

1̂  ( ^ ^ ) ( g ) , H D K ( X ) - ^ H D R ( X )

or a cr-homomorphism F from HDR(X) into itself sending a in HDR(X)
to Fa = F*(i (g) a). In particular, if k is a perfect field of characteristic p,
we can give HDR(X) a structure of left k [F]-module, where /c[F] is the
non-commutative ring defined by FX === A^F for all X in k.

The homomorphism F*t2x(w:-^ ^X/A: induced by F coincides with
taking p-th power in degree o and is equal to zero in higher degrees. Using
this fact it is easy to express F in terms of Cech cocycles. For example,
if (/*, co) is an element of Z^Hl), then the class of (/, (L>) modB^ll) is sent
to the class of (^, o) modB^M), where (^) (i, j) == f{i, jY.

DEFINITION 5.3. — For a scheme X o^er a field k of characteristic p,
we define a homomorphism of k-vector spaces

F : (A-^) (g ) ,m(X,c^)—HAR(X)

or a ^-homomorphism of k-vector spaces

F : tP (X,^ ) -^HAR(X)

as follows : if f is in Z^Hl, (?x) for an affine open cohering M, then F sends
the cohomology class offto the class of{fp, o) in ZDR(II^).

It is well defined. In fact if f=Sg for some g in C°fllt, 0x), then
(Sg^, o) = (SgP, dgP). If X is normal, then F is injective. In fact if
(fP, o) = (Sg, dg) for some gin C°(Hl, ©x), then passing to a finer covering
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if necessary, we may assume that g == hp for some h in C° (Hit, (9x) since X is
normal. Hence f= Sh.

From now on we are only interested in HDR(X). Note that
E^^H^X, Qx/.) and E^= H^X, (9x). Hence E;10 is equal to
the kernel of d : H°(X, Q^) -^ H°(X, ̂ ) and E:'1 is the kernel
of dl: H^X, (9x)—^ H^X, ^x//0- The exact sequence of terms of low
degree of this spectral sequence is

(1) o^H^X^x/^o^HD^X^H^X^x).

It can be easily seen that the map F in Definition 5.3 coincides on the
image of the third arrow in ( i) with the map induced by the map F defined
before Definition 5.3, since this latter F kills E^'°.

If X is an abelian scheme over k or a proper smooth curve over /c, then
by Proposition 5.1 and Corollary 5.2 we have an exact sequence

(i') o^H^X^x/^Hi^X^H^X^x^o.

PROPOSITION 5.4. — If X is a normal k-scheme, then the sequence

(2) o-^HO(X,^xA•)^o->HDR(X)-F>(^^)(g) ,HDR(X)

is exact.

Proof. — We prove it in terms of Cech cocyles. Suppose HI is an affine
open covering of X. Suppose (/, co) is in Z^HX) such that F(/*, co) == (Sg, dg)
for some g in C°(11X, (9x), i- e» fp= Sg and dg=o. Then by passing to
a finer affine open covering if necessary we may assume that g=hp for
some h in C°(Hl, (9x), since X is normal. Hence /*=== Sh. On the other hand
since df -\- Sco = o and d^ ==• o by definition, there is an coo in H°(X, Qx//0rf=o
such that co = dh + ^o. Thus (/*, OJ) == (o, coo) + (^9 dh).

Q. E. D.

The Cartier operator is defined in Cartier [6] andSeshadri [36] as follows ( 6 ) :

DEFINITION 5.5. — Let k be a perfect field of characteristic p aifd let X
be a k-prescheme such that (9x,^ has a p-base for all points x in X [e. g. X is
smooth over k). Then there is a surjecti^e homomorphism of sheaves of rings

^'- ^i/k,d=0~>•^tX/k

characterized by :
(i) the kernel of V is equal to the subsheaf of exact differentials;

(ii) V coincides in degree o to the extraction of p-th root [noting that
0° _ (^P\ .
^X/^c^O—— ^X) ?

