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Abstract. This paper provides quantitative Central Limit Theorems for nonlinear transforms of spherical random fields, in the
high-frequency limit. The sequences of fields that we consider are represented as smoothed averages of spherical Gaussian eigen-
functions and can be viewed as random coefficients from continuous wavelets/needlets; as such, they are of immediate interest for
spherical data analysis. In particular, we focus on so-called needlets polyspectra, which are popular tools for non-Gaussianity anal-
ysis in the astrophysical community, and on the area of excursion sets. Our results are based on Stein–Malliavin approximations
for nonlinear transforms of Gaussian fields, and on an explicit derivation on the high-frequency limit of their variances, which may
have some independent interest.

Résumé. Dans cet article on prouve un TCL pour des fonctionnelles nonlinéaires de champs aléatoires sur la sphère avec bornes
en variation totale dans le sens de la limite en haute fréquence. Les suites de champs aléatoires que l’on considère sont des
moyennes régularisées de fonctions propres gaussiennes sur la sphère qui peuvent être vues comme des coefficients aléatoires
d’ondelettes/needlets continues. En particulier on se concentre sur le polyspectre en needlets lequel est un outil couramment utilisé
dans l’analyse de la nongaussianité en astrophysique et dans le domaine des ensembles de niveau. Nos résultats sont basés sur des
approximations de type Stein–Malliavin pour des fonctionnelles nonlinéaires de champs gaussiens ainsi que sur le calcul explicite
de la limite en haute fréquence de leur variance, ce qui pourrait constituer un résultat ayant un interêt en lui même.
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1. Introduction

1.1. Background and notation

Let {f (x), x ∈ S2} denote a Gaussian, zero-mean isotropic spherical random field, i.e. for some probability space
(Ω,�,P ) the application f (x,ω) → R is {�×B(S2)} measurable, B(S2) denoting the Borel σ -algebra on the sphere.
We shall use dσ(x) to denote the Lebesgue measure on the sphere which, in spherical coordinates, is defined as
dσ(x) := sin θ dθ dϕ. It is well-known that the following representation holds, in the mean square sense (see for
instance [13,15–17]):

f (x) =
∞∑

�=1

f�(x), f�(x) =
�∑

m=−�

a�mY�m(x),

1Supported by ERC Grant 277742 Pascal.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/14-AIHP609
mailto:marinucc@mat.uniroma2.it


1160 V. Cammarota and D. Marinucci

where {Y�m(·)} denotes the family of spherical harmonics, and {a�m} the array of random spherical harmonic coeffi-
cients, which satisfy Ea�ma�′m′ = C�δ

�′
� δm′

m ; here, δb
a is the Kronecker delta function, and the sequence {C�} represents

the angular power spectrum of the field. As pointed out in [18], under isotropy the sequence C� necessarily satisfies∑
� C�

(2�+1)
4π = Ef 2 < ∞ and the random field f (x) is mean square continuous.

The Fourier components {f�(x)}, can be viewed as random eigenfunctions of the spherical Laplacian:

	S2f� = −�(� + 1)f�, � = 1,2, . . . ;
the random fields {f�(x), x ∈ S2} are isotropic, meaning that the probability laws of f�(·) and f

g
� (·) := f�(g·) are the

same for any rotation g ∈ SO(3). Also, {f�(·)} is centred Gaussian, with covariance function

E
[
f�(x)f�(y)

]= C�

2� + 1

4π
P�

(
cosd(x, y)

)
,

where P� are the usual Legendre polynomials defined dy Rodrigues’ formula

P�(t) := 1

2��!
d�

dt�

(
t2 − 1

)�
,

and d(x, y) is the spherical geodesic distance between x and y. The asymptotic behaviour of f�(x) and their nonlinear
transforms has been studied for instance by [4,40,41], see also [21–23].

More often, however, statistical procedures to handle spherical data are based upon wavelets-like constructions,
rather than standard Fourier analysis. For instance, the astrophysical/cosmological literature on these issues is vast,
see [24,34] and the references therein. As is well-known, indeed, the double localization properties of wavelets (in
real and harmonic domain) turn out to be of great practical value when handling real data.

In view of these motivations, we shall focus here on sequence of spherical random fields which can be viewed as
averaged forms of the spherical eigenfunctions, e.g.

βj (x) =
2j+1∑

�=2j−1

b

(
�

2j

)
f�(x), j = 1,2,3, . . .

for a smooth (e.g. C∞) weigh function b(·), compactly supported in [ 1
2 ,2], and satisfying the partition of unity

property
∑

j b2( �
2j ) = 1, for all � ≥ 1. The fields {βj (x)} can indeed be viewed as a representation of the coefficients

from a continuous wavelet transform from T (x), at scale j , see also the discussion in [20]. More precisely, consider
the kernel

Ψj

(〈x, y〉) :=
2j+1∑

�=2j−1

b

(
�

2j

)
2� + 1

4π
P�

(〈x, y〉)

=
2j+1∑

�=2j−1

b

(
�

2j

) �∑
m=−�

Y�m(x)Y �m(y).

Then Ψj (〈x, y〉) can be viewed as a continuous version of the needlet transform, which was introduced by Narcowich
et al. in [25], and considered from the point of view of statistics and cosmological data analysis by many subsequent
authors, starting from [2,19,29]. In this framework, the following localization property is now well-known: for all
M ∈N, there exists a constant KM such that

∣∣Ψj

(〈x, y〉)∣∣≤ KM22j

{1 + 2j d(x, y)}M ,

where d(x, y) = arccos(〈x, y〉) is the usual geodesic distance on the sphere. Heuristically, the “needlet” field

βj (x) =
∫

S2
Ψj

(〈x, y〉)f (y)dy =
2j+1∑

�=2j−1

b

(
�

2j

)
f�(x)
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is then only locally determined, i.e., for 2j large enough its value depends only from the behaviour of f (y) in a
neighbourhood of x. This is a very important property, for instance when dealing with spherical random fields which
can only be partially observed, the canonical example being provided by the masking effect of the Milky Way on
Cosmic Microwave Background radiation [30,31].

It is hence very natural to produce out of {βj (x)} nonlinear statistics of great practical relevance. For instance, it is
readily seen that

E
{
β2

j (x)
}=

2j+1∑
�=2j−1

b2
(

�

2j

)
2� + 1

4π
C�,

which hence suggests a natural “local” estimator for a binned form of the angular power spectrum. More generally,
we might focus on statistics of the form

νj ;q :=
∫

S2
Hq

(
βj (x)

)
dx,

where Hq(·) is the Hermite polynomial of qth order, which can be labelled needlets polyspectra for a straightforward
analogy with the Fourier case. For q = 3 we obtain for instance the needlets bispectrum, which was in introduced
in [11] and then widely used on CMB data to study non-Gaussian behaviour, see for instance [7,32,33] for more
discussion and details; for q = 4 we obtain the needlets trispectrum, which is the natural candidate to estimate higher-
order non-Gaussian behaviour such as the one introduced by cubic models through the parameter gNL, see [30]. As
we shall show below, the analysis of such polyspectra for arbitrary values of q provides moreover natural building
blocks for other nonlinear functionals of the field βj (x). We shall investigate in particular quantitative Central Limit
Theorems for the excursion sets, as j → ∞.

Concerning this point, we stress that the limiting behaviour we consider is in the high frequency sense, e.g. as-
suming that a single realization of a spherical random field is observed at higher and higher resolution as more and
more refined experiments are implemented. This is the setting adopted in [17], see also [1,8,14,35,39] for the related
framework of fixed-domain asymptotics, and [30,31] for applications to cosmological data analysis.

1.2. Statement of the main results

The main technical contribution of this paper is the derivation of analytical expressions for the asymptotic variance
of the needlet polyspectra νj ;q . To this aim, we shall impose the following mild regularity conditions on the power
spectrum C� (see [17], page 257).

Condition 1. There exists M ∈ N, α > 2 and a sequence of functions {gj (·)} such that for 2j−1 < � < 2j+1

C� = �−αgj

(
�

2j

)
> 0,

where 0 < c−1
0 ≤ gj ≤ c0 for all j ∈ N and for some c1, . . . , cM > 0 and r = 1, . . . ,m, we have

sup
j

sup
2−1≤u≤2

∣∣∣∣ dr

dur
gj (u)

∣∣∣∣≤ cr .

Condition 1 entails a weak smoothness requirement on the behaviour of the angular power spectrum, which is
satisfied by cosmologically relevant models. This condition is fulfilled for instance by models of the form

C� = �−αG(�),

where G(�) = P(�)/Q(�) and P(�),Q(�) > 0 are two positive polynomials of the same order. Indeed, in the now
dominant Bardeen’s potential model for the angular power spectrum of the Cosmic Microwave Background radiation
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(which is theoretically justified by the so-called inflationary paradigm for the Big Bang Dynamics, see e.g., [6,9])
one has C� ∼ (�(� + 1))−1 for the observationally relevant range � ≤ 5 × 103 (the decay becomes faster at higher
multipoles, in view of the so-called Silk damping effect, but these multipoles are far beyond observational capacity).
This is clearly in good agreement with Condition 1; in what follows we denote with G the limit G := lim�→∞ G(�),
which certainly exists given Condition 1.

Under Condition 1, we shall be able to show the following result (compare with [22]).

Theorem 1. For q ≥ 2, we have

lim
j→∞ 22j Var[νj ;q ] = q!cq,

where

c2 = 8π2

(
∫ 2

1/2 b2(x)x1−α dx)2

∫ 2

1/2
b4(x1)x

1−2α
1 dx1;

c3 = 16π

(
∫ 2

1/2 b2(x)x1−α dx)3

∫ 2

1/2

∫ 2

1/2

∫ 2

1/2

3∏
i=1

b2(xi)x
1−α
i

× 1√
x1 + x2 − x3

√
x1 − x2 + x3

√−x1 + x2 + x3
√

x1 + x2 + x3

× 1P3(x1, x2, x3)dx1 dx2 dx3;

c4 = 16

(
∫ 2

1/2 b2(x)x1−α dx)4

∫ 2

1/2

∫ 2

1/2

∫ 2

1/2

∫ 2

1/2

4∏
i=1

b2(xi)x
1−α
i

×
∫ 4

0
y

1√−x1 + x2 + y
√

x1 − x2 + y
√

x1 + x2 − y
√

x1 + x2 + y

× 1√−x3 + x4 + y
√

x3 − x4 + y
√

x3 + x4 − y
√

x3 + x4 + y

× 1P3(x1, x2, y)1P3(y, x3, x4)dy dx1 dx2 dx3 dx4;
and finally for q ≥ 5

cq = 8π2

(
∫ 2

1/2 b2(x)x1−α dx)q

∫ 2

1/2
· · ·
∫ 2

1/2

∫ ∞

0

q∏
k=1

b2(xk)x
1−α
k J0(xkψ)ψ dψ dx1 · · · dxq;

where P3 is the set of all (x1, x2, x3) ∈R
3 that satisfy the “triangular” conditions (4.2).

Here, J0 denotes the standard Bessel function of order zero, defined as usual by

J0(x) =
∞∑

k=0

(−1)kx2k

22k(k!)2
.

