Annales scientifiques de l'É.N.S.

ANDRÉ MARCHAUD

Un théorème sur les corps convexes

Annales scientifiques de l'É.N.S. 3^e série, tome 76, nº 4 (1959), p. 283-304 http://www.numdam.org/item?id=ASENS 1959 3 76 4 283 0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1959, tous droits réservés. L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www.elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

UN THÉORÈME SUR LES CORPS CONVEXES

PAR M. ANDRÉ MARCHAUD.

INTRODUCTION.

Dans son ouvrage bien connu: Kreis und Kugel, M. Blaschke a montré que si la surface frontière d'un corps convexe — surface supposée régulière, analytique et à courbures différentes de zéro — est touchée par chaque cylindre circonscrit suivant une courbe plane, c'est un ellipsoïde. Il est remarquable que la conclusion subsiste pour un corps convexe absolument quelconque, et même si l'on suppose seulement que, pour chaque cylindre circonscrit, la zone de contact avec le corps contient une section plane au moins de la frontière de celui-ci. La convexité étant une propriété projective, il revient au même de considérer les cônes circonscrits dont les sommets décrivent un plan fixe extérieur au corps convexe. Mais n'obtiendrait-on pas encore des résultats intéressants lorsque le plan lieu des sommets des cônes circonscrits touche le corps ou le traverse? La réponse est affirmative et peut se résumer dans le théorème suivant :

Soient un plan fixe, situé à distance finie ou infinie, et un corps convexe borné tel que, pour tout point à la fois dans le plan et extérieur au corps convexe, la zone de contact du cône (ou cylindre) circonscrit ayant pour sommet ce point contienne au moins une section plane de la frontière du corps.

- 1° Si le plan est extérieur au corps ou le touche en un seul point, la frontière du corps convexe est un ellipsoïde.
- 2° Si le plan traverse le corps, la frontière est soit un ellipsoïde, soit deux calottes de quadriques convexes situées de part et d'autre du plan, le long duquel elles se raccordent et se touchent, l'une au moins de ces calottes appartient à un ellipsoïde, l'autre pouvant se réduire à un cone limité à son sommet et au plan.

3° Si le plan touche le corps en plus d'un point, la frontière est une calotte de quadrique convexe complétée par un disque elliptique situé dans le plan, ou bien le corps est un morceau de cône convexe (plein) absolument quelconque, limité à son sommet et au plan.

Il était bien évident *a priori* qu'un solide conique reposant sur le plan par sa base satisfait aux conditions de l'énoncé.

Remarquons encore que, la convexité étant projective, l'hypothèse suivant laquelle le corps est borné n'est nullement nécessaire. Mais dans ce cas, auquel on peut toujours se ramener par une transformation homographique convenable, les conclusions s'expriment à mon avis d'une manière concrète plus sensible.

C'est à l'occasion de Leçons professées à l'Université de Liège en 1948 que j'ai énoncé pour la première fois le théorème précédent et donné l'esquisse d'une démonstration. Les lourdes charges administratives qui m'incombaient jusqu'à une date récente ne m'avaient pas laissé le loisir d'en faire l'objet d'un Mémoire écrit. C'est pourquoi je suis reconnaissant à M. Paul Montel de m'avoir demandé le présent travail pour les Annales de l'École Normale Supérieure. Les démonstrations qu'on y trouvera sont sensiblement plus simples et plus brèves que celles de 1948. Elles utilisent certaines propriétés particulières des ovales, d'ailleurs intéressantes en elles-mêmes qui seront établies dans la première partie. La seconde partie sera consacrée à la démonstration du théorème. On y trouvera in fine quelques remarques sur sa transformation par dualité.

PREMIÈRE PARTIE.

Domaines convexes a deux dimensions. Ovales.

1. Les domaines convexes plans possèdent des propriétés intuitives considérées parfois comme évidentes. Je crois utile d'établir brièvement celles qui interviendront dans les énoncés et les démonstrations.

Suivant la définition la plus couramment adoptée, un ensemble C du plan euclidien est dit *convexe* s'il est borné, fermé et contient le segment joignant deux quelconques de ses points. C est à deux dimensions si aucune droite ne le contient tout entier. Il possède alors des points intérieurs. La frontière C^* (¹) de C est une courbe simple (fermée) de Jordan. Soient, en effet ω un point intérieur de C et Γ une circonférence extérieure à C et centrée en ω . A chaque point μ de Γ correspond sur le segment $\omega\mu$ un point m de C^* et un seul, Comme d'autre part toute frontière est un ensemble fermé, la correspondance biunivoque μ -m est bicontinue. La frontière C^* est par définition un ovale. Il est immédiat que si C^* possède des arcs partiels rectilignes, ceux-ci sont dénombrables.

⁽¹⁾ Dans tout ce travail, je désignerai systématiquement toute frontière par une lettre étoilée.

Un point du plan est dit intérieur ou extérieur à C* suivant qu'il est point intérieur de C ou bien qu'il lui est extérieur, c'est-à-dire étranger, puisque C est fermé.

2. Droites d'appui. — Une droite d'appui à C (ou à C*) est, par définition, toute droite non extérieure à C ne pénétrant pas à son intérieur. La partie commune à une droite d'appui et à C est nécessairement sur C*; c'est un point unique ou un segment. Il est immédiat que C est d'un même côté (au sens large) de toute droite d'appui et aussi que toute droite d'accummulation d'une suite de droites d'appui est elle-même une droite d'appui. Remarquons également que toute droite contenant trois points de C* est nécessairement une droite d'appui.

Par tout point o extérieur à C, on peut lui mener deux droites d'appui. Si o est à l'infini, il suffit pour le voir de projeter C parallèlement à la direction de o sur une droite non parallèle. Supposons le point à distance finie. Lorsque un point variable m parcourt C, la borne inférieure de la distance om est atteinte pour au moins un point m', situé nécessairement sur C^* . Soit alors D la perpendiculaire à om' passant par m'. Il est visible que C est (au sens large) du côté opposé à o par rapport à D. Autrement C aurait des points intérieurs au cercle de centre o, passant par m'. C étant borné, sa perspective, faite de o sur D, l'est également; c'est un segment. Les deux droites joignant o aux extrémités de ce segment sont les droites d'appui issues de o.

Comme tout point de C* est limite de points extérieurs, il en résulte l'existence d'une droite d'appui, au moins, passant par ce point. Lorsque cette droite d'appui n'est pas unique, il en existe une infinité, C est contenu dans un angle non plat; le point considéré est une *pointe*. Il est bien connu que les pointes, si elles existent, sont dénombrables. On trouvera en passant une démonstration de cette propriété au n° 5.

Remarquons enfin que, lorsqu'elle est unique en un point, la droite d'appui est la tangente à C^* . Soient, en effet, T la droite d'appui en un point m, et T_4 une droite d'accumulation de sécantes mm', où le point m' de C^* tend vers m. Si T_4 était différente de T, elle contiendrait des points intérieurs de C et couperait C^* en un second point m_4 , et la distance mm' qui tend vers zéro serait voisine de mm_4 .

- 3. Quasi-polaires. Soient z_1 et z_2 , respectivement les zones communes à C^* et aux droites d'appui issues d'un point donné o (à distance finie ou infinie) extérieur à C. J'appellerai quasi-polaire de o par rapport à C^* toute droite contenant un point de z_1 , et un point de de z_2 . Lorsque o n'est sur aucune des droites supports des arcs partiels rectilignes, que peut éventuellement posséder C^* , sa quasi-polaire est unique.
- 4. Comme on sait, les considérations précédentes peuvent être envisagées d'un point de vue projectif. Soient Δ une droite fixe extérieure à C et un couple

quelconque (m_1, m_2) de points de C. Désignons par μ la trace de la droite $m_1 m_2$ sur Δ . Il est clair que la condition nécessaire et suffisante pour qu'un point m soit intérieur au segment $m_4 m_2$ est que le rapport anharmonique $(m_1 m_2 m \mu)$ soit négatif. En effet, μ étant extérieur à C est extérieur au segment m_4 , m_2 , le rapport $\frac{\mu m_1}{\mu m_2}$ est positif. On est ainsi conduit à une définition projective : un ensemble C du plan complété par la droite de l'infini, est convexe au sens projectif, s'il est projectivement fermé, sans point sur une certaine droite Δ , telle que pour tout couple $(m_1 m_2)$ de points de l'ensemble, les points m de la droite $m_1 m_2$ en font également partie, qui rendent négatif le rapport anharmonique $(m_1 m_2 m \mu)$, où μ désigne la trace de la droite $m_1 m_2$ sur Δ . Bien entendu \mathbb{C}^* n'est plus nécessairement borné. Dans tous les cas on appellera ovale, la frontière d'un ensemble convexe non linéaire. La définition initiale n'est autre que cette dernière quand Δ est la droite de l'infini.

