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DISPERSION
FOR NON-LINEAR RELATIVISTIC EQUATIONS. II

By Irvineé SEGAL.

INTRODUCTION.

The present article is part of a continuing study of the theory iu the large
of non-linear partial differential equations satisfying the mathematically
natural and physically indicated condition of relativistic invariance.
Associated with any such equation is a temporally invariant function on
the Cauchy data space known as the energy; many equations which
have been studied have the property that this function is non-negative;
this ““ positivity of the energy > will here be important in the derivation
of precise results for specific classes of equations, although less so in the
general theory. '

Our main aim is to make specific and validate the general conception
that solutions of such equations behave after the passage of sufficiently
great intervals of time (or at sufficiently early times) like solutions of linear
relativistic equations. In other words, the non-linear parts of the equation
ultimately become highly attenuated to the point of negligibility. This
conception underlies, in part explicitly and in part implicitly, fundamental
procedures in quantum mechanics and in applied mathematics; it makes
it possible to analyze the states of a complex non-linear system, incapable
of description in closed mathematical form, in terms of the states of a linear
system, which can often be quite explicitly described. Indeed, in the
empirical situations which provide the motivation for the theoretical
physical developments with which the present work is related, observations
are to a large extent made in terms of the states of the so-called “ free ”
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460 I. SEGAL.

linear system, which is usually defined by the first-order variation of the
fundamental non-linear partial differential equation in the vicinity of
a distinguished solution, such as on occasion the identically vanishing
solution. Thus, interstellar disturbances, presumably governed by non-
linear relativistic equations, are empirically analyzed in terms of linear
waves observed at much later times; and the same is effectively true of
many observations on light, sound, and other wave phenomena.

As in earlier work, our theory is presented for the case of relativistic
equations involving a single unknown function; such equations are also
known as ‘ scalar 7’ equations. Similar methods are applicable also to
relativistic systems, known as equations of ““ higher spin ”’; the results,
however, depend on the “ spin ” of the equation, as well as on whether
the “ mass 7 vanishes or not, and on the number of space dimensions,
to name only the most important parameters. In the present article,
only the number of space dimensions will be allowed to vary. The basic
methods are applicable as well to quasi-relativistic equations (i. e. those
in which the highest-order derivatives define a relativistic operator);
to some extent they could be applied to abstract equations of the form

u' (t) = Au(t) +K(u(1)),

where the function u(t) has values in a Hilbert space on which A 1s a given
skew-adjoint operator, and K is a given (in general, unbounded) non-linear
operator, of a quite restricted character. In practice, space-dependent
coefficients are readily dealt with, if they vanish sufficiently rapidly near
infinity, and lead to stronger results than in the relativistic case; on the
other hand, non-linear terms involving additional space- or (lower-order)
time- derivatives cause significant complications and at best weaken the
‘results. ‘ ’ ’

For the most part, the difliculties of the relativistic case majorize those
of tractable generally similar equations whose non-linear terms are local
and whose principal part is a constant-coefficient hyperbolic operator.
In principle linear hyperbolic equations could also be treated by the present
methods, but such relatively simple applications will be omitted, the stress
here being entirely on the treatment of non-linearities.

In [5] it was shown that for an equation of the form
Oo=m*¢+ gF(9); F(o) =F (o) =o0 (&= Const.),

kR

F being a given function of a numerical variable, the “ wave operator
exists in a strong sense under reasonably general conditions on F. The
‘“ dispersion (or S-) operator ~ exists in a weak sense under more stringent
conditions (notably, positivity of the energy) on F. The theory was thus
unsymmetrical between past and future; it left open the questions of the
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univalence, continuity, differentiability (in function space) of the (non-
linear) S-operator, etc.

In the present article it is shown that a solution of a positive-energy
non-linear equation typically decays temporally, in L, or L, norms (for
large p) of the Cauchy datum as a function on space at approximately
the same rate as the associated linear equations, provided either that the
norm of the Cauchy data, or the * coupling > constant g, is sufficiently
small. The use of the L, or L, norm is here essential, for the L, norms
do not decay at all, nor do the L, norms of any of the derivatives, due to
the conservation of energy; thus, pure L. estimates are of no avail in the
present connection; however, the use of L, norms is complicated by the
circumstance that even for linear hyperbolic equations, the L, norm
does not behave well under temporal propagation (in particular, temporal
propagation is rarely continuous in the L, norm; ¢f. Littman [3]). Never-
theless, 1t 1s shown that for suitable equations in n-space dimensions
(n =1, 2 or 3), among which are the frequently studied equations

0o =m2>¢+ gor (m>o0,g>o0, podd; p>3ifn=—1),

the solution ¢ decays uniformly throughout n-space according to the
estimate

n

lo(x, t)]|=Const. | 2] *

provided the Cauchy data for ¢ has at some time a sufficient number
(n-dependent but relatively small) of integrable derivatives, and g is
sufficiently small.

It then follows readily from [5] that the S-operator exists in a strong
sense and is univalent; it could also be deduced that 1t 1sin suitable explicit
topologies continuous and differentiable, etc. (c¢f. Sec. 5); and the theory
is essentially symmetrical between past and future. In other terms,
if 9, is any given sufliciently regular solution of the equation [0 ¢, = m?*¢,,
there then exists a unique solution ¢ of the non-linear equation which is
asymptotic to g, as ¢ - — @ ; this means in particular that

L
¢ (x) =9 () "/ Doy (2 — ') F (9 (') da',
where D, denotes the retarded elementary solution for the linear equa-

tion; and additionally, there exists a solution ¢, of the linear equation
to which ¢ 1s asymptotic as ¢ - o, 1. e. ¢ has also the form

9 (x) =9 () -+—f Dyay (. — ") F (9 (&) dr’,

where D, is the advanced elementary solution and [ ¢,= m”g,, etc.
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It follows in particular that the concept of *“ adiabatic switching-on and
-off of the interaction ”’, much treated in the theoretical physical literature,
is superfluous in the present cases, at least. This concept refers to the
view that, in as much as the interaction (i. e. non-linear term) is time-
independent (i. e. does not depend explicitly on the time), integrals out
to 4 o involving the interaction had no reason to exists; it was therefore
necessary to introduce an explicit temporal damping into the interaction,
e. g. by replacing F(o(z)) by F(e((z))e ", e > 0; then to determine
the S-operator S(c) as a function of the parameter ¢, as is presumed to
involve no convergence problem; and finally to move the effective times
of switching-on and -off of the interaction to — ® and 4 o respectively,
by permitting ¢ to tend to zero, while defining the sought-for relativistic
S-operator as the hoped-for limit of S(¢). This limit does indeed exist,
in the present cases, and agrees with the S-operator as indicated above.

In the case of a 3-dimensional space, the estimates of L. norms serve
also to establish the regularity of solutions in a number of cases in which
1t was previously known only that weak solutions, not necessarily globally
determined by the Cauchy data at one time, existed. Thus for the special
equations cited whose non-linear term is a power, it follows that if either g
or the initial data are sufficiently small, then the solution of the Cauchy
problem exists in the strong sense and i1s unique; and if, for example,
additionally, the Cauchy data are infinitely differentiable of compact
support, then the solution is infinitely differentiable throughout space-time,
a result which appears doubtfully obtainable in any direct fashion.

Although the basic inequalities on which the foregoing results rest are
non-perturbative, the specific results are either perturbative in character,
as indicated, or relatively weaker than what is clearly optimal. When
suitable additional a priort bounds are available, as in a class of zero-mass
cases studied by Strauss [9], the perturbative restriction may be removed,
as 1s exemplified in forthcoming work of Strauss.

From the standpoint of the theory of flows (i. e. one-parameter groups
of automorphisms) in differentiable manifolds, the present work represents
an asymptotic analysis of a flow on a certain infinite-dimensional manifold
— namely, the solution manifold of the partial differential equation in
question, the flow being that defined by temporal propagation in accordance
with the equation — in the vicinity of an * elliptic 7 fixed point in the
terminology used by Smale — namely the solution which vanishes iden-
tically. The induced linear flow in the tangent space at this point is that
associated with a linear relativistic equation, [J ¢ = m*¢ in the present case,
and is unitary in a natural metric in the space, corresponding to the cited
ellipticity. In these terms the result is that, for a certain class of rela-
tivistic equations in 1, 2 and 3 space dimensions, any orbit begirining
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in a sufficiently small neighborhood of the fixed point is asymptotic as
the parameter t -+ o, to linear orbits in the tangent plane; and conver-
sely, given any orbit in the tangent plane which is sufficiently close to the
origin, there are orbits in the non-linear manifold which are asymptotic
to the given linear orbit as ¢ -4 o (respectively). The S-operator is
then the (non-linear) mapping which assigns to any tangent vector that
tangent vector whose orbit 1s asymptotic as t -~ @ to the same non-linear
orbit that the orbit of the first tangent vector is asymptotic to as t - — .

2. TecunicaL PRELIMINARIES. — We shall be considering in abstract
form the partial differential equation

(2.1) ‘ O9¢=m*¢+F(9),

where cp( ) = 9(z, t) 15 a numerically -valued function on space-time,

F is a given numerical function of a numerical variable, and [0 denotes
Jd
ot

equation is meant the equation for the vector valued-function of time,
®(t) = o(., t), which 1s namely
(2.2) @' (1) + B2 (¢) =— G (D (1)),

the d’Alembertian operator, A—-< > By the abstract form of the

where B denotes the operator (m?I — A)* in its usual formulation as
a self-adjoint operator in the Hilbert space L.(R)", where n is the number
of space dimensions; and G denotes the mapping : f(z) - F(f(«)), defined
on numerical function on R”. As indicated earlier (cf. e.g. [8]), it is
convenient for both theory and apphcatlons to treat the integrated form
of equation (2.2), which 1s

(2.3) @ (1) =D, (1) --f 2‘[_(%—)—](}((1)@)) ds,

whose solutions are in general solutions of equation (2.2) only in a somewhat
generalized sense; the integral here, as on all later occasions in this paper,
is in the absolutely convergent sense for a Banach space-valued function;
the function ®,(.) in equation (2.3) denotes a solution of the equation,
which will be called the free equation,

(2.4) @’ (1) + B2®, (t) = o,

in the correspondingly generalized sense. In the present connection,
the free energy of a function ¢(X) or corresponding function ®(.), at the -
time t, is defined as || B®(¢) | (¢) |l;, and we shall deal throughout
only with finite-energy solutions to the differential equations under consi-
deration. This means that ®(¢) must be in the domain of B for each ¢,

and that ®(.) should be differentiable in any of a variety of effectively
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equivalent senses; for specificity, we may require that { ®(¢), W) be a
differentiable function of ¢ for every fixed vector ¥ in the Hilbert space 4¢
of all square-integrable numerical function (classes) on R" [which space
we denote by L, (R"), and within which the inner product is denoted <., .>],
which is also in the domain of B and that the derivative have the form
{Q(t), W > for some fixed vector Q(¢) €H; in this event, ®'(t) is defined
as Q(t).
It is readily verified that if

cos (¢B) sin (¢B)
TR et

(2.9) : D, (1) =

where fand g are fixed vectors in the Hilbert space J¢, then the (free) energy
of ®,(t) is independent of ¢ and has the value || ] + || gli; it is also
easily verified that equation (2.4) holds weakly relative to suitable dense
classes of linear functionals; by the term finite-energy free solution will be
meant a function ®,(.) of the form given by equation (2.5). Note that
if f and g are in the domains of B“, where a 1s a positive number, then
B®,(t) is as a function of ¢ also a finite-energy free solution.

