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| PROLONGATIONS
OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS : L

A CONJECTURE OF ELIE CARTAN

By Huserr GOLDSCHMIDT (*).

This paper is motivated by the work of Elie Cartan on exterior
differential systems which culminated in the Cartan-Kiahler theorem
for involutive systems. In his book [3], Elie Cartan attacks the problem -
of finding solutions of systems of partial differential equations which
are not involutive and asks the following question : “ étant donnée une
solution particuliére d’un systéme différentiel donné, peut-elle étre obtenue
comme solution non singuliére d’un systéme en involution susceptible
d’étre déduit du systéme donné par un procédé régulier ?... Le procédé
régulier auquel il est fait allusion repose sur la notion de prolongement
d’un systéme différentiel ’. This is a fundamental problem : determine
conditions under which a system can be  prolonged ’ to a compatible
system which admits the same solutions as the given one and under
which such a system can be deduced from the original one in a finite
number of steps. _

Cartan distinguishes two cases. First, if the system is compatible,
Cartan affirms that, by prolonging a system a sufficient number of times
one obtains an involutive system whose solutions are the solutions of the
original system ‘¢ sous certaines conditions qu’il n’est du reste pas facile
de préciser . In 1957, Kuranishi [8] established this result, which is
known today as the Cartan-Kuranishi prolongation theorem. In the
case of an incompatible system, Cartan says that one must add to the
given system equations expressing the compatibility conditions of the
system and its prolongations.

(*) This work was supported in part by the National Science Foundation grant GP 5855.
Ann. Ec. Norm., (4), 1. — Fasc. 3. ' ) 53
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In this paper, we deal only with linear systems of partial differential
equations and show that Cartan’s conjecture holds under certain regularity
conditions. Our regularity assumption is satisfied in particular by
constant coefficient equations.

If a system Ry of linear partial differential equations of order k satisfies
our regularity condition, we show that, by prolonging the system m,— k
times and by adding to this prolonged system of order m, the finite
number of equations expressing the obstructions to extending a solution
of order m, to a solution of order m,- l,, we obtain a system R of
order m, which is compatible or formally integrable and which has the
same solutions and formal solutions as the original system R, (Theorem 1).
This new system 1s obtained from the original system R, by adding
finitely many equations to the system R,. By the Cartan-Kuranishi pro-
longation theorem, one can choose m, such that the system RY is
involutive. ‘

In paragraphs 1 and 2, we define the symbol cohomology of a partial
differential equation introduced by Spencer [15]. The vanishing of these
cohomology groups was shown by Serre to be equivalent to Cartan’s
notion of involutiveness. For a regular equation Ry, we also introduce
the cosymbol cohomology, which was already considered by Quillen [14]
under more restrictive hypotheses on Ri. Most of the results of this
paper including the prolongation theorem (Theorem 1) follow from the
8-Poincaré lemma for the cosymbol cohomology (Lemma 3). Our proof
of this lemma is based on the work of Grothendieck [7] on the Hilbert
scheme in algebraic geometry.

The remainder of this paper is devoted to other consequences of
lemma 3 and of our prolongation theorem, most of which are extensions
of certain results of Quillen [14]. In paragraph 4, we define the naive
Spencer sequence of a regular partial differential equation R,; our construc-
tion 1s slightly different from Bott’s (see R. Bott [1], D. G. Quillen [14],
D. C. Spencer [15] and S. Sternberg [16]). We prove that under certain
regularity conditions the cohomology of the naive Spencer sequences
stabilizes (Theorem 2); we are thus able to define the Spencer cohomology
of equations which are not necessarily formally integrable as the cohomo-
logy of one of the stable naive Spencer sequences. Furthermore, the
stable naive sequences are formally exact (Corollary 2) and by our pro-
longation theorem, under the hypotheses of Theorem 1, the Spencer
cohomology of R, depends only on the formal solutions of R, (Corollary 1).
Finally, we show that the cohomology of the sophisticated Spencer sequence
of a formally integrable equation is isomorphic to the Spencer cohomology
of R, a result due to Quillen [14].
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In paragraph 5, using Spencer’s estimate and our prolongation theorem,
we prove that the analytic stable naive sequences of an analytic partial
differential equation, satisfying the regularity assumption of Theorem 1,
are exact. : y ‘

Throughout this paper, we use the notation of [5]. The author wishes
to express his gratitude to Professors D. Mumford and S. Sternberg for
several helpful conversations concerning this paper.

1. DirrereNTIAL OPERATORS. — Let X be a differentiable manifold
of class C* of dimension n. We shall denote by T the tangent bundle
of X and by T* the cotangent bundle of X. If E is a vector bundle
over X, we denote by E, the fiber of E at z€ X, by & the sheaf of germs
of sections of E and by J.(E) the bundle of k-jets of E; we set J,(E) = o,
if k<<o. We shall always assume that the fibers of a vector bundle have
the same dimension. We have a natural sheaf morphism j;: & = J«(&),
a morphism p,;(ids) : Jiesi(E) - Ji(J4(E)) of vector bundles and an exact
sequence

o—+S"T*®E—E>Jk(E) E':>'.Ik_1(E) —>0

of vector bundles over X (see [5]).

Throughout this paper, E, F will denote vector bundles over X. Let
¢ : Ji(E) > F be a morphism of vector bundles; such a morphism ¢ is a
differential operator of order k from E to F. This morphism induces
sheaf maps ¢:J4(6) -~ F and @eoj,: &~ F; the latter map is also
called a differential operator of order k from E to F. A solution of ¢
is a germ s €& belonging to the kernel of poj:; we denote by S the sheaf
of germs of solutions of ¢. The map ¢ also induces a morphism
Ji(9) : Ji(Ji(E)) > J,(F) of vector bundles. The I-th prolongation
pi(9) : Jisa(E) = J;(F) is the composition J;(9)e p;(ids); this map induces
a morphism @(9): SS“T*QE - ST*Q F; the morphism a(¢)=a,(9)
is called the symbol of ¢. In particular, if ¢ is the identity map td; of Ji(E),
the map o,(id;) induces a morphism ¢:S*T*QE - T*Q SIT*QE
(see [5]). We set

Rii=kerp; (9), Q;=cokerp, (¢), grri=kera; (9),
pi— cokera; (9) for [>o,
and
Ri—= Jk+l(E), ,Q[: o, Skl = S/H'IT*@ E, pi=o for {<<o.