Il résulte de ce qui précède que toute homographie transforme un domaine convexe en un domaine convexe, les points : intérieurs, extérieurs, frontière, conservant leurs natures respectives et aussi par conséquent les droites d'appui et les quasi-polaires. Toute propriété projective pourra être établie dans un cas particulier pourvu qu'on puisse y ramener les données par une homographie convenable (²).

5. Nous abordons maintenant l'étude des propositions préparatoires à la démonstration du théorème, objet de ce Mémoire. La première concerne les relations entre deux ovales tels que pour tout point d'une droite extérieure à chacun d'eux, ils possèdent au moins une quasi-polaire commune. En vertu de la remarque qui vient d'être faite on pourra supposer la droite à l'infini,

Soient C un domaine convexe (borné) à deux dimensions et sa frontière l'ovale C*. Orientons le plan au moyen de deux axes rectangulaires (ox, oy) et considérons une demi-droite variable oa, définie par l'angle $(ox, oa) = \alpha$. A chaque demi-droite oa correspondent deux droites d'appui : T et T', qui lui sont parallèles. Nous choisirons les notations de manière que T' soit, par rapport à T, dans le demi-plan défini par la direction $\alpha + \frac{\pi}{2}$. La droite T touche C* suivant un point ou un segment. Dans ce cas, qui se produit pour un ensemble au plus dénombrable de positions de oa (n° 1), on désignera les extrémités du segment par l et m de façon que le vecteur lm soit de même sens que la demi-droite oa. Lorsque le contact a lieu suivant un seul point, l et m sont confondus. Ainsi : à chaque

⁽²⁾ Les ovales sont les courbes du second ordre (au sens large) de la Géométrie finie. Les droites d'appui à C*, par exemple, sont les tangentes à C* (une tangente étant toute droite d'accumulation de sécantes joignant deux points qui tendent vers le point considéré). J'ai préséré m'en tenir au point de vue adopté dans le texte, qui présente l'avantage de ne réclamer aucune connaissance particulière.

demi-droite oa, de direction α , correspond un vecteur lié bien déterminé \overrightarrow{lm} , nul ou non. De même T' touche C* suivant un vecteur $\overrightarrow{l'm'}$, lequel correspond à $\alpha + \pi$.

Soient alors α_0 une valeur fixe et $\alpha_0 + h$ une valeur voisine (h > 0). C est compris entre les droites T_0 et T_0' et aussi entre T et T'. On en déduit que \overrightarrow{lm} se trouve dans l'angle de sommet m_0 dont les côtés sont respectivement parallèles à oa_0 et oa. Il en résulte que \overrightarrow{lm} tend vers m_0 quand h tend vers zéro, car C n'a pas de point sur T_0 en dehors de $\overrightarrow{l_0m_0}$. Pour la même raison, $\overrightarrow{l'm'}$ tend vers m_0' . Il peut arriver que \overrightarrow{lm} , par exemple, soit confondu avec m_0 pour h assez petit. Ceci se produira si m_0 est une pointe. En faisant tourner oa d'un angle 2π , on voit que les pointes, si elles existent, sont dénombrables. On trouve ici la démonstration annoncée au n^0 2.

Considérons une quasi-polaire du point à l'infini dans la direction oa c'est-àdire une droite rencontrant \overrightarrow{lm} et $\overrightarrow{l'm'}$. Il résulte de ce qui précède qu'elle tend vers une limite unique $m_0 m'_0$ quand h tend vers zéro.

Je vais compléter ce résultat en montrant que le rapport $\rho = \frac{\overrightarrow{m\mu}}{mm'} = \frac{\overrightarrow{l\lambda}}{ll'}$ reste constant quand α varie. L'accroissement h étant d'abord supposé positif et voisin de zéro, évaluons la différence $\rho - \rho_0 = \frac{\overrightarrow{m\mu}}{mm'} - \frac{\overrightarrow{m_0\mu_0}}{m_0m'_0}$. Pour cela projetons parallèlement à T_0 les points m, m', μ , respectivement en n, n', ρ' , sur la droite $m_0 m'_0$. On a

$$\rho - \rho_0 = \frac{\overrightarrow{n}}{\overrightarrow{n}} - \frac{\overrightarrow{m}_0 \overrightarrow{\mu}_0}{\overrightarrow{m}_0 \overrightarrow{m}_0}.$$

Un calcul élémentaire va nous permettre de limiter supérieurement $|\overrightarrow{m_0n}|$, $|\overrightarrow{m_0n'}|$, $|\overrightarrow{\mu_0y}|$, en fonction de h et de l'angle ε des droites mm' et $m_0m'_0$, qui, on l'a vu plus haut tend vers zéro avec h, s'il n'est pas nul, Il suffira de considérer $|\overrightarrow{m_0n}|$, par exemple. Si m est en m_0 , le module en question est nul. Dans

le cas contraire, la droite mm' coupe $m_0m'_0$ en un point i, distinct de m_0 et intérieur au sens large au segment $m_0m'_0$. Désignons par r et s, respectivement les intersections de la droite mm' avec T_0 et la parallèle à oa, menée par m_0 , et par u la projection de s sur $m_0m'_0$, parallèlement à T_0 . Le point m est entre r et s, $\left|\overrightarrow{m_0n}\right|$ est donc au plus égal à m_0u , Or, on a dans le triangle im_0r :

$$\frac{um_0}{sr} = \frac{im_0}{ir}, \qquad \frac{m_0 r}{\sin \varepsilon} = \frac{ir}{\sin \varphi_0},$$

où φ_0 désigne l'angle des droites T_0 et $m_0 m'_0$. Le sinus de cet angle est différent de zéro. D'autre part on écrit, dans le triangle $m_0 sr$:

$$\frac{sr}{\sin h} = \frac{m_0 r}{\sin (\varphi_0 - h + \varepsilon)}.$$

Les trois dernières relations donnent

$$um_0 = im_0 \frac{\sin h \sin \varepsilon}{\sin \varphi_0 \sin (\varphi_0 - h + \varepsilon)}$$

et, par suite

$$\left| \overrightarrow{m_{\scriptscriptstyle 0} n} \right| < m_{\scriptscriptstyle 0} m_{\scriptscriptstyle 0}' \frac{h \varepsilon}{\sin \varphi_{\scriptscriptstyle 0} \sin \left(\varphi_{\scriptscriptstyle 0} - h + \varepsilon \right)}$$

On voit alors que pour h assez petit, on peut borner $\left|\overrightarrow{m_0n}\right|$, $\left|\overrightarrow{m_0n'}\right|$, $\left|\overrightarrow{\mu_0o'}\right|$, par une même expression $\frac{1}{2}Kh\epsilon$, où K désigne une constante positive. La différence $\rho - \rho_0$ pourra donc se mettre sous la forme $\frac{p+\theta}{q+\theta'Kh\epsilon} - \frac{p}{q}$, où p et q sont des constantes, la seconde différente de zéro, et θ et θ' des nombres de modules au plus égaux à l'unité. Il en résulte que $\frac{\rho-\rho_0}{h}$ tend vers zéro avec h, puisqu'il en est ainsi de ϵ . De la même manière on verrait que la dérivée à gauche est nulle, en considérant cette fois $\frac{\overrightarrow{lh}}{\overrightarrow{ll}}$. En définitive nous pouvons affirmer que :

1° Les points m, m', μ , μ' , d'une part et l, l', λ , λ' d'autre part sont alignés quel que soit oa;

2° Le rapport
$$\frac{\overrightarrow{m\mu}}{\overrightarrow{mm'}} = \frac{\overrightarrow{l\lambda}}{\cancel{ll'}}$$
 est constant.

De cette dernière propriété on déduit immédiatement que C^* et Γ^* ne peuvent avoir un seul point commun sans être confondus.

Supposons C^* et Γ^* distincts et remplaçons α par $\alpha + \pi$. Les points m et m' s'échangent et μ est remplacé par μ' . L'invariance de ρ montre que $m \mu + m' \mu' = 0$. Autrement dit : les couples de droites d'appui à C^* et Γ^* , issues d'un même point à l'infini ont même médiatrice.

En se reportant à la méthode suivie, on voit tout de suite que la dernière relation reste valable si Γ se réduit à un point ω .