The following Banach spaces will be employed here : (1) the spaces L,(R")
consisting of all pth-power ‘integrable functions on R*, 1=~ p <o, in
which the norm of a function f is denoted as |/ f]/,; (1) the spaces
denoted #C,, defined for a > o0 as the completion of the domain of B“

relative to the new inner product ; {f, g >'= {B“f, B'g >, and with ¢,
~ defined as #¢. All Hilbert space norms will however be taken in J¢, the
norm of a vector f€ ¥, being indicated as : || B*f]| (or || B*f
norms in other L,-spaces may be under consideration).

It is convenient notationally to identify all closed translationally-
invariant operators in J, such as B or functions thereof, with their exten-
sions to operators on a space containing all the L, and J¢, spaces, so that
the action of the operator on a given function can be denoted without
reference to a particular space in which the function is considered to lie.
In particular, it will be convenient to use the fact for certain operators /(B),
[ being a given function,

2
9

l» when

1(®) f= ) g
for general functions fsuch that [(B) fand B“f are both defined. A variety
of adequate formulations and proofs of such results may be given. For
specificity, and with a view to the later extension to more general differential
equations, we may proceed as follows. A linear subset of ¥ may be
defined to be strongly dense (velative to the action of the translation group
on J€) in case it contains an increasing sequence JN, of translationally
invariant closed linear subspaces of #. A generalized vector is then defined
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as a conjugate linear functional on a strongly dense domain in #, which
is continuous relative to any closed linear translationally invariant sub-
space I contained in its domain. Any such vector f has a Fourier trans-
form which is a measurable function f, determined by condition that

{f, 8> =<{, &> for all vectors g contained in a subspace I, for all IN;
here the notation {f, g> denotes the number assigned to g by f, so that
for f€ 3¢, the associated functional is the canonical one. It is not difficult
to show that the generalized vectors form a linear vector space containing,
relative to the imbedding analogous to that just indicated in the case of L.,
all the L, spaces for 1= p =~ 2 and all the spaces #,, for all values of a
and m. If T denotes a closed translationally-invariant, densely-defined
operator in ¥, it is a multiplication operator by a measurable function
in its action on Fourier transforms, and by the same action, is readily
seen to carry generalized vectors into generalized vectors. The induced
action of T on the L,-spaces for p > 2 may be defined and treated by
duality. Equation (2.6) is readily verified for an arbitrary generalized
function f or vector fin any L,-space, 1=—p =~ (').

The final results will depend materially on whether m > o or m = o,
but no assumption in this respect need be made in Section 3.

It will however be convenient to make the notational conventional
convention that B’=mI. When m > o, all the spaces #, for a fixed
value of a are evidently isomorphic. The applications given in Section 4
will be confined to the case m > o; for the case m = o, cf. [10].

Although basic definitions and results will be quoted in the present
paper, free use will be made of results earlier set forth in [8], and
especially [5], referred to hereafter as I; for further background concerning
dispersion theory, see the latter. Frequent use will be made of the estimates
developed in [1], [4], and I for the decay of free solutions. Unless otherwise
indicated, all such estimates used here may be found in [4].

(*) In the extended sense indicated, many weak solutions of differential equations of
the type considered here are strict solutions [e. g. the above indicated generalized free
solutions satisfy equation (2.4) in a literal sense]. Of course, this could also be achieved
in many cases through the use of distributions. There are non-linear equations, however,
as well as singular linear equations, to which the present method applies but which are
outside the scope of the theory of distributions. For example, the weak solutions of the
equations [J¢ = m23 + gor obtained in [7] are in general not distributions even locally,
even, so far as is now known, in case the Cauchy data are infinitely differentiable of compact
support; they are however strict solutions as generalized functions in the present sense.

A general theory of generalized vectors relative to a given ring of operators in a Hilbert
space will be given elsewhere. One application will be the extension of a number of the
considerations of the present paper to entirely abstract equations of the form u’=Au+K(u),
where A and K are given operators in a Hilbert space, A being skew-adjoint and K being
a given partially defined non-linear operator,
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3. AsYMPTOTIC BOUNDS FOR SOLUTIONS OF THE CAUCHY PROBLEM. —
We begin by writing the basic equation

.

(3.1) ® (1) =D, (¢) —f ﬂ%‘@JG@@))ds
in the form |

(3.2) ® (1) = B, (1) —f U9 Bl e (g (1)) ds;

’

as noted in Section 2, this equation is valid if G(®(s)) is in the domain
of B¢ for t, < s < ¢; the initial time ¢, may be finite or infinite, but it will be
convenient, and no essential loss of generality, to suppose that &, < t.
We denote as E,, the generalized function whose Fourier transform is,

1 1+a
as a function of y€&€R", the function sin [t(m“’—i— y")_] (m*+y*) *;
E.. 1s a function of the variable z€R", and its form evidently depends
also on m and n, but the latter two variables will be held fixed. In case E,,
is in a suitable L,-space — and this is the only case which there is occasion
to consider here — equation (3.2) may be written in the form

(3.3) @ (1) =0, (1) _/ Er ..k BeG (® (s)) ds.

On taking the L,-norm on both sides of equation (3.3) and applying the
Hausdorff-Young inequality, it follows that

(3.4) 1@ () [l-=[| @ () Hr+f Eesalls [| B*G(®(s)) [l ds,

if :
1<ir, ¢ ¢'Zw; I4+rT=gi g
In order to obtain a bound for || ®(¢) |, it is appropriate to relate the
integrand more explicitly to || ®(s) [l. The following assumption on the
given non-linear operator G(.) is adequate for this purpose and for present
applications :
(3.5) Assumption on G(.) : h(M) < o if M << o, where h(M) 1s defined
as the supremum, for ||B*"'®|,= M, of | B*G(®) | | @ [-° (b
and p being non-negative parameters to be specified later; M> o).

Naturally, the function & depends on all the parameters a, b, ¢', p, mand n,
in addition to G(.), but this dependence will be of no special consequence
in the following. It is convenient to assume in addition that

(3.6) Assumption on G(.) : G(o) = o;

the case in which G (0) £ o follows along lines closely similar to the present
ones, and very rarely arises for a relativistic equation.
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It follows from the inequality (3.4) that

@) IO LZI9@ o [ [ Beaalah (B0 ) 1) [ 9 [ d

if © (3.5) and the arithmetical relations given in (3.4) hold.

In order to obtain an explicit bound on || ®(¢) |, from the inequality (3.7),
it is necessary to make some assumption about the term h(||B**®(s)|.);
in practice this term will be bounded by a constant or by a given function
of the ||[®(s')], for s'<s. It will suffice for our purposes to resolve
the inequality in the following fashion.

Setting M (t) = sup | B"*®(s) ||a, it results that
tols<t
(3.8) 1® ()l [ @y (2) [+ 2 (M (2)) f [ Ees,aly | @ (s) |12 ds.

We next introduce a function u(t) by the equation
(3-9) : w(t) = sup [[@(s)[l-(r+]s])*,
1h<s<t
where ¢ is a parameter to be chosen later; for certain applications, it may be
convenient to use |s[° in place of (14 |s[)°. On multiplying the inequa-

lity (3.9) by (1 -+ |t])%, then replacing ¢ by ¢, and finally taking supremums
on both sides of the inequality for ¢{,<<t'<<t, it results that

(3.10) u,(t)éuo(z)+(1+|t|)Sh(M(z))u(t)pf I Esally (1| s])—¢¢ ds.

The integral on the right may be estimated quite explicitly. It will suffice
for present purposes to assume that

(3.11) | E/,allqéc(1+|t|)—51
where C and ¢ are constants, and to use the

Lemma 3.1. — If a>o0, b>o, and max (a, b)>1, then

f (1+[t—sDh(x+|s)t=0o(t|™) as |t|->o0, c=min(a,b).

Proof of lemma. — Making the transformation s —t¢—s, the integral 1
in question becomes

I:f”(l—e—s)—“(r—kjl—s])—".

Assuming ¢>o0, as is no essential loss of generality, since evidently
I(—t) < 1(t), we may write

gt t ®
I::f +f +f ’
0 gt {

Ann. Ec. Norm., (4), 1. — Fasc. 4. ' 59
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where 0 << <1, and ¢ is held fixed. Now

f; éfb (I—I—S)—“(t‘(l—s))—"ds:o(t—”)/‘c (1 s)~ds.

In case a>1, this expression is o(t™). In case a=r, it is o(logt.t™),
which 1s o(t™) since b>1. In case a<<1, 1t 18

gt
0 (t"”)f s™¢ds = o (") o (4—+') = o (L' ),
0

since 1-+min (a, b)=~a 4+ b by virtue of the assumption that
max(a, b) >1, this is in turn o(¢™°).

Similarly,

Al

/ égo(t—")f(I—+—\t—s!)—"ds_-:o(t—”)o(l—b“)

vt

if b>41,andsoiso(t). Incase b=1,theintegraliso(t™) o(logt)=o(t™")
since in this case a>1. If b>1,f éo(t‘“)f ' (1+ [t —s|)"ds,
which is o(t*~"). Finally, if b1, '

jnxéo(t—b)ft(1+lt——s])—”(lszo(t“").