Let At be the cokernel of the map T : Rivsrr & Riss induced by the
map Ty : Jk+l+1 (E) - Jk+l<E)-

DeriniTion 1. — A partial differential equation of order k on E is

the kernel R; of a differential operator ¢ : J,(E) - F of order k.
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In particular, any sub-bundle of J:(E) is such an equation.
The following diagram is commutative and exact :

o o o
o St SHTQEZA ST QF —» py——>0
€ € € l&
o R Tret (B) 225 5, (F) Q. o
Tt-l—1 T k+-1—1 T—1 l Tl—1
0 ——> Rpppoy — Jiprs (B) 2283, (F) — Qi —>o
v
Prai 0o 0o

o

In fact, this diagram induces maps ¢:p,—~Q, 7.,:Q;~ Qs such
that the last column is exact. Moreover, the diagram induces a mono-
morphism t: kg — p; such that, if ¢, is the kernel of m.,: Q= Q. 4,
the sequence

0—> hk+1_1—‘>p[—s> q—>o
1s exact.

Derinttion 2. — We say that a differential operator ¢:J:(E) - F
is regular if, for each I>o0, the morphism p;(¢): Jii(E) = J,(F) has
constant rank.

We shall henceforth assume that the morphism ¢:J,(E)>F 1is a
regular differential operator.

The following diagram is commutative by Proposition 4.3 of [6] :

‘ Pltm (P)
Jrrtzm ‘\E) S Jiim (F) Ql+m Y

(1) l P (i) P i) { P (1)
v

T (Jer (B)) 2259 5, (3, (F)) ——> 3 (Q) ——> o0

Because ¢ is regular, Q, is a vector bundle and so J.(Q.) is well-defined
and the bottom row is exact. Therefore the diagram induces a map
pn(td) : Qum— Jn(Q:). It is easily seen that the diagrams

Ques 5211 (Qu)

(2) T T

Qi ——Qy

Ques 223, (Qu)

(3) my 31 ()

QM g, Q)
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commute, using Proposition 4.3 of [6]. Hence there is a map
8: gt > T*® q; such that the diagram

3
Qi T"Q ¢ T™® Q.

(%) l l

Qras AL 31 (Q)

commutes. The diagram

0 ——5 Giatay ——> SHHHTQE @ Qi T*"QF P o
(5) P la J(s B
¥ . ¥
0—>T'Rgii—>T'QSHHT'QE —-TQST*QF — T*"Q pr—>0
commutes and so induces morphisms
0: gk+l+1—>T*®gIc+la 0: Pl+1—>T*®Pl-
It is then easily verified that the exact diagram

t 1
o Dy Dl i1 o

(6) +6 la ls

0—>T*® Ity —> T*Q pi—> T*® ¢ 0

is also commutative; hence this diagram induces a map @ : hys; > T*& hisis.

If miga: Rey—> Rewss has constant rank, then gr, hiey, p. arve
vector bundles and the sequence

Ji (Rewd) 282 51 (Recri) ——> T (fipsg) ——> 0

is exact. Under our hypotheses on ¢, we have

Rpmi=J, (R,) NJpa (E) for mX>k (see[5]).

The exact diagram

Tk—-1

R Riss ) 0

(7) lp: (idg+1) lp, (idgs1—1) 1/a
3 (Ret) 2520, (Riima) —— T (htsi) —— 0

is clearly also commutative and so induces a map ©: ki~ Ji(Ririoa).

We claim that this map ¢ is the composition of the map & : ki~ T*® by

defined above and of the monomorphism ¢:T*@ hr s — Ji(hrers).

Indeed, the three-dimensional diagram (8) is easily seen to be exact and

commutative. In diagram (8), the map ¢: S T*Q E — J, (S"'T*Q E)
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[resp. ¢: S T*QF —J,(ST*QF), &: pry— Ji(p)] is the composition
of the maps

0: SHHT'QE >T'Q ST RQE and e: T"QSHT'QE I, (S*+T*Q E)
[resp. 6 : SMT*QF >T'Q ST*QF and :: T*"QSIT*"QF —-J, (S T*R F),
0:pr—>T'Qp, and ¢: T*Q pi— T (p1)]-
If follows that the diagram
ot =" 1, (ki)

| t l.l, ()
Y

3
Pir—> T (p1)

commutes. Since 8 : pi.y > T*@ p; is the composition of ¢ : py — T*@ p;
and of the monomorphism ¢ : T*@ p,— J.(p:), and since the diagram
T*® hk+l—1 —5—> J1 (llk+l——1)
u A0
T*® prs ——> I (pi—t)
commutes, it follows that &(hw,)Ce(T*@ hryy) and hence that

8t hrss—> Ji(hiia) is the composition of the map ¢: huy—> T*@ hiyrs
defined above and of the monomorphism ¢ : T*@ hrriy = Ji (Brsis).

4 (¥R ) J1(or(e)) ~J;(S'T® F) >Ji(p1)
8 8 8
® skl ipigE 9741(¢) ST F Pron
c J1 (E) e J1 (e)
/
RTINS p—— T2 L K R G)
)
Reris1 >Jrsz4t (E) P (e J141(F)
Ji(tggg-1) Jq (M) Jy ()
Tkl Tkl o
4 (Rys1oq) ——————— | —=J1 Ugs1-1 (E)) —————— | =31 U1 (F))
Ri+1 it (E) Ji (F)
J1 (g1
6 .
hksl
Remark. — Let F=J,(E)/R: and ¢:J:(E)—>F be the canonical

projection. Then clearly F is a sub-bundle of F and R.=kerp;().
Therefore, 1f ¢ is regular, the families of vector spaces Ry, giws, hiw: and



PROLONGATIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS. 423

the maps ¢: g~ T*® ghess and & : hgyr— T*@ hiss—y depend only on
the sub-bundle Ry of J,(E).

2. SYMBOL AND COSYMBOL COHOMOLOGIES. — We consider a family
of graded vector spaces r = @ r, over X, where each r, is a family of finite
. lEZ

dimensional vector spaces, and a linear map ¢:r —>T*®r of degree —1.
We extend & to a linear map

O ANT'RQr—ANHT*Qr
of degree — 1 by setting

d(w®u) =(—1)/w A du if weA/T uer.