Un autre cas particulier remarquable est celui où C^* et Γ^* étant des ovales, il existe un point fixe ω tel que pour chaque point à l'infini celle des quasi-polaires, supposée commune aux deux ovales, passe par ω . C^* et Γ^* sont alors homothétiques par rapport à ω , et concentriques.

Tous les résultats qui viennent d'être obtenus se formulent d'une manière projective dans le

- Lemme I. 1° Si pour tout point d'une droite fixe extérieure à un ovale, il existe une quasi-polaire (au moins) passant par un point fixe, ce point est intérieur à l'ovale, qui est invariant par l'homologie involutive ayant pour pôle le point fixe et pour axe la droite.
- 2° Si pour tout point d'une droite extérieure à deux ovales ceux-ci ont au moins une quasi-polaire commune :
 - a. les deux ovales ne peuvent avoir un point commun sans être confondus;
- b. si pour un point de la droite donnée la quasi-polaire est unique pour un des ovales, elle est unique pour l'autre;
- c. la droite donnée a même conjuguée harmonique par rapport aux deux couples de droites d'appui (aux deux ovales) issues d'un quelconque de ses points;
- d. plus particulièrement, si la quasi-polaire commune visée à l'hypothèse, passe par un point fixe, l'un des ovales est transformé de l'autre par une homologie ayant pour pôle le point fixe et pour axe la droite.

De la première partie de ce lemme on déduit facilement un corollaire dont nous aurons également à faire usage.

7. COROLLAIRE. — Si à chaque droite extérieure à un ovale et passant par un point fixe, correspond un point contenant une quasi-polaire de tout point de la droite considérée, l'ovale est une conique.

Soient C* l'ovale et o le point commun aux droites Δ considérées. Je vais d'abord montrer que la quasi-polaire de o est unique. Supposons, ce qui est permis, C* borné et o à l'infini. Désignons par A et B les droites d'appui issues de o, et par ω et ω_0 les points correspondant à deux droites Δ et Δ_0 passant par o. Ces points sont distincts, la droite qui les joint coupe A et B en a et b, situés à distance finie. Si la droite $\omega\omega_0$ était parallèle à A et B elle couperait C^* en deux points symétriques par rapport à ω et à ω_0 , ce qui est impossible. Si la quasi-polaire de o n'était pas unique, A, par exemple, contiendrait un point a_1 de C^* distinct de a. Choisissons les notations de façon que ω_0 soit plus près de a que ω . Il résulte, des hypothèses que l'intersection de la droite $a_1\omega_0$ avec a, soit a est sur a0 et de même, que l'intersection, soit a1, de la droite a2 avec a3 est indépendant

de a_1 et supérieur à l'unité. En répétant indéfiniment l'opération on obtiendrait sur A des points de C^* aussi éloignés de a qu'on voudra, ce qui est incompatible avec l'hypothèse C^* borné. La démonstration s'achèvera aisément. Laissons fixe le point ω_0 et désignons par m_0 et m'_0 les intersections de C^* avec la droite $o\omega_0$. Soit alors m un point quelconque de C^* (distinct de m_0 et de m'_0), la droite m_0 m rencontre ab en un point ω auquel correspond la droite Δ , polaire de ω par rapport au système des deux droites A et B. Si δ désigne la trace de la droite m_0 m sur Δ , le rapport anharmonique $(m_0 m \omega \delta)$ est égal à m 1, de même que $(m_0 m'_0 \omega_0 o)$. Les droites $\omega\omega_0$ et δo sont concourantes en δ' , conjugué harmonique de ω par rapport à ab. La droite m'_0 m passe donc par δ' ; les deux faisceaux m_0 m et m'_0 m sont par suite homographiques. Le lieu de m est une conique.

8. Un second lemme concerne les ovales invariants par certaines homologies involutives. D'une manière précise, soient C^* un ovale et Δ une droite donnés. Nous allons étudier la nature de C^* dans l'hypothèse suivante : à tout point δ , extérieur à C^* , et appartenant sur Δ à un ensemble partout dense E, correspond un axe A_{δ} tel que C^* soit invariant par l'homologie involutive $[\delta, A_{\delta}]$ de pôle δ et d'axe A_{δ} . Pour cette étude je supposerai C^* borné, car dans ce cas (auquel on peut toujours se ramener) les démonstrations sont plus simples et les conclusions plus aisées à formuler d'une manière concrète. Donnons-nous sur Δ un point δ_0 , extérieur à C, appartenant ou non à E, et considérons une droite d'appui E, issue de δ_0 et distincte de E (le cas où E touche E n'étant pas exclu). Je vais d'abord montrer que E touche E en un point unique et qu'il existe un axe E en déterminé et passant par ce point, tel que l'homologie involutive $[\delta_0, A_{\delta_0}]$ laisse E invariant. Je supposerai, ce qui est permis, E à distance finie.

Admettons que L touche suivant un segment mn, il faut prouver que cette hypothèse conduit à une contradiction. Pour cela menons par δ_0 deux sécantes L_4 et L_2 pénétrant à l'intérieur de C^* et désignons leur intersections avec l'ovale par m_1 , n_1 , et m_2 , n_2 , les notations étant telles que les points m, m_1 , m_2 , soient respectivement intérieurs aux segments $\delta_0 n$, $\delta_0 n_1$, $\delta_0 n_2$. Prenons alors sur Δ un point δ de E, situé par rapport à L du côté de C. Les droites δm_1 et δm_2 coupent C^* , en dehors de m_1 et m_2 , en des points n'_1 et n'_2 , qui tendent vers n_1 et n'_2 quand δ tend vers δ_0 . L'axe A_δ est la polaire de δ par rapport au système des deux droites $[m_1 m_2, n'_1 n'_2]$. Quand δ tend vers δ_0 , cette polaire tend vers celle des deux droites $[m_1 m_2, n_1 n_2]$, soit B_0 . L'ovale C^* est invariant par l'homologie involutive $[\delta_0, B_0]$. D'autre part, il résulte de la position de δ par rapport à C, que le transformé m' de m par $[\delta, A_\delta]$ est sur le segment δm . L'axe B_0 coupe alors C^* en un point du segment $\delta_0 m$, ce qui est impossible. Il faut donc que C^* en un seul point. L'axe C^* 0, qui n'est autre que C^* 0, passe par ce point.

9. Pour aller plus loin, il nous faut distinguer plusieurs cas suivant les positions relatives de C^* et de Δ .

1° Δ est extérieure à C. — Il sera commode dans ce cas de supposer Δ à l'infini. Nous savons que C* n'a pas de segment. Il est également dépourvu de pointes. S'il en avait une, p, tout point m de l'ovale en serait une, comme on le voit en considérant l'homologie involutive dont le pôle est sur la droite pm. Or les pointes sont dénombrables (n° 5). En chacun de ses points C* possède donc une droite d'appui unique, laquelle touche en un seul point. De plus la droite Δ étant à l'infini, les axes des homologies involutives sont ici des diamètres. Fixons alors un point δ . Le diamètre A_{δ} rencontre C^{\star} aux points de contact a et b des droites d'appui issues de δ . En désignant par δ' le point à l'infini de A_{δ} , on obtient $A_{\delta'}$, qui coupe C* aux points de contact a' et b' des droites d'appui issues de δ' . Les diamètres A¿ et A¿ sont conjugués; leur point commun, soit i, est donc un centre pour C^* . Donnons-nous sur l'ovale un point m, distinct de a et de b. La conique C, tangente en a et b aux droites d'appui en ces points, et passant par m, y admet pour tangente la droite d'appui à C*. Celle-ci, en effet, est la transformée de la droite d'appui en a par $[\delta'', A_{\delta''}]$, où δ'' désigne le point à l'infini de am, et $A_{\delta''}$ est déterminé par i et le milieu du segment am. La tangente à C en m s'obtient par la même construction. En plaçant m en a', on voit que les quatre points a, a', b, b', sont sur une même conique Γ, qui touche C* en ces points. Je dis que C* est confondu avec Γ . Supposons qu'un point m de C^* ne soit pas sur Γ . Il suffira de constater que cette hypothèse conduit à une contradiction. Considérons la trace ω de la tangente en m à \mathcal{C} sur la polaire M de m par rapport à Γ . Ce point est commun aux polaires du point fixe m par rapport aux coniques du faisceau défini par \mathcal{C} et Γ . Il est donc sur la droite ab. De même la tangente en m à la conique \mathcal{C}' , passant par ce point et touchant en a' et b' les droites d'appui en ces points, rencontre M en un point ω' de la droite a' b'. Mais ces tangentres en mà \mathcal{C} et \mathcal{C}' sont confondues. Ceci exige que ω et ω' le soient, et nécessairement en i. Comme m n'est pas sur la polaire de i par rapport à Γ , M ne peut passer par i. Nous aboutissons à la contradiction annoncée; C* est donc confondu avec Γ .