For each q ≥ 2, the scaling factor for the needlets polyspectra is of order 22j . This result can be heuristically explained
as follows. Needlets polyspectra can be viewed as linear combination of random polynomials of degree q × j . On a
compact manifold as the sphere, there exist exact cubature formulae for such polynomials, so that the integrals defining
νj ;q can be really expressed as finite averages sums, of cardinality 22j . In view of the uncorrelation inequality (3.1),
we expect the variance of these averages to scale as the inverse of the number of summands, e.g. exactly 2−2j .
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Making this heuristic rigorous is indeed quite challenging, and requires a careful analysis on the behaviour of Legendre
polynomials (Hilb’s asymptotics, see [22,23]) and Clebsch–Gordan/Wigner’s coefficients.

Once the asymptotic behaviour of the variance is established, in view of the celebrated results from Nourdin and
Peccati [26] the derivation of quantitative Central Limit Theorems and Total Variation/Wasserstein distances limits
requires only the analysis of fourth-order cumulants. These computations are quite standard and provided in Section 5,
where it is hence shown that

Theorem 2. For N a standard Gaussian random variable, as j → ∞, we have that

dTV

(
νj ;q√

Var(νj ;q)
,N
)

= O
(
2−j
)
.

Here dTV denotes as usual Total Variation distance between random variables, see below for details and definitions.
While this result is quite straightforward given the previous computations on the asymptotic variance, it has several
statistical applications for handling Gaussian random fields data, where wavelets polyspectra are widely exploited.

It is also possible to establish a more challenging result on the behaviour of excursion sets, which we expand in
the L2 sense in terms of the polyspectra. More precisely, let us define the empirical measure Φj(z) as follows: for all
z ∈ (−∞,∞) we have

Φj(z) :=
∫

S2
1{β̃j (x)≤z} dσ(x),

where β̃j (x) has been normalized to have unit variance; the function Φj(z) provides the (random) measure of the set
where β̃j lies below the value z. We shall hence be able to prove the following

Theorem 3. For N a standard Gaussian random variable, as j → ∞ we have

dW

(
Φ̃j (z)√

Var[Φ̃j (z)]
,N
)

= O

(
1

4
√

j

)
.

Here dW denotes Wasserstein distance between random variables. This result is close in spirit to some recent work
by Viet-Hung Pham [38], who considered a Euclidean setting and traditional large-sample asymptotics; we exploit
several ideas from his proof in our argument below.

1.3. Relationship with some recent literature on random spherical eigenfunctions

Some questions related to those considered in this paper were recently investigated in the literature for the case where
the sequence of needlet fields {βj (x)} is replaced by the spherical eigenfunctions {f�(x), } e.g., focussing on

h�;q :=
∫

S2
Hq

(
f�(x)

)
dx, � = 1,2, . . . ,

see for instance [21–23]. However, the results presented here for {νj ;q} are qualitatively and quantitatively different
from those in the literature for sequences such as {h�;q}, and require rather independent arguments, as we shall now
detail.

The crucial point to realize is that the sequence of fields {f�(x)} has a very different correlation structures from the
smoothed averages {βj (x)} that we consider in this paper. In particular, normalizing variances to unity we have the
correlation function

Corr
(
f�(x), f�(y)

)= P�

(〈x, y〉),
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P�(·) denoting as usual Legendre polynomials. At high �, Legendre polynomials can be approximated by Bessel
function through the Hilb’s asymptotics that is widely discussed below (e.g., P�(cos θ) 
 J0(�θ) + O(�−2)); Bessel
functions are known to decay slowly, indeed the following upper bound is sharp for arbitrary values of θ

P�(cos θ) ≤ K

{1 + (�θ)}1/2
, some K > 0.

The correlation behaviour of the fields {βj (x)} is very different, indeed as deeply exploited throughout the present
submission we have the correlation inequality

Corr
(
βj (x),βj (y)

)≤ KM

{1 + 2j d(x, y)}M , for all M ∈ N, some KM not depending on j, x, y.

To draw an analogy with the more common case of random fields on R
d , the eigenfunctions {f�} show some sort of

long range dependent behaviour (e.g., non-integrable autocorrelation functions), while the fields {βj (x)} are charac-
terized by much quicker decay in the correlation (which is indeed integrable), and hence, in a loose sense, they exhibit
some form of short range dependence. Both these statements should be taken in a very loose sense, as these fields are
defined on a compact manifold (the sphere) and hence long range/short range behaviour has a rather different meaning
than usual; however this heuristic argument may provide some intuition to explain the very different behaviour we
observe under the two frameworks, and the different methods of proofs which are required.

To make our comparison clearer, let us pretend that 2j = �; this identification makes sense heuristically, because
βj is obtained by averaging {f�} over multipoles such that 1

2 ≤ �
2j ≤ 2, so 2j can be takes as a sort of representative

multipole. In this setting, we have that:

(A) the variance of nonlinear transforms of eigenfunctions {h�;q} has a different rate for different values of q =
2,3,4, and it stabilizes for q ≥ 5 (see [21,22]); in particular, the variance is of order �−1 for q = 2, log �/�2 for q = 4,
�−2 for q = 3 or q ≥ 5. By contrast, the rate for the variance of {νj ;q(x)} is equal to 2−2j and indeed the same for
every value of q . A heuristic explanation for this difference is as follows. In both cases (e.g, for {h�;q} and {νj ;q}) we
are actually dealing with integrals of polynomials on the sphere. As mentioned earlier, these integrals can be evaluated
exactly (by means of cubature formulae, see [3,25]) as discrete sums over approximately �2 ≈ 22j (n, say) terms, and
in this setting they can be viewed as sample means over these grid points, which are at distances of order �−1. Of
course, under short range dependence one expects the variance of a sample mean to be of order n−1, and this fits
indeed with the 2−2j rate for the fields {βj (x)} that we shall provide below. On the other hand, by diagram formulae,
one expects the correlation function of Hermite transforms of random spherical harmonics at points x, y to be of order
{P�(〈x, y〉)}q ; after scaling, this yields expressions of the form

O

(
1

�2

�∑
k=1

∑
y:d(x,y)
k

{
P�

(〈x, y〉)}q
)


 O

(
1

�2

�∑
k=1

k
1

kq/2

)

which are summable only for q > 4, where indeed one finds the “short range dependence” rate �−2. For smaller values
of q , these sums diverge; note indeed that the number of points at distances of order k/� grows linearly with k, as
easily verifiable by elementary arguments (compare [3]).

(B) The rates of convergence in the Total Variation bound for Hermite transforms of random spherical harmonics
(as given in [23]) are different from the one presented here, and again depends on q; for q = 4 it is not even algebraic
but logarithmic. This is strictly related to the peculiar behaviour of the correlation functions that we described in the
previous point. It should be noted that while in the present submission the exact Total Variation rate is provided for
Hermite transforms of arbitrary orders, the rates currently available for transforms of random spherical harmonics are
slower for q ≥ 5, and presumably not sharp; hence the results provided in this paper are stronger.

(C) The excursion sets of {f�} have again a rather different behaviour from the one established in this paper for
{βj (x)}. Exact Total Variation rates have not been given so far for excursion sets of {f�}; a Central Limit Theorem has
been given in [21] with an entirely different technique than provided here, e.g., exploting a convenient degeneracy in
the Hermite expansion, which is again similar to what was found in a long range setting by [5]. The same technique
cannot be used in the setting of the present paper, due to the lack of this convenient degeneracy (again because of
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“short range,” rather than “long range,” behaviour). The techniques we exploit below are then much more complex,
and much closer to some recent contribution by [38] in a Euclidean setting.

We can now turn to review the background material that we will need throughout the paper.

2. Malliavin operators and quantitative Central Limit Theorems

In a number of recent papers, summarized in the monograph by Nourdin and Peccati [26], a beautiful connection has
been established between Malliavin calculus and the Stein method to prove quantitative Central Limit Theorems on
functional of Gaussian subordinated random processes. In this section we review briefly some notation on isonormal
Gaussian processes and Malliavin operators and we state the main results on Normal approximations on Wiener chaos,
which we shall exploit in the sequel of the paper; we follow closely [27].

Let H be a real separable Hilbert space, with inner product 〈·, ·〉H. An isonormal Gaussian process over H is a
collection X = {X(h): h ∈ H} of jointly Gaussian random variables defined on some probability space (Ω,F ,P),
such that E[X(h)X(g)] = 〈h,g〉H for every h,g ∈ H. We assume that F is generated by X.

If A is a Polish space (e.g. complete, metric and separable), A the associated σ -field and μ a positive, σ -finite
and non-atomic measure, then H = L2(A,A,μ) is a real separable Hilbert space with inner product 〈g,h〉H =∫
A

g(a)h(a)μ(da). For every h ∈ H it is possible to define the isonormal Gaussian process

X(h) =
∫

A

h(a)W(da) (2.1)

to be the Wiener–Itô integral of h with respect to the Gaussian family W = {W(B): B ∈A,μ(B) < ∞} such that for
every B,C ∈A of finite μ-measure E[W(B)W(C)] = μ(B ∩ C).

Throughout this paper, we shall make extensive use of Hermite polynomials Hq(x). We recall the usual definition:
H0(x) = 1 and, for every integer q ≥ 1,

Hq(x) = (−1)qφ−1(x)
dq

dxq
φ(x),

where φ(x) is the probability density function of a standard Gaussian variable.
For each q ≥ 0 the qth Wiener chaos Hq of X is the closed linear subspace of L2(Ω,F,P) generated by the

random variables of type Hq(X(h)), h ∈ H such that ‖h‖H = 1.
The following property of Hermite polynomials is useful for our discussion (for a proof see [27], Proposition 2.2.1).

Proposition 2.1. Let Z1,Z2 ∼N (0,1) be jointly Gaussian. Then, for all n,m ≥ 0

E
[
Hn(Z1)Hm(Z2)

]= n!{E[Z1Z2]
}n (2.2)

if m = n and E[Hn(Z1)Hm(Z2)] = 0 if n �= m.

The next result is the well known Wiener–Itô decomposition of L2(Ω,F,P) (see e.g. [27], Theorem 2.2.4 for a
proof). Every random variable F ∈ L2(Ω,F,P) admits a unique expansion of the type

F = E[F ] +
∞∑

q=1

Fq,

where Fq ∈Hq and the series converges in L2(Ω,F,P).
We denote by H⊗q and H�q the qth tensor product and the qth symmetric tensor product of H respec-

tively. In particular if H = L2(A,A,μ) then H⊗q can be identified with L2(Aq,Aq,μq). For every 1 ≤ p ≤ q ,
f ∈ L2(Ap,Ap,μp), g ∈ L2(Aq,Aq,μq) and r = 1, . . . , p, the contraction of the elements f and g is given by

f ⊗r g(a1, . . . , ap+q−2r )

=
∫

Ar

f (x1, . . . , xr , a1, . . . , ap−r )g(x1, . . . , xr , ap−r+1, . . . , ap+q−2r )dμ(x1) · · · dμ(xr).
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For p = q = r we have f ⊗r g = 〈f,g〉H⊗r and for r = 0 we have f ⊗0 g = f ⊗ g. Denote with f ⊗̃r g the canonical
symmetrization of f ⊗r g.

