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INTRODUCTION.

¥or an abelian category <?, the Grothendieck group K°(C?) of (5 is an
abelian group which solves the universal problem of finding " additive "
maps of ob] C into abelian groups. The Whitehead group K^C) is the
abelian group which furnishes a " universal determinant theory " for (3.
In this paper, we conduct a survey of certain techniques useful in the
study of these groups. While we treat them in some generality in the
first chapter, we very shortly restrict ourselves to group rings, i. e. to
the case when C is the category of Zr.-modules or else the category of
projective Z re-modules, for finite groups T;. In this setting, the crucial
(and most subtle) question seems to be that of determining the torsion
of the Whitehead group, and this is chiefly what engages our interest
throughout the last two chapters.

Before we give the glossary of results, the following diagram will hope-
fully give the casual reader a quick glance at the structure of this paper :

Chap. 1 Chap. '2 Chap. 3

\ -^ } /
Chap.^
\

Chap. o

In the first chapter, we recapitulate some generalities about Grothen-
dieck groups, part of which has more or less become folklore. We then
carry out a little spade work on orders in semi-simple algebras, and state
for future reference the finiteness theorems (th. 3.1, 3.2, 3.3) for these
orders. In the last section we deal with abelian orders and compute
the Whitehead group G1 for them (th. 4.i).

Chapter 2 is mainly a summary of [17], in which the author introduced
the notion of the Artin exponent for finite groups. Main results in [17]
are stated to path way for applications to chapter 4. Proofs of these
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results require techniques of a different vintage, and will thus be omitted
from the present treatise. For full details we refer the reader to [17].

Chapter 3, axiomatic in nature, is again independent of the preceding
chapters. We define a Frobenius functor of rings on a category ^ as
a presheaf of rings on ^ which carries an induction structure satisfying
a Frobenius reciprocity law (§ 1). A priori we impose no condition on
the nature of the category ^, but in practice we let ^ be the category
of subgroups of a fixed group or else the category of finite coverings of
a fixed space. Examples abound in nature, and, to fix ideas, we record
a handful of them, from group cohomology, cohomology theory and
topological K-theory. Every Frobenius functor gives rise, in a natural
way, to a category of " modules '\ We then show, a la Swan ([21]),
that an induction theorem for a Frobenius functor G will automatically
imply induction and restriction theorems for the module category
over G (th. 3.4). The Sylow subgroup theorems in group cohomology,
for example, are seen to follow immediately from this abstract set-up.

The first three chapters then find simultaneous expression in chapter 4,
in which we study the Grothendieck groups and Whitehead groups of
a finite group r., " by induction ". We show that the functor G° is a
Frobenius functor over which all other familiar functors behave as modules.
Interpreting the classical induction theorems appropriately on G° (th. 2.1),
we can apply the machinery of chapter 3 and immediately write down
induction theorems for K', Wh, . . . . In this context, the Artin exponent
shows up as the requisite exponent for induction from cyclic subgroups.
On the other hand, the Whitehead group of a cyclic group has been comple-
tely determined, and known to be torsion free (Bass-Milnor-Serre, [10]).
Consequently our induction theorem yields estimates on torsion exponents
of the Whitehead group in general (th. 4.1, 4.2), and the calculation
of the Artin exponent in chapter 2 enables us to write down some suffi-
cient conditions for the Whitehead group to be p-torsion free, for a fixed
prime p (th. 4.1). As a by-product of the architecture we also give
easy " inductive 5 ) proofs of three theorems of Brauer on modular repre-
sentations (th. 3.1, 3.2, 3.3).

In the last chapter, we exploit some techniques developed in a recent
work of Bass-Milnor-Serre ([10]), and show how one can make explicit
computations via these, in some circumstances. The Whitehead group
of an abelian group of type (p, p " ) is p-torsion free (th. 1.1) and the same
is true of an abelian group whose p-part has cardinality ^jrr, provided
that p does not divide the Euler function of the other prime divisors of
the order of the group (th..2.1). Finally we handle a small non-abelian
group, S;̂  and show that it has Whitehead group equal to zero (th. 3.8).
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While it may surprise the reader that about six pages of tedious calcu-
lations were needed to treat a group as innocent as S;;, there is apparently
no other non-abelian group to which any existing technique has access.

Lastly, a word on notations, ri always means a finite group, and T/, T/'
denote subgroups of IT. For x^r^ \x ' ) ' means the cyclic subgroup
generated by x. N and C (mainly in chapter 2) indicate " normalize!' 9 5

and " centralizer " in IT.
All rings have identity and all modules are finitely generated and

unitary. For a ring A, a module P is said to be a generator of the category
of A-modules if A is a direct summand of a direct sum of copies of P. A
" faithfully projectile " module means a f finitely generated) projective
generator in the module category. For a commutative ring A, p i , ^j, . . .
usually refer to prime ideals in A and ^Mi, ^IL, . . . to maximal ideals
in A. For an A-algebra F and left F-module M, My denotes localization of
M at a prime ideal p of A, i. e. Mp === Ay(^)JVL This will be canonically
regarded as a Fp-module.

A global field K means a number field of finite degree over the rationals
or else a function field in one variable over a finite field. We write K*
or sometimes ,U(K) for the group of units in K. Z, Q, R, C, . . . will
have their usual meanings.

To conclude this introduction, I would like to express my gratitude
to Professor H. Bass, my thesis adviser, who led me to this research and
made many valuable suggestions and contributions during the preparation
of this work.

CHAPTER 1.

F^INITENESS T H E O R E M S .

1. GENERALITIES AND DEFINITIONS. — Let cl be an abelian category
and C? a full additive subcategory of d closed under finite direct sum
formations. Suppose further that for any exact sequence

(*) o->X /-;>.X-^X"->o

of Cl with X, X"€ obj C?, we have X'€ obj C?. We define the Grothen-
dieck group of C to be an abelian group K^C?) with generators [X] for
XG obj C and relations [X] === [X'] + fX"], for exact sequences (*),
with X, X"€ obj C?. The map

| | : obje—K^e).

then solves the universal problem of finding additive maps of obj (3 into
abelian groups.
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The Whitehead group K' (C) of.the category (3 can also be defined, as
an abelian group, by generators and relations. Its generators are[X, a],
where X € obj (3 and a : X ^ X is an automorphism of X. The rela-
tions are of the following types :
(1) Additive relations : For any commutative diagram

o ——> X'——-> X ——^ X"——> o

a' a a"
•̂  y Y

o ——> X'——> X ——> X'——> o

in C, where horizontal sequences are exact and vertical maps
are automorphisms (X, X"€ obj C), we have relation

|X, aj=|X\ a'J+IX", a'].

(2) Multiplicative relations : If a : X - X and p : X -^ X are auto-
morphisms in e, we have relation

[X, ap]=[X, a ]+ |X ,p j .

Let A be a (not necessarily commutative) ring with identity.
Define <71l(A) to be the category of (finitely generated) left A-modules,
and ^(A) to be the category of (finitely generated) projective left A-modules.
We write

Gi(A)=Ki(^VL(A)) (i=o, i);
K<(A)^K/(^ (A)) (i^o, i).

We shall now state, for future reference, some well-known facts about
these groups. (See f4], [5].)

PROPOSITION 1.1. — If C is an artinian category (i. e. every object has
finite length), and C?u is the full subcategory of semi-simple objects, then the
inclusion functor induces isomorphisms K^C^) ^ K^C?), i = = o , i . Suppose
( S, : i € I j is a set of representatives of the isomorphism classes of simple
objects, then K°(C'o) is the free abelian group generated by i [ S , ] : i € l j .
If D, is the division ring (Schur's lemma!) of endomorphisms of D,, we
have K'eo^eD^D;, D;j.

This enables us to compute, among other things, the K° and K1 of
artinian rings, and hence the K° and K' of finite dimensional algebras
over fields.

We also have

PROPOSITION 1 . 2 . — Let e be an abelian category andl? the full subcategory
of projectives. If every object of C has a finite resolution by objects of '?,
then the inclusion functor induces isomorphisms K ' ^ ^ K ' C (i = o i).

For proof, see ([5]), th. 4 and 5).
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In the present chapter, we seek to establish that G'(A) and K'(A) are
finitely generated abelian groups for a class of rings A, notably for orders
in a " nice 5? finite dimensional algebra over a field. We recall the definition
of an order :

DEFINITION 1.3. — Let R be a noetherian domain, with quotient field K.
Let 2 be a finite dimensional V^-algebra, with unit element i. An }\-order F
in ^ is a subset of ̂ :

( 1 ) r is a finitely generated R- module'^

(2) r is a subnng of ^ containing i ;

(3) K^r^s.
In the situation of definition 1.1 we can consider several interesting

subcategories of ^(F) :
(a) ^o(I^) denotes the subcategory of " special projectives ", i. e. objects M

of ^(F) with the property that K^^M is a free S-module;
(b) ^/(F) denotes the subcategory of " locally free projectiles ? ? , i. e.

objects M of ^(F) with the property that MM is a free F^i-module
for every 1̂1 € max R;

(c) ^/(F) denotes the subcategory of faitlifully projectile r-modules;
(rf) ^(1^) denotes the subcategory of free P-modules.

Now let ^* be any one of these. The elements [P], P€ obj t?* generate
an additive subgroup in K°(T), which we denote by [l?*]. We can now
form the quotient groups

c rn - [^(-nV.U {L ) —— T-^-TF-.-T?[^(r) j
|^(r)|
[^(r) jc/(r)=

They are loosely referred to as the projectile class groups (reduced pro-
jective class groups, . . . ) of F.

Recall that a ring F is (left) hereditary if every left ideal is projective:
it is (left) regular if every module has a finite resolution by projective
modules. If F is an order over a Dedekind ring R in the sense of defi-
nition 1.3, then F is hereditary if and only if it is regular.

In general, if F is any ring, we can define a map x(F) : K°(r) -> G°(r)
by [P] —^[P] . This is called the Cartan map of F. In case F is regular,
x(r) is an isomorphism, by proposition 1.2.

2. CLEAN ORDERS AND STROOKER THEOREMS. — In this section we
recapitulate some theorems of J. R. Strooker [24] and set up some conve-
nient terminology.
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THEOREM 2.1 (Strooker [24], th. 3.6). — Suppose, in definition 1.3
that R is local with maximal ideal ^H and 2 is semi-simple K-algebra.
Then for any R-order FcS, CnfT) is a free abelian group of rank equal to
the rank of the kernel of the Carton map /.(r/iMF) : K°(T/lMr) -> G°(r/iTOr).

This theorem computes the reduced projective class group Co(T) in
the local setting. Globally, we have another theorem of Strooker ([24],
th. 3.11).

THEOREM 2.2. — Suppose R is a Dedekind domain, and 2 a separable
K-algebra, and FC^ an R-order. Then

Co(r )^Q(r )®®MCo(r^v
where the direct sum is taken over 1̂1 € Max R. CofT^) is zero for almost
all ^M€ Max R. If further K is a global field, C/(T) is finite, and is there-
fore the torswn subgroup of Co(r).

Thus Cu(-r) is a finitely generated abelian group whose rank can be
computed by theorem 2.1. We can now define.

DEFINITION 2.3. — r is a clean order if ^ofT) C ^/-(F), i .e . if every
special projectile is faithfully projectile.

The following theorem of Strooker gives various alternative descriptions
of cleanness. We record without proof

THEOREM 2.4 ([24], th. 3.4, 3.10). — If R is Dedekind, and I is a sepa-
rable algebra over the global field K, then the following conditions are equi-
valent :
(a) r is clean',

{b) Vm is clean for every maximal ideal /AMcR;
(c) Co(-Tiu) ==o for every maximal ideal 4McR;
{d) The Carton map x^/MF) : K^F/iMF) -> G^r/MF) is injective for

every maximal ideal JILcR;

{e) The reduced projective class group Cn(-r) is finite.

Most implications are apparent from theorems 2.1 and 2.2. An imme-
diate consequence of (a) <=» {d) is that group rings Rri are clean orders.
Here we use a theorem of Brauer on the injectivity of the Cartan map,
of which we shall give a new proof later in chapter 3.

We finally remark that Strooker has also characterized maximal orders
in ^ as those which are both hereditary and clean.

3. FINITENESS THEOREMS FOR G ' , K' ( i = = o , i ) . — In this section,'
R denotes the ring of algebraic integers in a number field K, and S denotes

Ann. EC. Norm., (4), I. — FASC. 1. 13
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a separable K-algebra. F, F' and F" will refer to R-orders in 2. We
shall prove that G^F), K^F) are all finitely generated abelian groups,
and we compute their ranks in terms of two integers, r and q, defined
as follows. Write C for the center of 2. Then q denotes the number
of simple factors of C, and r denotes the number of simple factors
of CR=R(g)QC.

To handle G' and K', we first consider the case i = o. The following
theorem is implicit in Strooker's thesis :

THEOREM 3.1. — Let r be an R-order in 2. Then :
(a) G°(2) == K°(2) is a free abelian group of rank q;
(&) G°(r) is finitely generated, of rank ^q. If F is clean, the rank is

precisely q. If F is hereditary, then the rank equals q if and only
if F is maximal;

(c) K°(F) is finitely generated. If F is clean, the rank of K°(F) is ^g.
If F is hereditary, then the rank equals q if and only if F is maximal;

{d) For a clean F, G° (F) -^ G° (2) and K^r^K0^) hwe finite kernels.

Proof:

(a) Is a straightforward consequence of proposition 1.1.
(fc) Choose a maximal order F'DF. Then we have an exact sequence

o -^ c,, (r') -^ G° (r') --> G° (^ ) -^ o
by ([22], propr. 5.1), where the first map is defined by[M] ^[M] — [F'^J
(m==rank of K(g)nM over 1) for Me^o(F') . Since F' is clean, Co(F')
is finite by theorem 2.4, so G°(F') is finitely generated of rank = rank
G°(^)=q by (a). 'Now consider the following commutative diagram

-^ C, ( f ) —^ G° (I") —> G° (1) —-. o

./'
(C., (F ) --^) G" (r ) —^ G" (1) —-. o

where f is induced from the forgetful functor JH(F') --^ JH(F). Ker f
is a subgroup of C°(F'), by commutativity, hence is finite. Pick o ̂  r€ R,
such that rF'cF, then rF' is an ideal in F' as well as in F. Another forget-
ful functor induces g : G^F/rF') -> G^F). We claim that
G°(F) =im/'+img. Indeed, since for any Me^Tl(F), [ M ] = = [ P j — [ F ]
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for some P and F, both R-torsion free, one need only catch [M] in
im/'+img for a torsion free McK^M. With this inclusion in mind,
we can talk about F'M. Now the exact sequence

o-^ (/•F) M - - > M - > M / ( / - r ) M >o

yields [M] = [(r'F) M] + [M/(rF') M] in G°(r). Here(rF') Misanr-module,
since F'^MCrFT'Mc (rF') M; and M/(rF') M is an F/rF'-module,
hence [ ( rF ' )M]e im^ and [M/(rF') M] eim g. Finally F/rF' is an Artin
ring, therefore G°(F/rF') is free of finite rank. Ker f being finite, we
conclude that G°(r) is finitely generated of rank ^^. Now suppose
that r is clean, so that Co(F) is finite. If we show that ker jfimk is a
torsion abelian group, then ker j is finite, and rank G^F) =- rank G°(2) = q,
Now according to a theorem of Swan ([21], prop. 1.1), the sequence

^ G < • ( r / p ^ ) - > G " ( ^ ) - / . G < • ( 2 . ) - ^ o
is exact, where p runs through all p€Spec R, p ̂  o. Take any .rGkerj.
We could clearly assume that r t '==[M] where MeS^r^F/pF) for some
p€Spec R, P 7^ o. Since F is clean, the Cartan map x(F/pF) is injective,
and hence has a finite cokernel. By multiplying x with an integer if
necessary, we can assume that M itself is F/pF-projective. Now F/pF
considered as left F-module has protective dimension ^i (by exact
sequence o --> p (^)nF ^ V ^ F/pF ^o ) , hence M considered as F-module
also has projective dimension ^i. This enables us to take a resolution
o -> P -> F -> M --> o in which P and F are F-projective and F-free,
respectively. Now, clearly, K^pP ^ K^nF is i-free, so starting
with

}'=- P |eCo(r ) , / . ( r )=- ( |P | - |F | )= |F | - |P |=- |M|==^

Finally, suppose F is hereditary. We assume that rank G ° ( F ) = = = ^
and want to conclude that F is maximal [this means that for an order F
which is hereditary but not maximal, rank G°(r)>gr] . But now
G°(F) ^ K°(F), (since F is regular), so our contention is equivalent to
the last statement of (c), which we shall prove shortly.