(c) See also P. CARTIER, Questions de rationalite des diviseurs en geometric algebrique
(Bull. Soc. math. France, vol. 86, 1958, p. 177-251).
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(iii) if (o is in O^^o /or a point x of X, then V(co)= co I/1 an^ <m^

if there exists an element fin (9x,.r such that co == -•

The point here is that if \y^ y,, . . ., yn\ is a p-base of the local ring C\,
at a point x of X such that yi are units in 0^^ then

i2x/,^o=^x,.® 2 ^(^o-i^^/<
In particular if X is a smooth scheme over a perfect field k of charac-

teristic p , then from Definition 5.5, we have an exact sequence

(3) o-^^x~^^x//-.</=o-V^x//--^o

of abelian sheaves, where V is a cr^-homomorphism from the 0^-module
to the ©x-module.

DEFINITION 5.6. — Let X be a smooth scheme over a perfect field k of
characteristic p {or more generally X has a p-base at every point}. We define
a homomorphism of k-vector spaces

V : Hnn (X) -> (/, o-) (g),Ro (X, i2x/,)

or a ^~i-homomorphism of k-vector spaces

V : HAK(X)^IP(X,^O

as follows : if (7, co) is in Z^(Vi) for an affine open covering Ht, i. e.

/C/^)-/(^^)+/(^./)=o,
^/(^./^^^(Q-^C/),

dw (i) == o

for all i, j and k, then V sends the cohomology class of (/*, co) to Vco
in H°(X, ^x//-).

In fact d^(i)==o hence V(o(i) is well defined. The second equality
implies that Vco(i) == Vco(;) for all i and 7. Moreover if (/*, (D) is in B^CM),
i.e. if there exists g in C°(M, (f\) such that f= Sg and (o = dg, then
Vco=V(^g)==o.

PROPOSITION 5.7. — If \ is a smooth scheme over a perfect field k of
characteristic p, then the sequence

(4) . o -> (/., f7) (g)JI' (X, C?x) -^ II|')R(X) -I (/„ cr) (g),TP (X, .Qx//0

is exact.

Proof. — The injectivity of F is shown in Definition 5.3. Suppose (/*, co)
is an element of 7 (̂11) for an affine open covering M, such that V(/*, co) == o.
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Then passing to a finer covering if necessary, we may assume that
co(i) == dg(i) for all i for some g in C^Ull, (?x) by Definition 5.5 (i). Since
df-{-S(D=o, we get d?(/*—Sg) == o. Hence passing to a finer covering
if necessary we have /*—og==/^ for some h in Z^ll, (°x). Thus
(^ (,,)) == (/^ o) + (°g9 ̂  and we are done.

Q. E. D.

There is an example of a smooth scheme X over a perfect field A* of
characteristic p, for which

H°(X,^ /A-)^o^H°(X,^x/A-)

(c/1. Mumford [28]).
By definition 5.6 we have a cr^-homomorphism

Hin (X) -^ IP (X, ̂ ) "i W (X, ^i/,).

We can define V2 from the kernel of r f o V in Hp^X) to H°(X, t^).
Hence we have a cr^-homomorphism

ker (</ o V) -^ 11° (X, i^,) 4 IT0 (X, |̂/,).

Similarly we can define a o-'^^-homomorphism V^4 from the kernel
of do^ in H^(X) to H°(X, Q^). V(ker^oV"]) is contained
inker(rfoVn- l) . Hence

r\ kei^^oV^) i n H n K ( X )
Af

is stable under V, where H°(X) i2x//)^=o is considered as a subspace
of H^(X) by (i).

There is an example of a smooth scheme X over a perfect field k of charac-
teristic p, for which

ker ( d o V71-1) ̂  ker ( d o V^).

The following is due to Mumford. Start from the projective plane Pa
and consider the rational differential

.^Y^\y )
where (rr, y) is the affine coordinate of P-). Then

dw=o, Vc^^-Y^Y ^VM==O, ..., V^-^^^^Y

/ dv \ f dv \
d^-^^o, 'N^^x^Y 6/V^==^A [-~L)^Q'

We now apply the method in Mumford [28] to this co.
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DEFINITION 5.8. — Let X be a smooth scheme over a perfect field k of

characteristic p. We define a left K-module structure on /^ker^oV71)
n

in HDR(X) by operating with W(/c) through reduction mod p and the canonical
k-vector space structure^ by operating with F in the manner described before
Definition 5.3, and by operating with V via the Cartier operator.