We let M; denote the family of vector spaces dual to the family r, and

we write M= @ M,. We obtain a dual map
lEZ

*: TM->M

of degree 1. We write ¢*(t @ m)=1t.m, if t€T, meM. The following
lemma is an easy consequence of the definitions :

Lemma 1 (see D. G. Quillen [14]). — The dual of the map

_ 0: ANNT*Qr—A+T*"Qr

is the map
0F: AMMTRIM>ATRM

defined by

j+1

F (LA - Nt @m) ::Z(—I)i+1<t1/\.../\?g/\.../\t/_H)@ti.m,

1=1
if ti, ..., ;. €T, m&M. Moreover, the sequence
o~>r—6>T*®r—§>A2T*®r_—a>...—>A"T*®r—>o

is a complex if and only if ¢* : TQM —>M induces on M the structure
of an ST-module. If one of these last two conditions holds, then

(9) o> AMT@M ... S AMT@MIT@ME M0

is the Koszul complex of the ST-module M ; we denote by H;(M) the homology
of the sequence (9) at AVT*QM. The complex (9) is the direct sum of
the complexes

0> AMT*Q My . . S AT @M, 3 T*Q Mr_y— My 0

- whose homology at AVT*QM,_; we denote by H;(M),_;. Then H;(M) =@ H;(M),.

lEZ
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Let n=ST*@E and let ¢ be induced by the unique derivation
¢: ST*->T*®@ST* of degree — 1 extending the identity map of T*,
that 1s

i .
0. &) = Ya® ... & &),

i=1

if £,€T*, 111 One easily verifies that the sequences (g) are
complexes and that ¢: S'T*QE > T*Q S'T*QE is the map defined
in paragraph 1. In fact, the ST-module structure of M given by Lemma 1
1s precisely the same as the ST-module structure of ST @ E* under the
identification of (ST*)* with ST described in [5]. Moreover, the sequence

(10) 0> S"T'QEST'® S T'QE->...> AnT*®Q S"*T*Q E - 0

is exact for m2>x1.

Let ¢:J/,(E) > F be a regular differential operator from E to F.
Let r, be one of the following families of vector spaces g, ps, i, hiis 0ver X,
and let ¢ : r,—> T*@ r._, be the corresponding map defined in paragraph 1:
We obtain the following sequences : '

(rr) o—>gk+[-—a> T"®gk+1_,—a>A2T*®gk+l_g —;> > AT grrtn—> 0
(12) o —->p1—a-> ’1[‘*®p1_1—6+ A}T*®pl_2—a+. > APT*Q prn—>0;
(13) 0o—> q,——ﬁ» T™*® ql_i——(z—> AT® qz_.q-—a>. > AT QR qrn—> 0
(14) o—>hi, —>T ® fpr iy —> AT*® Pty oo —> AT R Aryy—n—>o.

Since & : gri—> T*® grrity © ¢ pr—>T*@ prs are induced by the maps
8: SHMT*QE > T*QSH'T*QE, 8 : ST*QF -~ T*Q S T*® F respec-
tively, it is clear that (11) and (12) are complexes. The commutativity of
diagram (6) implies that (13) and (14) are also complexes.

DerinitioNn 3. — The symbol [resp. cosymbol] cohomology of ¢ is the
cohomology of the sequences (11) [resp. (14)]. We denote by H**~/(g;)
[resp. H**~:J(h)] the cohomology of the sequence (11) [resp. (14)] at
AT*Q grri—j [resp. MT*Q hiwrj]. We say that g, is involutive, with
m>k, if H"J(g;) =0 for [>0, j>o0.

We recall that g, depends only on the famlly of subspaces g, of S“'T*Q E
and that the sequences

o —>gk+1+1—> T*®gx~+1—> AT Q@ Gri

are exact for [>> o (see [b], [6]).

We now state the 6-Poincaré lemmas :

Lemma 2. — There exists an integer ko>>k depending only on n, k
and dimE such that H**"/(g) = o, for all m>o, j>o0.
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Lemma 3. — There exists an integer k, >k depending only on n, k, dimE
and dim R, (I>>0), such that H"* "/ (k) = o, for all m>o0, j > o.

The remainder of this section is devoted to the proof of these lemmas.

Let A= @ A, be the graded ring R[X,, ..., X,], where A, is the

kEZ
_ subspace of A consisting of all homogeneous polynomials of degree k;
we write Ay=o0 for k<<o. We denote by A(p) the graded A-module

Alp) = kGeBz AlP)x

where A(p)/‘= AIH-I:.
If M=@M, is a graded A-module of finite type, we denote by

l€EZ

H;(M) = @ H;(M), the j-th Koszul homology group of M.
lEZ
Following Grothendieck [7], we make the next :

DerinrTioN 4. — A family of graded A-modules M,, «€l, of finite
. type is said to be bounded if :

(1) there exist integers p, ¢ such that the graded A-module

M&:l@o (M/a)[, where (M'g‘)l_—: (Ma)p+l,

1s a quotient of AY, for all a € I;

(1) a finite number of polynomials occur as Hilbert polynomials of

the A-modules M,.

Prorosition 1 (see D. Mumford [13], Lecture 14). — Let M., « €1, be a
bounded family of graded A-modules of finite type satisfying condition (i)
of Definition 4. Then there exists an integer n,, depending only on p, q
and the Hilbert polynomials of the A-modules My, a € I, such that H;(M,),= o
for all 1>>n,, j>o0.

Prorosition 2 (see A. Grothendieck [7]). — Let k, p, g>0 be given
integers. The family of all kernels and cokernels of all homomorphisms

from A7 to A (k)? of graded A-modules of degree o is bounded.
Let M= & g,, P=&p,, N=@D h;,_,; by Lemma 1, these are
lEZ lEZ

meZ
ST-modules. By the commutativity of diagram (5), we have the exact

sequence of graded ST-modules
05>P>STRQFZYSTQE Mo,

where o*(¢) is the direct sum of the maps a;(¢)* and is an ST-homomorphism
of degree k. The commutativity of diagram (6) implies that there is an
epimorphism of graded ST-modules from P to N of degree o.

Ann. Ec. Norm., (4), 1. — Fasc. 8. 54
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Proof of Lemma 2. — Let p=dimE, ¢ = dimF; then by Proposition 2,
{M:l}.ex, { Pslrex are bounded families of graded A-modules. We deduce,
from Proposition 1, that exists an integer k,>>k depending only on
n, k, dimE and dimF such that H;(M,); . ,= o, for all z€ X, [> 0, j >o0.
Since M does not depend on F and since (H;(M);.,)* is isomorphic
to H**"%/(g,), we obtain the desired result.