(c) Consider the exact sequence
o-^ ( ; „ ( ? ) -.K°(r) - ^K° (^ ) .

By theorem 2.2, Co(F) is a finitely generated group, and by (a) of the
present theorem, so is K°(^). Hence K°(F) is finitely generated. If F
is clean, Co(F) is finite, so rank K°(F) ̂ rank K°(2) == q. Finally,
suppose F is hereditary, but non-maximal. By the last remark of para-
graph 2, F is not clean, so C(»(F) has rank^i. But now K°(F) ^ G°(F),
hence K° (F) ^ K° (£) is onto. Evidently rank K° (F) == rank Co (F) + q > q,

(d) Follows readily from (fc ) and (c). Q. E. D.
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We now come to G' and K' for i=i. To handle K1, we have the
following theorem of Bass ([6], lemma 3.6, and [4], § 19).

THEOREM 3.2 (Bass). — Let F be an R-order in 2. Then :
(a) K1 (F) is a finitely generated abelian group of order r-q,
(b) For R-orders FcF', the map K^F) --^K^F') has finite kernel and

cokernel^
(c) K^r^K1^) has finite kernel.

Whereas we won't repeat the proof of this theorem, we shall state and
prove its analogue for G1, as follows :

THEOREM 3.3. — Let r be an R-order in 2. Then :
(a) G^F) is a finitely generated abelian group of rank r-q;
(b) For R-orders FCF', the map G^F') -> G1 (F) has finite kernel and

cokernel;
(c) G^I^^G1^) has finite kernel;
(d) K1 (F) —^ G1 (F) has finite kernel and cokernel.

Proof:
(a) Choose a maximal order F':)F and o^ rGR, such that rF'cF.

We observe that
ker(G{(^)->Gl(r)) C ker (G' (P) -> G' (1)) ̂  ker(K j (P) -> K1 (^)),

hence is finite, by (c) of the Bass theorem. Here we have been able to
identify G1 and K' because F' is hereditary. We then have to handle
the cokernel of f : G1 (P) ̂  G1 (F). Writing g for the map G' (F/rF') -> G1 (F),
we claim [as in (fo) of theorem 3.1], that G'(F) == im/*+im g. Indeed
the former arguments carry over verbatim. We only have to add the
observation that (rF') M is stable under any F-endomorphisms of M.
Note that given j;eG'(F), we can always suppose that x=[M, a], where
M € JTl (F) is R-torsion free (by theorem of Bass-Heller-Swan, [5], th. 5)
so (r F') M make sense. Now the category Jlt(r/rF') is artinian, so we
can apply proposition 1.1 to conclude that

G'(r)^G'( i7jacr)
where F==r/rF' and Jac denotes Jacobson radical. Here, F/JacF is
finite and semi-simple (==> regular), so

G' (r/jacr) ̂  K 1 (r/Jacr) ̂  u (r/jacr)
is finite. It is clear, then, that G^F) is finitely generated of

rank == rank G' (P) = rankK1 (P) -==. r — q,

by the Bass theorem.
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(fc) Follows immediately by taking a maximal order r"3F'3r and
looking at the commutative triangle induced for G1.

(c) We only have to prove that ker k is torsion in the commutative
diagram. In fact take :r€ker/c; assuming that we have proved (rf),
we can choose o^^GZ, such that dx€= im g, say dx=g(y), i/eK^F).

K1 (D

Gi(-r)-^(i)

But then 2/ekerA, and so d ' y == o for some o^rf 'CZ, by Bass. Finally
d'dx = g{d/y) = o. We now prove [d).

[d) ker (K^F) -> G1 (F)) cker (K1 (F) -> K'1^)), hence is finite, by (c)
of theorem 3.2. Since K^F) and G1 (F) have the same rank ( = = r — - g r ) ,
coker (K1 (F) -> G^F)) must be finite too.

Q. E. D.

In chapter 4 (th. 5.1, 5.2, 5.4), we shall give sharper versions of the
statements in the last two theorems, in the case when F = ZTI, the integral
group ring of a finite group.

4. COMPUTATION OF G1 FOR ABELIAN ORDERS. — Let R be the ring
of integers in a number field K, and 2 be a semi-simple commutative
K-algebra. Then 2 ̂  K, © K. ©. . . ©K, where K, (1^7^ q) are
finite extensions of K. Write R/ for the ring of integers in K/. The
subring F* = RiO. . .©RgCS is then the unique maximal R-order
in 2. Other orders in S are denoted by F, F', . . . etc. By the theorem
of Bass-Milnor on unimodular matrices over algebraic rings of inte-
gers ([8], [10]), one <knows that K^R/)^ U (R/) where the isomorphism
is defined via the determinant map. We now state the main theorem
of this section, which refines theorem 3.3.

THEOREM 4.1. — Let F be any order in 2. Suppose for every j, the
projection F --> Ry is onto. Then G^F^^G^F) is an isomorphism. In
particular

G^r^L^R,) x . . . x U ( R y ) .

We break up the proof into several lemmas.

L E M M A 4 . 2 . — LetAbe a commutative noetherianring. For any Me <5Tl (A),
there exists a fully invariant filtration o == MoCMi C . . . CM/.== M of M
such that^ for each 7, M//My_i is a torsion free A.lf-module for some prime p.
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Any two such filtrations have a common refinement of the same type. {Here,
" fully invariant " means : stable under all A-endomorphisms of M.)

Proof. — We need only show that any fully invariant filtration of M
has a refinement of the above type. Indeed, once this is done, the first
assertion follows on refining the trivial filtration oCM, and the second
statement follows from the observation that the filtration obtained by
" intersecting ?9 two fully invariant filtrations is a fully invariant refinement.
Now to refine an arbitrary fully invariant filtration to the requisite type,
it clearly suffices to refine the composition factors, hence we are back
again to the first assertion of the lemma, which we shall now prove, by
" Noetherian induction " on M. Among all prime ideals peSpec A
for which p annihilates some x 7^ o in M, choose a maximal member p
(A == noetherian!). Set

Mi== j .reM, y^r= o }.

Evidently Mi is a fully invariant submodule, and M, can be viewed
as an A/p-module. If Mi is not torsion free over A/p, then its torsion
submodule contains elements 7^ o annihilated by primes bigger than p,
contradicting our choice of p. Hence M^ is A/p-torsion-free. Now
continue on M/Mi by noetherian induction.

o. E. D.

LEMMA 4.3. — Let A be a commutative noetherian ring, with minimal
fi

prime ideals Pi, pj, . . . , ? „ . Let B==j^[A/p/. Then the natural ring
j

homomorphism A -> B induces epimorphisms G'{B) -> G'(A.) -> ofor i == o, r.

Proof. — First work with i == o. Given M€;JTI(A), choose a filtra-
tion o = Mo C Mi C . . . C M, = M as in the preceding lemma. Then
[M] = 2,{M,/M,_,] in G°(A). Suppose p is a prime for which N == M,/M^
is a torsion free A/p-module. Choose a minimal prime p / C p and view N

//
as a B-module N' by " pulling back " along the projection B = j TA/R, -> A/p,.

/
Evidently the image of N' under <m(B) — JTlfA) is isomorphic to N,
whence [N] == [My/My_i] € G°(A) is captured in the image of G°(B) -> G°(A).
Therefore so is [M].

Next consider G\ Given [M,a ]eG ' (A) , aeAut.M, choose a filtra-
tion o = Mo C M, C . . . C M, = M as in the preceding lemma. Then
aMyCM^ and a^MyCM/, so aM/= M/ for every j. Let a/ denote the
automorphism induced by a on N,==M//My_i. Then in G^A), we have
[M, a] = ^[N/, a,] by (generalized) additivity. To show surjectivity
of G^(B) -> G^A) therefore, we only have to catch element fM, aJ^G^A)
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for which M is a torsion free A/p-module for some prime p. Pick a minimal
prime p ^ C p and let M' denote the corresponding module over A/p,, and
hence over B, via B —^ A/p,. Since a is an A-automorphism, it corres-
ponds to an A/pt-automorphism and hence a B-automorphism, a', of M'.
Clearly [M, a] is the image of [M', a'] e G1 (B).

Q. E. D.

We can now resume the proof of the theorem. Since F is a finite
R-algebra in commutative ^, F is a commutative noetherian ring. Also,
being an integral extension of R, F has dimension i, by the Cohen-Seiden-
berg theorem; consequently the minimal prime ideals pi , . . . , ? , / of F
are no other than the kernels of the (' coordinate projections ? ? F -> R,.
Since all these projections are assumed to be surjective, r/py ^ Ry for

every jy hence B = lUTr/p^ j | R , ̂  F*. the maximal order in 2.
/ /

Now the diagram of categories and functors on the left induces a diagram
of G'-groups on the right :

.m(i) G^i)
®/ \® ^/ \
/ \ / \

;m (P) —> 3Xi (D G1 (P) -̂ -> G' (T)

In the right diagram, G ^ r ^ ^ L ^ R ^ X - . - X U f F l y ) (by a remark
we made at the beginning of paragraph 4), and G1^) == U(2), hence [J.
is a monomorphism, hence also 0. But F* ^ B, and 0 was an epimor-
phism by lemma 4.3. Consequently

G1 (T) ^ G1 (P) ^ LJ (Ri ) x . . . x U (Ry).
Q. E. D.

Remark. — Theorem 4.1 applies notably to orders which are group
rings over cyclotomic integers. In fact if R denotes the ring of integers
in a cyclotomic field K, and r. a (finite) abelian group, then a typical
component K/ of 2=K'7: is a cyclotomic field K(^/), in which the ring
of integers is Ry= RFC/], by a familiar theorem in number theory.
If r==Rr . , the projections F — ^ R / are manifestly surjective.

CHAPTER 2.

ARTIN EXPONENT OF FINITE GROUPS.

This chapter is a digression into the theory of rational representations
of finite groups. Theorems will be stated without proof, and the interested
reader is referred to the work [17]. ,
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Let us first recall the classical induction theorem of Artin :

THEOREM 1. — Let T: be a finite group of order n, and let iii, . . ., TI^,
be a maximal non-conjugating set of cyclic subgroups of TI. Let p-i, .. ., ̂
be the characters of T; induced from the trivial representations of Tii, . . ., TC^.
T/ien /br am/ rational character y o/* TI, there exist integers Oi, . . . 5 a/y 5uc^
^a^

y
(*) ^X^^/W-

In practice, however, we find that in most cases smaller multiples of y
already have the same property. One can then naturally ask, for a
given group Ti, what is the smallest choice of m^Z"^ such that the equation

(/
(**) ^%:==^<r^-

is solvable for integral unknowns a/,, for any given rational character /.
This question motivates the following.

Definition. — Let T; be a finite group. An integer m€Z is said to be
an Artin exponent for Ti if, given any rational character / on Ti, the equa-
tion (**) is solvable for a/^eZ. All Artin exponents clearly form an
ideal in the integers, and, by theorem 1 [71 : i] is in this ideal. We pick
the (unique) positive generator A(T:) for this ideal and shall call it the
Artin exponent of 11. Our last remark shows that A(T:) divides [71:: i.]

Example. — Let us compute the Artin exponent for S.s, the (full) sym-
metric group on three elements. Choose, in notation of theorem 1,

7 T i = = < I > , 7 T , = < ( l 2 ) > , 7: . ,==<(I23)>.

83 has three (absolutely) irreducible representations, namely, the prin-
cipal representation %1, the sign representation y2, and the unique two-
dimensional irreducible representation y3. We easily verify that

2 % l : = r — — ^ + ^2+^3,

^^ ^ 1 — 2 ^ 2 + ^ 3 ,

^^ ^1-^3.

Thus A ( S a ) = 2 .
In [17] we furnish a complete determination of the invariant A(7i) in

terras of the inner structure of the group TT. The main results are as
follows:

THEOREM 2. — A(Tt) == i if and only if n is a cyclic group.
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THEOREM 3. — If Ti' is a subgroup of Ti, t/ien A^') divides A(TC). If 11"
is a quotient group of n, A(TI") a^o divides A(T.).

THEOREM 4 (Brauer). — I f ^ i y ^ ^re two finite groups of relatively prime
orders, then A(Tii X ^2) ̂  A(Tii) A^).

THEOREM 5 (Witt Induction Theorem) :
A(7r) ==1. c .m.A(7^ / )

where the l.c.m. is taken over all hyper elementary subgroups r/ of 11. In
particular, a group is cyclic if and. only if all hyperelementary subgroups
are cyclic.

(Recall that a hyperelementary group is a group n which has a cyclic
normal subgroup 11' such that — is a p-group for some prime p.)

THEOREM 6 :
(a) Let p be an odd prime, and r. be a p-group of order p11, which is not

cyclic. Then A(ri) = p""1.
(fc) Let TI be a '2-group which is either " quaternion ", or " dihedral 9 ? , or

"semi-dihedral", then A(r . )=2. If TI is a non-cyclic i-group of
order i" which is not of any of the above types, then A(ir) = 2'^-l.

This theorem therefore provides the complete computation of A(n)
for p-groups. It is now possible to use theorem 5 to obtain global
theorems :

THEOREM 7. — Let p he an odd prime and ^ be a finite group, a p-Sylow
subgroup ^ ( p } of which is of order p " and not cyclic. Write A^(7i) for the
p-part of A(n). Then we have :
(a) A^(^) === p71 if there exists a cyclic p-free group DCTC normalised by ^ ( p )

on which the conjugation action of ^ ( p ) is faithful;
(fc) A^(7i) = jo""1 if otherwise.

COROLLARY 8. — Ay,(ri) == pn~i if any of the following conditions holds :

(a) ^(p) is normal;
(fc) TJ^ is abelian;
(c) p" does not divide the product of all numbers q — i, for q running over

all prime divisors of [re : i] distinct from p.

THEOREM 9. — Suppose p is any prime and a p-Sylow subgroup
^ ( p ) of Ti is cyclic. Then Ay,(ri) = p ' , where s is the smallest positive integer
satisfying the following property ;

(*) For any xG^^ and any p-free cyclic subgroup D of n,

^ € N ( D ) =^ ^eC(D).
Ann. EC. Norm., (4), I. — FASC. 1. 14
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We get immediately

COROLLARY 10. — Let Ti^ denote a p-Sylow subgroup of TT; then A(ri)
does not involve the prime p if and only if the following two conditions holds :

(a) Ti17^ is cyclic;
(b) For any subgroup PCT".^ and any p-free cyclic subgroup D of r.y

PcN(O) => PcC(D).

COROLLARY 11. — Suppose Ti^ is cyclic. Then A(ri) does not involve p
under any one of the following conditions :

(a) ^ ( p ) is normal;
(&) p does not divide q — i, for any prime divisor q of [TZ : i];
(c) p is the largest prime dividing [r: : i].

COROLLARY 12. — Let ii == S^(n^3) he the symmetric group of permu-

tations of n letters. Then A(r.) is free of primes p > -•

CHAPTER 3.
FROBENIUS FUNCTORS AND INDUCTION THEOREMS.