Let S be the set of smooth random variables of the form

f
(
X(h1), . . . ,X(hm)

)
,

where m ≥ 1, f :Rm → R is a C∞ function such that its partial derivatives have at most polynomial growth, and
h1, . . . , hm ∈H.

Let L2(Ω,F,P;H�q) be the H�q -valued random elements Y that are F -measurable and such that E‖Y‖2
H�q < ∞.

For F ∈ S and q ≥ 1, the qth Malliavin derivative of F with respect to X is the element of L2(Ω,F,P;H�q) defined
by

DqF =
m∑

i1,...,iq=1

∂qf

∂xi1 · · · ∂xiq

(
X(h1), . . . ,X(hm)

)
hi1 ⊗ · · · ⊗ hiq .

If q = 1, we write D instead of D1.
Let q ≥ 1 be an integer. We denote by Dom δq the subset of L2(Ω,F,P;H⊗q) composed of those elements u such

that there exists a constant c > 0 satisfying

∣∣E[〈DqF,u
〉
H⊗q

]∣∣≤ c

√
E
[
F 2
]
,

for all F ∈ S . If u ∈ Dom δq , then δq(u) is the unique element of L2(Ω,F,P) characterized by the following integra-
tion by parts formula

E
[
Fδq(u)

]= E
[〈
DqF,u

〉
H⊗q

]
,

for all F ∈ S , δq is the divergence operator of order q . Let q ≥ 1 and f ∈ H�q . The qth multiple integral of f with
respect to X is defined by Iq(f ) = δq(f ). If f ∈ L2(Aq,Aq,μq) is symmetric, and we regard the Gaussian space
generated by the paths of W as an isonormal Gaussian process over H = L2(A,A,μ), then

Iq(f ) =
∫

Aq

f (a1, . . . , aq)dW(a1) · · · dW(aq)

(see [27], page 39).
We state now two fundamental properties of multiple integrals that we shall exploit in the sequel. For a proof see

again [27], Theorem 2.7.4 and Theorem 2.7.5. Let q ≥ 1 and f ∈H�q , for all r ≥ 1, we have

DrIq(f ) = q!
(q − r)!Iq−r (f ) (2.3)

if r ≤ q and DrIp(f ) = 0 if r > q . For 1 ≤ q ≤ p, f ∈ H�p and g ∈H�q we have

E
[
Ip(f )Iq(g)

]= p!〈f,g〉H⊗p (2.4)

if p = q and E[Ip(f )Iq(g)] = 0 if p �= q . The linear operator Iq provides an isometry from H�q onto qth Wiener
chaos Hq of X. In fact, let f ∈ H be such that ‖f ‖H = 1, then for any integer q ≥ 1, we have

Hq

(
X(f )

)= Iq

(
f ⊗q

)
, (2.5)

see once more [27], Theorem 2.7.7. In particular, if f ∈ L2(A,A,μ), for (a1, . . . , aq) ∈ Aq , we have

f ⊗q(a1, . . . , aq) = f (a1) · · ·f (aq).
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The following well-known product formula implies, in particular, that the product of two multiple integrals is
indeed a finite sum of multiple integrals. In fact for p,q ≥ 1, f ∈ H�p and g ∈ H�q we have

Ip(f )Iq(g) =
p∧q∑
r=0

r!
(

q

r

)(
p

r

)
Ip+q−2r (f ⊗̃r g). (2.6)

For a proof see [27], Theorem 2.7.10.
We say that F ∈ L2(Ω,F,P) belongs to DomL if

∑∞
q=1 q2

E[F 2
q ] < ∞. For such an F we define the Ornstein–

Uhlenbeck operator LF = −∑∞
q=1 qFq . The pseudo-inverse of L is defined as L−1F = −∑∞

q=1
1
q
Fq .

Let N be a standard Gaussian random variable and define as usual the Kolmogorov, Total Variation and Wasserstein
distance, between N and a random variable F , as

dW (F,N ) = sup
h∈Lip(1)

∣∣E[h(F )
]−E

[
h(N )

]∣∣,
dTV(F,N ) = sup

B∈B(R)

∣∣P(F ∈ B) − P(N ∈ B)
∣∣,

dKol(F,N ) = sup
z∈R

∣∣P(F ≤ z) − P(N ≤ z)
∣∣.

The connection between stochastic calculus and probability metrics is summarized in the following proposition
([27], Theorem 5.1.3). Let D1,2 be the space of Gaussian subordinated random variables whose Malliavin derivative
has finite second moment; we have that:

Proposition 2.2. Let F ∈ D
1,2, such that E[F ] = 0 and E[F 2] = σ 2 > 0. Then

dW (F,N ) ≤
√

2

σ
√

π
E
[∣∣σ 2 − 〈DF,−DL−1F

〉
H

∣∣].
Assuming that F has a density we have

dTV(F,N ) ≤ 2

σ 2
E
[∣∣σ 2 − 〈DF,−DL−1F

〉
H

∣∣],
dKol(F,N ) ≤ 1

σ 2
E
[∣∣σ 2 − 〈DF,−DL−1F

〉
H

∣∣].
3. Needlets random fields and Wiener chaoses

As motivated earlier, in this paper we shall focus on sequences of needlet random fields, defined by a sequence of
spherical random fields which can be viewed as averaged forms of the spherical eigenfunctions, e.g. they take the
form

βj (x) =
2j+1∑

�=2j−1

b

(
�

2j

)
f�(x), β̃j (x) := βj (x)√

E[β2
j (x)]

, j = 1,2,3, . . .

for a weight function b(·) such that b(·) is smooth (b(·) ∈ C∞) compactly supported in [ 1
2 ,2], and satisfies the partition

of unity property
∑

j b2( �
2j ) = 1, for all � ≥ 1, see also [20].

The following property is well-known and gives an upper bound on the correlation coefficient of {βj (·)}, for a
proof see [17], Lemma 10.8.
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Proposition 3.1. Under Condition 1, for all M ∈ N, there exists a constant KM > 0, not depending on j , x, and y,
such that the following inequality holds

∣∣Corr
[
βj (x),βj (y)

]∣∣≤ KM

(1 + 2j d(x, y))M
, (3.1)

where d(x, y) = arccos(〈x, y〉) is the geodesic distance on the sphere.

Since {f�(x)} is Gaussian for each x ∈ S2, then β̃j (x) is a standard Gaussian random variable and βj (x) is centred
with variance

E
[
β2

j (x)
]= 2j+1∑

�=2j−1

b2
(

�

2j

)
C�

2� + 1

4π
P�

(〈x, x〉)= 2j+1∑
�=2j−1

b2
(

�

2j

)
C�

2� + 1

4π
,

with c12j (2−α) ≤ E[β2
j (x)] ≤ c22j (2−α). From Proposition 3.1, for the covariance function we have

E
[
βj (x)βj (y)

]= 2j+1∑
�=2j−1

b2
(

�

2j

)
C�

2� + 1

4π
P�

(〈x, y〉)≤ KM

(1 + 2j d(x, y))M

2j+1∑
�=2j−1

b2
(

�

2j

)
C�

2� + 1

4π
. (3.2)

As in [20], we exploit here the fact that the field {β̃j (·)} can be expressed as an isonormal Gaussian process. Let

Bj =
2j+1∑

�=2j−1

b2
(

�

2j

)
C�

2� + 1

4π

and for all x ∈ S2 let us define

Θ̃j

(〈x, ·〉) := 1√
Bj

2j+1∑
�=2j−1

b

(
�

2j

)√
C�

2� + 1

4π
P�

(〈x, ·〉)=: 1√
Bj

Θj

(〈x, ·〉). (3.3)

We have that Θ̃j (〈x, ·〉) is in the Hilbert space H = L2(S2,dσ(y)) and we can represent {β̃j (·)} as

β̃j (x) =
∫

S2
Θ̃j

(〈x, y〉)W (dσ(y)
)
, x ∈ S2,

where W is Gaussian white noise on the sphere as in formula (2.1). In fact the covariance function is given by

ρ̃j

(〈x, y〉) := E
[
β̃j (x)β̃j (y)

]= 〈Θ̃j

(〈x, z〉)Θ̃j

(〈z, y〉)〉
H

=
∫

S2
Θ̃j

(〈x, z〉)Θ̃j

(〈z, y〉)dσ(z)

= 1

Bj

2j+1∑
�=2j−1

b2
(

�

2j

)
C�

2� + 1

4π
P�

(〈x, y〉)=: 1

Bj

ρj

(〈x, y〉). (3.4)

It follows immediately that the transformed process {Hq(β̃j (·))} belongs to the qth order Wiener chaos generated by
the Gaussian measure governing f� and so does any linear transform including

νj ;q =
∫

S2
Hq

(
β̃j (x)

)
dσ(x).
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Let 1{·} be the usual the indicator function, clearly 1{β̃j (x)≤z} belongs for each x and z ∈ S2 to the L2 space of square
integrable functions of Gaussian random variables and we can write

1{β̃j (x)≤z} =
∞∑

q=0

Jq(z)

q! Hq

(
β̃j (x)

)
,

where the right hand side converges in the L2 sense i.e.

lim
N→∞E

[ ∞∑
q=N

Jq(z)

q! Hq

(
β̃j (x)

)]2

= 0

uniformly w.r.t. x, z. It is possible to provide analytic expressions of the coefficients {Jq(·)}, indeed for q ≥ 1

Jq(z) =
∫
R

1(u≤z)Hq(u)φ(u)du = −Hq−1(z)φ(z)

and J0(z) = �(z) where φ, � denote, respectively, the density and the cumulative distribution function of the standard
Gaussian (see [21,23]). Let us define the empirical measure Φj(z) as follows: for all z ∈ (−∞,∞) we have

Φj(z) :=
∫

S2
1{β̃j (x)≤z} dσ(x).

The function Φj(z) provides the (random) measure of the set where β̃j lies below the value z. The value Φj(z) at
z = 0 is related to the so-colled defect (or ‘signed area’) of the function β̃j :S2 → R, which is defined by

Dj := meas
(
β̃−1

j (0,∞)
)− meas

(
β̃−1

j (−∞,0)
)

and is hence the difference between the areas of positive and negative inverse image of β̃j . By a straightforward
transformation we have Dj = 4π−2Φj(0). Instead 4π−Φj(z) provides the area of the excursion set {x: β̃j (x) > z}.

4. On the variance of νj;q

In this section we obtain, for all fixed q ≥ 2, the explicit value for the limit of 22j Var[νj ;q ] as j → ∞.

Theorem 4. For q > 4, we have

lim
j→∞ 22j Var[νj ;q ] = q!cq,

where

cq = 8π2

(
∫ 2

1/2 b2(x)x1−α dx)q

∫ 2

1/2
· · ·
∫ 2

1/2

∫ ∞

0

q∏
k=1

b2(xk)x
1−α
k J0(xkψ)ψ dψ dx1 · · · dxq.

Remark 4.1. It is obvious that cq ≥ 0 for all q > 0. In the sequel, se shall assume that the inequality is strict when
needed, e.g., in Theorem 8.