Proof of Lemma 3. — By Proposition 2, a finite number of polynomials
®,, ..., ®,occur as Hilbert polynomials of the graded A-modules M., z€ X,
and moreover these polynomials depend only on n, k and dimE.
Hence if z€X, there exists an integer i, with 1=_1s, such that
dim (gerr)e= Pi(k + 1), for all sufficiently large I. Since Ry, 1s a
vector bundle, for [ >~ o0, only a finite number of polynomials can occur
as Hilbert polynomials of the graded  A-modules N,, z€ X; moreover
these polynomials depend only on n, k, dimE, and dimR.,(I>0).
Now {P.|.cx is a bounded family of graded A-modules and there exist
integers p, ¢ depending only on n, k, dimE and dimF such that condi-
tion (i) of Definition 4 holds for the family {P.}.cx. Because N, is a
quotient of P., it is finitely generated and condition (1) of Definition 4
holds for the family { N, },.cx with the same integers p, ¢¢ Hence {N.}.x
1s a bounded family of graded A-modules. By Proposition 1, there
exists an integer k,>>k, depending only on n, k, dimE, dimF and
dimR,;({>>0), such that H;(N.);,,=o for all z€X, [>o0, j>o0.
Since N, is independent of I, we obtain the desired result.

Remark. — In fact H***°(h) = o for all I>>1, where k, is the integer
given by Lemma 2 depending only on n, k and dimE. By the commuta-
tivity and exactness of diagram (6), the map &:hu—>T*@ hruy is
injective if ¢: p;s —>T*@ p; is injective. From the exactness of (10)
and the commutativity and exactness of diagram (5), we deduce that
8 : pua—T*®@p. is injective if and only if H'"~'2(g) =0, for I>1.
" Hence H*"“°(h)=o0 if H*"'""*(gs) =o0. The proof of the prolongation
theorem (Theorem 1) uses only this result and not the full statement of
Lemma 3.

3. THE PROLONGATION THEOREM. — We define the set of formal sections
of the vector bundle E to be

J. (B) = limJ (E).

Let ¢:J:(E) -~ F be a differential operator of order k from E to F.
We let p_(¢):J_ (E) > J_(F) be the map

Po (9) =limppi (9).
_<—-
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A formal solution of ¢ is an element u€J_(E) satisfying p_(¢) (u) = o.
The set of all formal solutions of ¢ is R_=1imR;,. We denote by R,
the projection 7,,(R.) of R_ in R,,.. é—

We denote by R{ the family of subspaces ,Rmy of J.(E). If R®
is a sub-bundle of J, (E), then it has the same solutions as . We have
a descending chain of families of subspaces of J,.(E)

(15) ...cR&YCcRYc...cRY I, (E),

where R“=R,. We set Rn.= mRu). it is clear that R,CR.,.

. N ms
Since (15) is a chain of families of finite dimensional vector spaces, for
each point € X, and each m, there exists an integer I, depending on x
and m such that

Rm,.‘v: R

Hence we can find an integer p such that
ﬁm,r: Tm (Rm-i—p).r, ﬁm+l,x: T m+1 (Rm+p).r-

It follows that the map 7, : Jui (E) > Ju(E) induces a surjective map
Tm t Ripss = R.  Hence f{mcﬁm, which implies that

R,= (") R%

>0
and R_=1imR,.
(____ .

Derinition 5. — A differential operator ¢ : J4(E) —F is said to be
formally integrable if ¢ is regular and R, = R,,, for m>.F.

The second condition is equivalent to the fact that me, @ Rivs > Riew
1s an epimorphism, for > o.

Following Cartan, we make the next :

DeriniTion 6. — A differential operator ¢: J.(E) - F 1s said to be
ingolutive if Ry.y 1s a vector bundle, if the map m;: Riy = Ry 1s sur-
jective, and if g, is involutive.

The Cartan-Kihler theorem implies that every involutive differential
operator is formally integrable (see [5], [6]).

If Ri is a sub-bundle of J,(E) and if ¢: J,(E) - F 1s any morphism
such that kerg= Ry, we recall that Ri,=kerp/(p), for I>o0, is
independent of ¢ and is equal to the I-th prolongation J,(Rs)NJs(E)
of Rx. Moreover, if the I-th prolongation R of R, is a sub-bundle
of Jiu(E), the m-th prolongation Ry.m of Ry 1s the same as the
(I + m)-th prolongation Ry:m of Ry (see [5]). We say that the equa-
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tion Ry is regular [resp. formally integrable, involutive] is any such
morphism ¢ is regular [resp. formally integrable, involutive]. We recall
that, if ¢ is regular, the families of vector spaces g, A, the maps
8t gru—>T*® grri1s 6 ¢ hiwi— T*@ hisis are independent of the choice
of o. :

The remainder of this section is devoted to the proof of the following :

Taeorem 1 (Proroncartion tHEOREM). — Let R, CJ.(E) be a
regular partial differential equation of order k on E. Assume that the

maps Tp: R — R, have constant rank, for all m >k, r>>o. Then there
exist integers l,>>0, mi>>k such that the equation R of order m, on E

m

is a formally integrable involutive equation, which has the same formal
solutions as Ry, and whose r-th prolongation is R\,

ny+re

Proof. — The hypotheses imply that RY is a sub-bundle of J.(E),
for all m>Fk, I[>>0. For each m>k, (15) 1s a descending chain of
sub-bundles of J, (E). This chain must obviously stabilize; hence for
each m >k, there exists an integer r,, depending only on m, such that

R = () B)=R,..

We denote by (RY),, the r-th prolongation of the equation R cJ,(E)
and first prove the following :

Lemma 4. — R%, c(RY),, for all I, r>o0, m>k.
Proof. — We have

15 — —
B‘Sll)-f»l' = Tprr Rnset4r = 7Tm+rR(m+l)+r

= Tm+r (J/ (Rm+1) N Jm+l+r (E) ) C Jr (T[m) Jr (Rm+l) n Jm+r (E)

since the diagram
Prlidn)

Jmiter (B) —=5 T, (Jet (E))

lﬂm-l—r l«‘ ()

Tover (E) 2203, (3 (E))
commutes. Because the map 7, : Ry~ R, has constant rank,
I (Tm) Ir (Biat) = J7 (T Burt) =37 (RY) 5
we therefore obtain the desired inclusion
R, cJr (RE) N mar (B) = (BY) e
To prove the theorem, it suffices to show the following :

" (I) There exists an integer l,, independent of m, such that

R,=RY forall m>k, I,
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(II) For each >0, there exists an integer p; such that

B},’;H = (R, forall r>o.

Indeed, let m,>p,, where [, is the integer given by (I). Then,
for r>o,

(16) (R@), =R =R, .