(End of proof of Lemma 3.1). ,
Applying Lemma 3.1 to the mequality (3.10), it follows that
(3.12) w(t) Zuy(t) + Ch(M(2)) u(t)e

if : max(s, pe)>1 and min(S, pe)>>¢, and the arithmetical relations
given in (3.4); (3.5); and (3:11) hold;

here C, as always denotes a constant (not always the same) which is inde-
pendent of ®(.), ®,(.), and G(.); and u,(.) 1s defined in the same way
as u{.) but with the use of ®,(.) in place of ®(.). With a simple bound
for h(M(t)) in terms of ¢ and wu(f), this inequality may be resolved quite
explicitly; towards this end, the following further assumptions, which
are satisfied in the cases of interest here, are made :

a. uy(t) <<ec, — o0 <l < o,

(313) b. ]t(ﬁ([)><02—l— C:;U»(t)aa tGI,

where I denotes an arbitrary interval on which ®(¢) is defined and conti-
nuous, as a mapping into #,.,, and satisfies equation (3.1) on this interval
(the integral in question being absolutely convergent in #¢,.,); the ¢; are
constants which may depend on ®,(.) and G(.), but are independent of
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the interval I; and o is a positive constant, also independent of I. (It may
be helpful to remark that the following notational conventions are employed
throughout : constants denoted by small Roman letters may depend
on G(.), ®,(.), and ®(.), while constants denoted by capital Roman
letters have no such dependence; all constants are assumed independent
of the interval I under consideration, as long as the indicated conditions
are satisfied by I.)

Combining the inequalities (3.12) and (3.13) by elementary algebra,
it results that

(3.14) u(t)y Zc+du(t)®

if © c=ci+4 Cery d=0C (ca+¢3), ©=p+ o and the assumptions (3.13)

and those given in (3.12) are satisfied.

This inequality may be further reduced through the use of the

Lemma 3.2. — If w>1, there exists a constant e(w) with the following
property : if ¢ and d are given positive constants salisfying the tnequality

ch—1 d< 8(&)).

then there exist positive constants ki=ki(w, ¢, d) (i =1, 2), ki<<k., such
that if k> o0 and k= c -+ dk”, then either k =k, or k>=k..

Proof of lemma. — Let H(k)=dk”—k -+ ¢; evidently, k=—c+ dk”
if and only if H(k)>o0. It follows from calculus that for the proof of the
lemma, it suffices to show that if the indicated condition is satisfied, then
H (k') <o, where k' is the unique positive root of the equation H' (k') = o.
By an elementary computation, k= (wd)™, where 0= (w—1)";

H(K)=c—d? e (w), where e ()= (0w —1)w* Evidently, H(K)<o
.if and only if ¢<d'e,; raising both sides of the inequality to the
power © — 1, it is equivalent to the inequality :

y— | —1 — —_— —
Pt << d e or de™ ' < e, where e—e¢, ()",

(End of proof of Lemma 3.2)

Applying Lemma 3.2 to the inequality (3.9), it results that

(3.15)  There exists constants k, and ko such that k,<k., and etther u(t) <k,
or u(t)>k,, provided : dc¢"'<<e(w), and conditions (a) and (b)
of (3.13) hold.

This result is naturally of relatively little use unless the alternative
which bounds u(t) from below can be excluded. The general idea used to
achieve this is as follows, taking for specificity the case {t,=— o. From
the theory in I it is deduced that u(t) - o as t -~ — , for appropriate
values of the disposable parameters, Now if u(¢) is a continuous function
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of , it cannot jump from the interval [o, k,] to the disjoint interval [k., <],
and so must remain in the interval [o, k] if originally there; thus u(¢) <k,
for all ¢&. The main problem is to establish the continuity; this will hold
if b is chosen sufficiently large; on the other hand b must be chosen relatively
small in order to obtain an effective bound of the form (3.13 b).

This problem is dealt with as follows.

Lemma 3.3. — Let W(t) (t>>0) be a bounded continuous one-parameter
semi-group of operators on the Banach space £. Let K denote a semi-
Lipschitzian operator from £ into £ (i.e. | K(z) Y /llz—yl
is bounded on bounded subsets of £2X £2 which are disjoint from the diagonal).
Let T denote the supremum of the values t'> t, such that the equation

t
(k) (@) =W ({t—1t) xo—l—f Wt —s)K(z(s))ds (2 given in £; t, given in R')
&

has a continuous solution in the interval t,=t<<t'. Then either T =,

or | K(z(s) ||/l z(s) || is unbounded for t,<s<T, z(s)%o.

Proof of lemma. — By general theory (c¢f. [8]) we know that equation (%)
has a unique continuous solution in some interval ¢,<<t<{,, and that the
solution exists and is continuous in the largest interval in Which |2 (e) ||
remains bounded. [t suffices therefore to show that if || K(z(s))[/| = (s) |
remains bounded, then so also does ||z(s)||. Now within the interval
of existence, 1. e. for t,<t<<T, a direct estimate shows that

1|x<t>|1éc||xou+cc'f 2 (s) || ds,

provided that || K(a(s))|/|=(s)||<C" for t,=s=¢; from this it follows
by the Gronwall inequality that '

|2 (@) [| =Gl o || exp[CC (2 — &)]-

Thus, ||z(s)|| 1is bounded in any interval ¢ <<t<<t’ in which
I K(z(s) ||/l z(s)]| is bounded, showing that ¢'<<T. (End of proof of
Lemma 2.3).

Lemma 3.4. — With the same hypotheses and notation as Lemma 3.3,
let N denote a pseudo-norm on L such that :

(i) N(z)=const. [[=];
(1) || K(2)|| < p(N(x))| |, where the function p is bounded on bounded
sets. .

Suppose also that if x(s) is a continuous solution of equation (%) throughout
an interval 1, then either N (x(s)) h(s) <<k or N(z(s)) h(s)>k', for all s€],
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where k and k' are constants independent of 1, such that k<<k', and h ts a given
continuous function such that h(s)>>o. Finally, suppose that N(z,) h(t,) <k.
Then equation (%) admits a continuous solution in the infinite interval t>t,,
and N(z(t)) h(t) <k in this interval.

Proof of lemma. — 1If equation (%) admits a continuous solution x(t)
for all ¢t > t,, then N (z (¢)) & () is a continuous function of ¢, for the pseudo-
norm N is dominated by the norm |[.|. The range of N(z(¢))A(t)
for t>1t, 1s therefore connected, and so must be contained either in the
interval [o, k] or [k’, «]; since N(z,)h(to) <<k, 1t 1s the former alternative
which obtains.

Now suppose, as the basis of an argument by contradiction, that the
supremum T of the values ¢ such that equation (%) admits a continuous
solution in the interval ¢,="t=t, 1s finite. Then [u(f)|—> o as
t—T,t<T. On the other hand, N(z(¢))k(t) is a continuous function
of ¢ for t<<T; by the same argument as that given for the case T = oo,
N(z(t)) < k throughout the interval t,=—t<<T. Since

[ K(2)[[Zp(N(2)) ||

for arbitrary x, where p(.) is bounded on bounded sets, it follows that
I K(z@®)|/l=@®) |l is bounded throughout the interval ¢{,=t<<T (where
defined). According to Lemma 3.3, this i1s impossible. (End of proof
of Lemma 3.4.)

Lemma 3.5. — Let G denote a semu-Lipschitzian mapping from 3.,
into JC¢, (b being real) such that ||B°G(®)|,=Zp(N(®))[B"®],,
where N is a pseudo-norm on #,., such that N(®)—const. |B*'®|,,
for arbitrary ®, and p(.) s bounded on bounded sets; suppose also that
G(o)=o0. Let ®,(.) be a given continuous mapping from R' into #,,,
and assume further that if ®(t) is any continuous solution of the equation (2.3)
in an interval 1, then either N(®(s))h(s)<<k or N(®(s)) h(s)>k" for
all s€l where k, k'. and h(.) are as in Lemma 3.4; suppose also that
N(®(ty)) h(ts) <<k. Then equation (%) admits a continuous solution in
the infinite interval t >t,, and N(®(t)) h(t) <k in this interval.

Proof of lemma. — This result is a virtually immediate specialization
of Lemma 3.4 to the spaces and one-parameter groups considered in I.
Specifically, £ is the Hilbert space direct sum I, P IC,; W(t) is the
isometry whose matrix relative to the indicated decomposition of £ has
the form

cos (¢B) sin (¢B)\

/
W(¢t) = B .
\— Bsin(¢B) cos (¢B)
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and K 1s the mapping
(@, T) > (0, — CG(®))  (Deiy)
from £ into #. The details of the specialization are readily supplied (cf. I).
(End of proof of Lemma 3.5.)

In order to apply the foregoing to the Cauchy problem with data given
at time — o, a local existence theorem at t= — oo, involving greater
regularity than was explicitly developed in I, is needed in certain cases.
~ The following result is essentially a corollary to Theorem 1 of I.

Lemma 3.6. — Let a, b, ¢, 3, 0, and < be given positive numbers; let r,q, ¢’

be extended real numbers in the interval [1, ] such that 1+ ; = C—; - %;

let G denote a semi-Lipschitzian mapping from 3Cy., into Iy; let Dy (.) be
a given finite-energy free solution such that B*®,(.) is also such, and which
satisfies the relation : ||®@,(t)|.=o(|t]=), t—>—o. Then wunder the
assumptions (a) — (d) below, there exist unique continuous functions ®(.)
and ®(.) from R' into 3¢,., and 3, respectively, such that ®(.) is the

.. . d : N
derivative of ®(.) in the sense that - {®(t) f, g = {d(1) f, g whenever f,
g€ I, N\ Iy, and satisfying the relations

O (1) =, (1) +f MG(@@)) ds,

b (1) =d, (1) +f cos| (& — ) B]G(® (s)) ds,
@) [l-=o(2[*),

where the integrals inyolyed are absolutely convergent in 3C,., and dC, respec-
tively, for all t<t, for some finite t,.

ASSUMPTIONS :

(a) The mapping t — E, . ts continuous and bounded into L,.

(b) [|B"G(®) [, = k(|| B @ .))] @],
where h(.) is bounded on bounded sets.

() IB*(G(®) — G(W)) L[| B** (@ — W) [lo[max (|| @], [|W],]°C(®, W),
where C(®, W) is bounded on any set of functions ® and W on which || B**'®
and | B"'"W |, are bounded.

(d) pe>1+4¢, me>1.

2

Proof of lemma. — We use Theorem 1 of I; employing the notation of the
proof of Lemma 3.5, we set W(t, s) = W(t —s), u(s)=(®,(s), ®(s)),
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Nu)=||®|, if u=(d, ¥); and f(t)=c|t|™, with the constant c
chosen so that N(u,(t))<"f(t) (it is no essential loss of generality to

assume ¢ <o, since only a local result at t = — o 1s in question). We check
conditions (i)-(iv) of the cited theorem in order.
Ad (1) :
N(W (¢, s) K (u, s)) = ““‘(‘E‘) BG((D) ' it u— (P, ),
= | B ()| 2B 76 (@) .