This is well defined by Proposition 5.4 and Proposition 5.7. If X is an
abelian scheme over k or a proper and smooth curve over /c, then by
Proposition 5.1 and Corollary 5.2 we get a left A-module structure
on HDR(X) itself. Furthermore Proposition 5.4 and Proposition 5.7
imply that

IP(X, ^A.) =V-HDR(X) =FHAp(X)
and

FHiR(X)=vHoR(X).

Let k be a perfect field of characteristic p. As before we denote by C
the contravariant functor of Witt covectors from the category of
/c-preschemes to that of left A-modules.

DEFINITION 5.9. — We define a morphism of set functors (not of group
functors)

s : c->c
by

(S
. , o for m=z — i,ic ) '—• < -m ~ \ x^+i for m ̂  — 2

for all k-preschemes T and points x in C(T).

It is not difficult to see that

(5) VoS=?'^c;

(6) SoF==FoS ;

(7) S o ^ a } = = [ a P } o S for all a in A-,

where { a } is the element in W(/c) whose first component is a and the rest
of whose components are zero;

(8) (^-SV^,^;"-1 for m=-1'( o for m^—2

for all /c-prescheme T and x in C(T);

(9) [S(-^+j) — S^—Sj]m==o for m^—2

for all /c-preschemes T and x and y in C(T).



Let X be a /c-prescheme. The functor C defines a sheaf of left A-modules
Cx on X in the Zariski topology. We define a homomorphism of abelian
sheaves

A : Gx-^x/.

by
A?/ == ̂ /(-') ==V up!^! du_i_i

i^O

for an open set U of X and a section u in C(U).
It is easy to see that

(10) k do A == o;

(n) A o { a\ == aP~~1 A for a in k,

where the right hand side is the scalar multiplication by an element of k
on t2x/x:.

We remark here that the Cartier operator is well defined on the closed
rational differential forms even if X is not smooth over k, e. g. X is
normal, i. e.

V 1 ^'kW/k,d=0~> ^kW/k'

However it is not guaranteed that V(Qx/^.-r^=u) 1s contained in ^/k,x'
From (10) the image of A is contained in Qx/^;d=o- From the form of A

it is easily seen that V o A sends Cx into tix/A, even if X is not smooth,

(12) . V o A = : A o Y .

In fact for an open set U on X and a section u in C (U) we get

A(V^) =^(V^)^ d(Vu)_^=^u^du_,_i
i^O i^o

^-|^_,1=V(A^);=vr^<^_^i:
L^o J

(i3) A o F = o .

Moreover if X is normal, then the kernel of A is equal to FCx.
In fact suppose ^u = o for an element u in Cx,.y. If Um= o for m^-— 2,

then Au === rfu-i, hence u_i= v'^ for some ^_i in A'(X). But p^i is actually
m ^x,x since it is normal. We prove by induction on the length of u.
Suppose we already proved the statement for u of length no more than n.
Then A V u = V A u = = o . Hence by induction hypothesis we get V u = = F w
for some w in Cx,.r. Then u — FSw = u — SFw = u— SVu has length i,
since V(u — SVu) == o. Moreover A(u — FSw) == ^u = o. Hence
u — ¥Sw=¥w/ for some w1\ Thus we are done.
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Similarly we can define a homomorphism of abelian sheaves

(^log) : G,,x->^x/A-

by
(^log)(^)=^

for an open set U of X and a section u in G,,,(U).
It is easy to see that

(14) do (6/log) == o;
(15) V leaves ima^e elements of ((/log) fixed;
(16) (^log) o F== o.

Moreover if X is normal, then the kernel of (cHog) is FG,^x-
Let I(X) be the left A-module given in Definition 4.1.

THEOREM 5.10. — Let k be a perfect field of characteristic p.

(i) Let X be a k-scheme such that H°(X, (9x) == k. Then there is a cano-
nical homomorphism of left k[F]-modules

9 : ^(X)-^11,H(X)

such that <p(iJ(X)) is contained in H°(X, I2x//,)//=o-

(ii) If X is a normal k-scheme such that H°(X, (f\) = k, then 9 is injective.
Moreover 9 is a homomorphism of left A.-modules in the sense that in the
image of y the Cartier operator V is well defined, and that if we give the image
off the left A-module structure by operating with V through the Cartier operator,
then y is a homomorphism of left A-modules. o maps rI(X) injectively
into H°(X, Ox/,)^o.