Mo—+1

Since RY%_, is a sub-bundle of J, ., .(E), for r>o, it follows that R®
is formally integrable and has the same formal solutions as R,. Because
of (16), Lemma 2 shows that we can choose m,> p, such that g\ is involu-
tive and such that R/ satisfies the desired properties.
For m >k, the map Tt et (BE) > In(E) 1n((liuces a map 7, : RY, , - RY,
)

whose kernel and cokernel we denote by g”.,, hY” respectively. Then
g = &u, hyy = hn. We have exact sequences

) ) )
(17) 0->g8, >R, BRI~ A > o;

(18) o—REV S RO 10

since 7, (RY
bundles, for m>>k. We therefore have a descending chain

YW )=REM. Tt follows that AY” and g%, are both vector

(19) cgtcglc.. . cgcS"T'QE

of sub-bundles of g "'=S"T*QE, for m>k-+1. Set g'=S"T*®E,
for m <k.

Proof of (I). — The image of g, under the map
3: ST'RE->T'®S"T'QE

0]
m

1s contained in T*Q) g, and the diagram

g0 T'® gl
(20) i l

FENS TRl -
commutes. Indeed, the map 2 is induced by pi (idm) : Jns (E) > T, (Jn(E))
and, for m>.k, p,(id,) maps R | into J,(RY) by Lemma 4. Hence

m-+1 m
3(gna) C(T'QRN N(T'Q S"T'Q E) =T'Q 811,
and it is clear that (20) is commutative, for all m€Z.
Let M= @ g“; according to Lemma 1, MY is an ST-module

and M"Y is a quotient of M® as graded ST-modules. Let K be the
kernel of the natural pI‘O]eCtIO'n of M= ST Q E* onto M“. We obtain
an ascending chain

ocKWc...cKOcKli+lg. ..M
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of ST-submodules of M~*. Choose an arbitrary point z€X; then
ST.Q E is a noetherian module and therefore there exists an integer [, (z)

such that
KO=K&@)  for >0y (2).

This implies that M{= M®®", for I>~l,(z) and hence that gl .= g@
for all m>o0, I>1,(z). Since g” is a vector bundle for m>Fk-1,
the ehain (19) stabilizes and

gW—=gl) forall m>k41, IX{(2).
Let r be an integer such that
R;=RY
and let l,= max(r, l,(z)). We claim that

(21) R —= R for I> 1/, mX>k.

m n

This statement clearly implies (I). We prove (21) by induction on m.
The integer I, was chosen so that (21) holds for m =k. Assume (21) is
true for m, with m>~k. For [>1[,, the diagram

o o
J
o 8l & o
Y
o—> R, —> R,

0o——>RWO_— 5 Rl >0
o]
. . . l
is clearly commutative and exact, since m,(R%,,)=R%"=RY, by our
induction hypothesis. This implies that =, : R%  —~R% is surjective.

The diagram shows that R? = R%

m+1 m+1

for I>x1,.

Proof of (II). — To prove (II), it is enough to show that for each > o,
there exists an integer p; such that

(22) RO, = (RY),, forall m>p,.
In fact, this condition implies (II) by induction on r. Clearly,

RY . 1= (RY).1. Assume that R} .,=(R}),,; then since Rj) is a
vector bundle

R;(zl;+(r+1): Ré2,+r)+1: (R;(;l;+r)+1: <<Rl(711))+r)+1: (P‘;;ll))+(r+1)~

We shall show the existence of p,, by induction on .



PROLONGATIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS. V 431
By Lemma 4, p,(id,) : Joii(E) > J, (Jn(E)) induces maps
pi(idy) = RO T (REY), po(idy) @ R, =T (R)).

The diagram

L. 1) 0)
o R R, 7 5 o
(23) lp, (i,m) ’ Palidy) i3
v v

o—J, (REYY —5 I, (RYY — J, (AY) —> o0

is clearly exact and commutatlve, for m>k, and so induces a map

8 h(ril)+1 - Ji (h(h)

Lemma 5. — If RY,, = (RY).,, for some m><k, then the following
statements are equivalent :

(i) Ry = (R )

(i) 3 : A

m+1

Proof. — We have

(RED) =Ty (RED) A T s (B) =T, (RED) AT, (RD) N Ty (E)
=L R N EBRD) . =T (REY) nRY

m—+1°

— J, (RY) is injective.

m

From diagram (23) and this equality, we deduce the lemma.

We apply Lemma 5, with == o0. It is clear that the map & : Ay — Ji (hn)
is precisely the map & considered in paragraph 1. Hence Lemma 3
implies the existence of an integer p, such that the map : hpns = Ji (hn)
is injective for all m>.p,, since this map is the composition of
8:hns—>T*Qh, and the monomorphism ¢:T*® h,—>J,(hy,). The
hypothesis of Lemma 5 is clearly satisfied for all m >k, and so Lemma 5
shows that R%), = (R!)).4, for all. m> p,.
- Assume that we have shown the existence of an integer p; such that (22)
holds for all m>p,. Consider the equation R{'cJ, (E). Our induction
hypothesis implies that (R{).,= RY,,; since (17) is exact and h{ is a

vector bundle, for m>>k, the above argument together with Lemma 5
shows the existence of an integer p,., such that

(R =R forall m> pry,
completing the proof of (II).

Remark. — In our proof of Theorem 1, we have preferred to prove (II)
rather than to show that, if I, denotes the integer given by (I), there
exists an integer m, such that

Rl = (R@) 4 for all m > my.

This last fact together with (I) implies Theorem 1. We shall use (II) in
certain applications of Theorem 1 rather this weaker statement which can
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be proved using an argument due to Kuranishi [8] as follows. By Lemma 4,
we have
Rl c (R, forall m>xr.

11L+1

By (I), the map =, : R, — R is surjective, for all m k. Let (g%

)1
denote the kernel of =, : (R‘,f:’)+1~+R‘,f‘; Since g is a vector bundle
for all m>k+1 and since M" is a quotient of ST E*, we see that
{M®} <x is a bounded family of graded A-modules; by Proposition 1

there exists an integer m,>>k such that the sequence
0> glfl > T'@ gl > AT gl
is exact, for all m>m,. This implies that |
g = (gl 41 forall m>m (see[5],[6]).

We recall that the map m,: R — R is surjective, for m>k. The
exact and commutative diagram, for m>m)

[0 o
/ 1A
o oy {io) 4 o

®

o — Ripl, — (Rl 4
Tm T

o Rl Rk o

n

0o o

shows that the desired result holds. Matsuda [12], using Kuranishi’s

argument, noted that the first prolongation of R, is R,.. for all sufficiently
large m. '

4, THE SPENCER COHOMOLOGY OF A DIFFERENTIAL EQUATION, — Let

CHE)=AMT'®J:(E)/ (A T*"Q S T*QE)  for j>u1,
and
CY (E) = J; (E).
Applying Proposition 5.1 of [5] to the equation R;= J:(E) on E, we
obtain :
Prorosition 3. — There exists a unique differential operator

o: I (J;;(E))‘—* Cr (E)
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of order 1, whose symbol is the natural projection = of T*@ J.(E) onto C;(E)

such that the sequence
0 —>Tiua (B) 228, (J1(E)) > G (B) —>o

1s exact.