10. Examinons maintenant le cas:

2° Δ touche C* en un point unique α . — Supposons encore (ce qui est permis C* borné). Ici encore l'ovale, qui n'a pas de segment est sans pointes. Le raisonnement utilisé pour le prouver dans le cas précédent est valable, car une sécante joignant deux points de C* ne peut passer par α (elle toucherait C* suivant un segment, n° 2).

Soient alors a un point fixe de C^* (distinct de α) et T la droite d'appui en ce point. La droite d'appui en un point m de C^* (autre que a et α) est la tangente en m à la conique \mathcal{C} , passant par m et tangente à T et Δ en a et α . Il suffit pour le voir de considérer A_δ où δ est la trace de la droite am sur Δ . A_δ est déterminé par α et le conjugué harmonique de δ par rapport au couple (a, m). Désignons par Γ ce que devient \mathcal{C} quand on place m en un second point fixe a', où la droite

d'appui est T'. Appelons enfin \mathcal{C}' la conique analogue à \mathcal{C} , mais tangente à T' en a'. La tangente en m à \mathcal{C}' est elle aussi la droite d'appui à C^* . Un raisonnement semblable à celui développé au numéro précédent montre que C^* est confondu avec Γ . La seule différence est qu'ici les points ω et ω' , étant respectivement sur αa et $\alpha a'$, ne pourraient être confondus qu'en α , ce qui est impossible car m n'étant pas sur Δ , M ne peut passer par α .

44. Il reste à examiner le cas où Δ touche C* suivant un segment ou le traverse. Comme on le verra, le second peut se déduire du premier. Plaçons-nous dans l'hypothèse :

3° Δ touche C* suivant un segment. — Désignons par α et α' les extrémités du segment. Tout triangle $p\alpha\alpha'$, possède la propriété que nous prêtons à C*. L'ovale n'est donc pas certainement dépourvu de pointe (ni de segment en plus de $\alpha\alpha'$). Je vais montrer que si C* possède une pointe p extérieur à Δ , il se réduit au triangle $p\alpha\alpha'$. Considérons le segment $p\alpha$, par exemple, il s'agit de voir qu'il est sur C*. Le segment $p \propto$ appartient à C. S'il contenait un point intérieur, ce point i, serait entre p et α , et l'on pourrait mener par p une infinité non dénombrable de sécantes coupant Δ à l'extérieur de C*, ce qui donnerait une infinité non dénombrable de pointes, éventualité impossible. Nous écarterons le cas banal du triangle. Donnons-nous sur C^* , en dehors de Δ , un point fixe a. La droite d'appui en a, soit T, est unique et coupe Δ à l'extérieur du segment $\alpha\alpha'$. La droite d'appui en un point m de C^* , pris en dehors de a, et α , est la tangente en m à la conique \mathcal{C} déterminée par les points m, α , α' , a et sa tangente T en ce dernier point. En effet, considérons la trace \hat{c} , de la droite am sur Δ . Les points a et m étant d'un même côté de A, le point est extérieur au segment am donc de C*. L'axe Aè est déterminé par les conjugués harmoniques de 5 par rapport aux couples (a, m) et (α, α') . La transformée de T par l'homologie involutive $[\delta, A_{\delta}]$ est à la fois la droite d'appui en m et la tangente à \mathcal{C} . Comme plus haut désignons par Γ ce que devient \mathcal{C} quand on place m en un second point fixe a'. La démonstration se poursuit de la même manière jusqu'au moment où il faut vérifier que les points ω et ω' sont distincts. Soit u le point commun à T et T', les polaires de m par rapport aux coniques dégénérées $[T, \Delta]$ et [T', Δ] se croisent en un point v de mu. Les points ω et ω' ne pourraient être confondus qu'en v ce qui impliquerait trois droites d'appui à C^* , issues de u. En définitive nous pouvons affirmer que si C* n'est pas un triangle c'est un arc de conique d'extrémités sur Δ, complété par sa corde. La conique n'est pas forcément une ellipse. Pour terminer remarquons que, dans tous les cas, l'axe Az passe par un point fixe extérieur à Δ . Lorsque C* est un triangle, ce point est le sommet non situé sur Δ , dans le cas contraire, c'est le pôle de Δ par rapport à Γ .

12. Nous arrivons à la dernière disposition :

 4° Δ traverse C. — Soient α et α' les points d'intersection de C^{\star} avec Δ . Ils

partagent C^* en deux arcs C_1^* et C_2^* , situés de part et d'autre de Δ , et qui, complétés par le segment $\alpha\alpha'$, constituent deux ovales auxquels s'appliquent les résultats du numéro précédent. A chacun d'eux correspond un point fixe, extérieur à Δ , par lequel passe A_2 , quel que soit δ . Ces deux points sont nécessairement confondus, sans quoi A_δ serait fixe quand δ varie. Or, il doit passer par le conjugué harmonique de δ par rapport à α et α' . On en déduit que C^* est la somme des deux arcs de coniques, situés de part et d'autre de Δ , ces arcs ayant mêmes tangentes en leurs points situés sur Δ , ou bien un système de deux segments de même origine extérieure à Δ et d'extrémités sur cette droite, complété par un arc de conique situé de l'autre côté de Δ et tangent aux supports des deux segments. Bien entendu, lorsque C^* n'a pas de pointe, les deux coniques peuvent être confondues — nécessairement suivant une ellipse. On voit d'ailleurs aisément que C^* contient dans tous les cas un arc d'ellipse.

Les résultats obtenus depuis le nº 8 constituent le

- Lemme II. Soient un ovale borné et une droite donnée à distance finie ou infinie, telle qu'à chacun de ses points pris à l'extérieur de l'ovale et sur un un ensemble donné partout dense, corresponde une homologie involutive, ayant pour pôle le point considéré, qui laisse invariant l'ovale.
- 1° Si la droite lui est extérieure, ou le touche en un seul point, l'ovale est une ellipse.
 - 2º Si la droite le traverse, l'ovale peut être :
 - a. une ellipse;
- b. la somme de deux arcs de coniques (dont l'une au moins est une ellipse) situés de part et d'autre de la droite et se raccordant sur celle-ci avec tangentes communes;
- c. un système de deux segments de même origine dont les extrémités sont sur la droite, complété par un arc d'ellipse situé de l'autre côté et se raccordant sans pointes avec les segments;
- 3º Si l'ovale est touché par la droite en plus d'un point, c'est un arc de conique complété par sa corde (située sur la droite), ou bien un triangle reposant sur la droite par un de ses côtés.

Comme on l'avait remarqué au début, il n'est pas indispensable de supposer l'ovale borné, à condition de modifier les conclusions d'une manière convenable.

43. Le troisième et dernier lemme est relatif aux ovales possédant la même propriété de réciprocité que les polaires d'une conique. D'une manière précise : soit C* un ovale dépourvu d'arcs partiels rectilignes; la quasi-polaire d'un point extérieur quelconque est unique. Je suppose que si un point α' est sur la quasi-polaire de α , la quasi-polaire de α' passe par α , et ceci quels que soient α et α' . Nous allons voir que C* est une conique. Je ferai la démonstration dans le cas

où C* est borné. Pour simplifier l'écriture, les quasi-polaires de points α , α' , ... seront représentées par P_{α} , $P_{\alpha'}$,

Remarquons d'abord que C^* n'a pas de pointes. Supposons qu'il en ait une et considérons deux droites d'appui T et T_4 qui s'y croisent. Par un point α de T menons à l'ovale la seconde droite d'appui et désignons par α_1 son point de rencontre avec T_4 . Les deux points α et α_4 ont la même quasi-polaire. Il faudrait que $P_{\alpha'}$ passe par α et α_4 quel que soit α' , pris à l'extérieur de C^* , sur P_{α} , ce qui est manifestement impossible.

14. Pour prouver que C^* est bien une conique (ici une ellipse) j'établirai d'abord que la quasi-polaire P_{α} de tout point à l'infini α partage C^* en deux arcs en affinité, d'axe P_{α} et ensuite que cette affinité est une symétrie oblique. Il résultera alors du lemme II, première partie, que C^* est une ellipse.