1. FROBENIUS FUNCTORS G AND G-MODULES. — Let ^ be a category
and (ft the category of commutative rings with identity (with identity
preserving ring homomorphisms). A presheaf of (commutative) rings on
^ is then a contravariant functor G : ̂  —^ CX. For a morphism i : r/ -> TT
in ^5 we write i^ for G(i). The presheaf of rings G is called a Frobenius
functor if it carries the following additional structure of induction :

There is a functorial association of group homomorphism i^: G(r/) —^ G(Ti)
to morphisms i : T/-^ ri in ^ fi. e. we have a rule i -^ i^ such that (ij)^= ij^.
whenever ij makes sense in ^, and such that U^== U], satisfying the
following Frobenius reciprocity formula

(F t ) i\({^'-^) =- < ' • t ^

foraeG(Tr) , &€G(T/) and i:r/->7:.

We easily see that such a G can be regarded as a " genuine " functor
on ^ in the usual sense of category theory, if we manufacture an appro-
priate recipient category. In detail, we define the universal Frobenius
category FROB to be a category with obj FROB==ob](?t and morphisms

F R O R ( R , ? / ) = = ; ( / * , /,) : / *<=a(R, W ) ,
/y : R'->R a ^roup homoTnorpliisni, and /*, / satisfying ( F J ) i .
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Composition of morphisms in FROB is defined by

(y^.^)o(^)=(./^^^.A)•
It is then an easy exercise to check that if the pairs (7*5 ./J and (i*, ij

satisfy Frobenius reciprocity (F 1), so does the pair { j ^ i * , i^j\). With
FROB thus defined, a Frobenius functor is just a (usual) functor G from ^°
(dual category) to FROB.

We now come to the concept of " modules " over a Frobenius functor G.
A G-module will mean a module K : ̂  -> (abelian groups) over G regarded
as presheaf of rings, together with the following additional structure of
induction :

There is a f tinctorial association of group homomorphisms 1^: K(r/) ->K (r.)
to morphisms i: r/ --> 11 in ^, satisfying the following two reciprocity
formulae :
(F2) I,(y.P(^)) =:i\(y).a

(F3) ^(r(.T).h)=.r.l,(b)

where ^eG(n) , y € G ( T / ) a € K ( r . ) , 6eK(r/) and r= K(i).

REMARK 1.1 :

(a) The formula l^x.a) = i^x). F'(a) {xeG^), a€K(r .)) expressing
the semi-linearity of 1̂  with respect to i* is built into the requirement
that K be a module over the presheaf of rings G.

(fc) G itself, e. g. is a G-module. In this case (F 2) and (F 3) amal-
gamate, by commutativity, into a single formula (F 1).

(c) To elucidate the reciprocity formulae, the following orientation
may help. Regard G(n') as G(T.)-module by action

a o b == /* (a) . b, a € G (7r ) , b e G (TT') .

Then the fact that i* is a ring homomorphism translates into the state-
ment that i* is a morphism of G(T.)-modules. Similarly, (F 1) translates
into the statement that i* is (also) a G(Ti)-module homomorphism. Similar
interpretations hold for (F 3).

Let K and K' be G-modules. A morphism of G-modules will mean a
natural transformation f: K -> K' which is a morphism of modules over
the presheaf of rings, satisfying the following commutativity condition :

K(7T) -^K^TT)
^ ^

^| < | ̂

K^TT^-^K^T:')

for each morphism i ; TT'->TI in ^.
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We can define, in a natural manner, the kernel and the image of such
a morphism f: K '-> K', and these again carry natural G-module structures.
All G-modules with morphisms as above therefore form an abelian category.

Suppose G and G' are both Frobenius functors of rings over a fixed
category ^. A homomorphism f from G to G' will mean a natural trans-
formation of functors/*: G -> G'. The presence of such a homomorphism
converts G' into a G-module in the obvious manner, and with this struc-
ture on G', f becomes a morphism of G-modules. In this way all the
usual constructions in ring theory and module theory carry over; in
particular we have the concept of " ideals 9 ? in a Frobenius functor of
rings, and we can " complete " the latter in " -31-adic topologies 5? for
various ideals 51.

The usefulness of these concepts, as well as many examples of Frobenius
functors and modules over them, will appear in the coming section.

2. EXAMPLES :

EXAMPLE 2.1. — Let TI be a fixed finite group. Write ̂  for the category
of all subgroups T/C^ and all monomorphisms I : 'K" -^TI ' . We shall
refer to ̂  briefly as the category of TI. Take a fixed ir-ring R, i. e. a ring
on which 11 acts as a group of ring automorphisms. There exists a unique
natural family of maps ^ 'v :

H^(7r, R) (^z^^ R)^^H^(7r, R^z^

pL/>-+-7 ^P; </\ [A,P+7

> ^
H^7 (7:, R)

extending the zero dimensional (unreduced) map

R^R^R^
^®y-^^y'

(See [II], p. 242.) Here H denotes taking " complete " group cohomology,
in the sense of Artin-Tate, If we now write

fl(7r , R)==©J^(7r, R ) ,

H(TC, R) has the structure of a graded ring, via [j.7^7^7. For a mor-
phism i :7:"C^' in ^, we have the following familiar maps in group
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cohomology ([20], p. i24-i3o).

(2.2) 11(7^ R^fl^T^ R ) ,

(2.3) H ( 7 ^ R ) ^ H ( 7 r \ R ) ,

Here res is a morphism of graded rings and ver is a morphism of graded
abelian groups. Writing i^ for res and i^ for ver, we immediately see

/\ _
that Ti'-^ H(V, R) is a Frobenius functor of commutative graded rings
on ̂ , the requisite reciprocity formulate (F 1) being given by equations (12)
(i3) of page 256 in [11]. Call this functor G (suppressing the role of R,
which is fixed).

By a Ti-R-module we shall mean an R-module K with ^-action satisfying
a^a.x) = ̂ J a . ^ x , for a€R, ;r€K and a€^. We can construct a functor
from the category of all such Ti-R-modules into the category of G-modules,
as follows. Given a fixed ir-R-module K, we have a diagram similar
to (*) with the R's there " partially " replaced by K. This furnishes
H(TI', K) with a natural structure of a G(TL') (= H(Ti', R))-module. We
also have maps as in (2.2) and (2.3) with K replacing R. Writing I*
and 1̂  for these maps, we easily verify that the rule

n'^{^(n')=(i(n^K)^^^

for Tc'e^n? defines a G-module. In fact, semi-linearity (Remark 1.1 a)
and Frobenius reciprocities are replica of formulas (n), (12), (i3) on
page 256 of [11]. Further, to a morphism / * : K - > K ' of rc-R-modules
we can associate maps )/*(^') : H(ri', K) -> H(r/, K') ) induced on coho-
rnologies. This way we get a (covariant) functor from Ti-R-modules
to G-modules.

REMARK 2.4. — Taking R = Z, a trivial rz-ring, we have the basic
Frobenius functor G : T/—^ H(TI', Z). Tc-Z-modules then mean just
T.-modules and any such defines a G-module.

EXAMPLE 2.5. — Let eW be the category in which objects are CW-
complexes and morphisms are (regular) finite coverings. For XEC^^
write Cy(X) for the group of (say, integral) ^-chains and (^(X) for the
group of ^-cochains. If i : X'-> X is a morphism in (3 ,̂ we can define
i; : C,(X')->C,(X) and i, : C,(X) -> C,(X') as follows. For a y-cell ^

in X', i'(e7) == i(e7), and for a ^-cell e'1 in X, i ^ e ^ ^ ^ e ' 1 where e 1 ' 1

ranges over all y-cells of X' which cover e'1. These maps induce I* :
(^(X^C^X') and 1̂  : ^(X') -> C^X) for cochains, which, in turn,
induce I^H^X^H^X'), 1^: H^X') -> H^X) for (ordinary) cohomology.
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We easily check that if H(X)=^H 7 (X) is given the ring structure
y

defined by the cup-product of cochains, I* and 1̂  together satisfy the
Frobenius reciprocity (F 1). In this way Xt->H(X) and i f ->(I*, IJ
define a Frobenius functor of rings on (2'W.

EXAMPLE 2.6. — For Xe^W as in the above example and X finite,
let K°(X) denote the Grothendieck ring of (complex, say) vector bundles
on X. If X is infinite CW-complex we define K°(X) by a limit process,
Let i : X' -> X be a morphism in CW. Given a vector bundle F on X.
we can define its inverse image i*F, a bundle on X'; and, given a bundle E
on X', we can define a direct image i^E, a bundle on X. In topology,
we have the familiar fact that ^(E (g) i^F) ̂  i^(E) (g) F, so X^K"(X) ,
i i-> (1*5 i^) define a Frobenius functor of rings on C^W. Exactly the
same remarks hold if we replace K°(X)^ by K'(X) = K^X) ® K' (X),
where K^X) is defined to be the kernel of K° (XX S1)-^ K°(X).

Finally sheaves on topological spaces also lead to an example of a Fro-
benius functor. We just adhere to the same procedure of taking inverse
and direct images for the construction of I* and 1 .̂

EXAMPLE 2.7. — In C^^, consider a fixed object XGC-W with a finite
fundamental group TL. Let X be a contractible universal covering of X,
and we consider X as defining a principal T.-bundle on X, in the fashion
familiar to topologists. Recall that ̂  denotes the category of subgroups
and inclusion homomorphisms in TZ. We can define a similar category
topologically, namely, we agree that C^U'x is the subcategory of C5*W
" over X ? ? : this means : objects of CW^ are taken as maps X'—^ X in (3'W
and morphisms of C?^^ are taken as maps / '-.X'-^X" in CW which
make the following diagram commutative

/X'

< [f
\ Y\x^

The homotopy operator X'h->r.i(X') then defines a functor
7:1 : eW^ -> c^ which is easily seen to be an equivalence of categories,
by the theory of covering spaces. Note that under this equivalence
X ^-> Ti and X ^-> \ i} .

Consider now any r/S0^? and a complex representation p : T[' ^ GL(n, C)
of T/. Under the equivalence of categories defined by 7:1, TT' corresponds
to some X' with T I , ( X ' ) = = T / . The induced epimorphism X -> X' defines
a principal Ti'-bundle ? on X', so given p, we can canonically construct
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a complex vector bundle p ( E ) on X'. It is easy to check that the process
^ ^ - > ? ( E ) induces a natural ring homomorphism G(CT/) -> K°(X'), where
G(Cr/) stands for the (complex) character ring of r/. If we identify the
categories ^ and C?'^\ via r.j, this defines a natural transformation
of the Frobenius functor G to the Frobenius functor K°, and this, in
particular, converts K° into a module over G. Since we have also a
transformation K° -> 1C, K* can likewise be regarded as a G-module.

R E M A R K 2.8. — For XecW with finite fundamental group TZ, let
us identify C^\ w c^. Then examples 2.1, 2.5 and 2.7 give three
different Frobenius functors on ^. Take a morphism i: r/ -> T/' in c^.
This gives rise to a pair (I*, IJ. We have I,J*== multiplication
by [r/' : T/} in examples 2 .1 and 2.5, but this is not the case with example 2.7.

EXAMPLE 2.9. — Trivial modules :

Let r. be a fixed finite group and K a number field. Then T/ -> G"(KT/)
together with restriction and induction maps in representation theory
define a Frobenius functor. (For details, see § 1 of chapter 4.) Denote
this briefly by G and write 3Ti{G) for the category of G-modules.
Write {{ab)) for the category of abelian groups. We shall construct two
full imbeddings <&o, ^i.: {{ab)) -> Jll(G) which will be useful later. To
define $,», pick any abelian group F, and take ( t>o(F)(T/) = F for any r/e ^jhr.
Given I :T / ->T/ ' define the restriction map F : <l>o(F) ( r / ' ) -> $o(F)(7i')
to be the identity map F -> F, and define the induction map
1^: *o(F)(r/) ->^(F)(TZ") to be the multiplication by [r/': T/]. Finally
we let G ( T / ) = G ° ( K T / ) act on <&o(F)( r / ) by [M] .x = [M : K]x where
[M]€G°(KT/) and ^€F. Given a morphism 9 : F, ^ F, in {{ab)), we
define ^E>o(9) to be the constant family of maps ;o : Fi-^F,, ; . To get ^i,
we proceed in exactly the same way but interchange the definition of
restriction and induction maps.

To show that these definitions really work, let us at least check one
reciprocity formula, say ¥ 2) for ^o ;

ljj.r(a))=^j).66 |yeG(^), ae^o(F) (r:f)=F\.

Write y = [M] :
1, ( j - . I* (a)) = I, ([M : K] a) -= [ n " : TT ' . [ M : K ] a,

f\ ( v ) . a = | k TT" (g)K r.' MJ. a = [ K TT" ̂ ^' M : K J a ==. [ 7 : " : n'\. [ M : Kj <

Both imbeddings are clearly full and exact. They even have (exact)
left inverses. To show7 that the concepts of trivial modules is convenient,
let us-look into one example. Consider the trivial module ^(Z). The
natural multiplication on Z makes $o(Z) a " trivial 5? Frobenius functor.
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For ^e^., define G(r/) -y <Do(Z) (r/) by dim,,, i. e. [M] ^-> [M : K]. Then
dim can be regarded both as a (Frobenius) ring homomorphism and as
a module homomorphism. Following Atiyah [3], we write I(r/) == I(K'n')
for the kernel and call it the augmentation ideal. We can complete G(r/)

^\ ^\
in the I(r/)-adic topology, to get G(^'), and T/i—^G(7i ') defines a new Fro-
benius functor.

Over the trivial Frobenius module $o(Z) on ̂  what are the modules?
Unwinding the two formulas (F 2) and (F 3), we see that a ^(Z^module
is just a presheaf of abelian groups { TI'^> K(TI'), 11-> 1*1 carrying a func-
torial induction structure 1̂  which satisfies 1^1*== [11" : 71'] for every
morphism i: TI'->T/' in ^. Now recall example 2.1, in which we esta-
blished { r/h-> H(ii', M) { as a module over { n' -> H(TC\ Z) { . In particular
the former is a presheaf of abelian groups on ̂  with an induction struc-
ture. By a familiar property in group cohomology, we have
I^P= verores = [n" : Ti'] for every i: T/~> n" in ^7-.. Consequently
we can view ) Ti'h-> H('7i', M) \ as a $o(Z)-module, and therefore a G-module
by pulling back along G-^$o(Z). This point of view will prove to be
convenient in paragraph 1 of chapter 4, where we construct the White-
head functor on ^.

Similarly, in the terminology of example 2.5, the functor X'--> H(X')
can be viewed as defining a module over $o(Z), thanks to remark 2.8.

We shall also have examples in the future of trivial modules of the type $1.

3. INDUCTION AND RESTRICTION T H E O R E M S . — In this Section WC shall

develop some axiomatic techniques for a Frobenius functor G and a
G-module K, defined on some category ^. These techniques will find
applications in chapter 4 as well as in the following section of the present
chapter.

Let M be a collection of objects in ^. We define, for Ti€^ :

K,i(7r)== ̂  J i m (l,:K(^)->K(7:)) ^^-^n^'eM}
i

K^TT) =F\ ; l ver (r : K.(7r)" ->K.(7:')) r:7T'->7:, T^eM }
i

with similar definitions for GM and G^, using i^ and i*.

PROPOSITION 3.1. — On all i r€obj^ , we have:

(1) G^^o;
(2) G^KM^G^K^O;
(3) GKM+GMKCK, ;
(4) GK^+G^KcK^.
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Proof:

(1) is a special case of (2);
(2) G^K^o follows from (F3),

GMK^O follows from (F2);
(3) GKM<:KM follows from (F3),

G M K C K M follows from -(F2).
(4) Both GK^CIC1 and G^CK^ follow from semi-linearity.

COROLLARY 3.2. — For any n, GM(T.) and G^n) are ideals ofG{7i)', K^T:)
and K^n) are G{r.)-submodules of K(r.).

COROLLARY 3.3. — Let 51 be an ideal in G(r.). If 31 annihilates K^{r.)
then 2^G^{r.) annihilates K(n). In particular if r feZ and dK{r^) = o
for every n'eM, then dG^{r.) annihilates K(r.).

Proof:
^.GM(7T).K(7r)C^l.KM(7T)=0.