Our proof is close to the argument by [22]; in particular let us start by recalling the following fact on the asymptotic
behaviour of Legendre polynomials (see for instance [36,40,41]).
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Lemma 4.1 (Hilb’s asymptotics). For any ε > 0, C > 0 we have

P�k
(cos θ) =

(
θ

sin θ

)1/2

J0
(
(�k + 1/2)θ

)+ δk(θ),

where

δk(θ) �
{

θ2, 0 < θ < 1/�k ,
θ1/2�

−3/2
k , θ > 1/�k

uniformly w.r.t. �k ≥ 1 and θ ∈ [0,π − ε].

Lemma 4.2. Let q > 4. For � = 2j , �k ∈ [2j−1,2j+1] where k = 1, . . . , q , as j → ∞, we have

�2
∫ π/2

0
P�1(cos θ) · · ·P�q (cos θ) sin θ dθ =

∫ �π/2

0

q∏
k=1

J0

(
�k + 1/2

�
ψ

)
ψ dψ + O

(
1√
�

)
. (4.1)

Proof. From Lemma 4.1 we have∫ π/2

0
P�1(cos θ) · · ·P�q (cos θ) sin θ dθ

=
∫ π/2

0

q∏
k=1

[(
θ

sin θ

)1/2

J0
(
(�k + 1/2)θ

)+ δk(θ)

]
sin θ dθ

=
∫ π/2

0

[
q∏

k=1

δk(θ) +
q∑

k=1

(
θ

sin θ

)1/2

J0
(
(�k + 1/2)θ

) ∏
k′ �=k

δk′(θ) + · · ·

+
(

θ

sin θ

)q/2 q∏
k=1

J0
(
(�k + 1/2)θ

)]
sin θ dθ.

Let, for k = 1, . . . , q ,

Aq−k,k :=
∫ π/2

0

(
θ

sin θ

)k/2 k∏
m=1

J0
(
(�m + 1/2)θ

) q∏
m′=k+1

δm′(θ) sin θ dθ,

Aq,0 :=
∫ π/2

0

q∏
m′=1

δm′(θ) sin θ dθ.

• For k = q , with the change of variable ψ = �θ , we have

A0,q = 1

�

∫ �π/2

0

(
ψ/�

sin(ψ/�)

)q/2 q∏
m=1

J0

(
�m + 1/2

�
ψ

)
sin(ψ/�)dψ

= 1

�2

∫ �π/2

0

(
ψ/�

sin(ψ/�)

)q/2−1 q∏
m=1

J0

(
�m + 1/2

l
ψ

)
ψ dψ.

For ψ ∈ [0, �π/2], we write (
ψ/�

sin(ψ/�)
)q/2−1 = 1 + O(

ψ2

�2 ), that is

A0,q = 1

�2

∫ �π/2

0

q∏
m=1

J0

(
�m + 1/2

�
ψ

)
ψ dψ + O

(
1

�4

∫ �π/2

0

q∏
m=1

J0

(
�m + 1/2

�
ψ

)
ψ3 dψ

)
.
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We consider now the error term. Since for x ∈ [0,2] we have J0(x) ∈ (0,1], if ε = 2
2+1/2 , for ψ ∈ (0, ε] we have

J0(
�m+1/2

�
ψ) ∈ (0,1]. Recalling that |J0(x)| ≤ x−1/2, we have

∫ �π/2

0

q∏
m=1

∣∣∣∣J0

(
�m + 1/2

�
ψ

)∣∣∣∣ψ3 dψ

=
∫ ε

0

q∏
m=1

∣∣∣∣J0

(
�m + 1/2

�
ψ

)∣∣∣∣ψ3 dψ +
q∏

m=1

(
�m + 1/2

�

)−1/2 ∫ �π/2

ε

ψ3−q/2 dψ

≤ ε4 +
q∏

m=1

(
�m + 1/2

�

)−1/2

×
{

1
8(q−8)

(16ε4−q/2 − 2q/2(�π)4−q/2) if q �= 8,

log( �π
2 ) − log(ε) if q = 8,

so that

A0,q = 1

�2

∫ �π/2

0

q∏
m=1

J0

(
�m + 1/2

�
ψ

)
ψ dψ +

{
O(�−4 + �−q/2) if q �= 8,

O(�−4 + �−4 log( �π
2 )) if q = 8.

• For Aq,0, since, in view of Lemma 4.1, δm(θ) � θ1/2�
−3/2
m , we obtain

Aq,0 =
∫ π/2

0

q∏
m′=1

δm′(θ) sin θ dθ �
(

1

2j−1

)(3/2)q ∫ π/2

0
θq/2 sin θ dθ = O

(
�−(3/2)q

)
.

• For k = 1, . . . , q − 1,

Aq−k,k �
(

1

2j−1

)(3/2)(q−k) ∫ π/2

0
θ(1/2)(q−k)

(
θ

sin θ

)k/2 k∏
m=1

J0
(
(�m + 1/2)θ

)
sin θ dθ

=
(

1

2j−1

)(3/2)(q−k)(π

2

)(1/2)(q−k)

A0,k. �

Remark 4.2. Note that formula (4.1) is meaningful only if �1, . . . , �q satisfy the following “polygonal” conditions,
i.e., for q ≥ 4 and for all k = 1, . . . , q ,

�k ≤ �1 + · · · + �k−1 + �k+1 + · · · + �q, (4.2)

while otherwise we have∫ π/2

0
P�1(cos θ) · · ·P�q (cos θ) sin θ dθ = 0.

We exploit Lemma 4.2 to prove the following:

Lemma 4.3. For � = 2j , q > 4 and γ̃ (��xk�, �) = b2(
��xk�

�
)

2��xk�+1
4π�

(
��xk�

�
)−αG(��xk�), we have

lim
�→∞�2

∫ 2

1/2
· · ·
∫ 2

1/2

∫ π/2

0

q∏
k=1

γ̃
(��xk�, �

)
P��xk�(cos θ) sin θ dθ dx1 · · · dxq

=
(

G

2π

)q ∫ 2

1/2
· · ·
∫ 2

1/2

∫ ∞

0

q∏
k=1

b2(xk)x
1−α
k J0(xkψ)ψ dψ dx1 · · · dxq.
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Proof. From Lemma 4.2, we have

∫ 2

1/2
· · ·
∫ 2

1/2
lim

�→∞�2
q∏

k=1

γ̃
(��xk�, �

)∫ π/2

0

q∏
k=1

P��xk�(cos θ) sin θ dθ dx1 · · · dxq

=
∫ 2

1/2
· · ·
∫ 2

1/2
lim

�→∞

q∏
k=1

γ̃
(��xk�, �

)∫ �π/2

0

q∏
k=1

J0

(��xk� + 1/2

�
ψ

)
ψ dψ dx1 · · · dxq.

Set v(�, x1, . . . , xq) = ∫ �π/2
0

∏q

k=1 J0(
��xk�+1/2

�
ψ)ψ dψ , by dominated convergence we obtain that

lim
�→∞v(�, x1, . . . , xq)

= lim
�→∞

∫ ∞

0

q∏
k=1

J0

(��xk� + 1/2

�
ψ

)
ψ dψ − lim

�→∞

∫ ∞

2π

q∏
k=1

J0

(��xk� + 1/2

�
ψ

)
ψ1{ψ∈[�π/2,∞)} dψ

=
∫ ∞

0

q∏
k=1

J0(xkψ)ψ dψ

in fact, there exists a finite real number M such that∣∣∣∣∣
q∏

k=1

J0

(��xk� + 1/2

�
ψ

)
ψ1{ψ∈[�π/2,∞)}

∣∣∣∣∣ ≤
∣∣∣∣∣

q∏
k=1

J0

(��xk� + 1/2

�
ψ

)
ψ

∣∣∣∣∣
≤
{

ε if ψ ∈ [0, ε],∏q

k=1(
�

��xk�+1/2 )1/2ψ1−q/2 < M if ψ ∈ [ε,∞].
This leads to

lim
�→∞

q∏
k=1

γ̃
(��xk�, �

)
v(�, x1, . . . , xq) =

(
G

2π

)q ∫ ∞

0

q∏
k=1

b2(xk)x
1−α
k J0(xkψ)ψ dψ.

On the other hand, we apply again dominated convergence to the sequence of measurable functions

u�(x1, . . . , xq) =
q∏

k=1

γ̃
(��xk�, �

)∫ π/2

0

q∏
k=1

P��xk�(cos θ) sin θ dθ

on the set [ 1
2 ,2]q . Since, from Lemma 4.2, for all � and all (x1, . . . , xq) ∈ [ 1

2 ,2]q , we have

∣∣u�(x1, . . . , xq)
∣∣ ≤ q∏

k=1

∣∣γ̃ (��xk�, �
)∣∣∣∣∣∣∣
∫ π/2

0

q∏
k=1

P��xk�(cos θ) sin θ dθ

∣∣∣∣∣
≤

q∏
k=1

∣∣γ̃ (��xk�, �
)∣∣∣∣∣∣∣
∫ �π/2

0

q∏
k=1

J0

(��xk� + 1/2

�
ψ

)
ψ dψ + 1

∣∣∣∣∣
≤

q∏
k=1

∣∣γ̃ (��xk�, �
)∣∣[∫ ε

0
ψ dψ +

∫ �π/2

ε

q∏
k=1

(
�

��xk� + 1/2

)1/2

ψ1−q/2 dψ + 1

]
,

where ε = 2
2+1/2 , there exists a finite real number M ′ such that for all � and for all (x1, . . . , xq) ∈ [ 1

2 ,2]q
q∏

k=1

∣∣γ̃ (��xk�, �
)∣∣[ε2 +

q∏
k=1

(
�

��xk� + 1/2

)1/2 4ε2−q/2 − 2q/2(�π)2−q/2

2(q − 4)
+ 1

]
≤ M ′
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and this leads to∫ 2

1/2
· · ·
∫ 2

1/2
lim

�→∞u�(x1, . . . , xq)dx1 · · · dxq = lim
�→∞

∫ 2

1/2
· · ·
∫ 2

1/2
u�(x1, . . . , xq)dx1 · · · dxq. �

Remark 4.3. The previous discussion yields the following corollary: for q > 4, � = 2j , xk ∈ [ 1
2 ,2] with k = 1, . . . , q ,

we have

lim
�→∞�2

∫ π/2

0
P��x1�(cos θ) · · ·P��xq�(cos θ) sin θ dθ =

∫ ∞

0
J0(x1ψ) · · ·J0(xqψ)ψ dψ.

For q = 3 it is well-known that, if x1, x2, x3 > 0, we have∫ ∞

0
J0(x1ψ)J0(x2ψ)J0(x3ψ)ψ dψ =

{
1

2πΔ
, if |x1 − x2| < x3 < x1 + x2,

0, if 0 < x3 ≤ |x1 − x2| or x3 ≥ x1 + x2,

where Δ = 1
4

√
[x2

3 − (x1 − x2)2][(x1 + x2)2 − x2
3 ] is equal to the area of a triangle whose sides are x1, x2 and x3, see

[10], formula 6.578.9.

Before proving Theorem 4, we introduce some further notation i.e.

B� =
2j+1∑

�1=2j−1

b2
(

�1

�

)
2�1 + 1

4π
�−α

1 G(�1),

and we prove the last lemma:

Lemma 4.4. For � = 2j , we have that

lim
�→∞�α−2B� = G

2π

∫ 2

1/2
b2(x)x1−α dx.