(iii) If X is a k-scheme proper and smooth over k, then y is injective and the

image, is equal to i \ kei^dloV7 '). 9 maps r!(X) isomorphically onto

r^ ker(rfo V") nH°(X, H^). Moreover 9 is a homomorphism of left
u

A-modules.

Proof. — We recall that

,\ (X) = ,W (X, Cx) + { ^ (g)z ,H' (X, G/,x) ̂ {-k/k).

We first define the map

cp. : ^•(^G.x)-!!^^^)^,

Let a = = ) a ( i , ^ ) { be a i-cocycle representing an element of ,,H'(X, G//,x)
with respect to an alHne open covering 1 L l = = { U ( i ) } of X. Then by
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definition there is a o-cochain ? = { p ( i ) j such that a(i, j)p= p(^)/?( j) .
Then d^{i)l^{i) = ̂ ?(j)/p(j) determine a global section of ft-^:. 92 sends
the cohomology class of a to this global section. This map is well defined.
In fact if for a cohomologous i-cocycle a.o/,.== { ^ ( i y j ) ^ ( O / ^ C / ) ) we have

[a(^, / )7(0/^(y)^=(3 /( / ) /^C/)

for some o-cochain ^ ' , then we get ^ ( i ) 1 ' ^ { i ) l [ y {i) =^U)f'^U)!^ ( J ) which
determine a global section of G^, thus by assumption an element of /c*.
Thus we can write y (i) = ̂ (Q^?^) to11 a o-cochain Ti. Thus

^(Q/^Q^^O/^).

This map is obviously additive. We extend 92 by linearity to

^ ^ ^®z^(X, G,,x) -^HO(X, ^/,)^.

Since y , o F = F o ^ and V[rfp(i) /P(i)] == ^(i)/p(i), we conclude that
92 is A^-linear. If X is normal, then ^2 ( i0a ) = o implies that r fp(^) = o.
Then passing to a finer covering if necessary, we may assume that p f i ) is
in FG/,x(U(i)) = (^(U(i))^. Hence a(i, j) = ^W~'^{JY~\ thus a is
cohomologous to o. Finally since Hj^X) = A'(^)/, .Hi^(X) and since ^2 is
canonical, it descends to a canonical homomorphism of A-modules 92 we
are looking for.

We next define the map 91 : ^ H ' f X , Cx) -^ Hi^X). Let a = = = { a ( ^ j ) {
be a i-cocycle representing an element of ^H' (X, C^) with respect to an
affine open covering M= |U(i) } of X. By definition there is a o-cochain
P = = { p ( ^ ) } such that pa(i , j ) + f J ( ^ ) - p ( j ) = o . Since p = VF, there
exists a i-cocycle [̂  === { [ ^ ( i , 7 ) } such that p-(i, j),u= o for m^— 2, and

Fa( /^ / )+Sp(0-Sp(y)=^(^y) .

Applying A on both sides we get

ASp(Q-AS?C/)=^( / ,y) .

But the right hand side is equal to d[^{i, 7)- i, hence ([^-i, ASp) determines
an element of Z^Hl). We define

c^ (a) == the class of (,UL_|, AS|3) mod I ̂ n (II),

where the bar denotes the cohomology class. This map is well defined.
In fact if for a cohomologous i-cocycle

we have
a + oa= { a(f\J) 4-^(0 —^( . / ) j,

y^^./) +^(^) — c t { j ) ] - } - ^ ' ( t . ) — ^ ( j ) z = z o
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for a o-cochain R7, then

P' (0 - P (0 +^a (0 == ^(y) - P(y) +7^(y)

determine a global section of Cx, i. e. there is an element p in C(/c) such
that P7 (i) — p(^) — p -}- pa(i) == o for all i. Hence there exists a
o-cochain b = { b ( i ) } such that b{i)m= o for m^-— 2 and

Sp^O—Sp^') — S p 4 - F a ( Q = = ^ ( Q .

If we define [J/= {[^ / ( i , j) } by

^(^. /^^^-[^(/^^^-^(Q-aC/^j+Sp^Q-Sp^y)

we get
' ^(^J^^^^J^^b^-b^)

and
Sj3' (i) =z Sp (0 + Sp - ¥a (Q + b (Q.

Thus we get AS ^(i) = AS (3(i) + A&(^). Noting that ^b{i) = db{i)^,
we get (^^ ASp7) == (p-_i, AS8)4-(8&_i, rf&_i). Thus they determine
the same element in H^X).