Using the boundedness of || E, ., .|, as a function of ¢, and assumption (b),
the expression in question is bounded by '

const. || @ [|PA (|| Bé+1® ],).

The question 1s then whether, replacing the ¢ in the cited theorem by e in
order to avoid confusion with the present ¢,

SO [ (e fs))7ds o

as t >—o, and this is found to be the case if (¢ —1)e>1, as assumed.
Ad (1) :
W2, 8) (K(u, s) — K (¢, ) ||

- <i‘“(’B;")B(G(q>) — G (W), cos (£ — 5) B(G (@) _G(uf)))“é
Z||Bsin (¢ — 5) B(G(®) — G(¥)) [l =+ [| B® cos (£ — s) B(G(®) — G(W)) |
= 2| B (G(®) — G (W) [|..

Applying assumption (c¢), it suffices if j § ¥ ds <<, which is satisfied
if Te>1 as assumed. :

Ad (iii) : this has been explicitly assumed.

Ad (1v) : the question is that of the continuity, as functions of s, ¢,

and @, of EEUB;S)—BG((D) and of cos(t—s)BG(®), as mappings

into #,., and ¥, respectively. Both of these follow from the continuity
of sin(t—s)B and cos(t —s)B as functions of s and ¢, in the strong
operator topology, together with the continuity of G(.) which follows
from its assumed semi-Lipschitzian character. ‘

It remains only to show the uniqueness within the indicated class, which
is slightly broader than the class for which it is indicated in I. In view
of condition (ii), if W'(.) satisfies near ¢ = — oc the same conditions as @ (.),
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then on subtracting the defining integral equations for the two functions,
taking norms in #,.,, and estimating directly, it results that

| B+ (@ (1) — W (1)) [|qéf 0 (s7%) | Beri (D (s) — W (s)) |l ds;

by virtue of integrability near — o of s, it follows that the bounded
function ||B"*(®(t) — (W't)) ||. vanishes identically on any interval (— o, t,)
on which both are defined and satisfy the stated relations. ;

The foregoing developments may be combined in a variety of ways in
accordance with the particularities of the equation under consideration.
The following partial summaries largely cover in principle the applications
to be made later in this paper.

Tueorem 3.1. — Let a, b and < be given non-negative numbers; let @, (t) be
a given solution of the free equation such that B'®,(t) ts of finite energy;

suppose that
[ ®o(2) lr=0(2[F), [t]->w  (r=1).

Let G be a given semi-Lipschitzian operator from 3C,., tnto #,. Suppose

that for some real t,, there exist unique continuous functions ®(t) and ®(t)
from (— o, t,] into I,y and IC, respectively, such that

d%<<1><t>f,g>:<<i><t>f,g>

for f, g€ ¥, /\ .1, and satisfying the relations :

() @) =d(0) +fl wl:s_)m(;(@(s))ds

(ii) d’(t):(i)o(t)—l—f[cos[(t~s)BJG((D(5))ds Tesi=h,

(i) @) l-=o(t[7), t>—w

where the integrals ingolved are absolutely convergent in ., and IC,
respectively.

Then there exist unique continuous functions ®(t) and ®(1) from R!
to Iy and Ky, satisfying the equations (1) and (11) for all t, and satisfying
the relation Kiii) for t =4 ® as well as for t -— o, under the following
further assumptions :

(a) I+;=$+"%;
(0) [Grally=o(]1 ;
(c) max(3, pe)>1, min(ay pe) > ¢;

“‘;), t—
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(d) There ewist constants ¢y and c. with the property that for any t, such
that the relations (1) and (i1) hold and for s <<t,,

([BG(®(s)) [| | @ (s) [If?(02+ Ca(stlig(HrlSI)EH D (s) Ilr)")

(ca and ¢; being independent of t,);

(e) dc**<<e(w), where v =p + c and ¢ = ¢, + Cea, d = C(ca+ ¢3), C being
a fized constant independent of G and ®,(.), and

er==sup(1+[sP*{| @ (s) I3

(f) IB*G(®) s p(||®|,) B**®|,, where p(.), is bounded on bounded sets;
) [|®[l-= const. | B** @ ||,.

Proof. — The assumptions involved in (3.12) above are implied by (a),
(b) and (¢), while assumption (d) is tantamount to assumption (3.13),
leading to the validity of (3.14); (e) then gives (3.15), and it remains
only to deal with the continuity aspects treated in Lemma 3.5. Taking
h(s)=(1+|s|)* and N(®)=|®|,, the hypotheses of Lemma 3.5
are supplied by assumptions (f) and (g) in combination with (3.15), and the
global existence and indicated decay rate for ®(.) follow. (End of proof
of Theorem 3.1).

Cororrary 3.1. — With the combined hypotheses of Lemma 3.6 and
Theorem 3.1, and the assumption that p(l)<<const. I”, where 'e>1,
there exists a unique finite-energy free solution ®,(.) satisfying the same
conditions as ®,(.), such that

D () =D, (1) +f

Slll

=D PG @ (s)) as,

1. e. ®, stands in the same relation to ® near t = © as ®, does near t = — .

Proof. — Let ®,(.) be defined by the equation

@ . . B
®, (¢) = D, (2) —[wﬂuB—MG(Q(s))ds;

the integral in question here is convergent in L,; indeed,
o [T s @)

now || G, allq=<C(1+ |t — s|)°, while by condition (d) of Theorem 3.1,
([ BeG (@ () [l¢oZ[| P () [| £ (er+caue()%) < (1+ | s])7F%;

’rdsé] tlsfwll Gis,ally [| BEG (@ (5)) [l ds;

thus

N o= e [ 6= P s ds=o (o),
showing that ®,(t)€L,, and that || ®,(¢) .= o(|¢[).
Ann. Ec. Norm., (4), I. — Fasc. 4. 60
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It remains to show that ®,(.) is a solution of the free equation
such that B’®,(.) is of finite energy. Expanding sin[(t — s)B] by the
addition rule, it results that

sin sintB

D, (1) = D, (¢) ——cos(tB)fw gB)G(fI)(s))ds+ B fwcos(sB)G(‘l)(s))ds,

provided the integrals in question are convergent, in #¢, and #,., respec-
tively; and it then results that || B*** ®,(¢) ||, 1s finite.

To establish the convergence of these integrals, note that since || cos (¢B) ||
and | sin(¢B) || are bounded uniformly, for t€ R*, it suffices to show that

f_:” BYG (@ (s5)) [|s ds < oo
By condition (f), the latter integral is bounded by
of 1RO 1B [
which is finite provided that | B**®(s) [, remains bounded. Now

Bi+1d (1) = Bb+1®, (1) +f sin[t — s) B] BeG (® (s)) ds,

provided the integral in question is convergent in J¢; thus
WL
1B (0) o2 [ B0 (1) o+ [ [ BPG (@ (9)) [l s

which, by (f), is bounded by
[| B**1 @, (¢) |I2+f | @ (s) [[7[| BY+ @ (s) [ ds.

It follows that || B**®(s)|. remains bounded provided thatf

1@ (s) |7 ds
1s finite, as is the case. (End of proof of Corollary 3.1.)
A comprehensive statement for the case in which m>o is as follows.

TueoreM 3.2. — Let b, g, and ¢ be given non-negative numbers; let ®,(.) be
a given solution of the free equation such that B*®,(.) is (also) of finite energy,
and such that | ®,(t)|,=o(|t[) for |t| >w(r>1). Let G be a given
semi-Lipschitzian operator from #€,., into 3C,. Then, provided the assump-
tions below are satisfied, there exist unique continuous functions ®(.) and d(.)
from R* into 8., and 3C,, respectively, and a (finite-energy) free solution ®,(.)
such that :

@ (1) =, (¢) —gf Eil[ﬁg—s)]ﬂG(d)(s))ds

—
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(integral convergent in #,.,);
t
& (1) = d, (1) —gf cos[(t — s) B]G (@ (s)) ds
(integral convergent in #¢,;);

(b@yeyy=2c0w 2,

for arbitrary x and y in 3y,

“‘D () [[r:O(.|t[—3), [t]—>o0;
@, (0) [=0(¢]%), |t]->

and B*®,(.) is of finite energy;
@ (1) = @, (¢) —r-gfwmt-;—s)—B—]G(d)(s))ds

t

(tntegral convergent in L, \ #Cy.4).

477

AssumptioNs. — There exist non-negative numbers q, q', 6, T and <’

such that 1=q, ¢ Zx, 1+r'=q"4 ¢, and

(1) the mapping t—E,. s continuous from R' into L,

[ Et,alle=o(]t
(1) b+ 1>n(2"—r™") (equality permitted if r<<o);
(iti) |B*G(®@) [y =c[|B*" @[ @, where pe>1+-¢;
)
)

—%), where 0> ¢;

(iv) [ BYG(®) o Zel| B[ [ B @[, where 7'¢>1
(v) [BY(G(®) — G(W¥)) [.Z | B (@ — W) [lo ([| @ |-+ [ W)
XC([B* @, [B**W]L,),
where C (., .) ts bounded on bounded sets, and te>1;

and

(vi) either g is sufficiently small, or the initial datum ®,(.) is sufficiently

small in the energy norm e(B'®,(.)) of B*®,(.) and the norm
M(®o(.)) = sup(r+[£])*[| Lo (0) 15

(vil) there exists a function d'(.,.), bounded on bounded sets, such that
d' (e, B) > o0 as «, 3 — o, and such that if ®(.) satisfies the first three equations

indicated above for all values of t <<t,, then

([ BPG (@ (s)) [ a" (e (B D (L)), M(®(.))) [| D (s) |7,

where ae>1 [d' (., .) being independent of t,].

Remark. — The norm sup(1+ |t])¢||®,(¢) | can be replaced by a norm

which depends only on the Cauchy data at one time of the form
| B+ @, (£) || + | B*® (¢)[|;, where d is a constant dependent on m

and n, and the time ¢ is arbitrary.
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Note that Assumption (i) is implied by a simple arithmetical condition
by virtue of [4].