Prorosition 4. — There is a unique differential operator

A L (J(E)) >T*® Jiy (E)
such that : v

(1) Jrri (E) Ckerd;
(i) The symbol of A is the projection .y of T*Q Ji(E) onto T*@ Jr1 (E).

Proof. — From Proposition 3, it follows that any such morphism 2
satisfying (i) is of the form %o, where A is a morphism of vector bundles
from C(E) to T*®J:,,(E) and its symbol is the composition Xo=,

- The unique map A satisfying %ot = m,_, is the natural projection of C;(E)
onto T*Q® J;_(E) induced by the projection w., of J«(E) onto J;,(E).
Clearly X = X0 p has the desired properties.

Prorosition 5. — The morphism A of Proposition 4 is determined by
A= (Ttr—t) — p1 (idi—y) o Ty '
moreover, if D=1Aoj, : J+(E) ——>;(‘5*® Fi—1(8), the sequence
(26) C 08 L (e 2RI () |
is exact.
Proof. — It is easily seen that
0. 31 (Tis) = To. pr (idis) . 0o
as maps from J, (J«(E)) to J;_.(E) and that the diagram

pilidy)

i1 (E) >J0 (e (E))

L‘n k \LJ: (T k—1)

Je(E) ¥ 5 (5 (B))

commutes by Proposition 4.3 of [6]. Hence ¢ (Jy(mi—s) — pi1(tdi_i).To)
is a well-defined morphism from J, (J:(E)) to T*® J_. (E) satisfying condi-
tion (i) of Proposition 4. Moreover, the symbol of ¢~ (J, (7/—y) — pu (tds—i). 7o)
1s T4_y since it is determined by the symbol of J, (1) which s precisely ¢ o 7.
The exactness of the sequence (24) follows from Lemmas 5.2 or 5.3 of [5].
Ann, Ec. Norm., (4), 1. — Fasc. 3. 55
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Note that condition (ii) of Proposition 4 is equivalent to
(25) D (fu) = df ® mi_s () + fDu  for all feM‘Z;*, ueJi(8).
The following proposition is easily verified.

Prorosition 6. — If 0: Ji(E) - F ts a differential operator, the diagram
3 Gt (B) = T*® Jies (E)

J’a (P1(®) ( PI—1(9)
N ¥

Ji(J;(F)) —>T*Q J;—s (F)

commules.
Let us now compute the map
AJi(e) : L(S*T'"QE) > TR Jis (E).
Since m;_,.e=o,
8.}\.‘]-1 (8) == (J1 (71'1(_1) —}71 (l‘dk__1) .71'0) .Ji (E)

= — p1 (ldg—y) . 7. J1 (€)
—=— P (l'dk_l) €. T
Hence the diagram
J (SFT*Q E) —> S T*Q E—> T*Q S T*Q E
3@ e
3 Y
Ji(Je(E)) T*'® Ji1 (E)

commutes; therefore so does the diagram

SR 6 TR ST R E
(26) la \Ls
Fi(8) ——> @ F1s (6)

We extend D to a differential operator

D: AR Ii(E) > AHTR Fas (6)
"by setting

(27) D (0@ u) =dw ® 7y (u) + (—1)/w A Du,

if 0EAT*, u€Fi(8). It is easily seen from (25) that D is well-defined;
furthermore (27) and the commutativity of diagram (26) imply that the
diagram

NBR SR E > AR S15Q &

(28) E e
Y D
AT Q Fx(8) ——> AV 1B ® Fas (8)

commutes.
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We obtain the naive Spencer sequence for E
085 9:(8) 3 BR Hat (6) > AR Fia (8) .. . AT ® Fin (8) -0

which is a complex (see R. Bott [1], D. G. Quillen [14], D. C. Spencer [15]
or S. Sternberg [16]).

If :Ji(E)—>F, 4:J(F) > G are differential operators, we say that
the sequence

(29) 61)—;5&9,

where D= ¢oj;, D,={oj;, is formally exact if the sequence

(30) D IRA )i TG s S

i1s exact. We note that if k=1[=o, then if the sequence (29) is exact,
so 1s the sequence (30) by Lemma 3.3 of [5].

Lemma 6. — If ¢: Ji(E) > F, ¢:J/(F) > G are differential operators,
the sequence (29) is formally exact if the sequences of vector bundles

Tertom (E) Plim (9) Tiom (F) pm('lfL T (G)

are exact for m>> o.

Proof. — Since finite dimensional vector spaces are artinian, the lemma
is a direct consequence of Corollary 2, § 3, n® 5 of Bourbaki [2].

Prorosition 7. — The natve Spencer sequence for E is exact and formally
exact, for k>>o.

Proof. — For k=o, the statement is trivial. We deduce the pro-
position from the exactness of (10) and from the commutative diagram (31).

(o] o o

0> TR E— e TR IITRE—>...— > AR SR E—> 0

€ € €

3> %*® Jk_: (&)

T k—1 Th—2 T k—n—1

D

(31) 0—> 615 9, (6) D AN Q Fin (8)

>0

0o—s &L g (8) —

TR Fre (6) ——> . . —> AP ® Tins (8) —> 0

o o o o

Now let Ry CJ«(E) be a regular partial differential equation of order k
on E. By Proposition 6, the operator

D: AT I (8) > AT ® Ty (6)
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induces a first order differential operator

D: AR R,> AR R,
We obtain a complex
(32) 0> S Rp B TR Ry > A2 R Ry . o> AT R Rppn—> 0

which 1s always exact at & and at R,, which we call the m-th naive
Spencer sequence of the equation R;.

Taeorem 2. — Let Ry CJi(E) be a regular partial differential equation
of order k on E. Assume that the maps 7,: R,..— R, have constant
rank, for all m>k. Then there exists an integer m,>>k such that the
cohomology of the sequence (32) ts independent of m, for m>m,.

We call a sequence (32), with m>>m,, a stable naive Spencer sequence
of Ri and call its cohomology the Spencer cohomology of Ri. We say
that Ry has stable naive Spencer sequences.