If dK(Ti') = o for every Ti'eM, then

dK^(n)=:d^m (I, : K^) -^K(Tr))
i

C ^.im ( d K ( T T ' ) - ^K(TT)) = o.
!•

Q. E. D.

Contention. — Suppose M c N is an inclusion of abelian groups. We
shall say M has exponent d in N if r fNcM. We say N has exponent d
if o has exponent d in N.

THEOREM 3.4. — Suppose for a fixed TI € obj ^, that, G^{r^ has expo-
nent S in G(r^). Then we have ''

(I) {Principle of Restriction) : K^Ti) is of exponent o;
(II) {Principle of Induction) : K(7i) is of exponent do, provided K(TI')

is of exponent d for every TI' e M;
( I I I ) K^(^) has exponent o in K(7i).

Proof:

(I) Follows from proposition 3 . 1 : G M K M = o , since 8 == o. i €GM(^) ;
(II) By corollary 3.3, dG^{^) annihilates K(7i). Since now SeGM(ri),

r foK(T:)=o;
(III) 8K(Ti )cGM(r . )K(^ )cKM(Ti ) .

Ann. EC. Norm., (4), I. — FASC. 1. 15
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COROLLARY 3.5. — Suppose, for a fixed nEobj^, K(ri) '̂5 a free abelian
group. Then, given any collection M of objects of ^ with G^[rC) having
finite index in G(ii), we have K^r.) == o. Also, iff : K ->- K' 15 a morphism
of G-modules, to prove that y(Ti) : K(7i) -> K'(7i) 15 one to one, it suffices to
prove that y(^') : K(r/) -> K^TL') ^5 one to one for every TI'^M with i : r/—^ Ti.

COROLLARY 3.6. — Suppose, for a fixed r.Gobj^, G(Ti) is free abelian,
and that G^[r^ has finite exponent o in G(T:). If, for every T/G'M, G(ri')
15 free of nilpotent elements, then G(rc) is also free of nilpotent elements.

Proof. — Say ^=0, rceG(ri). Then x restricts to zero in G(TT') for
every TI'^M. This means that ^eG^Tc). By the theorem we get ox = o
and thus x = o.

4. APPLICATIONS TO GROUP COHOMOLOGY AND TOPOLOGY. — In this

section we give several " trivial " applications of the induction theorems
in paragraph 3. We say ( < trivial ? ? because, firstly, these applications
are gotten by applying paragraph 3 only to modules of trivial types (ex. 2.9)
and secondly, the results could be obtained equally well without appeal
to paragraph 3. Nevertheless, we choose to call them " applications 9?

of paragraph 3. Aside from being somewhat circuitous, the present
approach seems to place certain facts in better perspective.

Consider the trivial Frobenius functor ^o (Z) on ̂ , defined in example 2. g.
Write S for the collection of Sylow subgroups of n. We then have :

PROPOSITION 4.1

^o(Z)s(7T)==^o(Z) (7r ) .

Proof. — Let TI' be a Sylow subgroup and i : IT' -> IT be the inclusion.
Then by definition I^ ( i ) == [n : 71']. Therefore 3>o(Z)s(71) 1s the principal
ideal of Z generated by GCD ([71 : TI'J : TT'G S). This GCD is clearly i,
hence the conclusion.

In example 2.9, we see that cohomology of groups defines a module
over ^0(2). Now by theorem 3.4 (with o = = i ) we immediately deduce
the following familiar facts in group cohomology.

COROLLARY 4.2 :

(i) If M is any ^-module,

H ( T T , M)===^ ioi(ver : 6(7^ M)-^-H(7r , M)) ;
T.' €S
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(2) If H(V, M) has exponent d for every r/eS, then rfH(7i, M) = o;

(3) (^\ k e r { f i ( 7 r , M) -> H ( n ' , M) } = o.
7:'es

(Compare [19], prop. 4.7.)

Applying the same principles to a module defined by a kernel we can
.record :

COROLLARY 4.3. — Let / * :P -^N be a morphism of ^-modules. If
the kernel of f : H(r/, P) -^ H(TI', N) is of exponent d for every r/eS, then
ker(j: H(TT, P) -> H(n, N)) a^o has exponent d.

Noting that cohomology theory H of spaces also gives trivial module
over c[)o(Z) (concluding remark of example 2.9), we can state the analog
of corollary 4.2 for H. Finally, viewing K* as module over G" as in
example 2.7 and anticipating the Brauer induction theorem for G°
(th. 2.1, chap. 4), we can state :

COROLLARY 4 .4 :

(1) For any Xe CW :

K* (X) =^ im (I, : K- (X7) -> K* (X) ) ;
x'

(2) ^ k e r ( / * : K * ( X ) ^ K * ( X ' ) ) = o .
X'

In these statements, X' ranges over all finite covers {i : X'-^ X) of X whose
fundamental groups TZi(X') correspond to elementary subgroups of ^.

When X is a finite CW-complex, (2) can be paraphrased into the following
statement on bundles : a bundle ^ on X is stably trivial iff the inverse
images i*^ are stably trivial for any i: X'-^ X where TCi(X') corresponds
to an elementary subgroup of TC.

In example 2.9 we have also defined the Frobenius functor G, which
was the completion of G with respect to the augmentation ideal of
dim : G-^c^). Atiyah has shown ([3]) that if X is a classifying space
for Ti, a : G ~> K* factors through G -> G, so we have a homomorphism
a : G-^K*. The main theorem in [3] is that a is an equivalence of
Frobenius functors. By virtue of (II) of theorem 3.4 (applied to ker a
and coker a as modules over G) it suffices to prove isomorphism for
a : G^') -> K*(X') where T^(X') = 71'= elementary. In particular we
can assume that the fundamental group Tii(X') is solvable, which is what
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Atiyah did (§ 10, solvable groups, in [3]), except that, without the present
machinery, he had to set aside one section setting up ( < the completion
of Brauer's theorem ? ? (§ 11 in [3]) to achieve the induction step.

CHAPTER 4.
GROTHENDIECK GROUPS AND WHITEHEAD GROUPS.

1. GROTHENDIECK GROUPS AND WHITEHEAD GROUPS AS FROBENIUS

FUNCTORS AND MODULES. — Throughout this chapter, n will denote a
fixed finite group, and we investigate Frobenius functors and modules
on the category ̂ . To set up the machinery, we will show in the present
section that there exists a basic functor G°, which is a Frobenius functor,
and over which all other interesting functors behave as modules.

Let R be a Dedekind domain with field of quotients K. The groups
G^Rir) have been defined in chapter 1 as the K' of JTl(R7c), the category
of all (left) Rn-modules. Taking advantage of the presence of R, we
can also consider t)Tl^(RTi), the category of all R-torsion free (== R pro-
jective) Rn-modules, and compute the K' of this category. The resulting
groups will be denoted by G^(RTI). Accoring to Swan ([21], prop. 1.1),
the maps Q 1 ' : G^(RT.) -> G^Rn) defined by [X] -> [X] for i=o and
[X, a] -> [X, a] for i = i are isomorphisms, so we can identify G1 with G .̂
via 9'. For i = o, write [M] .[N] =[M (g)n N] for M, N€cm^(Ri:), where
M^nN is regarded as a Ti-module by the diagonal action. It is easy
to verify that this induces on G^(RTC) the structure of a commutative
(associative) ring with unity (= [R], R regarded as trivial Ti-module).
Identifying Go(Rii) with G^(Rii) via 9°, we see that G°(R'7i) carries the
same structure. We shall speak of G°(R^) as the Grothendieck ring of ̂ .

Consider a subgroup r/ of TI. The restriction operation in represen-
tation theory induces a map of Grothendieck groups : G°(R^) -^ G°(RII').
If we write i: TC' -> TT for the inclusion (a morphism in ^)? we denote
this induced map by i*. On the other hand, the same morphism i in ̂
induces a map the other way i^ : G°(RTI') -> G°(R'n), via the procedure
of induced representation in group theory. Explicitly ^[N] = [R7i(^)i^,N].
With this set-up we can consider the functor TI'M^ G°(RTI') on ̂ . One
easily checks ([21], § 1) that i* is a ring homomorphism (functorially) and
that the pair (^*, i^) satisfies the " Frobenius reciprocity " as set forth
in (Fl) of paragraph 1, chapter 3. Consequently G° is a Frobenius functor.

Consider, now, K^Rii), as defined in chapter 1. We let G°/(RT[) operate
on it by defining [M] .[P] == [M (g^P], where MGcm^(RTi), P€^(RTC).
It is a lemma of Swan (prop. 5.1 of [21]) that our conditions on M and P
imply M(g)RPe®(RTt). In this way G°(R'n) also acts on K°(R7i). Now
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for i : 7i'-^ 7i in ^^, we can define I* and 1^ for K° exactly as we did for
G° and again we can check (F2) and (F3) of paragraph 1 in chapter 3.
Consequently K° is a G°-module.

Next we turn to G1 and K1 and expect them to turn out as G°-modules
as well. This is indeed the case. We briefly sketch the construction
for K1 as follows :

For MeG^(Rii) and Pe^(R^), write

[M] . [P ,a ]=[M(g)KP, iM(g)Ra]eKi (R7r ) .

Note that the right hand expression makes sense by the lemma of
Swan quoted above. To show that the above equation gives a well-
defined action, we must check two things :

(1) If we have a commutative diagram

o —> P' —> P —> P" —> o
a' | a a"

Y Y •t
0 ———> P' ———> P ———> P" ———> 0

where rows are exact, vertical maps are automorphisms and P', P,
P"€®(R^), then

[M].[P^]=[M].[Pf,^]-}-[m].[P"^'f].

(2) If a, P are automorphisms of P, then

| M ] . [ P , a p ] = [ M ] . [ P , a ] + [ M ] . [ P , P ] .

We shall omit this routine verification. Via identification 6° :
G^(Rr.) -^ G°(R7i), we can therefore let G°(R7i) act on K^Rir) [or G^Rn)].
Consider now a morphism i : T I ' — ^ T T in ^. We can define I* and 1^
for K1 (and G1) again exactly as we did for G°, K° (now " with auto-
morphisms 5 ?), and so K1 (resp. G1) becomes a candidate for G°-module,
facing only the testing of (F 2) and (F 3) in chapter 3. We shall now
illustrate the process by checking (F2) (which is not as trivial as one
would think) :

I , ( j . r ( a ) ) = ^ ( j ) . a ( a e K i ( R 7 r ) , j e G ^ ( R 7 T ) ) .

Without loss of generality, take 2/==[Y], a == [A, a] with Y€^TI</(R^),
A€®(R^) , and a == automorphism of A :

I ,( j .P(a))=:I,([Y(g)RA, iY0Ra])

==[R7r(g)R^(Y(g)RA), iR^(g)R^(iy(g)RoO].

We shall now make the identification [in jri(Rii)] :

9 : RTT (g)p^ (Y (g)RA) ^ (RTF ®R^Y) (g)RA
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defined by <?(g(g) (y(g)a)) = (g0y)(g) g-^a, after Swan, ([21], lemma 1.1)
where g€r., y€Y, and a € A. We claim that the following diagram
is commutative

RT: 0K,, (Y (g)nA) ̂ ^ RTF ®^ (Y (g)nA)

? 0^
(RTF (g)^,Y) (g)nA ̂ ^ (RTT (g)^Y) (g)nA

Indeed, operating on g0(y0a) in the left upper corner

[(i(g)i)(g)a]cp(^(g)(y(g)6<))=: ((i(g)i)(g)a) ((^(g)j) (g^a)

^ (^0j) C^Or"1^)
^ (^0J) (^^(aa)

^P^® (j0aa))

=?(i(g)(i(g)a)) (^(g)(j(g)a)).

Thus, under identification by 9,

I,(j .P(a)) -—[(R7:(g)^Y) 0RA, ( i (g ) i )0a ]

-^^(j)-^
as desired.

Replacing R by K, its quotient field, we get another Frobnius functor
{TI '^G°(KTI ' ) : 7i' e^.}. The family { G ° ( R r / ) -^ G^KTT') : T/e^} is
easily seen to define a " homomorphism 9) of Frobenius functors in the
sense of paragraph 1 of chapter 3. Thus any module over { G ° ( K T T ' ) }
can be " pulled back ?? along this homomorphism, to become a module
over { G ° ( R T / ) { . This remark is in particular true of the modules
(G^Kr/)}, {K^KTI ' ) } . It is easy to identify the new action of G°(R7i')
on these groups. For K°(KT/), for example, we have

[ M ] . [ P ] = [ K 0 K M ] . [ P ] = [ ( K ( g ) K M ) ( g ) K P ] = [ M ( g ) R P J

[where Me^^Rr/) and P€^(KT/)].

From this point of view, { G^RTI') ̂  G ' fKn ' )} , { K^RTI') -> K^K'ii')},
{ K^RTT') -> G^RT/) } are morphisms of G°-modules, so their kernel
and cokernel define new G°-modules. Let us identify some of these.

(1) For K^RT^-K^KT/), the kernel is Co(R^') , the reduced pro-
jective class group defined in paragraph 1 of chapter 1. { C o ( R ' n / ) }
therefore also defines a G°-module.

(2) For K^Rr/) -> K^KTI') in the case when K is a number field,
the kernel is customarily denoted by SK^Rn'). This therefore defines
a new G°-module.
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(3) x : K^RTI'^G^RTI') is the Cartan map of RTI'. The study of
this map is most interesting when R is a " modular field 5 9 , K, in which
case we will show (§ 3) that ker x is the o-module, and coker x is a G°-module
whose underlying groups are all p-groups (p == char K), under appropriate
assumptions.

(4) ForK^Rr.^G^RTi^G^Rr.^G^KTi^andG^RTi^G^KTi'),
we will be able to give estimates on the kernels and cokernels, in para-
graphs 4 and 5.

At this point, it is appropriate to recall some general results. Suppose K
has characteristic o. Then Kii is a semi-simple K-algebra in which F == RTI
is an R-order. In particular, the finiteness theorems apply to RTT, so
G^Rii), K^Rrt), Co(R^) and SK^Rn) are all finitely generated abelian
groups. If we further assume that K is a number field, then we know
Co(Rn) is finite ([21], prop. 9.1) and K°(RTT) has rank one ([22], th. A)
The ranks of G'(Rii) (^=0,1) and K^RT.) are as computed in chapter 1,
theorem 3.2, SK^Rri) will be proved to be finite.

Finally we come to the definition of the Whitehead group of a finite
group. For a fixed group 11, we can define a homomorphism ̂  ^ -> K^Z-n)
by bringing ^ s{S^71) ^° [^Tl? dr §]? where the latter means the rank one
free module Zr. together with the automorphism defined by right multi-
plication of ^ g. The cokernel of this map is known as the Whitehead
group of TI, denoted by Wh(Ti). In this way, however, it is not apparent
that Wh can be set up as a module over the Frobenius functor G°.
We will show, in the following, that nevertheless this could be done.

Recall, first of all, from example 2.7, of chapter 3, that group cohomology
can be regarded as a module over { T/ ̂  G^KTI') }, and hence over
{ r / h-^ G°(RTI') } by pullback. Let's now take this point of view and
restrict attention to the submodule H given by first (integral) homo-
logy (or H~2). It is well known that on this submodule,

. {H-^Z^Tr^Try^TT']},

the induction map is induced by the identity and the restriction coincides
with an operation which is classically known as the " transfer map.
For Me3Tly(R^') and rcE^, the operation of [M] on x is clearly given
by [M].:?^^01^^. Finally, recall that ^ i (±i) denotes the trivial
module over ^ with constant values { - ^_ i }, identity induction maps,
and restriction maps == multiplication by an index. We can now state
the " definition " of Whitehead group in the following fancy way :

THEOREM AND DEFINITION 1.1. — We can define <&i (^: i) -> { K^ZTI') },
and this is a monomorphism of modules over {G° (ZT/ ) ^, the cokernel of which
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is denoted by IK^Z^I We can then define {Hi« Z)} -> { K^ZTT') i,
anrf ^15 15 a monomorphism of modules over { G ° ( Z T I ' ) } , the cokernel of
which is denoted by {Wh (11')}, called the G°-module defined by " Whitehead
groups. " The following is therefore an exact sequence of G°-modules

o -> {Hi (TT^ Z) j -> {R1 (ZTT') } -^ {Wh (TT') j -> o.