Proof. — The verification of the hypotheses of Lemma 3.6 proceeds
as follows : (a) is implied by (i); (b) is implied by (iii); (c) is implied by (v);
(d) 1s implied by (iii) and (v). In the case of Theorem 3.1, hypotheses (a)
and (b) are explicitly assumed, and (c¢) is immediate from (i) and (iii).
Hypothesis (d) may be derived as follows : by (vi1),

[B*G(®(5)) [a=d"[| @ (s) [I#
[where d' = d’(e(B’®,(.)), M(®,(.)))]; on the other hand,
| B+1@® (2) [ [| Bo+1 @, (5) Il?‘*—ft [| BG(®(s)) || ds;

by an estimation used earlier; thus

B0 (0) oz’ [ @ () |7
it follows that ||[B*®(t)|.<c"+ d'u(t)°, and substituting in (iii) there
results the a priort bound postulated in (d). Condition (e) i1s readily
deduced from (vi) and (vii), noting that ¢'<<e(B’®,(.)). Hypothesis (f)
and the supplementary condition of Corollary 3.1 are implied by (iv).
Condition (g) follows from (i1) by a Soboleff-type inequality (cf. [2]).

4. ScALAR RELATIVISTIC EQUATIONS. — While specific equations are
readily subsumed under the foregoing theorems, the methods involved
may be made more concrete and the particularities of the situation better
taken advantage of by a more direct approach using the methods of the
previous section. This is illustrated by the treatment in the present section
of scalar relativistic equations in (space) dimensions n=1, 2 and 3,
classified according to the dimensions.

A. n=1 : Only the case m> o can reasonably be treated, since it is
evident that even for the free equation, there is no decay when m =o,
in any L, norm. (However, the boundedness of solutions of the non-
linear equations under consideration, throughout space-time, could be
explored by similar methods.) Supposing now that m> o, differing
choices for the parameter a will lead to somewhat different, overlapping
but not entirely comparable results.

Consider to begin with the results which can be obtained with the
assumption that a=o0. In this case, |E,.|;=o0(¢=%), where

e(q)=¢q* if ¢>4, and m>o ~<it may be deduced that if 2-=¢g <4,

q—2

then ||E.o|,=o(|¢|=%) provided ¢(q) < 7

>- The existence of the
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wave operator may be established from either Lemma 6, or with adequate
generality for present purposes, Theorem 2 of I.  Assuming then that F(l)
is a C' function of the real variable I such that |F(l)|<Zg|l|” and
|F’'(I)|<¢|1|~*, then there exists a unique solution of the (integrated
form of the) differential equation
Oe=m*9+F(9),
for all times ¢ <<some time t,>— o0, and throughout space, which is
asymptotic to a given free solution @, of the equation
’ O @0 = m>Qy, )

in the sense of the conditions given in Lemma 6, provided ¢, decays

uniformly throughout space at the rate t%. In order to be assured that
the solution ¢ may be extended to a unique solution throughout space-
time it suffices to assume that F(.) has the form : F(l) = H'(l) for some
function H(.) which is semi-bounded [8]. Assuming this, the decay
of the solution as ¢ - 4 00 may be treated by specializing the inequality (3.4)
to the inequality

t
(. 1) 1@ (0) [l-= || @ () [|,+f (14 £ — s )= D[ F (@ (5)) [l ds,
where 1 4 r*'=g¢"+4 ¢*. Assuming that p¢'’=r, it then follows that

(.2) 1@ () [} < || @0 (0) [|,+-gf (1 1 £ — s)=@) (14 | s )= dis.

Introducing u (t) as earlier, it results that

(5.3)  w(t) = up(£) - gu(t)7 (x+ tl)“‘”f (1| £ — 5 )2 (x| 5 )70 ds

assuming further that pe(q) > 1, it results that
(5.4) u(t) Zuy (8) +gu(t)?.

To see that u(.) is continuous, note that if¢ > ¢/,
19 = @) o= [ [ En o[ F (@) [y ds = [ [F(@()) [ .

As shown in [8], the assumption that F= H’, where H' is bounded from
below, imples the global boundedness of the free energy, in particular
the boundedness of [B®(t)|, for ¢t€R!. In one space-dimension,
the L, norm for 2 =~r =00 is bounded by the norm in #,; this means that

1

1F(®(s)) uq:éo'( JALIS |r>"'éc"' 1B (s) [I5,

from which it follows that ®(¢) > ®(¢') in L, as t - ¢'.
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The numerical conditions involved here may be summarized as follows :
pg=r, pe(g)>1,  2=9<w, a+ril=qgl447  rq, ¢

Since p>/4 by assumption, there exists ¢ such that p>¢>4, and
choosing any such g, it follows that pe(q)>1. Now set

._q(p—l), __q(p—1),
SR — 7= plg—1’

then pqg =r, and it 1s easily checked that 1 +r*'=g¢ "4 ¢'. Finally,

‘]’=<I’—'1—;><I—é>_i>1, since p>¢q; and r=pq¢>1, since p>4

and ¢’ >1.
It follows that || ®(¢)|l.= o (|¢|7), for any v < %a provided that either g

or sup| ()|, (x —Htl)% is sufficiently small. The result may be
tER!

stated formally as follows.

Lemma 4.1. — Suppose n =1, m>>o, and that F(l) is a given C* function
of the real variable 1 such that |F(l)| <gl|l|P and F'(l)| <c|l|*, for
some p>>4; and suppose that F(l) = H'(l) for some function H(.) which is
bounded from below. Let 0, be a given finite-energy solution of the equation

1
O ¢ = m>@, which decays uniformly in space at a rate no slower than |t| *
(e. g. it suffices if the Cauchy data for @, at some time have two integrable
~deripatives).
Then there exists a unique global solution of the integrated form of the
equation
O¢=m¢+F(9)

which is asymptotic to ¢, near t = — o0, and whose L, norm (over space)

1
decays temporally at a rate no slower than |t| *+° for arbitrary ¢>o,

for any value of r in the range : p <r < é—'(p—:[), provided that either g
is sufficiently small, or sup || @, (¢) ||, (1 -+ |t])* is sufficiently small.
LER!

This has been fully demonstrated except for the parenthetical sufficient
condition for the required temporal decay of ¢,. To establish this, note
that for any time s,
cos[(t—s)B]

B2

sin[(t—s)B]

@, (1) = s

B2, (s) + Bd, (s).

Estimating in L as earlier, i1t results that

@0 () [lo = [ Eemsyt [ [ B@o (5) [+ [ Keme, 1 L [| B2 Do (5) s,
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where K, , is the kernel for cos [(t —s)B]B*; and both L_ norms here

1
are 0<|t|—§>.
It should be recalled that the assertion ““ ¢ is asymptotic to @, near t, ”’
is defined to mean that the three relations and associated conditions given
in Lemma 6, with — co replaced by t,, are satisfied. In the present case,

this means that the mapping t — ®(., ), ®(., ¢) is continuous in the energy
norm; that the following equations held (with convergence of the indicated
integrals in the energy norm) :

O(, )=, (., 1) —f B g @, 5) ds,

14
O(.,0)=d,(., t)—f cos[(t — s) B]F (@ (., s)) ds
and that @ (., t) decays in the indicated fashion, in the specified auxiliary L,
norm. ‘

The foregoing result is readily adapted to the case in which the data
are prescribed not at time — 0o, but a finite time; and this adaptation 1s
more significant, since Theorem 1 itself — but not its proof or the adapta-
tion to the Cauchy problem with data at a finite time — will be superseded
by the results to be obtained shortly through the choice a=1. The
advantage of the following corollary over a similar one to be derived from
. this choice is that less regularity is required of the Cauchy data.

Taeorem 4.1. — Suppose n=1, m>o, and that F(.) is a given C'
function of the real variable | such that |F(l)|=g|l|P with p>4, and
" F'(l)=o0(l") as|l| >0, for some finite p'; and suppose that F(l)=H'(l)
for some function H(.) which is bounded from below. Let f and g be given
functions on space in €, and I, respectively such that the solution ¢, of the
equation [09Q,=m>9, such that ¢,(.,t)=/f and ¢(.,t)=g satisfies the

inequality || o(., t)|,= o(]tl_’:ﬁ) for every &>o. (It suffices if Bf€L,
and g€L,.)
_ Then there exists a unique global solution of the equation

P (t)=costB f+ 2[13—”} —0—/; Sin[(t—];s)—]?—]F(d)(s))ds,

: for any r in the range p<:r<—4g(p—1) and || ®(t) ”r_0<|” 4+o> for

i
¥

8 is sufficiently small.

all 3> o, provided that either g or sup||® (1), (1 ]|t])
LER!

Consider first the existence of a unique global solution; it suffices to show
that the mapping ® - F(®) is semi-Lipschitzian from #, to ¥¢,, i. e. that

[F(®)—F W) =K (|B®[s, [[BE[:) [|B(® — W[,
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where K (., .) is bounded on bounded sets. Now by the mean-value
theorem F(®) — F(W)=F'(Q)(® — W), where

R=a®+bW¥W(a,b>o0,a+b=1);
since F’(.) is continuous, F’(.)=F(.)+Fi:(.), where |F,(})|=C,
and [f,(2)[ < Cs|1|”; and
[ F4 () — B, () [l Gy [ @ — W 2 C, || B(® — .

Now writing T for the operation of multiplication by F,(Q), it results that

F(O)—F(¥)=0G, () (® — W)+ T(®—W); T(®—¥)=TB(B(®—W)),
[ F (@) —F W) [ TB[[.[|B(® — W) [lo+ C} [ B(® — W) [|2.

Now the Hilbert-Schmidt norm of an operator bounds its conventional
norm (or bound as an operator in Hilbert space), and the Hilbert-Schmidt
norm of the product of a convolution and a multiplication operator, where
the convolution is by a function in L, and the multiplication is by a function
in L,, is easily seen to be Hilbert-Schmidt, and to have Hilbert-Schmidt
norm equal to the product of the L,-norms of the functions in question.
Since B! is the operation of convolution with a function in L,, by the
Plancherel theorem, it follows that

[TB |G| Fa () b= C [P [ C[| (| @] 4 W) [fo-
Now using the fact that the L, norm in one-dimensional space 1s dominated
by the #,-norm, if 2 = r <00, 1t follows that
[TB= | =C (B [+ [ B¥ )7

Observe next the sufficiency of the indicated condition for the decay

of ®,. Since @, (t) :: COS(tB)f—-I— siI;StB g,

(1@ (2) [l-=Ke,o [l [ BS[lor + [ Beso [l [| & [l

where r, g and ¢ are as in the proof of Theorem 4.1. Asshown there, ¢'>1;
also, ¢=(1—p ") (1 —q¢g") < :{—;a since ¢>/4; thus, 1<q'<2, and
since ||Bf|: and | Bf]. are finite, so also is ||Bfl,. Similarly, | gll, is
finite, and employing the bounds cited earlier from [ ], it follows that

(| ®(2) [|r= o([ t |4_:5> for all ¢ > o.