We now claim that for a in /c, 91 ( { a } a) = a c p i ( a ) . In fact we have
P^} a ^7)+ {^ iP (^ - { ^ !P (J ) = o . Then

F { a } a ( ^ y ) + S i a } P ( Q - S { a } P C / ) = { ^ } ^ ( / , y ) .
Since

[ {a^^(^y)]_,=a^(^y)_, and ^ { a } ^ (i) = ̂  { a^ } S^ (i) = a ̂ S^ (t),

we get
(pi ( { a {• a) == the class of (a^_i, a AS [3) •=. a^i (a) .

91 is obviously additive. Next we claim that (p i (Fa) = F 9i(a) . In fact
we have pFa(i, j) + F ?(i) — F PC/) = o. Thus

F ( F a ( ^ , / ) ) + S F p ( 0 - S F p ( / ) = F ^ ( ^ y ) .

Hence y i (Fa)=the class of ((F[^)_i, ASFp)=the class of (([^-i)^ o) =
the class of F(p-_i, AS?) = F © i ( a ) .

Finally we claim that (pi(Va) == V y i ( a ) . In fact we have
^ (Va(^y ) )+Vp(0 -VpC/ )^o .

Thus

F(Va(^y) )4-SVp(0-SVpC/)^ [SV(3(0-6(OJ- [SVp( , / ) -P(y) ] .

If we denote 6(1) '=== SV ^(i) — P(i), then b{i)rn=o tor m^—2. Hence

cpi (Va) = the class of (<^_i, ASV(3)

= the class of (o, A|3^ + (<^_i, A<^) == the class of (o, A;3).
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On the other hand,

Vcpi (a) == the class of V(^_i, AS [3)

= the class of (o, V ASj3) = the class of (o, AVS(3) = the class of (o, Ap).

Hence we are done.
Suppose X is normal and y i (a )=o . Then (^_i, AS?) == (Sc-i, rfc_i)

for a o-cochain c = { c ( i ) } such that c{i)m=o for m^—2. We get
^ (^ y) = c(i) - c ( j ) and AS P (Q == A c (i).

Hence Fa (i, /) + Sp (i) — S? (/) == c{i) — c(/) and there exists a o-cochain
a = = { a ( i ) j such that S^ (i) = c(i) + Fa (i), if we pass to a finer covering
if necessary, since X is normal. Thus F[a(i, /') + a(i) — a(/)] = o.
Since X is reduced we conclude that a is cohomologous to o. Thus. (pi is
injective when X is normal.

We now show that y^pH^X, Cx)) is contained in H°(X, ^x/^o.
In fact if a = = { a ( i , y ) } is a representing i-cocycle of an element
of pH^X, Cx) with respect to an affine open covering, then there exists
a o-cochain X == { X ( i )} such that Fa (i, /) + ^ (i) — ^ (/) = o. Hence
pa (i, /) 4-VA (i) — V X (/) = o. Therefore we get

Fa( / , y )4 -SV^ (0 -SV^ (y )= [SV^ (Q-^ ( / ) ] - [SV^ (y ) - ^ ( y ) ] .

If we denote & (^ )==SVX( i )—X( i ) , then we have b{i)m=o!or m^—2,
P(,)==VX(,) and p.(i,-/) = b{i) -&(/). Hence

cpi (a) = the class of (^_i, ASp) == the class of (<^_i, ASV^)

==the class of[(o, A^) + (^^_i, ^-i)]==the class of(o, ^).

Taking the sum of 91 and 92 we have a canonical homomorphism of left
k [FJ-modules (left A-modules, if X is normal)

9 : ^ I ( X ) ^ H D R ( X )

such that 9(Fl (X))CH°(X, Qx/^=o. Moreover we have shown that
if X is normal, then
(*) (ker^n^X, Cx)=o;

(**) (kercp) n { i (g)z,H^(X, G^ ̂ ^^^o.