Proo/'. — To define 0i(:{: i) — K^ZTI'), we just send i—[ZTI ' , i]
and — i ->[Zii, —i] . This clearly gives a monomorphism of G°-modules.
To define a : r.^ -> K^ZTI'), we take any element of TT^ represented
by g€^' and send it first to [Zn', g^K^Z-n') and then project the latter
to K^ZTT'). It is not hard to see that this gives a monomorphism, but
the point being made is that this definition respects : ( i ) module struc-
ture, (2) induction and (3) restriction, on the modules involved.

To start with, (2) presents no difficulty, because in both cases the
induction maps are essentially " induced from the identity. 9? To verify (3),
take morphism i : TI'-^TI" and consider g€^". We shall compute the
restriction of its image [Zn", g] € K^ZTT"). Decompose n" into coset
spaces 7i" == ir'gi U ^ ' g a U . . . U^'gm. Then

r (a (^) = r[Z7r^] == rz^],

where the last bracket is to be considered in K and ZTT" is considered as
a left Z7-/-module. As such, ZTC" has a free basis gi, . . ., gm and we can
write the automorphism g by a matrix with entries from Zr/. To find
this matrix, write

gjg^^^j^^ xj^, i f^?C/)^^.
9 is clearly a permutation of i, 2, . . ., m. The matrix of g with respect
to the basis gi, . . . , .gm is, up to permutation of rows (or columns), of the
form diag (^i, x^^ . . . y X m ) . Since we are computing the restriction
in K1, permutation of rows does not affect I*(a(g)). But in K^ZTI')
already, diag (xi, . . ., Xjn) and XiX^ . . . x,n, as automorphisms on (ZTT')"'
and ZTI', represent the same element, by a lemma of Whitehead ([41,
lemma 1.7). Hence

P (a (g) ) == [ZTT^ x,x, . . . x,n} [in K1 (Z^)].

However, on recalling the classical definition of transfer ([14], p. 201),
we have XiX^ . . . Xm= trans. g, so I*(a(g)) = a(I* g), i. e. a respects
induction.

We now check the module actions by G°(ZT/).. Pick [M] €G^(ZTI'),
and ge^'. First compute [M] .a(g) = [M] .[ZTC', g], everything done
in K1. Let [ e ^ ] be a Z-free-basis of M; then { e ^ ( ^ ) i } is a free Zii'-basis
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for M(g)zZ7i' ([21], lemma 5.1). [M].[Z< g] = [M (g)zZ< M(g)zg] so
we must compute the matrix for M0zg with respect to { ^ p 0 i } . Now
write

n

g-1 e^ == ̂  0^3 ̂ , 0^3 € Z;

^==l

(M(g)^) (^(g)!)^^^:^^-1^®!)
/ " \

=^-( ^a/^/®1) )
\/=i /

n

^^^/^.^/^l).

/=1

The representing matrix for M0zg on M(^)zZ7i' is therefore

^n^ . . . a,ng\ /g \ /an . . . a^

a-^g • • . a.,ng \^( § \[ ^21 • • . a^n

^a^g ... Clung/ \ ' g / \ani ... Cln

Now (a^)eGL (n, Z) = ̂  SL(n, Z), so (a^-) represents the trivial
element of K^ZT/). The first matrix, by the Whitehead lemma
again, represents the element [ZTI', g . . . g] == [Zn', g7']. There-
fore [M] .a(g) = [ZT/, g71] = a(g"). But n = [M : Z] = [M 0zQ : Q] so
^g^a^MJ.g), by definition of action of G°(ZTI') on <^= H-2^', Z).

Q. E. D.

We close the present section by the following remarks :

REMARKS 1.2 :

(1) The composition SK^Zr/) -> K^Zr/) -^ Wh(Ti') defines a morphism
of G°-modules {SK^Zr/)-> Wh (r/) j , which is clearly a mono-
morphism;

(2) Let K be any G°-module. Write Tor K for the " torsion submodule "
of K, i.e. the module {(Tor K) (r /)} = {Tor (K (0) { , where
Tor (K (r/)) denotes elements of finite (additive) order in the
additive group K (r/). We can therefore speak of Tor K1, Tor Wh,
and they are G°-modules. Since SK^ZTT') is finite (to be proved)?
the morphism in ( i ) factors through

j SK1 (Z7:7) j -> { Tor Wh (TT') j -> { Wh (7^) } .

An interesting conjecture ([6], § 11) is, that the first morphism
is an isomorphism. In case ^ is abelian, this conjecture can easily
be seen to be equivalent to the statement that units of finit

Ann. 6c. Norm., (4), I. — FASC. 1. 16
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order in Zr. are all of the form ± g, gGn. But this is a theorem
of Higman ([16]). So the conjecture holds for abelian groups.
The author can prove that the .conjecture is true for the symmetric
group 83 and the quaternion group Q. But nothing beyond seems
to be manageable.

(3) Let3^(R7i) denote the fullsubcategoryofc)Tl(Rr.) consisting of all (left)
Rri-modules of projective dimension ^i, which are R-torsion.
Denote the Grothendieck group of this category by K^(R'n).
Meanwhile write JH,(RTI) for the subcategory of Jlt(RTi) consisting
of R-torsion modules, with Grothendieck group G^Rii). It is
immediate that K,° and G,° are G°-modules and natural morphisms
into these (or out from these) are G°-morphisms. The following
diagram is therefore a commutative diagram of G°-modules, with
exact rows :

{ KI (R^) } ——> { K^ (K ̂ ) ;. ——> { K,° (R^) } ——^ ; KO (R^) } ——> { KO ( K n ' ) { K ^ ( K n ' ) }

v t ^ 4~
{ G1 (K^) } ——> {G; (Rn') } —> ; G° (RT^) } ——> {G° (KTT') } ——> o

(for the top sequence, see [7], [9]; the bottom sequence was first
observed by Heller and Reiner [15]).

2. INDUCTION THEOREMS FOR G' AND K'. — A group is an elementary
group if it is a direct product of a cyclic group and a p-group (some
prime p). It is a hyperelementary group if it has a normal cyclic sub-
group with respect to which the quotient is a p-group (some prime p).
For a fixed group IT, we write C, E, and H respectively for the families
of cyclic, elementary, and hyperelementary subgroups. In the termi-
nology of paragraph 3 in chapter 3, we can talk of G^, G^, KH, . . . etc.
{i= o, i). By identifying G°(KTt) with the character ring of IT (char K = o),
the classical induction theorems of Artin, Brauer and Witt can be trans-
lated into statements about the exponent of the quotient groups
G°(KTT)/G^(KT.) , . . . etc. These statements have been generalized by
Swan to the case of integral representation, and we shall presently record
his result. Recall that, by definition, the Artin exponent A(7i) of a finite
group 7i is the (smallest) exponent of G(Qri)/Gc(QTi), or the characteristic
of this quotient ring.

THEOREM 2.1 (Swan [21], cor. 4.2). — Let r. be a fixed group with
order n, and R a commutative ring with unit. We write c?=(A(7i), ^(n))
where ^ is the Euler function. Then, in the notation of paragraph 3,
chapter 3,
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(a) G^(RT.) has exponent A(7t)2 m G°(RT.);
{b) Gi?(R.7i) Aa5 exponent d2 in G°(RTC);
(c) GH(RT.)=G°(RT.).

I f l { i sa field we can replace A(Ti)2 and d2 in (a) anc? {b) &2/ A(ri) and cL
If R contains a primitive n-th root of i, we can replace d2 in {b) by i.

Using theorem 3.4 of chapter 3, we immediately see that the above
theorem carries over verbatim for all G°'modules G', K', Co, SK1, Wh, . . . !
This, for example, covers theorem 2 of [6], theorem 6.8 of [18], etc. Also,
we can write down an analogous theorem on the exponents of G^
K'", . . . etc., covering corollary 9.4 of [21], . . . and so forth. This and
the following sections will be spent in exploiting these induction theorems
in circumstances where we can analyze the induction parts Gc, K^, . . . .
Let's now record some corollaries of theorem 2.1.

COROLLARY 2.2. — Let K be a field {any characteristic). Then
K06 (K 7T) == K01^ (KTT) = K°" (KTT) ==. o

and
G^ (KTT) = G^ (KTT) = G0" (KTT) = o.

Proof. — K°(K'ii) is a free abelian group by the Krull-Schmidt theorem,
and G°(K7i) is free by the Jordan-Holder theorem. We can then apply
theorem 2.1 and appeal to corollary 3.5 of chapter 3. [The statement
of the corollary is trivial, of course, when we can make an identification
of G°(KTI) with the K-character ring of T.. But this could be achieved
when and only when K has zero characteristic, cf. [12], p. 214.]

COROLLARY 2.3. — If Ti is a {not necessarily abelian) group having
exponent 4 or 6, then K^Z^) is finite. Any irreducible Q-representation
of 7i must remain irreducible over R.

Proof. — Use induction from, say, abelian subgroups. For the latter,
since the exponent is either 4 or 6, the numbers of irreducible real and
rational representations coincide. But the K1 group has rank equal to
the difference of these numbers, by theorem 3.2 of chapter 1. Hence
K^ZT/) is finite for all abelian T/CT.. But K^(Zri) is of finite index
in K^ZTi) by theorem 2.1 (for K1), and the latter is finitely generated.
Hence K^ZTT) is finite. But then rank K^Z^^o, so r, the number
of real irreducible representations, equals q, the number of rational
irreducible representations, by theorem 3.2 of chapter 1, again.

COROLLARY 2.4. — Let Ti be an abelian group. We say that a unit
ueU(Zix) " belongs 5) to a subgroup r/Cr. if U€U(ZT/). Gwen any
ueU(ZTi), u^^ is a product of units belonging to cyclic subgroups.
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Proof. — Since TI is abelian, we can construct K^Z-n) ->- U(ZTC) by
the determinant map (a split epimorphism). The kernel of this map can
easily be seen to be SK^ZTC). Thus, for any subgroup IT', we can think
of l^ZTi7) as the quotient K^Z^/SK^ZT-/). This sets up {V(Z^)}
as a G°-module, and the statement of the corollary then becomes the
Induction Theorem 2.1 (a) for this G°-module.

3. APPLICATIONS TO MODULAR REPRESENTATIONS. — In this Section

we shall show how one can prove some well known theorems in modular
representations by using the induction of paragraph 2. n will be a finite
group, with order n, exponent e. R will denote the integers in a number
field K, and p a fixed prime ideal of R, sitting over the (unique) rational
prime p, which presumably divides [re : i]. Write K == R/p for the
residue field. We shall consider the Frobenius functor \ G^KTC') \ on ̂ ,
and modules over it. Recall the theorem of Swan (th. 2.1) which says
that G2(Kr.)has exponent A(7i) in G°(KTi), and G^Kn) = G°(KT.) if K
has a primitive n-th root of unity, ^. We first recapture two theorems
of Brauer (th. 3.1 and 3.2) :

THEOREM 3.1 (Brauer's theorem on injectivity of Cartan map). — The
Cartan map x(K7i) : K°(K7r) -> G°(K'7T) is injective.

Proof. — By corollary 3.5 of chapter 3, we can assume that ri is cyclic.
But then Kn is a direct product of commutative artinian local rings.
If we write x ( K 7 r ) as a matrix, in terms of the natural bases of the free
abelian groups K°(K. 'TT), G°(K7i), the matrix is diagonal, so x is injective.

THEOREM 3.2 (Brauer's theorem on minors of decomposition matrix). —
Suppose CeK. Let S(7i) be the {unique) map G°(KTI) -> G°(K'TT) which
renders the following diagram commutative (Brauer-Swan) :

G°(R7r)—^G°(K7r)
\ . /\ y^w

G°(K7r)

Write D for the matrix of S(7i) with respect to the canonical bases of the
free abelian groups G°(KTI) and G°(K71). Let d/, be the GCD of the k by k
minors of D. Then ^==1 for every k.

Proof. — By he theory of elementary divisors of matrices over Z our
statement on GCD of minors is tantamount to the fact that S(7c) is sur-
jective. View { S ( ^ 7 ) : T^E^T^ as a morphism of modules over, say
{ G ^ R T I ' ) } , and consider the module {coker S (^/)}. Since ^=^1 €K,
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to prove coker S(T i )==o , it suffices to prove that coker S(TI ' )==O for
every elementary subgroup n7 of Ti, by theorem 2.1, so we may assume
that TI is elementary, and we can write TI == v.p X ri^, a direct product, in
which v.p is a p-group and ^p is p-free. But then S(ri) == S(TI^) (^)S(TC^) :
GO{Kr^^GO{KT^)^GO(K^(^GO(K^') because K and K are both
splitting fields of TI. It therefore suffices to deal with S(^) and S(^)
individually. For TC^, the decomposition map S(^jo') is clearly an iso-
morphism, so there is no difficulty. For 11̂ , G°(K^p) is a free abelian
group of rank one, with basis given by the trivial representation i. Let
[Mi], . .., [M/J€G°(RT^) be such that [K^Mi], . . ., [K^M/,] form the
natural basis of G°(KTC^), and My€t?TL^(R^). We then have

6(.)[K^M,]=[^:^].z

= [ M y : K ] . I .

Therefore, the decomposition matrix D becomes a one-rowed matrix
([Mi : K], . . ., [Mh: K]) and the GCD of i by i minors is GCD
([Mi : K], . . ., [My,.: K]) = i, because at' least one [My : K] = i (for My
corresponding to trivial representation of R^).

Q. E. D.

Remark. — The possibility of giving a proof in this fashion has also
been noted by Giorgiutti in his thesis ([13]).

THEOREM 3.3 [Brauers theorem on cokernel of the Cartan map}, —
Suppose x(K7i) : K°(K'n) -> G°(KTi) is the Cartan map of the modular
algebra KIT. Then coker x(Kii) is an (abelian) p- group with exponent
[^ ( p ) : i], where ^ ( p ) denotes a Sylow p-sub group of TI.

Proof. — We first handle the case when CeK. With this assumption
we have K^Kri) = K(Kn) for any module K over IG^KTI') ; , by
theorem 2.1. Applying this to \ coker^Kn/) I, we see that we can work
with elementary subgroups. So suppose r\. is elementary itself and
write Ti = r^ X ^-p' as in the preceding theorem, where ^p is a p-group
and ^p is a p-free group. Then

KTI- = K[7T^ X TT:pi\ = K[7T^/] [ ^ p ] .

Since K has characteristic prime to [^p : i], K [^] is a (finite) semi-simple
ring, and therefore a direct product of simple rings Ri^...^R,,
where Ry^M,^(Ky) is a full matrix algebra over a finite extension Ky
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of K. We can further decompose

K7T=:,(R^. . .©R,)[^j

=M^]e...®M^]
^ M^(K,) [T^J ®.. .© M,,/K,) [7^]

^M^(K,[^])©...©M^(K,[^]).

Since this is a direct product of rings, it suffices to handle the Cartan
map of individual components. Now the categories JTl(M^(Ky[TiJ))
and JH(K,{^]) are equivalent by [7], so the Cartan maps of the two
rings are identical and we are led back to the ring Ky[^], i. e. back to the
case ofp-groups. For the p-group r^, the Cartan map K°(KyT^) -> G°(KyT^)
is a mapping between rank i free abelian groups. Picking natural bases
for domain and range, the Cartan map is given by i h-> length of Ky[r^]
as a Ky [^-module. But this length = dim(Ky[^] : Ky) = [n,,: i].
Consequently the cokernel of ^(Ky[^]) is a p-group of exponent
[T^: i ] . [it is also easy to give a proof by noting, again, that
G^KT^G^K^^G^KT^)] (3).