Proof. We first note that

lim
�→∞�α−2B� = lim

�→∞
�

�2−α

2�∑
�1=�/2

∫ (�1+1)/�

�1/�

b2
(��x�

�

)
��x�−α 2��x� + 1

4π
G
(��x�)dx

= lim
�→∞

∫ 2

1/2
b2
(��x�

�

)(��x�
�

)−α 2��x� + 1

2�

G(��x�)
2π

dx,

and using dominated convergence, we have the statement. �

Proof of Theorem 4.

Var[νj ;q ] = E

[(∫
S2

Hq

(
β̃j (x)

)
dx

)2]
=
∫

S2×S2
E
[
Hq

(
β̃j (x1)

)
Hq

(
β̃j (x2)

)]
dσ(x1)dσ(x2)

by Proposition 2.1, for � = 2j , we have

Var[νj ;q ] = q!
∫

S2×S2

{
E
[
β̃j (x1)β̃j (x2)

]}q
dσ(x1)dσ(x2) = q!B−q

�

∫
S2×S2

{
E
[
βj (x1)βj (x2)

]}q
dσ(x1)dσ(x2)

= q!B−q

�

∫
S2×S2

{
2j+1∑

�1=2j−1

b2
(

�1

�

)
2�1 + 1

4π
�−α

1 G(�1)P�1

(〈x1, x2〉
)}q

dσ(x1)dσ(x2).
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Let γ̃ (�k, �) := b2(
�k

�
)

2�k+1
4π�

(
�k

�
)−αG(�k) where, for all k = 1, . . . , q , �k ∈ [2j−1,2j+1]; we have

Var[νj ;q ] = q!�−αq+qB
−q
�

∑
�1···�q

γ̃ (�1, �) · · · γ̃ (�q, �)

×
∫

S2×S2
P�1

(〈x1, x2〉
) · · ·P�q

(〈x1, x2〉
)

dσ(x1)dσ(x2),

where∫
S2×S2

P�1

(〈x1, x2〉
) · · ·P�q

(〈x1, x2〉
)

dσ(x1)dσ(x2) = 8π2
∫ π

0
P�1(cos θ) · · ·P�q (cos θ) sin θ dθ.

Then

Var[νj ;q ] = q!8π2�−αq+qB
−q
�

∑
�1···�q

γ̃ (�1, �) · · · γ̃ (�q, �)

∫ π

0
P�1(cos θ) · · ·P�q (cos θ) sin θ dθ

= q!8π2�−αq+qB
−q

�

∑
�1···�q∑
lk even

γ̃ (�1, �) · · · γ̃ (�q, �)2
∫ π/2

0
P�1(cos θ) · · ·P�q (cos θ) sin θ dθ

since ∫ π

0
P�1(cos θ) · · ·P�q (cos θ)(cos θ) sin θ dθ

=
{

2
∫ π/2

0 P�1(cos θ) · · ·P�q (cos θ) sin θ dθ, for
∑q

k=1 lk even,

0, for
∑q

k=1 lk odd.

Also

Var[νj ;q ] = q!8π2�−αq+qB
−q

�

∑
�1···�q

γ̃ (�1, �) · · · γ̃ (�q, �)

∫ π/2

0
P�1(cos θ) · · ·P�q (cos θ) sin θ dθ

= q!8π2�−αq+2qB
−q
�

2�∑
�1=�/2

· · ·
2�∑

�q=�/2

∫ (�1+1)/�

�1/�

· · ·
∫ (�q+1)/�

�q/�

γ̃
(��x1�, �

) · · · γ̃ (��xq�, �)

×
∫ π

0
P��x1�(cos θ) · · ·P��xq�(cos θ) sin θ dθ dx1 · · · dxq

= q!8π2�−αq+2qB
−q

�

∫ (2�+1)/�

1/2
· · ·
∫ (2�+1)/�

1/2
γ̃
(��x1�, �

) · · · γ̃ (��xq�, �)

×
∫ π

0
P��x1�(cos θ) · · ·P��xq�(cos θ) sin θ dθ dx1 · · · dxq

and then

lim
�→∞�2 Var[νj ;q ] = lim

�→∞q!8π2�−αq+2qB
−q
� �2

∫ 2

1/2
· · ·
∫ 2

1/2
γ̃
(��x1�, �

) · · · γ̃ (��xq�, �)

×
∫ π

0
P��x1�(cos θ) · · ·P��xq�(cos θ) sin θ dθ dx1 · · · dxq.

The statement follows by applying Lemma 4.3 and Lemma 4.4. �
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For the cases q = 2,3,4 we write a different proof based on the representation of the integral of the product of
spherical harmonics in terms of Wigner’s 3j coefficients.

Theorem 5. For q = 2, we have

lim
j→∞ 22j Var[νj ;2] = 2!c2,

where

c2 = 8π2

(
∫ 2

1/2 b2(x)x1−α dx)2

∫ 2

1/2
b4(x1)x

1−2α
1 dx1.

Proof. For � = 2j and �1, �2 ∈ [2j−1,2j+1] we have as before

Var[νj ;2] = 2!B−2
�

∫
S2×S2

{
E
[
βj (x1)βj (x2)

]}2 dσ(x1)dσ(x2)

= 2!8π2�−2α+2B−2
�

∑
�1�2

b2
(

�1

�

)
b2
(

�2

�

)
2�1 + 1

4π�

2�2 + 1

4π�

(
�1�2

�2

)−α

G(�1)G(�2)

×
∫ π

0
P�1(cos θ)P�2(cos θ) sin θ dθ,

from the orthogonality property of Legendre polynomials, we have

Var[νj ;2] = 2!8π2�−2α+2B−2
�

2�∑
�1=�/2

b4
(

�1

�

)(
2�1 + 1

4π�

)2(
�1

�

)−2α

G2(�1)
2

2�1 + 1

= 2!8π2�−2α+2B−2
�

∫ (2�+1)/�

1/2
b4
(��x1�

�

)
2��x1� + 1

2�

(��x1�
�

)−2α(
G(��x1�)

2π

)2

dx1.

So we see that

lim
�→∞�2 Var[νj ;2]

= lim
�→∞ 2!8π2�−2α+2B−2

� �2
∫ 2

1/2
b4
(��x1�

�

)
2��x1� + 1

2�

(��x1�
�

)−2α(
G(��x1�)

2π

)2

dx1

and by applying Lemma 4.4 and dominated convergence we arrive at the statement. �

We introduce now the Wigner’s 3j coefficients(
�1 �2 �3
m1 m2 m3

)
, −(2�i + 1) ≤ mi ≤ 2�i + 1, i = 1,2,3.

The Wigner’s 3j coefficients are zero unless the triangle conditions |�i − �r | ≤ �k ≤ �i + �r for i, r, k = 1,2,3 are
satisfied and m1 + m2 + m3 = 0, see [17], Section 3.5.3 for further details. When m1 = m2 = m3 = 0, the analytic
expression reduces to

(
�1 �2 �3
0 0 0

)
=

⎧⎪⎨
⎪⎩

(−1)(�1+�2−�3)/2((�1+�2+�3)/2)!
((�1+�2−�3)/2)!((�1−�2+�3)/2)!((−�1+�2+�3)/2)!

× [ (�1+�2−�3)!(�1−�2+�3)!(−�1+�2+�3)!
(�1+�2+�3+1)! ]1/2, �1 + �2 + �3 even,

0, �1 + �2 + �3 odd,

(4.3)

see [37], equations 8.1.2.12 and 8.5.2.32.
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Lemma 4.5. For every fixed (x1, x2, x3) ∈ P3, define

g�(x1, x2, x3) =
( ��x1� ��x2� ��x3�

0 0 0

)2

,

we have that

lim
�→∞�2g�(x1, x2, x3) = 2

π

1√
x1 + x2 − x3

√
x1 − x2 + x3

√−x1 + x2 + x3
√

x1 + x2 + x3
,

where the limit is defined for all � such that ��x1� + ��x2� + ��x3� is even.

Proof. Let λ0 = ��x1� + ��x2� + ��x3�, λ1 = −��x1� + ��x2� + ��x3�, λ2 = ��x1� − ��x2� + ��x3� and λ3 =
��x1� + ��x2� − ��x3�, from (4.3), by applying Stirling’s formula

�! = √
2π��+1/2e−� + O

(
�−1)

we see that

lim
�→∞�2g�(x1, x2, x3)

= lim
�→∞�2

[ √
2π(λ0/2)λ0/2+1/2e−λ0/2∏3

i=1

√
2π(λi/2)λi/2+1/2e−λi/2

]2 ∏3
i=1

√
2πλ

λi+1/2
i e−λi

√
2π(λ0 + 1)λ0+3/2e−λ0−1

= lim
�→∞�2e

2π(2π)3/2

(2π)3
√

2π
2−λ0+2+∑3

i=1 λi
λ

λ0+1
0

∏3
i=1 λ

λi+1/2
i

(λ0 + 1)λ0+3/2
∏3

i=1 λ
λi+1
i

= lim
�→∞

2e

π

�2

√
λ1λ2λ3

λ0

(λ0 + 1)3/2

(
1 + 1

λ0

)−λ0

= lim
�→∞

2e

π

�2

√
(−��x1� + ��x2� + ��x3�)(��x1� − ��x2� + ��x3�)(��x1� + ��x2� − ��x3�)

× ��x1� + ��x2� + ��x3�
(��x1� + ��x2� + ��x3� + 1)3/2

(
1 + 1

��x1� + ��x2� + ��x3�
)−(��x1�+��x2�+��x3�)

= 2

π

1√
x1 + x2 − x3

√
x1 − x2 + x3

√−x1 + x2 + x3
√

x1 + x2 + x3
. �

Remark 4.4. Note that for ��x1� = ��x2� = ��x3� = � we have the same result as in [21], Lemma A.1, in fact

lim
�→∞�2

(
� � �

0 0 0

)2

= lim
�→∞

2e

π

�2

√
�3

3�

(3� + 1)3/2

(
1 + 1

3�

)−3�

= 2

π
√

3
.

Theorem 6. For q = 3, we have

lim
j→∞ 22j Var[νj ;3] = 3!c3,

where

c3 = 16π

(
∫ 2

1/2 b2(x)x1−α dx)3

∫ 2

1/2
· · ·
∫ 2

1/2

3∏
i=1

b2(xi)x
1−α
i

× 1√
x1 + x2 − x3

√
x1 − x2 + x3

√−x1 + x2 + x3
√

x1 + x2 + x3
1P3(x1, x2, x3)dx1 dx2 dx3.
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Proof. For � = 2j and �1, �2, �3 ∈ [2j−1,2j+1] we have

Var[νj ;3] = 3!B−3
�

∫
S2×S2

{
E
[
βj (x1)βj (x2)

]}3
dσ(x1)dσ(x2)

= 3!8π2B−3
�

∑
�1�2�3

3∏
i=1

b2
(

�i

�

)
2�i + 1

4π
�−α
i G(�i)

∫ π

0
P�1(cos θ)P�2(cos θ)P�3(cos θ) sin θ dθ.

By expressing Legendre polynomials in terms of spherical harmonics and by applying the well-known formula for the
integral of the product of three spherical harmonics over the sphere (see [17], Section 3.5.3 for a proof), we obtain∫ π

0
P�1(cos θ)P�2(cos θ)P�3(cos θ) sin θ dθ = 2

(
�1 �2 �3
0 0 0

)2

,

and then, from (4.3),

Var[νj ;3] = 3!8π2B−3
�

∑
�1�2�3∑
lk even

3∏
i=1

b2
(

�i

�

)
2�i + 1

4π
�−α
i G(�i)2

(
�1 �2 �3
0 0 0

)2

= 3!8π2�−3α+6B−3
�

∑
�1�2�3∑
lk even

∫ (l1+1)/ l

l1/l

· · ·
∫ (l3+1)/ l

l3/l

3∏
i=1

b2
(��xi�

�

)
2��xi� + 1

2�

×
(��xi�

�

)−α
G(��xi�)

2π
2

( ��x1� ��x2� ��x3�
0 0 0

)2

dx1 dx2 dx3.