Désignons par a et b les points de contact des droites d'appui d'un point donné à l'infini α . La quasi-polaire de α est la droite ab. Soit μ un point intérieur du segment ab. Ce point est intérieur à C^* sans quoi ab serait une droite d'appui (n° 2) et le segment ab sur l'ovale, ce qui est contraire à l'hypothèse. Le point μ étant intérieur à l'ovale, la droite $\mu\alpha$ coupe C^* en deux points m et m', situés de part et d'autre de P_{α} . Il s'agit de constater que le rapport $\rho = \frac{\mu m}{\mu m'}$ est constant. Les droites d'appui en m et m' sont les tangentes en ces points (n° 2). Elles se rencontrent évidemment sur P_{α} . Choisissons sur cette droite une origine et un sens positif, et désignons par α l'abscisse de μ . Le rapport ρ est une fonction continue à l'intérieur du segment ab; il est facile de voir que sa dérivée est nulle. Soient m_0 et m'_0 les points correspondant à μ_0 d'abscisse α_0 et ρ_0 la valeur du rapport en ce point. Les sécantes $m_0 m$ et $m'_0 m'$ se coupent en un point r; la droite $m_0 r$ coupe mm' en ν . ρ_0 est égal à $\frac{\nu m}{\nu m'}$, comme $\nu \mu$ est infiniment petit par rapport à α and α (puisque la droite α rend vers α de la résulte que α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α and α est lui-même infiniment petit par rapport à α est lui-même infiniment petit par rapport à α est lui-même infiniment petit par rapport à α est lui-même infiniment peti

Considérons la quasi-polaire $P_{\alpha'}$ du point à l'infini α' de P_{α} , et désignons par a' et b' ses points d'intersection avec C^* . Les droites d'appui en a et b sont parallèles à a'b'. de même que celles en a' et b' sont parallèles à ab. D'autre part, le point o commun à P_{α} et $P_{\alpha'}$, est intérieur aux segments ab et a'b'. Les points a, a', b, b' partagent C^* en quatre arcs situés chacun dans un des angles formés par les droites ab et a'b', et qu'on peut désigner sans ambiguïté par leurs extrémités. Les arcs aa' et ab' se correspondent dans une affinité α , d'axe ab et de direction a'b'; de même une affinité α' , d'axe a'b' et de direction ab, fait correspondre ba' à aa' Ceci précisé, remarquons que la quasipolaire du point à l'infini α'' , de la droite aa', qui passe par le point a' commun aux droites d'appui en a' et a' est l'axe d'une affinité a'' qui transforme a' en

ia', et le voisinage de a sur \mathbb{C}^* dans le voisinage de a'. Mais \mathfrak{C}'' transforme \mathfrak{C} en une affinité qui ne peut être que \mathfrak{C}' . En effet, sa direction est celle de la droite d'appui en a' et elle transforme le voisinage de a' sur $\widehat{aa'}$ en son voisinage sur $\widehat{ba'}$. Il faut donc que \mathfrak{C}'' fasse correspondre l'axe ab à l'axe a'b', c'est-à-dire que son axe soit la droite oi.

Cette affinité \mathcal{C}'' est par suite une symétrie oblique. L'homologue de b' dans cette transformation est à la fois sur ab et sur \mathbb{C}^* ; il doit donc être confondu avec b. Ceci exige que les droites d'appui en b et b' se coupent sur oi. Autrement dit : le point o est sur l'une des diagonales du parallélogramme construit avec les droites d'appui en a, a', b, b'. Pour la même raison il est sur l'autre. En définitive \mathfrak{C} est une symétrie oblique, c'est-à-dire une homologie involutive de pôle à l'infini. Comme α a été choisi arbitrairement, la démonstration est achevée. Elle est valable pour un ovale quelconque et nous pouvons énoncer le

LEMME III. — Un ovale, dépourvu d'arcs partiels rectilignes, est nécessairement une conique sous la seule condition que la quasi-polaire d'un point, pris sur la quasi-polaire d'un autre point, passe par cet autre, quels que soient les points choisis (à l'extérieur de l'ovale).

DEUXIÈME PARTIE.

15. Avant d'aborder la démonstration du théorème annoncé, je rappellerai brièvement les définitions et propriétés classiques qui interviendront.

Dans l'espace euclidien à trois dimensions, un corps convexe est un ensemble borné, fermé, non plan, contenant tout segment dont les extrémités appartiennent à l'ensemble. En raisonnant comme au n° 1, on voit que la frontière S* d'un corps convexe S est une surface simple close. La section de S par un plan contenant un point intérieur de S est un disque convexe dont la frontière est la section de S* par le plan. On appelle plan d'appui à S, ou à S*, tout plan contenant au moins un point de S, mais aucun point intérieur. La partie commune à S et à un plan d'appui est toute entière sur S*; c'est un point, un segment ou un disque convexe, appelé facette de S*. On dit que le plan touche S, ou S*, suivant ce point, segment ou cette facette. En raisonnant sur S* comme au n° 1 sur les ovales, on voit que les facettes, s'il en existe, sont dénombrables. On définit les droites d'appui en remplaçant le mot plan, par le mot droite. Toute droite d'appui à une section plane (à deux dimensions) de S, est une droite d'appui de S. La partie commune à S et à une droite d'appui est un point ou un segment de S*

16. Cônes circonscrits. — Nous considérerons un cylindre comme un cône de sommet à l'infini. Dans ces conditions un cône convexe sera l'ensemble des

droites joignant les points d'un ovale à un point fixe situé hors de son plan: le sommet du cône. Les droites issues du sommet sont extérieures ou intérieures au cône suivant que leurs traces sur le plan de l'ovale, sont extérieures ou intérieures à celui-ci. Tout plan passant par le sommet et une droite d'appui à l'ovale est un plan d'appui au cône. Il est évident que l'ovale peut être remplacé par la section du cône par un plan quelconque ne contenant pas le sommet.

Soient alors S un solide convexe et o un point qui lui est extérieur. Si o est à l'infini, on voit en projetant S sur un plan fixe parallèlement à la direction de o, que l'ensemble des droites d'appui issues de o est un cylindre convexe, car la projection de S est bornée et satisfait à la condition de convexité. Lorsque le point est à distance finie, les choses sont moins immédiates, car il n'est pas évident qu'on puisse mener par o un plan extérieur à S. Supposons donc o à distance finie. La borne inférieure de la distance de o aux points de S est atteinte pour un point (au moins) soit m_0 . L'angle o $m_0 m$, où m désigne un point quelconque de S, distinct de m_0 , ne peut être aigu, sans quoi il y aurait sur le segment $m_0 m$ des points plus près de o que m_0 . Le corps S est donc (au sens large) du côté opposé à o par rapport au plan R, mené par m_o perpendiculairement à om_0 . La projection de S sur R, faite du point o, est donc bornée. Elle satisfait à la condition de convexité et contient des points intérieurs; sa frontière est donc un ovale (qui est ici borné, mais le fait n'a aucune importance). Les considérations précédentes conduisent aux conclusions suivantes:

- 1° L'ensemble des droites d'appui à un corps convexe, issues d'un point extérieur, est un cône convexe : le cône circonscrit ayant pour sommet le point; toute droite passant par ce point est extérieure au corps convexe où pénètre à son intérieur, suivant qu'elle est extérieure ou intérieure au cône circonscrit;
- 2° Les plans d'appui issus d'un point extérieur sont les plans d'appui au cone circonscrit ayant pour sommet le point considéré; d'où il résulte que par toute droite extérieure à un corps convexe on peut lui mener exactement deux plans d'appui.
- 17. Comme dans le cas du plan, on peut transformer la définition du corps convexe de manière à la rendre projective. On obtient ainsi les domaines convexes à trois dimensions, plus nécessairement bornés. Un domaine convexe à trois dimensions est un ensemble non plan, fermé au sens projectif, sans point commun avec un plan donné Ω et tel que si m_1 et m_2 sont deux points de l'ensemble, tous les points m de la droite m_1m_2 appartiennent à l'ensemble pour lesquels le rapport anharmonique $(m_1m_2m\mu)$ est négatif, μ désignant la trace de la droite m_1m_2 sur le plan Ω . Toutes les notions rappelées jusqu'ici et les propriétés des corps convexes qui s'y rapportent étant projectives, s'appliquent aux domaines convexes à trois dimensions. Je réserverai l'expression corps convexe pour les domaines bornés.