To treat the case when ^K, write K/^K^) and make an
extension of scalars from K to K7. We can prove (see footnote) that
K^K^-^K^K^) and G°(K^ G^K/T.) are both splitting mono-
morphisms. Therefore coker x(Kri) is isomorphic to a subgroup of
coker (xK/ri), and we are back to the splitting case again.

To conclude this section, we should mention that the induction method
can also be applied to some advantage to the study of indecomposable
Krc-modules. Let us write Gr(Kii) for the modular representation ring
of J. A. Green, i. e. Gr(KTi) denotes the free abelian group generated by
the indecomposable Kii-modules, equipped with a multiplication induced
by the tensor product. This Gr is, of course, no longer a G°-module, but
one can still prove mild forms of induction theorems for it. Roughly
speaking, the class M required in this case to exhaust a considerable part
of Gr(KTi) is the class of subgroups of r. which have a " cyclic p-comple-
ment 95. Now it has been conjectured by Green that the ring Gr(KTr) is
always free of nilpotent elements. Using an appropriate induction
theorem for Gr(KTi), and applying corollary 3.6 in chapter 3, we see
that, in trying to prove Green's conjecture in the affirmative, we can

(1) Cf. SERRE, Introduction a la theorie de Brauer, in Seminaire J. H. E. S., 1966, which
has the same approach.
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first make a reduction of the non-p-part of TZ. To be precise, we can
prove the following theorem :

THEOREM 3.4. — Let TI be any finite group. Suppose, for any TI 'C^
/

which has a normal p-Sylow subgroup ^ / [ p ) such that —^ is cyclic, we know

that Gr(KT/) is free of nilpotent elements. Then Gr(Kir) has no nilpotent
elements.

For the proof, we first apply the induction technique to render the
" non-p-part 59 of TI cyclic; then the " transfer theorem " of Green enables
us to assume that Ti^ is actually normal. Details of this proof, and expo-
sition of related ideas will be published elsewhere.

4. APPLICATIONS TO SK^ZTi), TorWh(Ti), ETC. — In this section we
come back to the set-up of paragraph 1 and establish some estimate on
exponents of certain groups. First of all we have

THEOREM 4.1. — SK^Zii) is a finite abelian group of exponent A^)2.
It is p-torsion free if the following conditions on the prime p are satisfied :
(1) A Sylow p-sub group ^ ( p ) of TI is cyclic^
(2) For any subgroup PC ^ ( p ) and any p-free cyclic subgroup D of Ti;

PCN(D)=^PCC(D) .

In particular SK^ZTI) has no p-torsion under any of the following
provisions :
(a) TÎ  is normal cyclic^
(fc) ^{p) is cyclic, and (p, q — i) = i for any prime q dividing [r. : i];

(c) ^{p) is cyclic and p is the largest prime divisor of[r. : i].

Proof. — By a theorem of Bass-Milnor (prop. 4.12, [10]), SK^Zn) =o
for any cyclic subgroup T/ of TI. Using (a) of theorem 2.1, we immediately
get A(it)2 as an exponent for SK^Zn). Since SK^Z 71) C K^ZT.) and
K^Zii) is finitely generated, we conclude that SK^Zn) is finite.
Under (i) and (2), we know that A(ii) is free ofp, by corollary 10 of chap-
ter 2, hence SK^ZT^IS void of p-torsion. By corollary 11 of chapter 2,
any of (a), (&), (c) implies ( i) and (2), which proves the second part of
the theorem.

The same technique applies to prove.

THEOREM 4.2 :

(1) Tor Wh (n) is finite of exponent A^)2;

(2) Tor K^Zri) is finite of exponent 2 e.A(Ti)2 where e is an exponent of T;.
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We only have to note that for a cyclic n, Tor Wh(T:) ̂  SK^ZTI) = o,
and Tor K^Zr.) ̂  { ̂  71} is of exponent 2 e. From (i) and corollary 12
of chapter 2 we conclude :

COROLLARY 4.3. — Wh(S^) is a (finite) group with no p-torsion for
p > — [But we are unable to answer fully Milnor's question asking

whether or not Wh(S,) = o ([18], § 6).]

THEOREM 4.4. — Let 7i be a finite group, for which e is an exponent.
Let ^e be a primitive e-th root of unity, and § be an exponent for the abelian
group U(Z[^]/e). Then :

(1) ker^ZTi) -> G^ZT.) has exponent A(n) 2 ;

(2) coke^K^Zn) -.G^Zr.)) has exponent 8A(r.)2.

Proof. — Since K^Zn) --> K^Qr.) factors through K^Z^) -> G^ZTI),
wehaveke^K^ZTi) -^ G^ZTI^C SK^Zr.), so ( i ) follows from theorem 5.1.
For (2), we refer to (a) of theorem 2.1, which says that it suffices to see
that S is an exponent for coker (K1 (Zr/) -> G^ZTT')), for any cyclic sub-
group TI' of TI. Write B = ZTI' and write B for the unique maximal order
of QTI'. Since e is an exponent for n', e is a multiple of [11' : i], so eB is
a common ideal of B and B (c/*. e. g. [22], lemma 5.1). By theorem 4.1
of chapter 1, G^ZT/) ̂  U(B) = K^B). Now according to Bass-Murthy

([9], th. 7.2) there is a commutative diagram (associated to / * : B — ^ B

, „, B B \and f : -o -> — :/ ^B ^B/
K' (B) ——"——> K' ( B ) ——> K^ (<D/)

°
^ Y V

-> 1-(A.)—1' ;g --w)B \ f, ^. / B

in which the rows are exact, K1^/'), K1 ($/*') are some relative groups,
and <p is an isomorphism. It follows in particular that the cokernel of
a is isomorphic to a subgroup of the cokernel of &. We are then reduced

to showing that S is an exponent for coker ( K1 ( —o ) -> K1 ( -— ) ) • Since --
\, \ / ' 6 D / ^ e u

/ B \ / B \is artinian, K1 ( —- ) = U ( — ) ? and we are done if we show that the latter

has exponent S. Now B is a direct product of rings of cyclotomic integers

of the form Z[^] where f\ e, so it suffices to examine U ( ——J- ) • But Z[E^]
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7 ! T I 7 F ?" 1
is a pure subgroup of Z[y, so the ring homomorphism L /J -> —L-£-j

is a monomorphism, inducing a monomorphism for the units. Since S

( ry \ Y j ^

is defined to be an exponent for U ——^-!^ it is likewise an exponent

forUf^V\ e ) Q. E. D.

Remark, — The exponent given in the theorem is not very satisfactory,
and sometimes ad hoc arguments provide more refined estimates. Take,

^
for example 7:===—^ where p is a prime. Then the cokernel of

K ' (Zn) -> G'(Zri) is finite of exponent ^ { p ) = = p — i . We briefly sketch
a proof (for the non-trivial case p > 2) as follows. QTZ is a direct sum
of two fields Q(BQ(C/^5 therefore the maximal order is B=Z(])Z[^/|.
An element (a, &)eZ(])Z[^] is caught in the image of the map Zr. > B
if and only if a = fo (mod( i — • ^)) in Z[^,]. Now ' ( i — ' C p ) is the unique

7 f T I
prime of Z[^J lying over p and the prime p € Z totally ramifies, so ———

' ~~ ^p
is a finite field of p elements. If (a, &)€:B is a unit, we have a ==-- -^ i
and & € U ( Z [ e / j ) . In either case ap~{ =l==-bp~} (mod( i—^, ) ) since p
is odd. Hence (a, fc)^' =•= (^~', fc^ ' ) is caught in the image of
K^Zri) — G'(ZT.), establishing our claim.

THEOREM 4.5. — Let T. be a finite group, for which e is an exponent.
Let o be defined as in the preceding theorem. Let A be the LCM of the class
numbers of all cyclotomic subrings Z[^y] of Z[^]. Then oXA^)'2 is an
exponent for Co(Zri) and AA(T.)1 2 is an exponent for kei^G^Zii)-^ G°(QTi)).

Proof. — By the induction theorem, it suffices to prove that oA is an
exponent for C()(ZT/), for any cyclic subgroup T.'C^. Now for abelian
groups T/, C(»(ZT/) can be identified with Pic (Zr/), the group of rank
one projectives ([9], cor. 3.5) over ZT/. Writing B = Zr/ and B = maximal
order in QT/, we know further from ([9^, cor. 7.5) that the kernel of

Pic B > P i c B is isomorphic to U (/-B-) (u(B). U (^V By definition

of A, it follows easily that A is an exponent for PicB. On the other hand

the proof of the preceding theorem shows that o is an exponent of U ( —>- ).
\ e B /

Consequently oA is an exponent for Pic B ̂  Co(Zri). To prove the last
statement in the theorem, we must prove that A is an exponent for
ker (G^Zr/y-^G^QT/)), for r: cyclic. According to Swan ([22], cor. 2)
there is an exact sequence

CoCO-^G^ZTT') -^G^QTT') ->0.

Since Co (B) ̂  PicB, our conclusion follows immediately.
Ann. EC. Norm., (4), 1. — P'ASC. 1. 17
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CHAPTER 5.
SOME EXPLICIT COMPUTATIONS.

1. ABELIAN GROUPS OF TYPE (p, p ' 1 ) . — Throughout this section,
71 denotes an abelian group of type (p, p77), i .e. 'K ̂  Z/pZ(])Z/p"Z,
where p is a fixed prime, and n^o. We aim to prove the following.

THEOREM 1.1 : SKi(Zn)=o.
For the proof, we shall rely heavily on the techniques of treating SK1

developed by Bass, Milnor and Serre in [10], and especially on two of
their main results, which we shall state as theorems 1.2 and 1.5.

A few remarks on notation will set the stage. K always denotes a
number field and p an (integral) prime ideal of K. We write Ky for the
completion of K at p, and Up for the group of local units in Kp. We filter
the latter by

Uy ( f t ) == ^eUy: ordy( l— //) ̂ /^ ^ = 1 ^ - y " .

Now suppose that K contains the group of 7n-th roots of unity, [J.,n.

The local m-th reciprocity symbol ( ) is then defined ([2], chap. 11)\ v / m • f. *
and gives a non-degenerate anti-symmetric bilinear pairing of —^ with"s
itself into [^,«. We can now state the following theorem in ([10], A. 17).

THEOREM 1 .2 (Bass-Milnor-Serre). — Suppose m == p", [^CK, and
that y lies over the rational prime p with ramification index e. Then^ for
any non-negative integer h,

/ l ^ (A) /LJ . _ /Uy (A+ i ) ,K ; .
I ———————————— 1 __ 1 ————————________ I —— [L^n-j^

\ V } 1^ \ V /p ' 1

where

•^M^/T-TL-

Here, for r^GR, [x] denotes the largest integer ^x, and for a€Z, a^^n}
denotes the nearest integer to a in the interval [o, n~\.

We can record an immediate corollary.

COROLLARY 1.3. — Let C/^ be a primitive pll-th root of unity ^ K === Q(^")
and y = (i —^/,) === (A). Tlien^ for any i^m^nand h = p'1"^ [(p — i)m+i]
we have

/^(A),?.\
[——),=^— -
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Proof. — In fact e = ordyp == p""' (p — i), and
• / / x r (/^ — i) m -+-1 i/ (h) ==: -1——-———— — ——— == in.

L /<-! ^-I [0,.]

Similarly
/ (h — i) = w — ———————r = in — i.

L /^- l(^- I)J[o^]

First we claim that l p ) 3 [^-»«+i. Indeed, if otherwise, we
/IUA), >A /^n(^ U \

would have ( — — — — J C \^n-,n. Since ^——;——-I = [J^n-w= [J^n-.n by

theorem 1.2, we have, by multiplicativity in the second variable :

^ -J——'.—? j ^ [J^._,«. (Observe that A is a local uniformizer.) However,
\ P //-
again by theorem 1.2,

/^p(^S
\ 7^" } p -

(\^^ti},V\
a contradiction. To finish the proof, we suppose that ^————j = [̂

and proceed to show that r^n — m + i. But the chain of inclusions
/ ^ (A) ,K; \ / l^(A)^\

^"-^-1)== (-^T-U-:' l"^"—^- ̂ '•
implies that r ^_ n — j (h — i) = n — m + i.

Q. E. D.

COROLLARY 1.4. — There exists an element a of the form i^-^1?

where a€Z[^J, such that ( a— ) is a primitive pn'th root of unity.

Proof.— In the preceding corollary, p u t . / n = = = i , so h === p " . The

conclusion of this corollary is then [ —y———— ) == ;^«, which is the
present corollary.

Write A = = Z T I , where T. is, for the moment, any finite abelian group.
Let A be the maximal order of Qr., and € be the conductor from A to A,

i. e. € = } .re A : O/'AC A (. Since A is a direct product of rings A == RJ Ap,
p

we have a corresponding decomposition C = ]• Cp for the ideal C. Here

we can think of the indexing set { p ^ as the set of irreducible rational
representations of Ti. We shall need the following result from [10]
(prop. 4.10 there) :

THEOREM 1.5 (Bass-Milnor-Serre). — For a rational irreducible represen-
tation p, write /Cp for the order of the kernel of the representation, and /n?
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for the degree of the representation. Let p be an odd primer then the p-primary
part of SK4 (Ap, Cp) is cyclic of order p7, where

._ ( min (ord/, ( A p ) , ord/, (^p)) if Wp> 2,
J~~\ o if mp^2.

77ie same result holds for p = 2, provided that m? &s ^en.
From here on TC will denote again the abelian group of type , (p, p"),

We are now ready to begin the proof of theorem 1.1, which is by induc-
tion on n. For n ==- o, the group T: is cyclic, so we can appeal to
theorem 4.1 in chapter 4. Suppose now n > o and n = <^ x, y ^>, xf)= y ' ' n = i
Let TI'== y ' ' "-1 be the unique minimal subgroup of <^^>, and 0 be the kernel

of the surjection Zr.-^Z— Further, write 51 for the sum of compo-

nents £p of € which are contained in 51. According to ([10], 4.6, 4.7) we
have an exact sequence

(1.6) SK^ZTT^^SK^ZTQ^SK'^Z^

where the first term stands for the " relative " SK1-group {see [4]).

Since —j is an abelian group of type (p, p""1), we can suppose that

SK1 ( z^^obyan inductive hypothesis. The relative group SK1 (Zn, 51)

can be identified with SK'(A, 5l) by ([9], lemma 10.5), and hence breaks
up into a direct sum ^pSK^Ap, €p) where p ranges over all irreductible
rational representations of TL which are not trivial on TI'. If we can verify
that for any such p, the map SK^Ap, tfp) --> SK^Zr.) is trivial, then
we are finished, by exactness of (1.6). Since p is not trivial on n', it
must be one of the following representations

( ^.-^ ^"--^
P < : ^ 0=^"), i=<^.

The kernel of this character is therefore a subgroup of order A-p==p.
Discarding the possibility that r. is of type (2.2) , we can apply theorem 1.5
to conclude that SK' (Ap, (!Tp) is cyclic of order p . The explicit iso-
morphism SK'(Ap, €p) ̂  [^cAp can be given by the " power residue

symbol ? 5 ([10]? Appendix), as follows. Suppose ( / ) represents an

element of SK1 (Ap, €r,), the isomorphism sends this elements to ( - ) .
^ \a J p

Now let's pick a == i + aA/'" as in corollary 1.4, so that ( a — ) is a pri-

mitive p^-th root of unity. Choose b == X7'"^. Then, using formulas
in[10],

/^ \ ( { b \ Y1" /YM Y^ /Y^\ Y""^(^^((^J -((4J 4(^}J ^
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where the passage from power residue symbol to p^-reciprocity symbol
is achieved by the reciprocity law, as follows :

0^ A\ v -nY-^^} -n^V^-nY^
^a)^~ll\V),n --IJ\ V ),n.-. [ y ) ^ -IJ\ y

^I a . ^\n

f a, ^ \ __ ( a, ̂  \

. V }^~\ V )p-n
V-

The last product degenerates into a single term because ( i ) there are
no real primes 1R, (2) at the complex primes ^), the symbols are trivial
and (3) at primes 1(3 7^ /^ both a, ). are units so the symbols are again
trivial.