Applying dominated convergence again and Lemma 4.5,

lim
�→∞�2 Var[νj ;3]

= lim
�→∞ 3!8π2�−3α+6B−3

�

∑
�1�2�3∑
lk even

∫ (l1+1)/ l

l1/l

· · ·
∫ (l3+1)/ l

l3/l

3∏
i=1

b2
(��xi�

�

)
2��xi� + 1

2�

(��xi�
�

)−α

× G(��xi�)
2π

2e

π
2

�2

√
(−��x1� + ��x2� + ��x3�)(��x1� − ��x2� + ��x3�)(��x1� + ��x2� − ��x3�)

× ��x1� + ��x2� + ��x3�
(��x1� + ��x2� + ��x3� + 1)3/2

(
1 + 1

��x1� + ��x2� + ��x3�
)−(��x1�+��x2�+��x3�)

× 1P3(x1, x2, x3)dx1 dx2 dx3

= lim
�→∞ 3!8π2�−3α+6B−3

�

∫ (2l+1)/ l

1/2
· · ·
∫ (2l+1)/ l

1/2

3∏
i=1

b2
(��xi�

�

)
2��xi� + 1

2�

(��xi�
�

)−α

× G(��xi�)
2π

2e

π

�2

√
(−��x1� + ��x2� + ��x3�)(��x1� − ��x2� + ��x3�)(��x1� + ��x2� − ��x3�)

× ��x1� + ��x2� + ��x3�
(��x1� + ��x2� + ��x3� + 1)3/2

(
1 + 1

��x1� + ��x2� + ��x3�
)−(��x1�+��x2�+��x3�)

× 1P3(x1, x2, x3)dx1 dx2 dx3.

Then, by dominated convergence again and Lemma 4.4, we arrive at the statement. �
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Theorem 7. For q = 4,

lim
j→∞ 22j Var[νj ;4] = 4!c4,

where

c4 = 16

(
∫ 2

1/2 b2(x)x1−α dx)4

∫ 2

1/2
· · ·
∫ 2

1/2

4∏
i=1

b2(xi)x
1−α
i

×
∫ 4

0
y

1√−x1 + x2 + y
√

x1 − x2 + y
√

x1 + x2 − y
√

x1 + x2 + y

× 1√−x3 + x4 + y
√

x3 − x4 + y
√

x3 + x4 − y
√

x3 + x4 + y

× 1P3(x1, x2, y)1P3(y, x3, x4)dy dx1 · · · dx4.

Proof. For � = 2j and �1, �2, �3, �4 ∈ [2j−1,2j+1] we have

Var[νj ;4] = 4!B−4
�

∫
S2×S2

{
E
[
βj (x1)βj (x2)

]}4 dσ(x1)dσ(x2)

= 4!8π2B−4
�

∑
�1�2�3�4

4∏
i=1

b2
(

�i

�

)
2�i + 1

4π
�−α
i G(�i)

∫ π

0

4∏
i=1

P�i
(cos θ) sin θ dθ.

From the product formula

Y�10(θ,φ)Y�20(θ,φ) =
√

(2�1 + 1)(2�2 + 1)

4π

�1+�2∑
L=|�1−�2|

√
2L + 1

(
�1 �2 L

0 0 0

)2

YL0(θ,φ),

and the orthogonality property of spherical harmonics, we obtain the following formula for the integral of the product
of four spherical harmonics over the sphere

∫ 2π

0

∫ π

0

4∏
i=1

Y�i0(θ,φ) sin θ dθ dφ

=
√

(2�1 + 1)(2�2 + 1)

4π

√
(2�3 + 1)(2�4 + 1)

4π

�1+�2∑
L1=|�1−�2|

√
2L1 + 1

(
�1 �2 L1
0 0 0

)2

×
�3+�4∑

L2=|�3−�4|

√
2L2 + 1

(
�3 �4 L2
0 0 0

)2

δ
L2
L1

= 4π

4∏
i=1

√
2�i + 1

4π

∑
L

(2L + 1)

(
�1 �2 L

0 0 0

)2(
�3 �4 L

0 0 0

)2

,

that is

∫ π

0

4∏
i=1

P�i
(cos θ) sin θ dθ = 2

∑
L

(2L + 1)

(
�1 �2 L

0 0 0

)2(
�3 �4 L

0 0 0

)2

.
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We can write the variance as

Var[νj ;4] = 4!8π2B−4
�

∑
l1l2l3l4

4∏
i=1

b2
(

�i

�

)
2�i + 1

4π
�−α
i G(�i)

× 2
∑
L

l1+l2+L even
l3+l4+L even

(2L + 1)

(
�1 �2 L

0 0 0

)2(
�3 �4 L

0 0 0

)2

.

Since max{|�1 − �2|, |�3 − �4|} ≤ L ≤ min{�1 + �2, �3 + �4} where |�i − �k| ≥ 0 and �i + �k ≤ 4�, we can write

Var[νj ;4] = 4!8π2�−4α+10B−4
�

∑
�1�2�3�4

∫ (�1+1)/�

�1/�

· · ·
∫ (�4+1)/�

�4/�

4∏
i=1

b2
(��xi�

�

)
2��xi� + 1

2�

×
(��xi�

�

)−α
G(��xi�)

2π
2

4�∑
L=0

l1+l2+L even
l3+l4+L even

∫ (L+1)/�

L/�

2��y� + 1

2�

×
( ��x1� ��x2� ��y�

0 0 0

)2( ��x3� ��x4� ��y�
0 0 0

)2

dy dx1 · · · dx4.

Then, by dominated convergence and Lemma 4.5, we have

lim
�→∞�2 Var[νj ;4]

= lim
�→∞ 4!8π2�−4α+8B−4

�

∑
�1�2�3�4

∫ (�1+1)/�

�1/�

· · ·
∫ (�4+1)/�

�4/�

4∏
i=1

b2
(��xi�

�

)
2��xi� + 1

2�

×
(��xi�

�

)−α
G(��xi�)

2π
2

4�∑
L=0

l1+l2+L even
l3+l4+L even

∫ (L+1)/�

L/�

2��y� + 1

2�

4e2

π2

× �2

√
(−��x1� + ��x2� + ��y�)(��x1� − ��x2� + ��y�)(��x1� + ��x2� − ��y�)

× ��x1� + ��x2� + ��y�
(��x1� + ��x2� + ��y� + 1)3/2

(
1 + 1

��x1� + ��x2� + ��y�
)−(��x1�+��x2�+��y�)

× �2

√
(−��x3� + ��x4� + ��y�)(��x3� − ��x4� + ��y�)(��x3� + ��x4� − ��y�)

× ��x3� + ��x4� + ��y�
(��x3� + ��x4� + ��y� + 1)3/2

(
1 + 1

��x3� + ��x4� + ��y�
)−(��x3�+��x4�+��y�)

× 1P3(x1, x2, y)1P3(x3, x4, y)dy dx1 · · · dx4

= lim
�→∞ 4!8π2�−4α+8B−4

�

1

2

∫ (2�+1)/�

1/2
· · ·
∫ (2�+1)/�

1/2

4∏
i=1

b2
(��xi�

�

)
2��xi� + 1

2�

×
(��xi�

�

)−α
G(��xi�)

2π

∫ (4�+1)/�

0

2��y� + 1

2�

4e2

π2
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× �2

√
(−��x1� + ��x2� + ��y�)(��x1� − ��x2� + ��y�)(��x1� + ��x2� − ��y�)

× ��x1� + ��x2� + ��y�
(��x1� + ��x2� + ��y� + 1)3/2

(
1 + 1

��x1� + ��x2� + ��y�
)−(��x1�+��x2�+��y�)

× �2

√
(−��x3� + ��x4� + ��y�)(��x3� − ��x4� + ��y�)(��x3� + ��x4� − ��y�)

× ��x3� + ��x4� + ��y�
(��x3� + ��x4� + ��y� + 1)3/2

(
1 + 1

��x3� + ��x4� + ��y�
)−(��x3�+��x4�+��y�)

× 1P3(x1, x2, y)1P3(x3, x4, y)dy dx1 · · · dx4.

Once again, applying dominated convergence and Lemma 4.4, we have the statement. �

5. Quantitative Central Limit Theorems for νj;q

We start by recalling that Hq(β̃j (x)) belongs to the qth order Wiener chaos and so does the linear transform νj ;q .
Inside a fixed Wiener chaos it is possible to get explicit estimates on the speed of convergence to the Gaussian law for
the Kolmogorov, Total Variation and Wasserstein distance by applying Proposition 2.2 and by explicitly relate norms
of Malliavin operators with moments and cumulants. In fact, for N standard Gaussian, we have

d

(
νj ;q√

Var(νj ;q)
,N
)

≤ 2

√
q − 1

3q

cum4(νj ;q)

Var2(νj ;q)
,

where d is the Kolmogorov, Total Variation or Wasserstein distance and cum4 is the fourth-order cumulant of νj ;q .
See [27], Theorem 5.2.6 for more discussion and a full proof.

Quantitative Central Limit Theorems for νj ;q then follow easily from the results of Section 4 and by comput-
ing the fourth-order cumulant as in [20], Section 5.1. The arguments are indeed quite standard but nevertheless for
completeness we report them below.

We start by expressing the 4th order cumulant as an integral over (S2)4, using the well-known Diagram formula,
see [17], Proposition 4.15 for further details.

Fix a set of integers α1, . . . , αp , a diagram is a graph with α1 vertexes labelled by 1, α2 vertexes labelled by
2, . . . , αp vertexes labelled by p, such that each vertex has degree 1. We can view the vertexes as belonging to p

different rows and the edges may connect only vertexes with different labels, i.e. there are no flat edges on the same
row. The set of such graphs that are connected (i.e. such that it is not possible to partition the vertexes into two subsets
A and B such that no edge connect a vertex in A with a vertex in B) is denoted by Γc(α1, . . . , αp). Given a diagram
γ ∈ Γc , ηik(γ ) is the number of edges between the vertexes labelled by i and the vertexes labelled by k in γ . The
following proposition holds:

Proposition 5.1 (Diagram formula for Hermite polynomials). Let (Z1, . . . ,Zp) be a centered Gaussian vector,
and let Hl1, . . . ,Hlp be Hermite polynomials of degrees l1, . . . , lp (≥ 1) respectively. Then

cum
(
Hl1(Z1), . . . ,Hlp (Zp)

)= ∑
γ∈Γc(l1,...,lp)

∏
1≤i≤j≤p

{
E[ZiZj ]

}ηij (γ )
.