The remainder of the argument is virtually identical with that given in
the proof of Theorem 4.1, apart from the replacement of the time ¢ = —o0
by the time ¢t = o.
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Consider now the results of taking @ = 1 in the preceding section. Since
|E,i]l.=0 <i ¢ \_%>, it follows on taking r=g¢=c0 and ¢'=1 in equa-
tion (3.4) that
(%.5) 12 () [l = [ o (0) [l + Cf (11 6= ) | BF (@ () [ .

Now
| BE (®) [ C (| F (®) [+ | F' (@) grad @)

< C([F (@) L[ @[l [ F'(P) [l [[grad @ [|,),

where F,(l) = f(l—l), l# 0 and F,(0) =o0. In the conserved and positive

definite energy case, i.e. F(.) has the form F(l) = H'(l), where H(.) is
bounded from below, both [|®(s)|, and [ grad®(s)|. are bounded, and
1t follows that ’

(%.6) @@ (.. ®o(t) [[d,—l—geC]. (14|t —s|) Z[| @ (s) |22 ds,

making the same assumptions on the function F(.) as in Theorem 4.1,
and denoting by e the (conserved) energy, 1. e.

(| grad® (s) |2+ m2 | @ () 2 + || & (5) |I2. +fH(tI> (5))

(the latter integral extending over space).

Taking ¢ = ;in the procedure of Section 3, it follows that if 2= > 1,

2
1. e. if p > 4, then
u(t) Zuo(t) +geCu(t)r.

The same argument as in the case a = o now establishes the

Tueorem 4.2. — Let n, m, F(.), and @, be as in Lemma 4.1. Then there
exists a unique global solution of the integrated form of the equation

[do=m2>9 + F(9)

which is asymptotic to 9, near t= —o0, and such that || ®(t) Hw=0<]t]_§>,
provided that one of the following is suffictently small : g, e, and

1
2

sup ([ ®o (2) [l (= [2)*.

Remark. — More specifically, the statement : “ (%) holds if one of
@i, Q3 ..., a; is sufficiently small ” is defined as an abbreviation for the
statement : ¢ Given all of the a; except one, say a,, there exists a positive
number & such that if |a,| < 3, then (k) holds ”. In the present
situation, the ¢ may be chosen to be uniform for any compact set of the a;
excluding a,, but not necessarily uniform throughout the range of values
of the a;. '

Ann. Ec. Norm., (4), 1. — Fasc. 4. 61
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The decay obtained by Theorem 4.2 is sufficiently rapid to insure the
existence of the dispersion operator. It may clarify the earlier argument
towards this to illustrate it in the present concrete context.

“sin[ (¢ —s)B]
B
absolute convergence in the space d¢. In this space, the norm of the

integrand 1s

Consider the integral, [

v — >

F(®(s))ds, with regard to its

1

[sin[(£— $)B]F (®(5)) [ | F (@ (s)) Hzég<f| @ (5) w)“
ége%H(I)(s) [[P—1—_—o<!s{_p?;l> as |s|— oo.

It is easily seen that the integrand is a continuous function, so it follows
that the integral exists. The function ®,(.),

@, (1) = D, 1) —fww[:—s)ﬂF(d)(s)) ds

—®

1s therefore well-defined, and is easily seen to be differentiable in the sense
indicated in Lemma 3.6 with derivative

b, (1) =d, (1) —fwcos[(t —5)B]F (@ (s)) ds,

the integral here being convergent absolutely in ¢,.
The appropriate decay for | ®,(t)||, follows from the estimate

1

1900 o ol 75) s [ B L B (@ ) [ s
ol [T re—sy a1 T as=ojer ),

which serves first to show that || ®,(¢) ||, is finite, and then to establish
the decay. It follows from the definition of ®,(.) that ®(.) 1s asymptotic
to®,(.)ast—>00:

@ (1) =P, (¢) +I”M‘B—LB]’F(@M) ds,

o () :fl')l(t)+fwcos[(t~s)B]F((I)(s)) ds,
L
the integrals being absolutely convergent in 4¢, and #, respectively.

This result may be summarized as

Cororrary 4.2 A. — With the hypotheses and notation of Theorem 4.2,
there exists a (unique) function @, with the same properties as ¢, to which 9 is
asymptotic as t — -+ c0.
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As earlier, it 1s possible to adapt the results obtained in the case in which
data are prescribed at time ¢t = —o0 to that in which they are prescribed
a finite time.

CoroLLArY 4.2 B. — With the hypotheses and notation of Theorem 4.2,
there exists for any given time t, a unique global solution of the integrated
form of the equation

O9¢=m*o+TF(¢)

whose Cauchy data at time t, are the same as those of 9,, and this solution
decays at the rate :

10 (o) [=o(]e[%).

As t > 400, ¢ ts asymptotic to (unique) solutions 9. of the free equation,
satisfying the same conditions as @,.

Remark. — The class of Cauchy data in question here, which have finite
energy and are such that the corresponding free solution ¢, (having the

1
given data at a specified time) satisfies the inequality || ®,(¢) ||, = 0<lt|—i>,
has the convenient property of being invariant under both finite and infinite
temporal propagation, provided either the data or the *“ coupling constant ”’
g are sufficiently small. More specifically, the free-to-interacting, and
interacting-to-free wave operators, and corresponding dispersion operators,
have this invariance feature. This 1s of course not the case for the data
of compact support of any designated regularity, or those whose Fourier
transforms have compact support; the former is invariant only under
finite temporal propagation, for suitably restricted types of regularity
and the latter is in general invariant only for the free equation.

1
2

B. n=2: In this case the free solutions typically decay at the rate |¢|
when m = o, and at the rate |¢[™* when m>o0; only the latter case will be
treated here. Taking a =1, and noting that || E, .|, = o(/¢|™), it results
as earlier that ‘

[1®(6) || = (| o (2) [+ cf (14| ¢ — s )=t [| BF (@ () [} ds.

Now assuming that the energy remains bounded for all times, it follows
as in the case n = 1, but with the changed value ¢ = 1, that -

w(t)y Zuy () + cu(t)r=2 (if p>3).

Again the energy norm dominates all L, norms for 2 =r <<00; it does not
however dominate the L_ norm, so that w(.) need not be continuous.
It is therefore necessary to modify the procedure so as to employ in place
of the L, norm an L, norm for a sufficiently large finite value of r.
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Noting that || E, .| < const.|| E,, H;—; since ||E; .| is bounded as
a function of ¢ by the Plancherel theorem, and setting ¢ =1 — ;: it results
that, with the new definition of u(¢) :

a(t)=sup (15[ @ () [

w(t)y Zuy () 4+ cu ()= if (p—z><“§-\)>1.

From this estimate and the continuity applicable for r <oo, it follows
as in the case n =1 that

Tueorem 4.3. — Suppose n=2, m> o, and that F(l) s a C* function
of the real variable 1 such that |F(l)|=g|l]r, |F'(I)|<=g[l|*, for
some p>3. Suppose also that F (1) = H'()) where H(.) is bounded from
belosy.

Let ¢, be a given finite-energy solution of the equation

O 9y = m2q,
such that

|tl1—5||<p(.,t)[[,:c<oc (teRY).
Then if either g, c, or the energy of 9, ts sufficiently small, there exists a unique
global solution ¢ of the (integrated form of the) equation
O9¢=m*¢+F(9)
which is asymptotic to ¢, near t = — 00, whose L, norm decays like t*<1_;>,

as |t| o0, and which ts asymptotic near t= 00 to a- finite-energy free
solution, satisfying the same decay lasw.

As earlier this result may be adapted to the case in which data are pres-
cribed at a finite time instead of the time — 0o, in full analogy with the
relation of Corollary 4.2 to Theorem 4.2.

C. n=23, m>o : Taking a = 1, and noting that
1Eeily=olle™7)  for g4,
it follows as earlier that

t

100 (=1 foe [ Cle—s) T BF@ () [ s

assuming boundedness of the energy, it follows that

| BF(@(5)) [l = c (| F/(®(5)) [lgr+ [ F (@) [lgr),  —=
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[Fi(l) =F()I* for l5£0; F,(0)=0]; setting e =1 — q it results that

u(t)=uy(t)+ cu(t)e, p:p_l_i

"

provided p(l — é>§1 The constant ¢ in the last inequality is propor-

tional to the constant g such that |F(l)|==g|l|r, |F'(l)|<"g|l|"*, and
to a positive power of the free energy e of ¢, (= total energy of ¢, since ¢ is
asymptotic to P, near { = — o0).

It now needs only the continuity of u(t), together with the assumption
that a certain monomial in g, ¢ and sutpluo(t)’ 1s sufficiently small, to

conclude the global existence of ¢(.) and its satisfaction of the estimate

1

lo(., 1) ]]w——:o(]t]—H;), |t| -o0. However, in general this continuity
will fail, nor will the use of an L, norm with r << oo alter the situation,
since when n = 3 these norms are not bounded by the energy norm. It is
necessary to modify the basic Hilbert space H,,, in which the solution
1s sought; this necessitates a further restriction on ¢,, and depends on the
development of suitable a priori estimates for higher-order derivatives
of ¢. It suffices for the present to take b =1, and to assume further
that B®,(.) is again of finite energy. ‘

In order to use these assumptions in showing the continuity of u(¢),
1t 1s necessary to show that the solution ®(.) which is asymptotic to @,(.)
near t= — o0, likewise has its values in the space #Cy,,. To this end,
Lemma 3.6 may be employed. Suppose r=o00, ¢>4, and ¢’ is such

that - + — = 1; let G denote the map, ¢(z) > F(¢(z)). To show that G

1s semi-Lipschitzian from 4, -, it suffices to show .that (¢) holds, and
that ||®||, < const. ||B*®|/,. The latter inequality follows by Fourier
analysis combined with the Schwarz inequality. To treat (c), note that
IBf [l <[ grad f{l 4[| f[.. Now
[| grad (F (@) — F (W) [p=[| F'(®) gradg — F' (W) grad W' [},
= || (grad @ — grad W) F' (@) [+ [| grad W' (F' (@) — F' (W) [l>;
[| (grad ® — grad W) F' (@) [l || grad @ — grad W' [|, || F' (@) [[.,
Zc||B(@—=W) [ @[ Z || BH(@ W) L[| @27

since m>o0. For the remaining term.
[| grad W (F' (@) — F' (W) [ [ grad W [|, | F' (@) — F' (V) [..;
[F(@) —F W) [l @ = W[ [F Q) [.Ze|® =W (I ®[.+1F[)"
where Q is as earlier, and the assumption is made that F is C* and that

|F" ()| < c|l|r?; finally, | ® — W] < C|B*(® — ¥)|,. Similar estimates
apply to [|F(®) — F(¥)|., and it follows that (c) holds with == p — 2.
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1
sin{t(mz—k—)ﬂ)z} .

m2+y2 18
easily seen to be continuous into L, (R?); applying the L,-Fourier trans-

Consider now condition (a). The mappings ¢—

form, as 1s possible since the assumption that ¢ >4 implies that ¢ < g,
it follows that the mapping ¢t - E, , is continuous into L, (R?).
For condition (b), note that

| BE (@) [l G (]| grad F (®) [[ o+ || F () [} ;
| grad F () [l= || F' (@) grad @ [l || F' (@) [} || grad @ [,

with é, = ; + %’ by Holder’s inequality;

(7 @)z [1o) 2o pe o,

since f|<1)|2éconst. | B®

;. The term | F(®)[l, may be estimated
in a similar fashion, and it follows that (b) holds with g = p — qg,

Now setting ¢ =1 — ;], conditions (d) become

< 2><1 I>>2 ! ( 2)e>1
- = - - ) - .
r q q q9 P

In case p>3, the second condition is readily satisfied by choosing ¢
sufficiently large, in which case it is easily seen that the first condition is
also satisfied. In order to treat the interesting case p = 3 (as well as some
lower values), a variant of Lemma 3.6 will be established.