Since ( - ) 7^1, we see that any matrix (of det == i) ( .\ (c, d) = (o, i)
\6l j p ' \6 a/

(mod €p), represents a cyclic generator for SK'(Ap, tfp). We suppose
that p = Q, and compute the image of this generator under the homo-
morphisms SK^Ap^, €p^.) -> SK^ZT.). Set

z = (r/--1 - i) (.r - j^-1) (.r - y2^'-1) ... (^- ̂ -1)... (^ - y")

and consider the images of z under the coordinate projections associated
with the various rational irreductible representations. We easily see
that all these images are o, except the one under the projection associated
with p,, which is the following element of Ap^. : ̂ ".^"'^""'^ X^", up
to a unit. We can then find O€ZTI , so that the prprojection of Qz is V.
The other projections of 6z are clearly still zero. Find also c€Zri so that
the prprojection of c equals a (in corollary 1.4). Finally set A.=i-}-cQz
and B = ( i — y ) ^ z . Then, under p,, A projects to the coordinate
i j^. a/^" = a, and B projects to the coordinate [i — QV'" ='kpn+/l= b.
Under any other projections A clearly goes to i and B to zero. Therefore,
under the homomorphism SK^Ap,, €p,) -> SK1 (Zr.) the element repre-

sented by( ) goes to the element represented by ( ) in SK^ZTT:).\ j ^ ^ / \ ^ ^ /
( x y \ r y ISuppose we designate the mapping SL^Zn) --> SK^Zri) by ^ ^-> ^

(well-defined !). Then

r^-p-"^95"!-!" I-J t x r Qz 1-r I - l y iLA_|~L i+^^ J~Li+^d L i+^ jL i+^J

(by " multiplicativity of symbols ", see [10]).

[ j^~i r ^ _ y~\
But z has a " factor ?? i — y, therefore g = = i.

—' — "~
Q. E. D.
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Remark. — Theorem 1.1 is also proved independently by Professor
M. Kervaire.

2. ABELIAN GROUPS WHOSE JO-PARTS HAVE CARDINALITY R 2 . — 111 this

section we investigate the p-torsion of SK^ZTL) for abelian groups T. whose
orders involve at most a second power of p. We show, using methods
analogous to those in paragraph 1, that under a mild condition on [r. : i],
the group SK4 (Zri) is void of p-torsion. To be precise, we have.

THEOREM 2.1. — Suppose T: is an abelian group for which r^^ is of
order p2. Suppose further that (p, q — i ) = = i for any prime divisor q of
[re : i]. Then SK^Zn) has no p-torsion.

[If TC^ is cyclic, then the theorem is a special case of theorem 4.1 in
chapter 4, and so is true without any assumption on p. The case in
point is, however, when ^ ( p ) has type (p, p). So we suppose, in the
following, that TI^ ^ Z/pZ®Z/pZ.]

Proof. — The whole proof of the theorem relies on the following lemma
on power residue symbols.

LEMMA 2.2. — Let m=pm/, where (m7, p) = i == (^(m'), p). Sup-
pose ^ is a {complex) primitive p-th root of unity, and ^/ a primitive m'-th
root of unity. Write A == i — ^ and write p == (A) for the ideal generated,
by A in Z[^]. Then, for any given c6Z[C ̂ ] prime to pZp ^/] == AZ[^],
there exists a natural number n such that, for d=cfl and a •== i — A ^ r f ,

we ha^e ( - ) == a primitive p-th root of unity, where ( — ) stands for the power

residue syyibol of Z[^ ^/] with respect to p.

We shall postpone the proof of this lemma (which is unfortunately
quite technical) and show first how we can use it to finish the proof of
theorem 2.1.

According to ([10], 4.6, 4.7) we have a surjection

^ : ® SK^A.,, €,) -^SK^ZTT) ->o
:̂i ' l

where Ap are the components of the maximal order A, €^ are the compo-
nents of the conductor € from A to A, and p^ stand for the various irre-
ducible rational representations, which correspond in a one to one fashion
to the components of A. The surjection f^ restricts to a surjection of
the p-parts of the two groups involved, so, to establish the theorem, it
suffices to see that the restriction of r^ to SK^A.,, C^)'7^ is zero for each
pT^i . Write k=k^ for the order of the kernel of p, and m=m^for
the degree of p. If one of the numbers ord^(/fp), ord^(m^) is zero, then
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SK^Ao, ^^(f))=o by theorem 1.5, so the issue is trivial. This enables
us to deal exclusively with those c for which ord/,(/Cp) == ord,,(mp) = i,
and hence SK'(Ap, Cp)^^ [̂ . As remarked already in the proof of

theorem 1.5, this isomorphism is established by ( l ) ~^ [ 7 / ) ' ^ow

write m=m^=pmr, and k = k^= p k ' , fixing ?; and consider the
cyclotomic ring Z^C ^/], where ^ and ^ are defined as in the lemma,
Here $(W) is a product of factors of the form q or 9 — 1 , where q \ [r. : i],
q ^ p ^ so by hypothesis of theorem 2.1, (^(W), p ) = i . The lemma
is therefore applicable. Write m1 = q^ . . . q";, and let ^ be a prim-
tive g^'-th root of unity in Z[^^]. Set 0,=i—^' '~1 and X , = = i — ^ .
We easily see that 6, and A^''"1 differ only by a unit in Z^C ^/]. Finally,
set 0 = 0 , 0 , . . . 0,, h=^k', and c = h'\ Since 0 and ^ are both prime
to AZ[^ C7], the condition of lemma 2.2 on c is satisfied. We can therefore

discover a as described in the lemma, such that ( - ) == a primitive p-th\ a / P
root of unity. Write b = A^4 rieZ[^7] = Ap.' Modulo the verifica-
tion that (a, b)=={i,o) (mod €p), we see that there exists a matrix

a == ( a b} of determinant one, with (c, d) = (o, i) (mod €p), such that a

represents a generator of SK1 (Ap, Cp)^. The reason is that

. /b \ _(^^d\ _/^_^\ _(Y\ f^Y—C^} -^
\^),~[~~^~)p~\ ^ L~\^L\ ^ ),~\a)p^ '

Now pick y, t/i, ^, . . ., ?/s in TI, such that their o coordinate projections
are respectively ^, Ci, ^2, . . • ? C in Ap; and set

( \ / m^-(i-j)^^)^-/^^ ^(I-JyT'-'l)) -
\ .r€7Co / '^l /

where T.o is the " kernel " of the representation p, consisting of elements
of T: having coordinate i under the projection associated with p. Note

that 1^—^eZr., so jzeZn. If p 7 ^? is any other irreductible rational

representation, the coordinate projection of z under c' will be zero. Under
the projection associated to ? itself, the coordinate of z is

/ .< \ / - / .\ (i - s)^)7-1. w • (n (T - ̂ -1))\ /=i /
.s-

=7^A-^TTor
?=1

:== )P (0 /*•') ̂ ' == V' (hf) n = ̂ /' ̂ " =: ̂ /' ̂ .
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From this it is clear that V'd € €,„ so (a, b) = (i — A^, /^+1 d) == '(i, o)
(mod Cp). Now we come to the last stage of the argument. Set A = i — z
and B = = ( i — y ) z. Then (A, B) projects to ( i , o) under any p '^p and
to (a, b) under o. Therefore a generator for ^(SK^Ap, Cp)^) could be
taken as the element of SK^Zn) represented by a special linear matrix

with first row (A, B). Writing * for this element, we have

m_r(«-.r)q-"'-ji,j -- i-p-^lIAJ-L « - s J-..-J L-J-L-J
by " multiplicativity 5 ? of the symbols.

The last bracket is equal to i because z has a factor;<,_,,^[,_(.),...._(^),,,-,_,]
(0= f(- iVj + (- i)^-1^-1] -^ +...

(')+ [(- i)\r + (-1)7^2^"2] —L +• • •
and hence has a factor i — y.

Q. E. D.

We now come to the proof of lemma 2.2, and the notations will again
refer there. Take any prime ideal ?o of Z[^] which extends p, and
consider the following diagram

Z[Cl/^Z[^:|/Vo

F,————>F,f

where fis the residue class field extension degree. Write a bar for passage
to residue classes, and write Tr (resp. Tr*) for the trace function from F,/
[resp. F/,(c)] to F^. By assumption, we have c^o. We claim that
there exists a natural number n such that Tr^c") ^z o. In fact, if
Tr*(c7)=o for all j = = = i , 2, . . . . then the discriminant of the field
extension F^CF^(c), computed via a basis consisting of powers of c, will be
det Tr*(<? .c-7) == o. This implies that [F,,(c) : F,,] is a multiple of p
(([23], p. g3). Therefore f is also a multiple of p. But fr == ^(m7),
where r is the number of distinct primes of Z[^] which extend p
Hence ^(m'} is a multiple of p, a contradiction to our hypothesis.
Say d = c", Tr*@ ̂  o. We then have Tr@ = [F// : F,(d)] .Tr*(rf) ̂  o,
since the square bracket is prime to p. Observe that with the
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present choice of d, d + ̂ + ̂ + . . . + d^'eZ^] — ?, because
o^Tr@ = r f + c r r f + . . .4-c^-1 rf€F/, for cr = the Frobenius sub-
stitution for the Galois group Gal (F,//F,,). We claim now that this d
just constructed meets the requirement of lemma 2.2. The argument
leading up to this is however quite complicated.

Let K==Q(^) and consider the completion Kp of the number
field K at any prime 1? of Z^7] above p. We adjoint a p-th root

i
of a=i—^d to Ky, say A = a'\ to get an extension Ky(A) of the
local field Ky. We first establish :

LEMMA 2.3. — K?(A) is an unramified extension of Ky.

Proof. — By definition of A, it satisfies the following equation

A/^— i + ̂ d= o.

Set B == A—^ € K|)(A). Then B satisfies the following equation

o= (^.B -4-1)^-- i + V' d

= V1 \V' -4- ( p " } ̂ -1 B^-1 4-. . . + p^ B + ̂  d '

Dividing by ̂ \ we get :

f^-'B/- f 7) W ,p\ i 7 \ /? — 2 / / ) /B ,^ ^B.4-^—^—+...+^—^—+y+6^
Since D divides ( p } for i^r^p—i , and (p) === (X)^-1 in Z^C], we see

v / /

that the above equation forces B to be integral over Z[^]y; and also that

B^+f7^13-1"6^0 ( m o d ^ ) -\ kP )

Now, in Z[lC], we have the congruence {cf. [2], p. 160) :

^==_. ^mnd^i (mod ^)^
so we can rewrite the congruence in B as

B^—B+^EEEO (mocU).

Let /l(X)eZ[^/]p [X] be the polynomial obtained from the LHS
of (*) by replacement of B by X. Then

7(X)=X^-X+J€(Zr^]p/V)[Xl==F^|X| , where V=1JZ[^]y.

Since, by choice of d, d + ̂ + . . . + d7^"1^ o we know that /'(X) is
an irreducible polynomial in F,/[X], by a familiar theorem in finite field

Ann. EC. Norm., (4), 1. — FASC. 1. I8
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theory ([I], th. 22). Now /•(B) == o and f is irreducible over the residue
class field. These two facts together will imply ([20], chap. 3, § 6) that
Ky(B) is unramified over Ky. Since K|,(A) = Ky(B), the lemma follows.

LEMMA 2.4. - Let ^ be any prime of Z[^ ^ which lies o^er p and
let ( ~V~ }p be the local rm/7ro^ symbol for Ky with respect to p. Then ( a^ }
is a primitive p-th root of unity. Furthermore this symbol is independent
of the choice of\).

Proof. — To compute the symbol, we adjoint A = a71 to Ky, and consider
the automorphism ^ of KI»(A) over Ky that corresponds to the element A
under reciprocity. Since Ky(A) is unramified over Ky by lemma 2.3
and X is a local uniformizer for Z[^]y, the automorphism ^ is precisely
given by the Frobenius automorphism of Ky(A) over Ky. By defini-

/(7, .̂ \ A L -l
n V " ? / ^ A t l - - 9 so we must compute the latter. We can first

compute B^. To start with, I claim that, for any yi^i,

B/>"^ B - (r/+ ̂ +. . .+ d^-1)) (modlJ).

Indeed, for n=i, this is trivial. Assuming the congruence for
n == k — T , we get

B^= (B^-1)/^ [B - (d+ (IP-[- ... + cl^-^Y
=E l:̂  — (<</ + ̂ 4- . . . + d'^)P

FEE B - (^/ + dP + . . . 4- ^/-1) ( mod-p).

Now by definition of a Frobenius automorphism, we have
B^EEEB^modip), so by what we just said,

B'̂  FEE I \ - (d + ̂  + . . . + r//^-1) (mod $1)

then

(2.o) A^--^^^
i -(- ^ B

= (i -4- 7> R ̂ ) (i — /. 1^ + //2 B2 . . . )

^ r+^ (P^ -R) ) (mod^2)

EEE i - / (W + d? + . . . -4- ^•f-1) (mod p).

The contention of the lemma is that A^^i. Suppose the contrary.
We get, from the above congruence : A ( r f + ^ + . . . + ^//f-') efl2, hence
d + ̂ + .^., + ̂ -e?. But then d + ̂ + . . . + ̂ -e^l HZ^] = p,
a contradiction. Since A and ^ are both independent of the choice of 1JJ,
the congruence (2.5) clearly shows that A^-1 € ̂  is independent of ̂

. Q. E. D.
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The informed reader would not have failed to notice that the above
argument is adapted from the proof of a theorem of Artin-Tate ([2], chap. 12,
th. 8), of which lemma 2.4 is a mild generalization.

Finally we verify that a = = i — ' / ^ d fulfills the conclusion of
lemma 2.2, i .e .

COROLLARY 2.6. — The power residue symbol ( - ) is a primitive p-th
root of unity.

Proof. — Repeating the arguments in the proof of theorem 1.5 for
handling power residue symbols via the reciprocity law, we get

OHTCr)/v\v .. .
The number of factors involved in the product is r, the number of

distinct primes of Z^7] which extend p. All the factors are equal
by lemma 2.4, and rf= ^>(m'} implies that r is prime to p, so the product
is not one.

Q. E. D.

3. THE SYMMETRIC GROUP S;;. — In this section, T: denotes the symmetric
group S;s, with elements ( i ) , (12), etc. We shall conduct a very explicit
computation with the various groups associated with the group ring ZTC,
the upshot of which will be that SK' (ZT.)= Wh(r/) = o (theorem 3.9).
The following notations will be fixed throughout this section.
A = = Z T w , A = the maximal order of Qn containing A (unique because

Q is a splitting field for Ti) ;
C = the conductor from A to A;
pi, p_i, p2 will denote interchangeably the three irreducible representa-

tions of S.( and the three projections of Qri into the simple consti-
tuents. Here pi == trivial representation, p_i === the sign representation,
and po = the unique irreducible two dimensional representation.

Notice that for p/, \j\ is its dimension;

A = IT im(A -> p /Qn) = Ai X A_i X A.j, € = conductor from A to A;

A== A, x A_, x A,;
C = €, x €_i x €, and € = (£, x OL x €,.

To start the computation, we must firsTo start the computation, we must first determine A/, Ay, (£/ and C/.
We have p iQr .^Q, , p-iQT:^Q_i, p .Q^^M,(Q) and A , ~ Z i ,
A_i ̂  Z_i, A.3 ~ M.j(Z), where Q, (resp. Z,) denote copies of the rationals
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(resp. integers). The identification poQ^ ̂  M^(Q) can be set up by
the following " choice of coordinates

/>,(.)=(;:), />,(,3)-.(;;), .,(..)-(::;),

/>,(.3)=(:; ^, /,,(,,3)=(^ :;), /,,(,3,)=(:; ^.

Now, by an easy computation which we omit, one gets

€,==6Z^ €-i=:6Z_i, €2=:3M,(Z) ==M,(3Z).

We next determine A. Since clearly A i = Z , , A _ _ i = = Z _ _ i , we need
only compute A^.