18. Nous pouvons maintenant aborder la démonstration du théorème annoncé. Donnons-nous un corps convexe S et un plan fixe II, à distance finie ou infinie. Notre hypothèse se réduit à ceci : pour tout point μ , extérieur à S et situé dans II, la zone commune à S* et au cône circonscrit de sommet μ , contient au moins une section plane de S*. Il revient au même de dire qu'à tout point μ , satisfaisant aux conditions précédentes, correspond un plan P_{μ} , au moins tel que le cône de sommet μ ayant pour directrice la trace de S* sur P_{μ} soit le cône circonscrit de sommet μ . J'appellerai P_{μ} un plan quasi-polaire de μ par rapport à S*. La propriété pour un plan d'être quasi-polaire étant projective, on pourra supposer le plan II à distance finie, S restant borné. Si II est le plan à l'infini, il suffira d'opérer une transformation homographique faisant correspondre à un plan donné extérieur à S le plan de l'infini.

En définitive nous avons à étudier S dans l'hypothèse suivante : à tout point μ à distance finie ou infinie, extérieur à S et pris dans un plan donné II, à distance finie, correspond au moins un plan quasi-polaire P_{μ} .

Comme première conséquence, nous allons en déduire que tout plan d'appui contenant une droite extérieure à S et située dans II, touche S suivant un point ou une facette. La conclusion vaudra pour II, s'il est lui-même plan d'appui. Soit R un plan d'appui passant par une droite Δ satisfaisant aux conditions précédentes. Supposons qu'il touche suivant un segment ab, et désignons par ω la trace de la droite ab sur Δ . Tout plan quasi-polaire P_{μ} d'un point μ de Δ contient le segment ab, pourvu que μ soit différent de ω . Mais cette restriction peut être levée, car tout plan limite de plans quasi-polaires est évidemment un plan quasipolaire. Coupons alors par un plan Q, contenant Δ et un point intérieur de S. Nous obtenons sur S* un ovale Q*. La trace sur Q d'un plan quasi-polaire d'un point μ de Δ est une quasi-polaire de ce point par rapport à Q^* . La droite Δ , extérieure à Q* est donc telle qu'à chacun de ses points corresponde une quasipolaire passant par le point ω. Or d'après le lemme I, première partie, ce point devrait être intérieur à Q*. Nous parvenons à une contradiction. Le plan touche donc bien suivant un point unique ou une facette. Cette propriété jointe au fait que les facettes sont dénombrables, jouera un rôle essentiel.

49. Je poursuivrai en étudiant la nature de la section de S* par un plan quasipolaire d'un point donné μ_0 extérieur à S et situé dans II. Nous disons : un,
parce que nous supposons qu'il en existe au moins un. Désignons par P_0 le
plan quasi-polaire considéré, par C_0^* la trace de S* sur lui, et par Λ_0 , l'intersection des plans P_0 et II. Si S* possède des facettes, en dehors de celle suivant
laquelle II pourrait éventuellement toucher S*, leurs plans découpent sur II un
ensemble dénombrable de droites. Il est par suite possible de choisir sur Λ_0 un
point λ , extérieur à C_0^* et tel que l'un au moins des plans d'appui à S passant
par la droite $\mu_0 \lambda$ touche S* suivant un point unique a. Remarquons en passant
que l'ensemble des points tels que λ est partout dense sur Λ_0 .

Désignons par Δ la droite $\mu_0 \lambda$, et, pour commencer, laissons-la fixe. Δ est extérieure au cone circonscrit de sommet μ_0 , donc à S. A chaque point μ de Δ correspond alors (d'après notre hypothèse) un plan P (au moins) qui est quasipolaire de μ . Les plans P passent nécessairement par a. Ce point est, en particulier sur C_0^* , et la droite λa touche cet ovale au seul point a. Menons par λ dans P_0 une sécante passant à l'intérieur de C_0^* et désignons par q_0 et q_0' ses intersections avec C_0^* . Le plan $(\mu_0 \lambda q_0)$ soit Q, pénétrant à l'intérieur du cône circonscrit de sommet μ_0 , pénètre à l'intérieur de S (n° 16). Il coupe par suite S* suivant un ovale Q*. Les droites $\mu_0 q_0$ et $\mu_0 q'_0$ sont les droites d'appui à Q* issues de μ_0 et la droite $q_0 q'_0$ est une quasi-polaire de μ_0 par rapport à Q*. Lorsque, Q restant fixe, μ décrit Δ, l'intersection de Q et de P reste une quasi-polaire de μ par rapport à Q^* . Projetons Q^* , depuis a sur II. Nous obtenons un ovale Q^* et, sur lui, les points \bar{q}_0 et \bar{q}'_0 . Considérons alors un second plan fixe tel que Q. Nous obtenons un second ovale tel que $\overline{\mathbb{Q}}^*$. Ces deux ovales ont pour tout point de la droite Δ, qui est extérieure à chacun d'eux, au moins une quasi-polaire commune : la trace de P sur II. Le lemme I permet d'affirmer que :

- 1° si deux ovales Q* ont un point commun, ils sont confondus;
- 2° si la quasi-polaire de μ_0 est unique pour l'un des ovales, elle est unique pour l'autre;
- 3º la droite Δ a même conjuguée harmonique par rapport aux couples de droites d'appui issues de μ_0 à chacun des ovales.

Pour exploiter complètement ces résultats, remarquons enfin que si S touche Π suivant une facette, la frontière de celle-ci joue le même rôle qu'un ovale O^\star

Revenons à l'ovale C_0^* . On déduit de la troisième conséquence du lemme I que la conjuguée harmonique de Δ par rapport aux droites $\mu_0 \overline{q}_0$ et $\mu_0 \overline{q}_0'$ est indépendante de Q, μ_0 restant fixe. Soit alors α le point où cette droite perce P_0 , le faisceau des quatre droites : aq, aq_0' , $a\alpha$, $a\lambda$, est harmonique. Il en résulte que C_0^* est invariant par l'homologie involutive de pôle λ et d'axe $a\alpha$. Mais ceci a lieu quel que soit λ , pris sur Λ_0 , extérieurement à C_0^* et sur un ensemble partout dense. L'ovale C_0^* satisfait aux conditions du lemme II. Nous avons vu que C_0^* peut être un triangle de sommet a, dont un côté est sur Λ_0 .

20. Examinons ce cas, qui ne peut se produire que si II touche S suivant une facette, dont je désignerai la frontière par Γ . Dans ce cas particulier, Γ et l'ovale \overline{Q}^* ont deux points communs quel que soit le plan Q. Ils sont donc confondus; d'où il résulte que S est un cône plein de sommet a, limité à ce point et au plan Π . La base Γ de ce cône est un ovale absolument quelconque. Il était évident a priori qu'on devait trouver ce cas à vrai dire banal. Nous l'écarterons, Si alors Π touche S suivant une facette limitée par un ovale Γ , C_0^* sera un arc de conique, dont les extrémités sont sur Γ , complété par sa corde. Je dis que les

droites joignant μ_0 aux points de l'arc de conique touchent S en un point unique. Il en résultera que S n'a pas de facette en dehors de celle située dans II, et de plus que C_0^* n'a pas d'arc partiel rectiligne. Soit m un point de l'arc de conique, que je supposerai d'abord distinct des extrémités, Le plan tangent le long de $\mu_0 m$ au cône du second degré défini par μ_0 et la conique porteuse de l'arc de C_0^* , est plan d'appui au cône circonscrit de sommet μ_0 , et par conséquent à S. Or il coupe II le long d'une droite évidemment extérieure à S. La génératrice $\mu_0 m$ ne peut donc toucher S en plus d'un point, car dans le cas contraire le plan d'appui en question toucherait S suivant un segment. Éventualité impossible (n° 18).

Lorsque m est une extrémité de l'arc, on considérera une section Q (les notations étant les mêmes que précédemment). On sait que si la quasi-polaire de μ_0 est unique pour Q^* et par conséquent pour \overline{Q}^* , elle est unique pour Γ . Si la droite $\mu_0 m$ touchait Γ en plus d'un point, la quasi-polaire de μ_0 par rapport à Γ ne serait pas unique et alors une des droites $\mu_0 q_0$, $\mu_0 q'_0$, toucherait en plus d'un point ce qui nous ramène au cas précédent.

On se rappelle que dans le cas où Π ne touche pas C^* suivant un segment, l'ovale C_0^* contient toujours un arc de conique (au moins) dont les extrémités sont sur Π . Le raisonnement précédent montre alors que toute droite d'appui issue de μ_0 touche S en un point unique.