Lemma 4.2, — Let ®,(.) be a given finite-energy abstract solution of the

equation @, +B*®,=o0 (n=3), such that ||®,(1)].=c|1+[t), t€R!
and such that (each component of) grad ®,(t) s also of finite energy and has
its L, norm similarly bounded. Let F(l) be a given realvalued C* function

of the real variable 1-such that |FV ()| Zc|l[P~ (j=o, 1, 2) for some p > g
Then the concluston of Lemma 3.6 s satisfied with b= 1 <and r=o00,¢= 2)

Proof. — The problem is to show that not only does ®(.) exist as
a continuous mapping into #,, etc., as given by [1], but that under the
additional hypotheses concerning grad ®,(t), ®(.) is continuous into ¥,
®(.) is continuous into #,, etc. To this end it suffices, by an argument
given in [8], Section III, Lemma 3.1, to show that the equation

W (¢) = grad @, (¢) +fl ﬂgﬂl F'(® (s)) W (s) ds,



DISPERSION FOR NON-LINEAR RELATIVISTIC EQUATIONS. 489

where @ (.) is the solution obtained for b = o [which equation is the abstract
integrated form of the equation for grad ®(¢)] is soluble, along with the

corresponding equation for W(), in the energy norm. According to
([8], § 3 of Part I), these equations are appropriately soluble provided

f (W (= 8) Ko W (s) [| ds < e,

where W (s) 1s as earlier, and K, denotes the mapping

(lplh ‘F‘l)_>(07 F’((I) (S) 1}?1)

from #¢, P #K, into itself.
Since W(s) is unitary, the integral in question reduces to f | K| ds.

Now
[F (@)W o | F (@) [, [|¥ [oZe [ F (@) [, [ BW [ (since m > o),

showing that | K,|<=Zc|F'(®(¢))].. Thus it suffices to show that
f |®(s)||"*ds<<oo. Now the general theory of (I) gives the inequality :

[|®(s) Hw=o<|s|_%> near s = —-00, so that the last condition is satisfied
if (p—1) <§> > 1, which is the case. (End of proof of Lemma 4.2.)

Resumption of proof of Theorem 4.3. — It has now been established that,
under the assumptions of Theorem 4.3, there exist ®(t) and ®(¢) defined
for t <t, and satisfying the conditions given in Lemma 3.6. The remaining
hypotheses of Theorem 3.1 may be verified as follows.

Conditions (a), (b) and (c) are immediate, with é=c¢. Condition (d)
follows, with ¢ = o, from the estimations involved in the verification of
condition (b) of Lemma 3.6, on noting that |B®(s)|. remain bounded
by the assumptions made (of the boundedness of the energy, > [ B® (s) [3).
Condition (e) 1s satisfied if a certain monomial with positive coeflicients
in the energy of ®,, the supremum of |1+ |t])*|®(¢)|., and g, where
|F(ly = g|l|P (j=o0, 1, 2), is sufficiently small, and hence if one of
the three indicated quantities is sufficiently small, the other two being
held fixed. Condition (f) has already been checked.

The foregoing may be summarized as follows.

Tueorem 4.4. — Suppose n%S, m=>o, and F(l) s a C* function of
the real variable | such that |FV(l) = g|l|"~ (j=o0, 1, 2) for some p> g
Suppose also that F())=H'(A), where H(.) is bounded from below.
Suppose 4 < q << o0, and let e = 1 — é
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Let ¢, be a given finite-energy solution of the equation O 9,= m*®,, m > o,
such that grad ¢, is also of finite energy, and suppose that the L_ norms
of ®,(t) and of the components of grad ®,(t) are bounded by const. (1 + |¢|)~°
Then if either g, or @, in a certain norm is sufficienily small, there exists
a unique global solution ¢ of the abstract integrated form of the equation

O¢ =m29 + F (9),

which is asymptotic to 9, near t =— c0; whose L, norm decays like |t|™;
and is asymptotic near t =00 to a finite-energy free solution satisfying the
same decay law.

The decay law |[®( H =o(|t])"* is materially weaker than the generic

result || ®,(¢)], = ol It > for sufficiently regular free solutions; there
is however no apparent reason why the solutions of the non-linear equation
should decay significantly more slowly than the corresponding free equation.
Indeed, an improved decay estimate can be obtained through the consi-
deration of the case a =2 in Theorem 3.1, with a positive value for g,
or by a related argument from Theorem 4.4 as in

CoroLLARY 4.4 A. — With the notation and hypotheses of Theorem 4.4,
suppose that p > % Then

_3
3

(@@ [o<e+[thF  and ([ @) [l Zeli+ )
Proof. — Writing now

o () ‘Do(t)-l-f sin (t——s)B]

B2F (® (s)) ds,

and taking L. norms, it follows that

@ (0) o2l @0 () [l e [ (1 [—s))2 | BF (@ (s)) |,

—

<noting that || E,.|.=Z¢( I—l—ltl—%). To conclude the argument, it
suffices to show that ||B*F®(( [[1=o<—7>, for Lemma 3.1 then
applies. Now
B:F (@ (s5)) = (m?— A) F (® (5)) ,
—m2F (D (s)) — F' (@ (s)) A® (s) — F" (D(s)) (grad @ (s))?;

me [ F @) [ [10(5) oz @ (5) 17

JF"(®(s)) (g racl(l)(s)) i || F" (@ (5)) || || grad @ (s) || Zc|| @ (s) [|£7%;
[F(®(s))A@(s) L[| F (R (s)) [l2[| AR (s) [

1

1@ ) e [0 [0=0) Ze@ @ @
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To conclude the proof it therefore suffices to show that [[AD(s)|, is
bounded as a function of s, for | ®(s) [|27° = 0<s_(1—<17>(p—2)>, and 1f ¢ 1s suffi-
ciently large and p>§ as assumed, the exponent in question exceeds g

To this end, apply B* to both sides of the defining equation for ®(.),
and move B? through the integral sign, as is valid in case the resulting
integral is absolutely convergent. It follows that

1B 0) ozl B2 0 (0 [ BE (@) s

Now
| BF (@ (5)) o< | grad F (@ (S)) [+ | F(®@ (5)) |23
|| grad F (@ (s)) [l.= | (grad @ (5)) F' (@ (5)) |}
Zcl|[F (@ () [[.Z || @ (s) a7 L e+ s])~lr),

which is integrable as a function of s. A similar estimate shows that
|F(®(s)) |l is an integrable function of s, and completes the proof
that |B*®(s)|l., and hence ||[A®(s)|, is bounded as a function of s.

The proof that @, () satisfies the same decay law as does ®(¢) (in L,) 1s
- similar to that given earlier for the same conclusion with other values for
the parameters.

The interesting case in which p =3 is not covered by Corollary 4.4 A
but may be treated as a corollary to Theorem 3.1 with the value a = 2.

Cororrary 4.4B. — Suppose n=3, m>o, F, and ¢, are as in

Theorem 4.4, with ¢ = g, and that p>3. Then the same conclusion holds

with < replaced by >-

Proof. — Consider first Lemma 3.6, with the values a=1, b=1,e¢= g
and observe that the hypotheses are satisfied a fortiori by the same argument
as 1n the case e =1 — ;} In applying Theorem 3.1, the only hypothesis

which is not immediate or previously established i1s (d). Employing the
same estimates as those for the preceding corollary, it follows that it
suffices to show the existence of an a priors inequality of the form

|A® (s) o= ci+ e u ()0,

with constants ¢, and ¢, independent of the interval on which the solution ¢
is considered. The argument of the preceding corollary shows that if
¢(t) = sup||B*®(s) [, then
st
t

V(t)é%+cf 1@ (s) [l ds = & + ou (£),

—»
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. * —r=(} . o : .
since f (1 s]) 1(2>(Jls <<oo. The decisive limitation on p 1s

implied by condition (c), where the condition pe>>¢ implies that pAI
‘which 1s satisfied for p > 3.

~As earlier, similar arguments may be applied to solutions of the Cauchy
problem with data given at finite, rather than at infinite, times, as in

Cororrary 4.4 C. — Suppose n, m, and F are as in Theorem 4.4,
with ¢ = gs and let there be given at time t finite-energy Cauchy data such

that the corresponding solution of the (abstract, integrated form of the) equa-
tion [0 ¢y,=m>¢, has the same properties as are hypothesized for ¢ in
- Theorem 4.4. (This ts the case, e. g., if a certain number of derivatives
of the data exist and are in Ly N L, over space.) Then if p>3 and if either
the data are sufficiently small (in norm) or the coupling is sufficiently weak
(i. e. the constant g such that |FV (1) <_| g|l|F~ is sufficiently small), there
exists a unique solution ¢ of the (abstract, integrated form of the) equation

O¢=m*¢ +F(9)

having the prescribed data, globally in space and time; this solution decays

_z
at the rate | ®(t)|.= o<|t| 2); and as t— 400, s asymptotic. to solutions
of the free equation satisfying the same regularity and decay conditions as @,.

- The argument is essentially the same as earlier.