LEMMA 3.1. — The underlying abelian group of the subring A2C3VL(Z)
is free on the following basis :

( l °)' ( ° ) ) ' (-1 3)' (0 ' )•\ o i / V 1 0 / \ 0 °/ \ 9 — i /

Also [M,(Z) : A ^ I ^ S .

Proof. — Say
a=^(,3.)=(:; ;), P=^(,3)=(^ ;).

Then
79.2 (12) ==^3, / ) .^(23)=^a and /^ ( i23)=a 2 .

It is easy, to begin with, to check that the four matrices enumerated in
the lemma are Z-independent. Among these,

(: :)=P. (-0' :)--?. (: ^,)=P"-'.

so the free abelian groups generated by the four matrices is contained
in Aa. On the other hand,

. ( 0 I \ /-I 2 \ /0 I \ . /0 1 \P== p a== — , pa=: + a,1 \ i o / \ o o / \ i o 7 ' \ o — i / .

and -p-c ^,)-?-«.
so we prove the first statement in the lemma. To determine the index
of A^, we use the method of functionals. Define a Z-linear map g :

M^(Z) ->Z^Z by sending ( ) to (a-d, &-c). This is an epimorphism
\ c d /

whose
1 1 ( / ^ b\ ^ r») ( / r 0\ , /° I ^ ) Tkernels } : a , b ^ Z [ = z \ a\ ) + ^ ( C A.,,[\b a ^o i / V l o/
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It thus induces an isomorphism M,(Z)/A, ~ (Z ®Z)/g(A,). Now §(^2)
has free basis consisting of

^ ^)=(-.,.)=., and ^ ^^(i,.)^.

Hence
^•(X,) == Z^ © Z^== Z (^ + ̂ ,) © Zv,

== ; (/?, ^+ 3a) : a, ^eZ j .

We therefore get [M,(Z) : A, ] = | Z2 : g(A,) | = 3.
Next we have to study the reduced norm on K^A) and determine

its image. Recall, from ([6], § 1) that the map N/^ is defined on K^A),
with values in the unit group of the maximal order in Center Qri. The
latter is easily identified as

L](Z,xZ_,xZ)=Zi/2Z,®Z..,/2Z_,©Z/2Z^ (Z/^Z)\

We have :

LEMMA 3.2 : N/,rf(U(Zr.)) == N/^K^A)) and they coincide with the
subgroup of (Z/aZy consisting of the following four elements :

• N , , / ( i ) = ( i , i , i) , i\,/(-i)=(-i, -i, i), N^(12) =( i , -i, -i),
N,,/(-( l2))=:(-I , I , -l).

Proof. — In the terminology of Bass ([4], chap. 1), the ring ZT. has
" stable range 5? 2, hence, to compute ^./(K^A)), it suffices to consider
only elements of K ' (A) reprensented by 2 by 2 invertible matrices
over A [which, in fact, exhaust K^A)]. To make the computation pos-
sible, we must produce more expedient bases for M.j(Zr.). Think of
M.j(ZT.) as contained in the maximal order M.j(Zi) (g M.,(Z_,) Q) M^(Z)
of M,,(Qr.). We first perform a sequence of change of basis in Zri :

( . )————(- (::)> • C3)=-(--(::))•

(,3.)=e^(,,., (:;:))' (..)=..=(>,-i,(^ :;))-

(a3)=^=(i,-i,(^; ^), (i33)=c«=(i, i, (^ ^;)).

We then vary this basis to

/,=. =(., ..(::))• /.=——(-, °. (; -;))•
/,=<•,-t..-=('o, " • ( . ',))' /,=>•,-<•.=(", », (",' ^))'

/.——(«.».(; ^))- /.=.,—(",.,(^, Y))
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^==/;+/.=(o, o, f o 3 \
. 0 3 ^

^.=^4-/3=: o, o, '
3 o \ \
o 3

Using the last set of basis elements for Zr. we can write down a basis
for M,(Zr.), thus :

i o
0 0 ,

1 0

, 0 0
0 0

0 0

. 0 0

2 0

0 0
1 1

' 0 0

. 0 0

' 0 0

, 0 0 ,

3 o
o 3

0 0

/ O 1 \ / O I \

[o o ) ' [ o J'
0 0

0 0

h..— 0 0

, 0 0

0 0

0 0 0 0

u 3

Take any unit inM, (A), say x=^a,h,€ GL, (A). We want to compute

its reduced norm. We know that the answer is of the form (± i, ̂  i, ^ i\
therefore it is harmless to carry out the computation mod 3. In terms
of its component matrices, x is

'7 \ / a\ — ^ < i . i ( f - j —2^,s \
11 •• / \ < i i :s + ̂  (( i ' , , a i y 4- 9. (f^ o / '

^i + ff-i 4- 2 ( ( „ — a., — a;, ft-, -4- ̂  4- ^ a\, — a^ — a\ i
— ^. 4- a, u^ 4- ^^ --+- a, — </, 4 - ^^ ,1 a, 4- ^s 4- ^i j

UY., 4- ^i, 4-2^,, — a,, — a,, a^ 4- a.^ -4 ^/,:; — a^ — a.,-,
— «i4 4- «i7 «i:i 4- ^ 1 4 4- ^j7 — <^_>t> 4- <^;i ^.i,, 4- «.,„ _ a.>-'.
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We get the third component of N,,/(o;) by evaluating the determinant
of the 4 by 4 matrix, (mod 3) :

661 6/j 667 6/7

— ̂  — 6/0 Ui 4- ^^ — 05 — a,s 4- 6<i i 667 + ̂  — 6<j i
det^E

6613 6613 aiy 661..,

6614 4- 66i7 6/13 4- 6<i4 4- 66i7 —— 66.ju —— 66.j3 6/1 y —— 6^0 + ^•23

66 i 0 6/7 0

— a.i + ^5 ^j — c^ — a« — ai i ^7 — a^
6^13 o aj..i o

— ^ 1 4 — — ^ 1 7 6^i3—^1',, — < ' / - 2 0 — ^ ; i ^I ' . l—^-20

^i — a.i — Og 4- «n a-j— a^ — (-t-i — ^a ^i — 6(2 07 — a^

^= 0} 0 Oj.,, 0 —— ^7 Oi3 0 0

O j 3 — — 6 < i 4 — — 0 - 2 U + ^ - 2 ; { ^ 1 ' J — — ^ 2 0 — — < ^ u 4 - ^ 1 7 ^1 : J——^1^ ^ 1 9 — — ^ - 2 0

6/i —— U-i 6/7 —— 6/,s Oj —— Ci-i 667 —— 6^8
= 6/.i6(i.» " — 6/76/13

6<i3——6^14 6 / i 9 — 6 ^ u 6 < i 3 — 6 / i / , . 6 / j y — 6 / ^ 0

661 6/7 6 6 i — — - 2 6 / . , 6<74 -^6<s , , ..,
=== X (mod o) ,

6613 6/i.., 6613 4- 3 6/14 6 / i y 4- 2 6/^o

i. e. the third coordinate is the product of the first and the second. It is
then easy to conclude that N,,/(^) is one of the four elements of (Z/^Z)3

enumerated in the lemma. An immediate consequence of the lemma is

COROLLARY 3.3 : Wh(r.) ^SK' (Z-n) and they are groups of exponent 4.

Proof. — The lemma shows K^ZT^SK^ZT^im^Ti) where im
refers to image of the natural map -^ r. -> K' (Zr.). Thus

Wh (7T) == K'(Z7:)/(illl±7r) ^ S K ' ( Z 7 T ) .

The last statement follows from corollary 4.3 of chapter 4.

LEMMA 3.4 : SK'(A, € )^SK ' (A)=o and SK'(A, tf) is a 3-group.

Proof. — The first statement is the " congruence subgroup theorem
for the rational integers ([10], corollary 4.3). For the other statement,
we need only handle the third compoennt A^. Pick a big integer n and set

G==SL,(/ \ , , C^=SL^(Z, 3Z), G==SL,(;\,, €,).

Now [G, G]CSL,,(Z, gZ) and [E,,(Z, 3Z), E,,(Z, 3Z)]3E,,(Z, gZ),
by the formulas of ([4], § 1), so SL,,(Z, gZ) D[G, G]DE,,(Z, gZ).
By the "congruence subgroup theorem 9 ? for Z, the extreme ends are
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equal, so they both equal [G, G]. Now look at the following sequence
of Serre-Hochschild for the group extension G < G :

/. ,, 0 G G/G
(, ° • ° ) "r————^r=T ~~> T~^———?w~, ~-> r- ^ i————TS—i——=T ~> 1 •

[G,G] [G,G] [G/G, G/G]

^ ^ P

Since SK^A.j, (C.j) is a quotient of ps—s—,? it suffices to see that the
] G, G J

latter is a 3-group. This in turn would follow from the statements :

W I P ^ ] is a 3-g^ouP5

,,, G/G . ,( b ) T-^-i——.—,—-, is a J-proupv ' [G/G, G/G j ° p

and the exactness of (3.5).

(a) and (&) are proved as follows.
P C

(a) ,——^—. is a quotient of pp—p-^ so we proceed to show that the
| G, G | 1 ^ 9 ^J

latter is a 3-group. Now', using corollary 5.2, of [4], for the semi-local
Z

ring —_ :
te QZ

G _SL,,.(Z,3Z) _ / Z 3Z\
[G, GJ - SL,,(Z, gZ) - - ^ g Z ' QZ/

Z ^Z
For simplicity, put R = = — _ and -?t = = — ~ Notice that ^==0. If

9" 9^
l^f-2n(^) denotes the additive subgroup of M^(R) consisting of matrices
with entries from 3( and trace o, the map M ̂  14- M sets up an iso-
morphism between ^l^/i^) and SLj,((R, ^l). Since the former has
exponent 3, our claim follows.

(6) We have to handle the commutator quotient group of G/G.
Since A.)/C^ is clearly semi-local, we can apply corollary 5.2 of [4] to
obtain the following exact sequence :

i->SL,(A,, C)-SL,(X,, (T,) ^SL,,(.X,/(C,, €,/€,)-i. ,

Since SL,<(A,>, C^) = SL,<(A_>, C^) = SL_»,((Z, 3Z) we immediately deduce
that

G/G= SL,(A,, C,)/SL,(X,, €,) ^ SL,/^,/€,, ^/C,).

Now Aj/C.j is an F;s-algebra, in which the ideal C.j/tJTa has square zero
(this would be made clear in a later lemma),so we can repeat the argument
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in (a) to conclude that G/G is a 3-group, hence so is its commutator quo-
tient group.

COROLLARY 3.5. — SK^A, ^) is a 3-group.

Proof. - By lemma 10.5 of [9], we have SL(A, €) = SL(A, ®) and
E(A, €)=E(A, €). Observe that this result that we quoted from [9]
depends only on the fact that the projections p / : A -> Ay are surjective,
but not on the commutativity of the ring A. We thus have

SK1 (A, €) = SL (A, €)/E (A, €)
==SL(A, €)/E(A, €)
==SK^(A,€)

and this is a 3-group by our lemma.
We next claim

LEMMA 3.6. — k : K'^A/C) -> K^A/C) is a monomorphism.

Proof. — Since both rings are artinian, our conclusion follows if we
show that A/tf is commutative, because then k is identifiable with the
inclusion map U (A/€) -> U (A/€) (by §1, chap. 1). Now Ai/di and
- /- . . Z .
A__i/tf_i are both isomorphic to ^_? so it suffices to examinebZ

^_/€,w (X,/€,)/(€,/€2).

Since f iT2==M2(3Z) , everything in sight is a vector space over F3.
By lemma 3.1, A.j/C^ is 3-dimensional over F3. If we can show that (STa
is bigger than tfa? then A^/ffl^ is two-dimensional algebra over Fa and we

^ r\ ___. -r \ ^

are done. It suffices to show that ( ) € 8 T o . Let's use the basis
\ i I /

gy(i^jr'^6) for A. Then a matrix a belongs to ^2 if and only if a^eA
and pa€A for any p which is the last component of some gj: Since we
can compute mod 3, there are only two non-trivial choices for P, namely,

Pi=(_^ "7) (for^,) and (3,= Q "̂  (for^).

/^ _ i\
For a = ( ) we have

\i I /

^={^ ~.2)=2(? "i1) (mod3)-

a(3i = = ( ° ON) (mod 3)r \o o/ v /

Ann. EC. Norm., (4), I. — FASC. 1. 19
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and also

so indeed a€ tfs.
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i3..a^( J^ap.2 (mod 3),

LEMMA 3.7. — The composite map in the following commutative diagram
is zero

SK^——.K^A/C)

I [k

SK^A)—^K^A/c)
Proof. — Since

K^ (A/C) = ̂  (ii/&i) ® K^ (i-i/€-i) ® K' (A,/SO

and SK1 (A)— K1 (Ay/€_/) are clearly trivial f o r j ? = = i , — i , we need only
handle the third component of K^A/C). We take the basis gj'{i^j^6)
for A and perform another unimodular transformation :

o i
^i==^i

^o^^

^ \0 I/

/ ^3
 °\

^(3 o)
^ /2 —]

^0 5 I X

^o 3'
\° 3.
'3 (̂

^^^o 3 9

^ ° - [ o 3 .

Take a 2 by 2 matrix x over A representing (any) element of SK^A).
Following the proof of lemma 3.2 we can write down a Z-basis h'^• (i ̂ j^ 24)

•24

for Ma (A), via the basis gy for A. The x in question is therefore x = ̂ a/h .
/==i

Since its reduced norm is i, we have the following two equations
Oi + a^ a^ + a^

^13 + ^14 ^19 -4- ^20

^1 —— ^2 <^7 —— ^8

^13 —— ^14 ^19 —— ^20
: I .

From these we get
<%i a-i
013 019

01 07

Oi4 0.20

+

+

0.2 Og

Oi4 020

0^ Og

Oi3 Oi9

To compute the image of x in K1 (^2/^2), we can reduce mod 3 (€2 C €3!)

and ignore a =

i o
.o i , Od

i. This image is thus the following :

i \t r /i o\ /o i\i
• O i g +0.20o /J L \o iy v o /J
i\i r /i o\ /o i\i
o)J-h(o J-^i o)J-

/ I 0 \ 0
a-i\ -4- Og\ o i / V i o
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Writing I = I ) and J = ( I ) (J^= o), this becomes0 \o i / \ i o/ v

( O i I + O a J ) (019! + O ^ o J ) — ( ^ I + ^sJ) ( ^ n I + ^ u J )

= [ (aiai9+ 020.20) I 4- (a.20i9+ Oi^o) J j
— [ {a^a^-\- as 014) I + (o80i3+ 07^14) J j

Ol 07 ^•2 ^8 \ ,- / | ^1 ^7 ^•2 ^8 ] \ . ,
+ I+ + I I J ==1-

Oi3 0-19 Oi4 O^Q / \ I On 6^0 Oi:{ 0^9

So the image is zero, as claimed.
We just need one more lemma to finish :

LEMMA 3.8. - The sequence SK^A, €) -^SK1 (A) -^K^A/C) 15 ^ac(
wit/I im i= ker j == o. Jn particular j is a monomorphzsm,

Proof. — Consider the commutative diagram

KI (A, €) ——> K1 (A) ——> K- (A/€)
U /

SK^A, €)—>SK 1 (A)/

where the top sequence is a section of the " K-theory exact sequence
for the map A -> A/€. It follows immediately that -l^-/> is exact,
since I-1 (SK^A)) = SK^A, €). Now SK^A, €) is a 3-group by corol-
lary 3.5 and SK^A) is a 2-group by corollary 3.3. Hence im i= o.

We finally get

THEOREM 3.9 : SK^Zr.^Wh^^o.

proof. — We refer to the diagram in lemma 3.7. There, we have
kj = o. Since k is a monomorphism (lemma 3.6) we have j = o. But
by lemma 3.8, j is a monomorphism, therefore SK^Zir) = o. Appealing
now to corollary 3.3, Wh(^) = o, which finishes the proof of theorem 3.9.
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