Proof. — Under our assumption, h, is a vector bundle for m>xF.
We first show that the diagram

3y (By) —5 T*® Ry

3y (%) %

-—80 To

I () —> TR ls

commutes, where x:R, —h, 1s the natural projection for m>Fk.
It suffices to verify that

exh=Jy (%) .e. A=—d.me.J; (%)
as maps from J,(R,,) to J,(hn_s). We have

J] (71) .3.1———-]1 (x) (J1 (77111—1) — P (l.dl _1)71'0)
== J1 (7~-7Tm—1) - Ji (X) P (l’dm—i) To
:—‘J](x)Pj(l’d)n_1)7r0:—‘6.7f0.y]1(x)

by the commutativity of diagram (7). It follows from (27) that the
diagram

N B R Ry —> ATH1T* R Ry

! !

N B @ oy ——> ATHE R Fiy
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commutes. Hence, by the commutativity of (28), we see that the
diagram (33) is commutative.

o 0 o o
—38 * —3 . 9 ook -6 *
0 ——> Cmi1 > T QR &m > A2 Qg1 —> ... —> A" TR grni1—>0
: g 5 ‘ 153
“ Jm+1 1] ook b 9 ook b 3%
0 S R TR R, >ANFQR Ry —> oo —> AT QR Ry —> 0
(33) T Tt Tom—s ) Ti—n
o Im D D D
0 S R TR Rm1—> AN2FTQRQRyps—>...—> AT QR Ry >0
—3 * 4 —8 9 ook —~8 *
o > Ny ——> TR > A2 QR Ay —> ... > A Q lpn >0
o o o o

We set m,= max(k,+ n, ks + n), where ko, k, are the integers given
by Lemmas 2 and 3 respectively, and obtain the desired conclusion.

Prorosition 8. — Let R.CJ.(E) be a regular partial differential
equation of order k on E. If the maps Tn : Rnir— Rn have constant rank,
for all m>>k, r > o, then, for all l>>o0, there exists an integer p,>k such
that the equation R!'cCJ, (E) has stable naive Spencer sequences and its
Spencer cohomology is tsomorphic to the Spencer cohomology of Ry.

Proof. — Let p,>k be the integer given in the proof of Theorem 1,
such that R{).,,= (RY).,, for all r>o0. Since Al is a vector bundle,
the exactness of (17) implies that =, : RY,,—~ RY has constant rank,
for m>k. Hence, by Theorem 2, R} has stable naive Spencer sequences.
It suffices to show that the Spencer cohomology of RY is isomorphic to
the Spencer cohomology of Ry, for I>o0. By the exactness of (17)
and (18), diagram (34) 1s commutative and its columns are exact, for
m>>max(p;+ n, puat n).

o o o o o}

fm D b . D ’
0—> 85 RED U FRQARG L NFRAREY — . ——> AT RQARE)— 0

m-—n

34) o s, g2 L H#RQARY_, > A2FRQRY_,— s S AFRRY >0
—8 —0 —8
0o—> M "L BRI, AT A . —> AT R LY, —>0
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Applying Lemma 3 to the equation R{'cJ,(E), the bottom row of
diagram (34) is exact for all m sufficiently large. This clearly implies
that the cohomology of the top row is isomorphic to the cohomology of
the middle row, for all m sufficiently large, proving the desired result.

Cororrary 1. — Let R CJ«(E) be a regular partial differential equation
of order k on E. Assume that the maps 7., : R,..— R, have constant
rank for all m>k, r>o. Then the Spencer cohomology of R, depends
only on the formal solutions R_ of R..

Proof. — Let mo, l, be the integers given by Theorem 1. By Propo-
sition 8, since m,>>p,, the Spencer cohomology of R is isomorphic

to the Spencer cohomology of R, Because R%= R, =.(R,) for
m>>m,, the corollary follows.

The following theorem establishes the existence of resolutions for
regular differential operators. In [5], we proved the first part of this
theorem for formally integrable operators (see also M. Kuranishi [9]).
The proof given here is based in part on an argument of Quillen [14]
which he used to prove a weaker version of this theorem.

Tueorem 3. — Let ¢: J,(E) - F be a regular differential operator of
order k from E to F; let Dy=goj,. Then there exists a formally exact
complex

D, D, D, D, ’ D Dyt

(35) o 5> 6—25>G,—> Gy Gy —> . G — > G

where G, is a vector bundle and G,=F, and D,={,0j, : G~ G,

is a differential operator of order l.; moreover the sequences

. iy (V)
(36) o Riim Jerm (BE) ——— P (f) I (Go) p—l—q}*Jm-—l, (G) ——...
——> Ity —.—1. (G)) e

are exact at Ry and Jin(E) for m>o, at Ju(G,) for m>1l,, and
at 3,1 1 (G;) for m>U+. ..+ Loy, r>>1.

Furthermore, if the maps t,, : Ry > Ry, have constant rank, for all m >k,
the cohomology of (35) is tsomorphic to the Spencer cohomology of Rq.

Proof. — Set l,= max(ko, ki) —k -+ 1, where k,, k, are the integers
given by Lemmas 2 and 3 respectively. Let G,=Q, and let
¢, : J,(F) > Q, be the natural projection. By the commutativity of
diagram ( ), to show that the sequences :

Ply+m () P (V1)

(37) Jk—n—ll+m(E) '>J/,+m(F)'_'>Jm (Gl)

are exact for m>so, it 1is sufficient to prove that the map
pn(idy) + Quin—> Jn(Q,) is injective for all m>o0. We shall show in
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fact that pm(id) : Qum— Jn(Q) is injective for all I>1I,, m>o.
It suffices to prove this for m =1, since the diagram

Pm— (id])
Ql+m+1 — — (Ql)

lﬂi (id14-m) l}h (idm)

3y (Quem) X280 5.3, (Qu))

is commutative, where p,(id,) is a monomorphism. By the commuta-
tivity of diagrams (2) and (4), it is clear that the kernel of
pi(id) : Qut > Ji(Q) is contained in the kernel of &:¢q..—~T*®q.
Hence it is enough to show that ¢ : ..., >T*® ¢, is injective for I>x1,.
From diagram (6), we deduce that the diagram

o o o
' z \L
[} Nt Pl Gi+1 o

3 [ J(a
t

0> T*® hicris- >T'Q pr——> T*® g1 —> 0

~
0 7]

0—> A2T*Q Ay s —l*> A2T*Q pis

is commutative and its rows are exact. Hence ¢:¢..—>T*®q is
injective if the sequences

(38) Bir ~ T Q@ hpsy —> A2T*Q hy1s
and

[}
(39) 0= pra—TQ p:

are exact. Now (38) is exact for I>k,— k-1 and (39) is' exact for
I>ky—k—+1 by the commutat1v1ty and exactness of diagram (5) and
the exactness of (10).