For a proof see [28], Section 7.3.

Theorem 8. For N standard Gaussian variable and for all q such that cq > 0, as j → ∞, we have that

dTV

(
νj ;q√

Var(νj,q)
,N
)

, dW

(
νj ;q√

Var(νj,q)
,N
)

= O
(
2−j
)
.



On the limiting behaviour of needlets polyspectra 1181

Proof. In view of Proposition 5.1, for p = 4 and l1 = · · · = l4 = q , we obtain

cum4[νj ;q ] = cum4

[∫
S2

Hq

(
β̃j (x1)

)
dσ(x1) · · ·

∫
S2

Hq

(
β̃j (x4)

)
dσ(x4)

]

=
∫

(S2)4
cum4

[
Hq

(
β̃j (x1)

) · · ·Hq

(
β̃j (x4)

)]
dσ(x1) · · · dσ(x4)

=
∫

(S2)4

∑
γ∈Γc(q,q,q,q)

∏
(i,k)∈γ

{
E
[
β̃j (xi)β̃j (xk)

]}ηik(γ ) dσ(x1) · · · dσ(x4)

= 1

B
2q
j

∫
(S2)4

∑
γ∈Γc(q,q,q,q)

∏
(i,k)∈γ

{
E
[
βj (xi)βj (xk)

]}ηik(γ ) dσ(x1) · · · dσ(x4),

since
∑

(i,k)∈γ ηik(γ ) = 2q . Now we apply formula (3.2) and we obtain

cum4[νj ;q ]

≤ 1

B
2q
j

∑
γ∈Γc(q,q,q,q)

∫
(S2)4

∏
(i,k)∈γ

{
KM

(1 + 2j d(xi, xk))M

∑
l

b2
(

l

2j

)
Cl

2l + 1

4π

}ηik(γ )

dσ(x1) · · · dσ(x4)

= C̃
2q
M

∑
γ∈Γc(q,q,q,q)

∫
(S2)4

∏
(i,k)∈γ

1

(1 + 2j d(xi, xk))Mηik(γ )
dσ(x1) · · · dσ(x4).

To compute the integral we note that for spherical symmetry we can assume without loss of generality that e.g. x3 is
the North Pole denoted by pN , and we get

∫
(S2)4

∏
(i,k)∈γ

1

(1 + 2j d(xi, xk))Mηik(γ )
dσ(x1) · · · dσ(x4)

≤
∫

(S2)4

1

(1 + 2j d(x1, x2))M

1

(1 + 2j d(x2, x3))M

1

(1 + 2j d(x3, x4))M

1

(1 + 2j d(x1, x4))M
dσ(x1) · · · dσ(x4)

≤ 4π

∫
(S2)3

1

(1 + 2j d(x1, x2))M

1

(1 + 2j d(x2,pN))M

1

(1 + 2j d(pN,x4))M
dσ(x1)dσ(x2)dσ(x4)

≤ 4πC2−2j

∫
(S2)2

1

(1 + 2j d(x1, x2))M

1

(1 + 2j d(x2,pN))M
dσ(x1)dσ(x2)

≤ const 2−6j

since, for example, for M > 2

∫
S2

1

(1 + 2j d(pN,x4))M
dσ(x4) =

∫ 2π

0
dφ

∫ π

0

θ sin θ

(1 + 2j θ)M
dθ ≤ 2π

∫ ∞

0

θ

(1 + 2j θ)M
dθ

= 2π

[∫ 2−j

0

θ

(1 + 2j θ)M
dθ +

∫ ∞

2−j

θ

(1 + 2j θ)M
dθ

]

≤ 2π

[∫ 2−j

0
θ dθ + 2−jM

∫ ∞

2−j

θ1−M dθ

]

= 2π

[
2−1−2j + 2−2j

M − 2

]
≤ const 2−2j . �
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6. A quantitative Central Limit Theorem for the empirical measure

In the next theorem we obtain a bound on the Wasserstein distance for the speed of convergence of Φj(z) to the
Gaussian law.

Theorem 9. For N standard Gaussian, as j → ∞ we have

dW

(
Φj(z)√

Var[Φj(z)]
,N
)

= O

(
1

4
√

j

)
.

We start by proving the following lemma.

Lemma 6.1. For integers q, q ′ ≥ 2 we have that

E
[(〈

Dνj ;q,−DL−1νj ;q ′
〉
H

)2]≤ const 2−6j q2
q∧q ′∑
r=1

(r − 1)!2
(

q − 1
r − 1

)2(
q ′ − 1
r − 1

)2 (
q + q ′ − 2r

)!,

Var
[〈
Dνj ;q,−DL−1νj ;q

〉
H

]≤ const 2−6j q2
q−1∑
r=1

(r − 1)!2
(

q − 1
r − 1

)4

(2q − 2r)!.

Proof. Since Hq(β̃j (x)) is in the qth order Wiener chaos, from (2.5), we obtain

νj ;q =
∫

S2
dx

∫
(S2)q

q∏
i=1

Θ̃j

(〈x, yi〉
)
W
(
dσ(yi)

)= ∫
(S2)q

gq,j (y1, . . . , yq)W
(
dσ(y1)

) · · ·W (dσ(yq)
)

= Iq

(
gq,j (y1, . . . , yq)

)
,

where

gq,j (y1, . . . , yq) =
∫

S2

q∏
i=1

Θ̃j

(〈x, yi〉
)

dσ(x)

and, from formula (2.3),

Dνj ;q = q!
(q − 1)!Iq−1

(
gq,j (y1, . . . , yq−1, z)

)= q

∫
(S2)q−1

gq,j (y1, . . . , yq−1, z)W
(
dσ(y1)

) · · ·W (dσ(yq−1)
)
.

Applying the definition of the pseudo-inverse of L, we obtain

〈
Dνj ;q,−DL−1νj ;q ′)

〉
H

= 1

q ′ 〈Dνj ;q,Dνj ;q ′ 〉H
= q

〈
Iq−1

(
gq,j (y1, . . . , yq−1, z)

)
, Iq ′−1

(
gq ′,j (y1, . . . , yq ′−1, z)

)〉
H

= q

∫
S2

Iq−1
(
gq,j (y1, . . . , yq−1, z)

)
Iq ′−1

(
gq ′,j (y1, . . . , yq ′−1, z)

)
dσ(z)

and by the multiplication formula (2.6)〈
Dνj ;q,−DL−1νj ;q ′

〉
H

= q

q∧q ′−1∑
r=0

r!
(

q − 1
r

)(
q ′ − 1

r

)∫
S2

Iq+q ′−2−2r

(
gq,j (y1, . . . , yq−1, z) ⊗̃r gq ′,j (y1, . . . , yq ′−1, z)

)
dσ(z)
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= q

q∧q ′−1∑
r=0

r!
(

q − 1
r

)(
q ′ − 1

r

)
Iq+q ′−2−2r

(
gq,j (y1, . . . , yq) ⊗̃r+1 gq ′,j (y1, . . . , yq ′)

)

= q

q∧q ′∑
r=1

(r − 1)!
(

q − 1
r − 1

)(
q ′ − 1
r − 1

)
Iq+q ′−2r

(
gq,j (y1, . . . , yq) ⊗̃r gq ′,j (y1, . . . , yq ′)

)
.

From the isometry property (2.4) we have

E
[(〈

Dνj ;q,−DL−1νj ;q ′
〉
H

)2]

= q2
q∧q ′∑
r=1

(r − 1)!2
(

q − 1
r − 1

)2(
q ′ − 1
r − 1

)2 (
q + q ′ − 2r

)!∥∥gq,j (y1, . . . , yq) ⊗̃r gq ′,j (y1, . . . , yq ′)
∥∥2
H⊗q+q′−2r

≤ q2
q∧q ′∑
r=1

(r − 1)!2
(

q − 1
r − 1

)2(
q ′ − 1
r − 1

)2 (
q + q ′ − 2r

)!∥∥gq,j (y1, . . . , yq) ⊗r gq ′,j (y1, . . . , yq ′)
∥∥2
H⊗q+q′−2r .

Applying Lemma 6.2.1 in [27], we write

Var
[〈
Dνj ;q,−DL−1νj,q

〉
H

]

≤ q2
q−1∑
r=1

(r − 1)!2
(

q − 1
r − 1

)4

(2q − 2r)!∥∥gq,j (y1, . . . , yq) ⊗q−r gq,j (y1, . . . , yq)
∥∥2
H⊗2r .

We determine now the explicit form for the contractions:

gq,j (y1, . . . , yq) ⊗r gq ′,j (y1, . . . , yq ′)

=
∫

(S2)r
gq,j (y1, . . . , yq−r , t1, . . . , tr )gq ′,j (yq−r+1, . . . , yq+q ′−2r , t1, . . . , tr )dσ(t1) · · · dσ(tr )

=
∫

(S2)r

[∫
S2

q−r∏
n=1

Θ̃j

(〈x1, yn〉
) r∏

i=1

Θ̃j

(〈x1, ti〉
)

dσ(x1)

]

×
[∫

S2

q+q ′−2r∏
m=q−r+1

Θ̃j

(〈x2, ym〉) r∏
i=1

Θ̃j

(〈x2, ti〉
)

dσ(x2)

]
dσ(t1) · · · dσ(tr )

= B
−(q+q ′)/2
j

∫
(S2)2

dσ(x1)dσ(x2)

q−r∏
n=1

Θj

(〈x1, yn〉
) q+q ′−2r∏

m=q−r+1

Θj

(〈x2, ym〉)

×
∫

(S2)r

r∏
i=1

Θj

(〈x1, ti〉
)
Θj

(〈x2, ti〉
)

dσ(t1) · · · dσ(tr )

= B
−(q+q ′)/2
j

∫
(S2)2

dσ(x1)dσ(x2)

q−r∏
n=1

Θj

(〈x1, yn〉
) q+q ′−2r∏

m=q−r+1

Θj

(〈x2, ym〉)ρr
j

(〈x1, x2〉
)
,

for Θj and ρj as in (3.3) and (3.4). It follows that∥∥gq,j (y1, . . . , yq) ⊗r gq ′,j (y1, . . . , yq ′)
∥∥2
H⊗q+q′−2r

= B
−(q+q ′)
j

∫
(S2)q+q′−2r

dσ(y1) · · · dσ(yq+q ′−2r )

[∫
(S2)4

q−r∏
n=1

Θj

(〈x1, yn〉
)
Θj

(〈x3, yn〉
)
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×
q+q ′−2r∏

m=q−r+1

Θj

(〈x2, ym〉)Θj

(〈x4, ym〉)ρr
j

(〈x1, x2〉
)
ρr

j

(〈x3, x4〉
)

dσ(x1) · · · dσ(x4)

]

= B
−(q+q ′)
j

∫
(S2)4

ρ
q−r
j

(〈x1, x3〉
)
ρ

q ′−r
j

(〈x2, x4〉
)
ρr

j

(〈x1, x2〉
)
ρr

j

(〈x3, x4〉
)

dσ(x1) · · · dσ(x4).