En résumé, le cas banal écarté, nous aboutissons, en particulier, aux conclusions suivantes :

- a. Si II ne touche pas S suivant une facette;
- 1° Tout plan d'appui, rencontrant Π en dehors de S, le touche en un point unique;
- 2° La zone commune à S* et au cône circonscrit ayant pour sommet un point μ de II, pris extérieurement à S, est une section plane de S*, l'ovale C_{μ}^{\star} , qui satisfait dans son plan aux conditions du lemme II, la droite lieu des centres d'homologies étant la trace de ce plan sur II.
 - b. Si Π touche S suivant une facette limitée par un ovale Γ :
- 1° Tout plan d'appui autre que II, dont la trace sur lui est extérieure à S, le touche en un point unique;
 - $2^{\rm o}~\Gamma$ n'a pas d'arc partiel rectiligne.

La zone commune à S^* et au cône circonscrit ayant pour sommet un point quelconque μ , pris dans Π extérieurement à S, se compose de la facette et d'un arc de conique dont les extrémités sont les points de contact des droites d'appui à Γ , issues de μ .

21. La démonstration du théorème s'achèvera rapidement, sauf dans le cas Ann. Éc. Norm., (3), LXXVI. — FASC. 4.

où II touche S suivant une facette, qui demandera une petite étude supplémentaire.

- A. Il est extérieur à S. En se reportant au lemme II, on voit que C^*_{μ} est, quel que soit μ , une ellipse. Soient E l'une d'elles et Δ la trace de son plan sur II. Les plans d'appui issus de Δ touchent S^* en des points a et a'. Lorsque μ décrit Δ , le plan quasi-polaire P_{μ} pivote autour de la droite aa', qui perce le plan de E au pôle ω de Δ par rapport à cette ellipse. Donnons-nous un point m de E; la tangente en m coupe Δ en un point μ , lequel détermine complètement l'ellipse C^*_{μ} : par son plan (aa'm) et dans celui-ci les points m, a, a, ces derniers avec leurs tangentes, situées respectivement dans les plans (Δ, a) et (Δ, a') . Le point ω étant le pôle de Δ par rapport à E, C^*_{μ} rencontre E en un second point sur la droite $m\omega$. Lorsque m décrit E, C^*_{μ} engendre un ellipsoïde, auquel se réduit évidemment S^* .
- B. Il touche S en un point unique a. Dans ce cas encore C^*_{μ} est quel que soit μ , distinct de a, une ellipse, laquelle passe par a. Soit E l'une d'elles, correspondant au point de ε . Considérons dans II une droite fixe Δ , extérieure à S. par exemple la droite de l'infini et soit a' le point de contact du second plan d'appui mené par Δ . Donnons-nous sur E un point m, distinct de a. Le plan d'appui en m est déterminé par la tangente à E et ε . Soit μ le point à l'infini de sa trace sur II. L'ellipse C^*_{μ} est bien déterminée : son plan est (aa'm); elle passe par a, a' et m, elle est tangente à Π en a et au plan parallèle en a'. Il est immédiat qu'elle reste sur un ellipsoïde, auquel se réduit S^* .

22. Il va falloir procéder différemment dans le cas :

C. II traverse S. — Désignons par E la section de S* par II. Cet ovale est une ellipse. En effet, soit Δ une droite quelconque, prise dans II extérieure à E; elle est extérieure à S. Les plans d'appui qui la contiennent touchent S chacun en un point unique. Il en résulte que les quasi-polaires des différents points de Δ par rapport à E passent par un point fixe. Comme ceci a lieu quelle que soit Δ , E est une ellipse (corollaire du n° 7). Les plans d'appui parallèles à II touchent S en des points a et a', situés de part et d'autre du plan. La droite aa' passe par le centre de E. Coupons S par un plan Q, parallèle à II, et passant par un point intérieur au segmeut aa'. La section est un ovale Q^* dont la perspective sur II vue de a sera désignée comme au n° 19, par \overline{Q}^* . Pour tout point à l'infini de II, E et \overline{Q}^* ont même quasi-polaire et celle-ci passe par le centre de E. On en déduit que \overline{Q}^* et par suite Q^* est une ellipse homothétique à E, dont le centre est sur aa' (n° 6).

Si pour un certain point μ à l'infini G_{μ}^* possède une pointe, elle est en a ou en a', en a par exemple. Alors pour tout plan Q situé du côté de a par rapport à Π , \overline{Q}^* et E, qui ont deux points communs sont confondus (n° 6). Il en résulte

que la partie de S* située du côté de a par rapport à Π , est le cône [a, E] limité à son sommet et à Π . Il est presque évident que l'autre partie est une calotte de quadrique. Soit, en effet, E' l'ellipse section de S* par un plan fixe parallèle à Π et situé du côté de a', son centre est sur aa'. On voit immédiatement que pour tout point μ à l'infini, la partie de C'_{μ} située du côté de a' est sur la quadrique déterminée par E, E' et le contact en a' au plan parallèle à Π . Comme C^*_{μ} n'a de pointe qu'en a, la quadrique est circonscrite au cône le long de E. Il est visible qu'elle lui est intérieure, c'est par suite un ellipsoïde.

Si aucun C_μ^* ne contient de pointe, il suffit d'appliquer le dernier raisonnement aux parties de S* situées de chaque côté de Π . On obtient deux calottes de quadriques ayant même bord E, le long duquel elles ont même plan tangent, Autrement dit : les deux quadriques ont même cône circonscrit le long de E. Lorsque ce cône est un cylindre, les deux quadriques sont des ellipsoïdes; quand c'est un vrai cône, l'une d'elles seulement est toujours un ellipsoïde : celle qui porte la partie de E située du côté opposé au sommet du cône (par rapport à E).

23. Reste en définitive à étudier le cas :

D. Il touche S suivant une facette (S n'étant pas un cône solide reposant sur II par sa base). — Désignons, comme précédemment, par Γ la frontière de la facette. Le problème est de montrer que Γ est une ellipse. Ce fait acquis, la méthode utilisée au numéro précédent s'appliquera, car les plans quasi-polaires des points à l'infini de II passeront encore par une droite fixe.

Nous savons que Γ n'a pas d'arcs partiels rectilignes (n° 20). La quasi-polaire Λ_{μ} d'un point μ , pris quelconque extérieur à Γ , est donc unique. Je vais établir que si μ' est sur Λ_{μ} , $\Lambda_{\mu'}$ passe par μ , et ceci quels que soient μ et μ' . Il résultera alors du lemme III que Γ est bien un ellipse (³).

Supposons que pour un certain point μ_1 il existe sur Λ_{μ_1} un point μ'_1 tel que $\Lambda_{\mu'_1}$ ne contienne pas μ_1 . Nous allons voir que cette hypothèse donne lieu à une contradiction. Remarquons d'abord que la droite $\mu_1 \mu_{\mu'_1}$, soit Δ_1 , est extérieure à Γ , parce que μ'_1 est sur Λ_{μ_1} et extérieur à Γ . La droite Δ_1 rencontre $\Lambda_{\mu'_1}$ en un point μ''_1 , qui, par hypothèse est distinct de μ_1 . Désignons enfin, pour chaque μ la conique porteuse de C^*_{μ} par C_{μ} , et par P_{μ} le plan quasi-polaire de μ (plan unique pour chaque μ et qui coupe Π suivant Λ_{μ}) (n° 20 b).

Soit m_i le point de contact du plan d'appui (autre que II mené par Δ_i . La conique \mathcal{C}_{μ_i} est dans le plan $[m_i, \Lambda_{\mu_i}]$ et sa tangente en m_i est la droite $m_i \mu_i$. De même $\mathcal{C}_{\mu_i'}$ est dans le plan $[m_i, \Lambda_{\mu_i'}]$ et sa tangente en m_i est la droite $m_i \mu_i'$. Nous pouvons considérer ces deux coniques comme des données, Choisissons

⁽³⁾ Dans les leçons de Liège, j'avais établi cette propriété en utilisant celle des directions conjuguées en un point régulier d'une surface analytique. La démonstration qu'on va lire a l'avantage d'être tout à fait élémentaire sans être plus longue.