The differential operator ¢, : J,(F) - G, is formally integrable by the
exactness of (37). Therefore we can apply the above result or Corollary 4.2
of [5] to ¢, to obtain the complex (35) and the exact sequences (36).
By Lemma 6, it follows that (35) is formally exact. The construction
of G,, D,, with r >1, given in [5] shows without appealing to Lemma 6
that the sequence

D D D, D,
Go—> G- >G> G

1s formally exact.
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BRI — Akmvv:|.¢l...|n

a

a

el Agmv «\él...l«~l~:h®«@

= Eh« ® 2uV

B A\mwv nghl...l..\l.sh ®%Nw<

(3 v

A{—d G—tp—wu

5 f Q.2uV

5)" £ .2V

a

g

A{—Jv —i—w g

ﬂ

<— A@v :A.:I.,,\h ® 2 :4. <

(&) —d

Mv s—u of

A
y
(2) a2 ®«m~. V<

a

§|~Q+u\% ®*@ ﬁ.(\ ¢ o

a

Gty ® 25V o

a

(°5) T&h Q.2 <y (9) 7 urf @@ <——— Y @9 <

a a a a
e () 1 e OB g ()16 wrty
Aty | f =y wyf
6 o> 5 p 9 s
| |
o 0 o

(o]

(oh)
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We now assume that the maps 7, : R,.. — R,, have constant rank for
m >k, so that R, has stable naive Spencer sequences by Theorem 2.
The commutative diagram (4o) has exact and formally exact columns,
except for the first one, by Proposition 7. The exactness of the
sequence (36) of vector bundles implies that the Spencer cohomology
of Ry is i1somorphic to the cohomology of (35), completing the proof of
Theorem 3. :

Moreover, since the sequence (35) 1s formally exact, we deduce that
the stable naive Spencer sequences of R, are formally exact.

Cororrary 2. — Let R, CJ(E) be a regular partial differential equation
of order k on E. Assume that the maps 7, : R, — R, have constant
rank for all m>>k. Then the stable naive Spencer sequences of R, are
formally exact.

Remark. — Let ¢: J,(E) — F be an arbitrary differential operator of
order k from E to F. Assume that there exists a complex

I} D
&E=F 3¢,

where G is a vector bundle and D,=1d¢j,: 5 -G is a differential
operator of order [, such that the sequences

Plrm (@) Pm ¥
o — 1:{k-b-l+m'—‘> Jk+l+7n (E) - > J[+IIL (F) > JHL (G)

are exact for m>>o0. By Lemma 3.3 of [5], for m>~0, Ri1m 1s a vector
bundle over each connected component of X. Hence the condition
that ¢ be regular is essentially necessary and sufficient for the existence
of the complex (35) of Theorem 3.

Assume that R, CJ,(E) is a formally integrable involutive equation of
order kon E, Following Quillen [14], we apply Theorem 3 to the differential
operator :

o: J,(C)—=Ct

}

defined in paragraph 5 of [5] and to the sophisticated Spencer sequence of R,

ik Do Dt D
0>8->C>C—>E—...>C"—>o0

constructed in [5], which is formally exact, and we obtain :

CororrarY 3 (see D. G. Quillen [14]). — If RiCJi(E) ts a formally
integrable inyolutive equation of order k on E, then the cohomology of the
sophusticated Spencer sequence of Ry ts isomorphic to the Spencer cohomo-
logy of Ri. '
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5. THE SPENCER COHOMOLOGY OF AN ANALYTIC DIFFERENTIAL EQUATION.
— Now assume that X is a real analytic manifold and that the vector
bundle E is analytic. For any such analytic vector bundle E, we denote
by &, the subsheaf of & of analytic germs. If R, is an analytic sub-
bundle of J.(E), we say that R, is an analytic equation. We let &,
denote the subsheaf of & of analytic germs of solutions of R;.

Taeorem 4. — Let R,CJ.(E) be a regular analytic partial differential
equation of order k on E. Assume that the maps 7, :R,..— R, have
constant rank for all m>>k. Then the analytic stable naive Spencer
sequences

i o b - D o ook ] "
(41) 080 (R —> (TR Rt o — (2B R Rops) o~ + .= ('SR Ronn) o —> 0

are exact except possibly at (B*Q R,_1)w-
If moreover, the maps %, : R — R, have constant rank for all m>k,
r>>o0, then the analytic stable naive Spencer sequences are exact.

Proof. — Let F be an analytic vector bundle and let cp:J,\.‘(E) —~F

be an analytic differential operator such that kero=R,. Set G,=F
and let

. D, D D D, D,
(42) 0—> 8y, —» &y — Fe — (91)«» T (gl'—i)m —> (gl‘)m A

be a complex, where G, is an analytic vector bundle, D, = ¢,/ : GG,
is an analytic differential operator of order [, for r>~1. Assume
that G,, D, are constructed by Theorem 3 and that G,, D, are constructed
by Corollary 4.2 of [5] such that the sequences (36) are exact. Using
Spencer’s estimate (see L. Ehrenpreis, V. W. Guillemin, and S. Sternberg [4]
and W. J. Sweeney [17]), we showed in [5] that the sequence (42) is exact
at (G,),, for r>1. By Theorems 2 and 3, the cohomology of the
sequence (41) is independent of m and isomorphic to the cohomology
of (42) for all m sufficiently large, proving the first part of the theorem.
Note moreover, that if Ry is formally integrable, we can construct G,, D,,
for r> 1, by Corollary 4.2 of [5] such that the sequence (36) is exact; in
this case the sequence (42) is exact and the analytic stable naive Spencer
sequences are exact.

Now assume moreover that the maps =, : R,..— R, have constant
rank, for all m>>k, r>o0. Letl,, m, be the integers given by Theorem 1.
Then by Proposition 8, the cohomology of (41) is isomorphic to the
cohomology of the sequence

.

> .m I) * ! ]) 9 td k-
. (43) 0=, s (Rl = (B Q R_ )= (VT Q R, )y —>. .. (AT Q RlL,)w—>0
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if m is sufficiently large. Since R is formally integrable and
RY, .= (RY),,, for m> o0, the sequence (43) is exact for all sufficiently
large m by the above argument and so the cohomology of (41) vanishes
for all sufficiently large m.

From Theorems 3 and 4, we deduce :

CororLrary 4. — Let ¢0:J(E)—>F be a regular analytic differential
operator of order k from E to F. Assume that the maps m,: R,..—> Rn
have constant rank for all m>k, r>o. If G is any analytic vector bundle
and ¥ : J,(F) > G ts any analytic differential operator of order | from F to G
such that the sequences

Tivrom (B) 2@y, (F) 228 5, (G)

are exact for m>>o, then the sequence

D »
Ep—>Fp—>Gy

where D = goj,, D' =1doj,, is exact.
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