- It would of course be highly desirable to extend these results to ones which
are independent of the weakness of the coupling, or norm of the initial
datum, 1. e. non-perturbative in nature. A prior: information concerning
the temporal decay of low-order norms could be used to make such an
extension, but such a priort results are presently known only in special
cases (cf. the next section, and the references to the work of Strauss therein).
Some non-perturbative results can be established by using inequalities
of the form-

u () Zuo () +cu()’,

where o<1 rather than >1 as earlier; they are quite insufficient for
establishing the existence of dispersion, but more precise than the exponen-
tial bounds typically derivable from general theory. An example of this
genre is

Tueorem 4.5. — With the hypotheses and notation of Theorem 4.4,
and the assumption that p <5, the solution ki of the (integrated form of the)
equation

Oy =mio+F(¢)
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having the same Cauchy data at a prescribed time t, as @, Thas the property

that the map, t — (®(1), ®(1)) is continuous from R' into 3¢, P Iy, and
| @) ]l.=o(|t]P), 8 being arbitrarily small.

Proof. — By the earlier theory, it suffices, for the demonstration that

®(t)€ ¥, and D(t)€d,, and that these functions of ¢ are continuous,
to note that this is initially the case at ¢t =t,, that the mapping ® - F(®)
is semi-Lipschitzian from #¢, into #¢,, and that conditions (i) and (ii)
of Lemma 3.4 hold, with N((f, g))=fl.; and to show that [|®(1)].
is bounded on every bounded interval. The only non-trivial point in
question here is the local boundedness of ||®(¢). ||; this follows from the
estimate : || @(¢)||.=o(|t]*); it will suffice therefore to establish this
estimate.

Writing as earlier.

19010000 ot | [ 1Bl 39 @ ol |

where - + =, =1 and q > 4; setting e =1 — 2, and
q q q
w(t)y= sup [|[®(¢)|l.(x+]2])®
fe<ls<t
(assuming, as is evidently no loss of generality, that ¢ > t,), it results that
w(t) Zug(t) + el (1) [ [E— s B @ () [ | F' (@ (5)) [l b,

it

where
1

"

P IE @) fpze( [0 )

I 1
2 9
writing (p—1)¢’=d+4[(p—1)q¢’"—d], where 2=d=6, and noting
thatf|fb(s |*ds is bounded by Soboleff’s inequality and energy conser-

vation, as is || B®(s) ||s, it results that
t
w() Zun(0) + ot e[ fe—s)) (o [s ) dsu (o),
. to ’
where for an appropriate choice of d in the indicated range « = p—1— qif

satisfies the inequality o = a« <Z1, provided p is in the hypothesized range.
Noting that if @ and b are arbitrary numbers in the interval (o, 1), then

. ; , ,
f(1+|t——s|)—“(1+]s|)—"dséf]t_sl—a]sl—bdszcti—a—b;
123 7 .
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if t,= o, as it 1s evidently no essential loss of generality to assume, it follows
that ’

u(t) Zuy (8) +c(i+|¢])Yu(e)e, Y=1— ac.

To reduce this inequality, define ¢(¢)=u(t)(14|t|); on choosing
I— &x

B=——— — > the inequality for u(t) is equivalent to the inequality

v () <o (L) +co(2),

which implies that ¢(t) is bounded, inasmuch as ¢,(¢) is such, and « <1.
This result gives for || ®(¢) .. the inequality

1—ae 1+4-¢€

(@) [|loLe(+ )= (1 [2]) =% =c(r+|£]) =%

and the exponent EE—Z may be made arbitrarily small by choosing ¢ suffi-
ciently large.

5. DiscussioN oF FURTHER DEVELOPMENTS. — A. The case of zero mass. —
The foregoing methods remain applicable when m =o0, but the results
are weaker and less general, owing to the less rapid'decay of the free solu-
tions, to the elimination of the boundedness of the L,-norm over space
of the solution at a fixed time (which in the case m = o does not follow
from energy boundedness), etc. For example, an application of Theorem 1
of I to the derivation of an analogue to Lemma 4.1 may be made with
the choices : N(u)=|®|, if u=(®, ¥), r=6-+3, where & must be

. 2 . .
chosen sufficiently small, and ¢=1 — but this results in a slower

decay rate, for a less convenient norm, and in addition these choices are
effective only for p > 3.

On the other hand, the a priori estimates obtained by Strauss [(9], [10])
appear to depend on the vanishing of the mass, and provide major simplifi-
cations in the treatment, leading in fact to non-perturbative results for
a certain class of relativistic equations.

B. The question of optimal linear decay rates. — As shown by Brodsky [1]
in the case m = o and later authors for m > o, sufficiently regular solutions
of the equation [J¢=m?¢ decay at the rate |¢(z,t)|=o(|t]™),

n —sgnm

e=n— » uniformly throughout space. The study of the asym-

ptotics of the non-linear equations would be facillitated by a more rapid rate
of decay, but it is probable that these estimates are optimal in the rather
strong sense that any (finite-energy) solution which decays at a more
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rapid rate must be identically zero. Added in proof: This conjecture has
now been confirmed by recent work of W. Littman.

C. Unresolved special equations of interest. — In the case m > o, the fore-
going results are fairly complete in the perturbative realm as regards
power interactions, i. e. the case F(l)= gl?, where p is an odd integer,
in the dimensions n=1, 2, 3, except for the case n=1 and p=3. Itis
probable that a combination of the present results with the methods
employed in I for dealing with higher values of n will permit the extension
of these results to the case n > 3, which should provide some mathematical
illumination.

In the case m = o, the situation as regards decay and dispersion remains
unclear for the interesting case n=p =23, despite knowledge of the
existence of regular global solutions and the applicability of Strauss’
a priori estimates; conceivably, just as in the case of the Schrédinger
equation with a Coulomb potential, dispersion does not take place in a
strict sense; indeed, this relatively singular potential is connected with
a vanishing mass. An extremely interesting equation, which combines the
complication m = o with that of singularity of the non-linear term relative
to the energy norm (but in a different way from earlier, i. e. through the
intervention of first-order derivatives in the non-linear term) is that of
Yang and Mills [11], which is in addition notably symmetrical, a feature
which should facillitate the development of a priori estimates other than
that deriving from the conservation of energy.

D. Regularity of the S-operator and the inverse problem for dispersion. —
As shown in [6], the tangent space to the solution manifold of any of a
general class of evolutionary partial differential equations, in the theory
of infinite-dimensional manifolds, is naturally isomorphic to the solution
space of the first-order variational equation in the vicinity of the original
solution in question. It can be deduced that when the S-operator exists
and is sufficiently regular, its Frechet-Gateaux differential d,S at a point o
(= solution of the free equation) is the S-operator S, associated with the
linear equation

OY=my+F(9)¢,

where

9 (X) = 90 (X) -+ f Dyt (X — X) F (5(X)) da’

defines ©(X). At this point it could be shown that S is a differentiable
map relative to appropriately chosen spaces, and that S, is itself
differentiable as a function of g,, etc.
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This aspect will not be developed here, but 1t is relevant to the natural
question of whether in principle the function F is determined by the
operator S, 1. e. the so-called inverse problem of dispersion theory. A basi-
cally affirmative response is physically indicated and is confirmed in the
simplest analogous linear cases, notably that of potential scattering in
one dimension. The continuity of the solution of a non-linear equation
as a function of the non-linear operator involved has been treated in [6];
there is little doubt that this treatment could be extended to differentiability
considerations, including that of J;S, in the vicinity of ¢,=o0, and with F
restricted to lie in an appropriate space such that S exists and is adequately
regular, as may be set up on the basis of the present results. A first step
towards the inverse dispersion problem is the treatment of the univalence
of the derivative ¢;S at the point F—=o0. This derivative may be
computed as the mapping ’

s)Bj

G —Tg, where Tg: @ W,, W, (£) __f sin| G (D, (s)) ds;

B

the univalence is then the question of whether G = o provided
@ M — B
IwMI]FU—WG(QO(s)) ds —=o.

It 1s plausible that this should be the case for an appropriate class of non-
linear functions G, such as perhaps those of the form

GeCs G'(h>0, G=H with HO=o; |G()|=Zglll,

inasmuch as an analogous linearized questlon in a non-relativistic setting
(1. e. a question of time-dependent potential scattering) is that of whether

the vanishing of [ e""V(t)e " dt implies the vanishing of V(.). This

is indeed the case if V(t)> o, which condition is analogous to the condition

G'()>o0

REFERENCES.

[1] A. R. Brobpsky, Asymplotic decay of solutions to the relativistic wave equation...,
Doctoral dissertation, Department of Mathematics, M. I. T., Cambridge, Mass., 1964.

[2] A. P. CALDERON, Lebesgue spdces of differentiable functions and distributions (Proc.
Symp. Pure Math., vol. IV, 1961, p. 33-49; Amer. Math. Soc., Providence).

[3] W. LitT™MAN, The wave operator and L, norms (J. Math. Mech., vol. 12, 1963, p. 55-63).

[4] S. NELsoN, Asymplotic behavior of certain fundamental solutions to the Klein-Gordon
equation, Doctoral dissertation, Department of Mathematics, M. 1. T., Cambrldge,
Mass., 1966. .



DISPERSION FOR NON-LINEAR RELATIVISTIC EQUATIONS. 497

[5] 1. SEeAL, Quantization and dispersion for non-linear relativistic equations, p. 79-108;
Proc. Conf. on Math. Theory of El. Particles, publ. M. I. T. Press, Cambrigde,
Mass., 1966.

[6] 1. SEGAL, Differential operators in the manifold of solutions of a non-linear differential
equation (J. Math. pures et appl., t. 44, 1965, p. 71-132).

[7] 1. SEGAL, The global Cauchy problem for a relativistic scalar field with power interaction
(Bull. Soc. Math. Fr., t. 91, 1963, p. 129-135).

[8] I. SEGAL, Non-linear semi-groups (Ann. Math., vol. 78, 1963, p. 339-364).

[91 W. A. StrAuss, La décroissance asymptotique des solutions des équations d’onde non
linéaires (C. R. Acad. Sc., t. 256, 1963, p. 2749-2750); Les opérateurs d’onde pour
les équations d’onde non linéaires indépendantes du temps (Ibid., t. 256, 1963,
P- 5045-5046).

[10] W. A. StrAuss, To appear in J. Functional Analysis.

[11] C. N. Yang and R. C. MiLLs, Phys. Rev., vol. 96, 1954, p. 191.

(Manuscrit re¢u le 15 janvier 1968).

—— O C—————