Since ρj (〈x, y〉) ≤ Bj and from (3.2)∫
S2

ρ
p
j

(〈x, y〉)dσ(x) ≤
∫

S2

(
KM

(1 + 2j d(x, y))M
Bj

)p

dσ(x) ≤ B
p
j K

p
M2−2j ,

we have∥∥gq,j (y1, . . . , yq) ⊗r gq ′,j (y1, . . . , yq ′)
∥∥2
H⊗q+q′−2r

= B
−(q+q ′)
j Br

j

∫
(S2)4

ρ
q−r
j

(〈x1, x3〉
)
ρ

q ′−r
j

(〈x2, x4〉
)
ρr

j

(〈x1, x2〉
)

dσ(x1) · · · dσ(x4)

≤ const 2−6j ,

and analogously∥∥gq,j (y1, . . . , yq) ⊗q−r gq,j (y1, . . . , yq)
∥∥2
H⊗2r

= B
−2q
j

∫
(S2)4

ρ
q−r
j

(〈x1, x3〉
)
ρ

q−r
j

(〈x2, x4〉
)
ρr

j

(〈x1, x2〉
)
ρr

j

(〈x3, x4〉
)

dσ(x1) · · · dσ(x4)

≤ const 2−6j . �

Proof of Theorem 9. Let us introduce the following notation:

Φ̃j,N (z) = 2j

N∑
q=2

Jq(z)

q! νj ;q, σ 2
N = Var[Φ̃j,N (z)]

Var[2jΦj (z)] , NN ∼N
(
0, σ 2

N

)
.

We have that

dW

(
Φj(z)√

Var[Φj(z)]
,N
)

≤ dW

(
Φj(z)√

Var[Φj(z)]
,

Φ̃j,N (z)√
Var[2jΦj (z)]

)

+ dW

(
Φ̃j,N (z)√

Var[2jΦj (z)]
,NN

)
+ dW (NN,N ).

• For the first term we apply the properties of the Wasserstein distance to get:

dW

(
Φj(z)√

Var[Φj(z)]
,

Φ̃j,N (z)√
Var[2jΦj (z)]

)

≤
{
E

[
Φj(z)√

Var[Φj(z)]
− Φ̃j,N (z)√

Var[2jΦj (z)]

]2}1/2

= 1√
Var[2jΦj (z)]

{
E

[
2j

∫
S2

∞∑
q=N+1

Jq(z)

q! Hq

(
β̃j (x)

)
dσ(x)

]2}1/2

,
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and since 2jΦj (z)−Φ̃j,N (z) belongs to the Hilbert space of Gaussian subordinated random variables, with continuous
inner product 〈X,Y 〉 := E[XY ], we have

dW

(
Φj(z)√

Var[Φj(z)]
,

Φ̃j,N (z)√
Var[2jΦj (z)]

)
≤ 1√

Var[2jΦj (z)]

{ ∞∑
q=N+1

J 2
q (z)

(q!)2
22j

E
[
ν2
j ;q
]}1/2

.

Since for any finite z, as q → ∞, the asymptotic formula e−z2/4Hq(z) ≤ constqq/2e−q/2 holds (see e.g. [12], for-
mula (4.14.9)), by applying the Stirling’s approximation to the factorial (q − 1)! we have (see [38]),

J 2
q (z)

q! = φ(z)

q!
[
e−z2/4Hq−1(z)

]2 ≤ const
φ(z)

q
√

q − 1
.

From this we obtain the first bound, in fact form Theorem 1, we have

dW

(
Φj(z)√

Var[Φj(z)]
,

Φ̃j,N (z)√
Var[2jΦj (z)]

)
≤ const

{ ∞∑
q=N+1

1

q
√

q − 1

22j

q! E
[
ν2
j ;q
]}1/2

≤ constN−1/4.

• To bound the second term, we apply now Proposition 2.2 and we get

dW

(
Φ̃j,N (z)√

Var[2jΦj (z)]
,NN

)
≤

√
2

σN

√
π

1

Var[2jΦj (z)]E
[∣∣Var

[
Φ̃j,N (z)

]− 〈DΦ̃j,N(z),−DL−1Φ̃j,N (z)
〉
H

∣∣].
Since, in view of (2.2), we have

Var
[
Φ̃j,N (z)

] =
N∑

q=2

N∑
q ′=2

Jq(z)

q!
Jq ′

q ′! 22j Cov[νj ;q, νj ;q ′ ]

=
N∑

q=2

N∑
q ′=2

Jq(z)

q!
Jq ′

q ′! 22j δ
q ′
q q!

∫
S2×S2

{
E
[
β̃j (x)β̃j (y)

]}q dσ(x)dσ(y)

=
N∑

q=2

J 2
q (z)

(q!)2
22j Var[νj ;q ],

we write

dW

(
Φ̃j,N (z)√

Var[2jΦj (z)]
,NN

)

≤
√

2

σN

√
π

22j

Var[2jΦj (z)]
N∑

q=2

Jq(z)

q! E

[∣∣∣∣∣Jq(z)

q! Var[νj ;q ] −
N∑

q ′=2

Jq ′(z)

q ′!
〈
Dνj ;q,−DL−1νj ;q ′

〉
H

∣∣∣∣∣
]

≤
√

2

σN

√
π

22j

Var[2jΦj (z)]
N∑

q=2

J 2
q (z)

(q!)2
E
[∣∣Var[νj ;q ] − 〈Dνj ;q,−DL−1νj ;q

〉
H

∣∣]

+
√

2

σN

√
π

22j

Var[2jΦj (z)]
N∑

q=2

Jq(z)

q!
∑
q �=q ′

Jq ′(z)

q ′! E
[∣∣〈Dνj ;q,−DL−1νj ;q ′

〉
H

∣∣].
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By Theorem 2.9.1 in [27] and by Cauchy–Schwarz inequality, we have

dW

(
Φ̃j,N (z)√

Var[2jΦj (z)]
,NN

)

≤
√

2

σN

√
π

22j

Var[2jΦj (z)]
N∑

q=2

J 2
q (z)

(q!)2

{
Var
[〈
Dνj ;q,−DL−1νj ;q

〉
H

]}1/2

+
√

2

σN

√
π

22j

Var[2jΦj (z)]
N∑

q=2

Jq(z)

q!
∑
q �=q ′

Jq ′(z)

q ′!
{
E
[(〈

Dνj ;q,−DL−1νj ;q ′
〉
H

)2]}1/2
.

Finally, in view of Lemma 6.1, we write

dW

(
Φ̃j,N (z)√

Var[2jΦj (z)]
,NN

)

≤ const

√
2

σN

√
π

22j

Var[2jΦj (z)]2−3j

{
N∑

q=2

J 2
q (z)

(q!)2
q

√√√√q−1∑
r=1

(r − 1)!2
(

q − 1
r − 1

)4

(2q − 2r)!

+
N∑

q=2

Jq(z)

q!
∑
q �=q ′

Jq ′(z)

q ′! q

√√√√q∧q ′∑
r=1

(r − 1)!2
(

q − 1
r − 1

)2(
q ′ − 1
r − 1

)2 (
q + q ′ − 2r

)!
}

.

We now bound the two sums by reproducing in our case calculations analog to those performed in [38]:

q∧q ′∑
r=1

(r − 1)!2
(

q − 1
r − 1

)2(
q ′ − 1
r − 1

)2 (
q + q ′ − 2r

)!

= (q − 1)!(q ′ − 1
)! q∧q ′∑

r=1

(
q − 1
r − 1

)(
q ′ − 1
r − 1

)(
q + q ′ − 2r

q − r

)

≤ (q − 1)!(q ′ − 1
)! q∧q ′∑

r=1

(
q − 1
r − 1

)(
q ′ − 1
r − 1

)
2q+q ′−2r

= (q − 1)!(q ′ − 1
)!2q+q ′−2

q∧q ′−1∑
r=0

(
q − 1

r

)(
q ′ − 1

r

)
2−2r

≤ (q − 1)!(q ′ − 1
)!2q+q ′−2

[
q∧q ′−1∑

r=0

(
q − 1

r

)
2−r

][
q∧q ′−1∑

r=0

(
q ′ − 1

r

)
2−r

]

≤ (q − 1)!(q ′ − 1
)!2q+q ′−2

[
q−1∑
r=0

(
q − 1

r

)
2−r

][
q ′−1∑
r=0

(
q ′ − 1

r

)
2−r

]

= (q − 1)!(q ′ − 1
)!2q+q ′−2(1 + 1/2)q−1(1 + 1/2)q

′−1 = (q − 1)!(q ′ − 1
)!3q+q ′−2, (6.1)
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and likewise

q−1∑
r=1

(r − 1)!2
(

q − 1
r − 1

)4

(2q − 2r)! ≤ [(q − 1)!]232q−2. (6.2)

Since for any finite z, as q → ∞, we have

Jq(z)

q! = φ(z)Hq−1(z)

q! ≤ const

√
φ(z)√

q!√q(q − 1)1/4
,

from (6.1) and (6.2), we obtain

N∑
q=2

Jq(z)

q!
∑
q �=q ′

Jq ′(z)

q ′! q

√√√√q∧q ′∑
r=1

(r − 1)!2
(

q − 1
r − 1

)2(
q ′ − 1
r − 1

)2 (
q + q ′ − 2r

)!

≤
N∑

q=2

Jq(z)

q!
∑
q �=q ′

Jq ′(z)

q ′! q

√
(q − 1)!(q ′ − 1

)!3q+q ′−2

≤ const
N∑

q=2

3(q−1)/2

√
q

N∑
q ′=2

3(q ′−1)/2√
q ′ ≤ const 3N,

and

N∑
q=2

J 2
q (z)

q!2 q

√√√√q−1∑
r=1

(r − 1)!2
(

q − 1
r − 1

)4

(2q − 2r)!

≤
N∑

q=2

J 2
q (z)

q!2 q(q − 1)!3q−1 ≤ const
N∑

q=2

3q−1

q
≤ const 3N.

Since σ 2
N ≥ 1 − constN−1/2, it follows that the second term, as N → ∞ is at most equal to

dW

(
Φ̃j,N (z)√

Var[2jΦj (z)]
,NN

)
≤ const√

1 − N−1/2

3N

2j
.

• For the third term, by Proposition 3.6.1 in [27],

dW (NN,N ) ≤
√

2

π

1

1 ∨
√

Var[Φ̃j,N (z)]/Var[2jΦj (z)]

∣∣∣∣1 − Var[Φ̃j,N (z)]
Var[2jΦj (z)]

∣∣∣∣

=
√

2

π

∣∣∣∣
∑∞

q=N+1(J 2
q (z)/q!)22j

E[ν2
j,q ]/q!∑∞

q=2(J 2
q (z)/q!)22jE[ν2

j,q ]/q!
∣∣∣∣

≤ constN−1/2.

Summing up the three bounds, choosing the speed N = log(2j )/2 and observing that the dominant term is N−1/4, we
arrive at the statement. �

Remark 6.1. To obtain a bound on the Kolmogorov distance, it is enough to recall the standard inequality

dKol(F,N ) ≤ 2
√

dW (F,N ).
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