alors sur Γ un point fixe γ , pris en dehors des trois quasi-polaires Λ_{μ_i} , $\Lambda_{\mu'_i}$, $\Lambda_{\mu'_i}$, et menons par ce point une droite d'appui à Γ . Elle rencontre Δ_1 en un point μ_0 . qui d'après la manière dont a été choisi γ , est distinct des trois points μ_1, μ'_1, μ''_1 . Considérons maintenant sur $\mu_{
m o} \gamma$, un point μ voisin de $\mu_{
m o}$, et qui ultérieurement tendra vers lui. Je dis que \mathcal{C}_μ est entièrement déterminée par \mathcal{C}_{μ_i} , $\mathcal{C}_{\mu'_i}$ et γ . En effet, soient θ et θ' respectivement les intersections de $\mu_4 \mu$ avec Λ_{μ_1} et de $\mu'_4 \mu$ avec Λ_{μ_i} . Ces points sont, le premier, voisin de μ_i , le second voisin de μ_i . Par θ on peut mener une droite d'appui à $C_{\mu_i}^*$, qui le touche en un point m. Ce point s'obtiendra en menant de θ la tangente à \mathcal{C}_{u_i} qui est voisine de $m_i \mu'_i$. De même on obtiendra sur \mathcal{C}_{u_i} un point m', en lui menant par θ' la tangente voisine de $m_i \mu_i^r$. Les points m et m' sont les points de contact des plans d'appui (autres que II) menés par les droites $\mu\mu_1$ et $\mu\mu_1'$. Ils sont donc sur C_μ^\star dont on connaît déjà un autre point : γ. Le plan P_u est parfaitement déterminé. D'autre part, il coupe les plans $[m, \mu, \mu_1]$ et $[m', \mu, \mu'_1]$ suivant les tangentes à C^*_{μ} en m et en m'. On connaît donc trois points de \mathcal{C}_{μ} , dont deux, m et m' avec leur tangente. Remarquons enfin que si μ tend vers μ_0 , le plan P_{μ} tend vers P_{μ_0} , puisque ce plan est unique et que tout plan limite de plans quasi-polaires l'est également. C'est là que va apparaître la contradiction, car je vais montrer qu'il existe un cône de directrice C_{μ} , dont la limite, quand μ tend vers μ_0 , est un système de deux plans. Pour cela un bref calcul sera nécessaire.

Choisissons comme tétraèdre de référence celui déterminé par les plans P_{μ_i} , $P_{\mu'_i}$, $[m_i, \Delta_i]$ et Π dont les équations respectives seront : $\gamma = 0$, x = 0, z = 0, t = 0. Le point μ_i étant distinct de μ'_i et de μ''_i , nous pouvons choisir le système de coordonnées de manière que (1, 1, 0, 0) le représente. Le point μ_0 aura pour coordonnées $(x_0, y_0, 0, 0)$. Comme il est distinct de $\mu'_i(1, 0, 0, 0)$, de $\mu''_i(0, 1, 0, 0)$ et de μ_i , on peut prendre $x_0 = k$, $y_0 = 1$, le nombre k sera fini, différent de zéro et de l'unité. Enfin on représentera les coordonnées de γ par $(\xi, \eta, \zeta, 0)$. D'après la façon dont a été choisi γ , les trois nombres ξ, η, ζ , sont différents de zéro. Le droite $\gamma\mu_0$ aura ainsi pour équations

(1)
$$\zeta(x - k\gamma) - z(\xi - k\gamma) = 0, \quad t = 0.$$

De leur côté les coniques \mathcal{C}_{μ_i} et $\mathcal{C}_{\mu'_i}$ seront représentées paramétriquement par des relations

$$\mathcal{C}_{\mu_1}: \quad \frac{x}{\varphi} = \frac{y}{o} = \frac{z}{\varphi^2} = \frac{t}{A + B\varphi + C\varphi^2};$$

$$\mathcal{C}_{\mu_1'}: \quad \frac{x}{\mathrm{o}} = \frac{y}{\varphi'} = \frac{z}{\varphi'^2} = \frac{t}{\mathrm{A}' + \mathrm{B}' \varphi' + \mathrm{C}' \varphi'^2}.$$

Les nombres A, B, C, A', B', C', sont des constantes numériques, φ et φ' les paramètres. De plus, A et A' sont différents de zéro, car les équations représentent des coniques non dégénérées. Les tangentes à \mathcal{C}_{ν_i} et à $\mathcal{C}_{\nu'_i}$ aux points

de paramètres φ et φ' ont respectivement pour équations

$$(2 A \varphi + B \varphi^2) x - (A - C \varphi^2) z - \varphi^2 t = 0, \quad y = 0;$$

 $(2 A' \varphi' + B' \varphi'^2) y - (A' - C' \varphi'^2) z - \varphi'^2 t = 0, \quad x = 0.$

Si φ est le paramètre de m et φ' celui de m', on obtient immédiatement les équations des plans $[m, \mu, \mu_4]$ et $[m', \mu, \mu'_4]$:

$$\begin{split} \mathbf{R} &\equiv (2\,\mathbf{A}\,\varphi + \mathbf{B}\,\varphi^2)\;(x - y) - (\mathbf{A} - \mathbf{C}\,\varphi^2)\;z - \varphi^2\,t = \mathbf{0}, \\ \mathbf{R}' &\equiv (2\,\mathbf{A}'\,\varphi' + \mathbf{B}'\,\varphi'^2)\;y - (\mathbf{A}' - \mathbf{C}'\,\varphi'^2)\;z - \varphi'^2\,t = \mathbf{0}. \end{split}$$

Enfin, en remarquant que le plan $\varphi x + \varphi' y - z = 0$, passe par m et m', on voit que le cône Σ , d'équation

$$\mathrm{RR}'(\varphi\xi+\varphi'\eta-\zeta)^{2}-\mathrm{R}_{\Upsilon}\mathrm{R}'_{\Upsilon}(\varphi x+\varphi'y-z)^{2}\!\equiv\!\mathrm{o},$$

où R_{γ} et R'_{γ} représentent les résultats de substitution des coordonnées de γ aux coordonnées courantes, passe par \mathcal{C}_{μ} . Nous allons chercher la limite de Σ . Pour cela, il faut d'abord déterminer la relation entre φ et φ' . Elle s'obtient en écrivant que les traces sur t=0, des plans R=0 et R'=0, se croisent sur la droite $\mu_0 \gamma$, dont les équations sont fournies par les relations (1); ce qui donne :

$$\left| egin{array}{cccc} 2\,\Lambda\,\phi + B\,\phi^2 & -2\,(\Lambda\,\phi + B\,\phi^2 & \Lambda - C\,\phi^2 \ & o & 2\,\Lambda'\phi' + B'\phi'^2 & \Lambda' - C'\phi'^2 \ & \zeta & -k\,\zeta & \xi - k\,\eta \end{array}
ight| = 0.$$

Comme il fallait s'y attendre, il n'y a pas de terme constant en φ , φ' . Les termes du premier degré sont — $2AA'[\varphi'-(1-k)\varphi]$. Le coefficient du crochet est différent de zéro. On en déduit, puisque k n'est pas égal à un, que φ' est équivalent à $(1-k)\varphi$. Ordonnons l'équation de Σ par rapport à φ et φ' . On trouve pour termes de plus bas degré : $2AA'\zeta z(\zeta y-\eta z)\varphi$. En divisant par φ et en faisant $\varphi=0$, on obtient l'équation de la limite de Σ : $2AA'\zeta z(\zeta y-\eta z)$. Comme AA', η et ζ sont différents de zéro, la limite de Σ est un système de deux plans distincts, ce qui conduit à la contradiction annoncée. La démonstration est achevée et l'énoncé du théorème est complètement justifié.

24. Ainsi qu'on l'a remarqué dans l'Introduction, la condition : S borné, n'est pas essentielle et il est facile de transformer les conclusions dans le cas où S est un domaine convexe à trois dimensions de l'espace projectif. Elles auront seulement une forme moins concrète. Mais il y a une autre extension intéressante. On sait que la frontière S^* d'un domaine convexe à trois dimensions se transforme par dualité en frontière \overline{S}^* d'un autre domaine convexe à trois dimensions, les plans d'appui de l'un correspondant aux points de la frontière de l'autre. Il est facile de voir qu'à un plan quasi-polaire de \overline{S}^* correspond un quasi-pôle pour S^* , en convenant de dire qu'un point p est quasi-pôle d'un

plan P, pénétrant à l'intérieur de S*, si le cône de sommet p ayant pour directrice la trace de S* sur P est circonscrit à S*.

Le théorème qui a fait l'objet du présent Mémoire, permet de répondre complètement à la question suivante :

Étant donnés un domaine convexe à trois dimensions et un point fixe, que peut-on dire de la frontière du domaine sachant tout plan passant par le point fixe et pénétrant à l'intérieur du domaine correspond un quasi-pôle (au moins)?

Il faudra, bien entendu, distinguer divers cas suivant la position du point fixe par rapport au domaine. Je remarquerai seulement pour terminer que si ce point est intérieur la frontière du domaine convexe est une quadrique.