9 is injective if and only if the base extension y is injective. Hence
we may assume k is algebraically closed. Since ker y is an A-submodule
of /J(X) and since V acts bijectively on /c^z/^H^X, G,/,x) we see that

(***) (kercp) n{ ^®z^H1 (X, G,,x) }

is generated over k by elements left fixed by V, i. e. elements in (**),
which is zero. Hence (***) is zero. On the other hand V acts nilpo-

Ann. EC. Norm., (4), II. — FASC. 1. 17
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tently on ^H^X, Cx). Hence for all u in kery there exists an integer N
such that V^ is in Tc^^H^X, G,,,x). But V^ is also in kery. Hence
V^ is in the intersection (***) which is zero. Thus u is in (*) which
is also zero.

We now identify the image of y, when X is smooth and proper over /c.
We may obviously assume k is algebraically closed. For simplicity we write

^=r\ ker^oV71).
n

Then since X is proper, L is finite dimensional. Thus there is a canonical
decomposition L= Li^La, where V acts nilpotently on Li, while it acts
bijectively on La. La is moreover generated by V-invariants.

Suppose the cohomology class of (/*, co) in Z^Ul) is V-invariant. Then
there is g in C^flll, (9x) such that (o, Vco) = (/*, 00) + (Sg, dg). Replacing
(/, co) by (/*, co) + (^g) dg), we may assume (o, Vco) = (/, 00). Hence f== o
and Vco == co. Passing to a finer open covering if necessary, we see that
co( i )=dp( i ) /P ( i ) for some {? in C°(ll,G,,x). co( i )==co( / ) implies that
d^(i)l^j))==o. Hence PM(/) = a(^, JY for some a in Z^.G.x).

On the other hand suppose the cohomology class of (/*, oo) in Zi)K(^l) is
killed by V^, i. e. (o, V^co) == (Sg, dg) for some g in C°(Ut, (9^). Applying V
again we get (o, V"4"1^)) = o, i. e. V714'1 (0== o. We now show that passing
to a finer covering if necessary, there exists some u in C° (XI, Cx) such
that co( i )=Au( i ) . Since V'(V"co(i)) = o, we get

V^ (Q = ̂  (Q_,_i = V^ (^ (0^-r,1 ̂  (Q-.-i).

Hence
Y^C*) (Q - ̂  (0^ ̂  (Q-.-i] = o.

We can proceed in this way and get the required result.
By definition we have df{i, j) ==Au(i ) —^(/)- It we denote by y the

element of C^Hl, Cx) such that ym= o for m^- — 2 and y{i, /)-i= f{i, /),
then we have Ay(i, / ) = = = A u ( i ) — A ^ ( / ) - Hence passing to a finer open
covering if necessary, there exists some a in Zonfll) such that

y (^ J ) - u (0 + UU') = F a (^ y ) .

If we write (i — SV) u = b and P == Vu, then &,̂  = o for m^ — 2

and

/(/, y) == [F a (/, j) + S P (0 - S P (y) + b (i) - b (j) ]_„
^ ( Q = = A S ( 3 ( 0 4 - A ^ ( Q

^a(^ ,y)+P(Q-p(y)=o.
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Hence
the class of (/, Ci)) == a? (a) + the class of (^^_i, db_^) = cp (a) .

Q. E. D.

COROLLARY 5.11. — Let X be an abelian scheme over a perfect field k of
characteristic p. Then there is a canonical isomorphism of left A.-modules

^ : M ^ X ) ^ H A K ( X ) . -

Moreover under ^ the submodule pM^X) =VM(^X) ̂  (/c, cr"4) (g)/, M(pX)
is mapped onto the subspace H°(X, ^x//-)? l- et under ^ the exact sequences

and

o -> (A-, cr-') 0^ M (yX) -> M (^X) -> M (yX) -> o

o -> IP (X, I2x/,) -^ Him (X) -> W (X, ̂ ) -> o.

correspond.

Remark. -— This was conjectured in Grothendieck [15].

Proof. — As was proved in Proposition 4.1, there is a canonical isomor-
phism of left A-modules M^X)^^I(X). By Theorem 5.10 the right
hand side is canonically isomorphic by y to Him(X) as left A-modules.
Hence by composition we get ^.

Q. E. D.

COROLLARY 5.12. — Let k be a perfect field of characteristic p . Let X be
a smooth and proper k-scheme such that X(/c) is non-empty. Then there is
a canonical injection of left A.-modules

•^ DM(^Picx/,)C^HiR(X)

such that the image of^ is equal to f \ ker^cY"), Moreover
n

^DM^Picx/.O^ri^X, ^/,)r\[ (^ ke r (^oV/Ql .
. L ft J

If X is an abelian scheme, then ^ is an isomorphism and

^DM(vPicx/ ,)]=H°(X,I2x/ ,) .

Proof. — By Theorem 4.4 the left hand side is isomorphic as a left
A-module to /J(X) and DM^vPicx/yi) is mapped onto FI(X). The rest
is obvious from Theorem 5.10.
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Remark. — Let X be as in Corollary 5.12. Then we have a commutative
diagram

(/., ^-1) (g), DM (pPicx/,) -̂ > (A^ <7-1) 0, yl (X) . ->H ' (X , c^)
^

DM (^Picx/,)

^

DM (vPicx/,) ->Fl (X)

^

> / J ( X ) . /^\ ker^oV")

IP(X,i2x/OnrF^ker(^oV/')1

L 1 1 J

of left A-modules whose columns are exact and whose rows are isomorphisms

Remark. — di is a homomorphism from H1 (<9x) to l-F^x//;)- From
the ker(rfi) there is a homomorphism d^ to H°(t2x//;)- ker^a) is the
image of HI)R(X) under the canonical projection to H^C^x)- L^t X be
a proper smooth scheme with a A*-valued point. Then from ker(Uj) we have
a homomorphism do V to

Ho(^i / , ) /^oV[ker(^)mH°(^x/^] .

From ker(rfoV) we have a homomorphism do V2 to H^^x//)/^0^2!^611^^)
in H°(^xA)]- Proceeding in this fashion we get a homomorphism ^oV7^1

fromker(^V7-) to H^O^/rfoV^^ker^oV^) in H°(^)]. 0 ker(do"V7')
/(

is the image of f\ ker(rfoV") in HDR(X) under the canonical projection

to H'^).
On the other hand if we denote by a the composite homomorphism

d)x=(/^ cr-') (g),C_^x-^ (W(/t^ cr-') (g)w(/-)Cx 4 (^ cr-i) (g),Cx/FCx,

where i is the canonical injection and p is the canonical projection, we get
a commutative diagram of homomorphisms of sheaves of /c-vector spaces

c\ (^^(g^-Cx/FCx

\̂/k
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Hence we get a homomorphism of k- vector spaces

H' (0x) -^ {k, o--1) 0,H' (Cx/FCx)

\ Y

^H- (ax/A)

It is not difficult to see that an element f in H4 (0x) is killed by a if and
only if f is in ^ ker(c?oV"), i. e. f is in the image of ^ ker(^°V")

'I B

in Hj')n(X) under the canonical projection.
On the other hand we have a commutative diagram

o ——> H» (ainxxi/A) ——> HBR (Alb (X)) ——> H' (C?Aib(x)) ——> o
n n n^ ^ ' ^

o——^H»(ax/^=,————^HUH(X) —————^H1 (Ox)

whose rows are exact and whose columns are injective. The image of

H^i.ixOC^H1^) is characterized as ^ ker(P^) = H* (Wx)/VH1 (Wx)
71

where {^n} are the Bockstein operators (c/*. Serre [33], and Mumford [29],
lecture 27). Since by Proposition 5.1 all the cohomology operations di,
^5 i r f ° V " ) are zero for Alb(X), we see that the cohomology opera-
tions rfi, 6?2, ^oVf are dependent on { ^ n } ' We can prove this fact
directly as follows. From the remark above, it is enough to prove that the
elements of H^x) killed by ^n tor all n are killed by a. From the proof
of Theorem 4.4 (3) it is enough to prove that

H4C-,,x)nr ̂  V-H^Cx)!^!!1 (Cx/FCx)
L n J

is a zero map. More generally we can prove that the homomorphism

^V-ir(Cx)4n1 (Cx/FCx)
/(

is zero. Since we have the exact sequence

(W(/.) , a) (g)w(.) H' (Cx) -^H' (Cx) 4H1 (Cx/FCx)

it is enough to prove that ̂  V^H4 (Cx)C FH1 (Cx).
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But since H^Cx) is W(/c)-cofmite type and V-torsion by Theorem 4.4 (i),
the argument dual to Serre ([33], p. i3, Prop. 2) shows that V-divisible
part of H^Cx) is equal to the p-divisible part of H^Cx). But the latter
is obviously contained in FH1 (Cx).
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