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Abstract. In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are
subject to non-synchronicity. Building on recent papers [Bernoulli 11 (2005) 359–379, Ann. Inst. Statist. Math. 60 (2008) 367–
406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup
including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order
decomposition of the estimator’s distribution in the Gaussian set-up, a stochastic decomposition of the estimator itself and an
accurate evaluation of the Malliavin covariance. To give a concrete example, we compute the constants involved in the resulting
expansions for the particular case of sampling scheme generated by two independent Poisson processes.

Résumé. Dans cet article, nous considérons le problème d’estimation de la covariation de deux processus de diffusion observés
de façon asynchrone. Nous nous plaçons dans le cadre présenté dans [Bernoulli 11 (2005) 359–379, Ann. Inst. Statist. Math. 60
(2008) 367–406] et établissons un développement asymptotique au second ordre de la loi de l’estimateur de Hayashi–Yoshida. Ce
développement est valable pour les drifts aléatoires non-anticipatifs et pour des pas d’échantillonnage irréguliers, éventuellement
aléatoires, mais indépendant des processus observés. L’approche utilisée pour obtenir les principaux résultats peut être décomposée
en trois étapes. La première consiste à établir un développement au second-ordre de la loi de l’estimateur dans le cadre Gaussien. La
deuxième est l’obtention d’une décomposition stochastique de l’estimateur lui-même et la dernière est l’évaluation de la covariance
de Malliavin. A titre d’exemple, nous calculons les constantes du développement au second ordre dans le cas où l’échantillonnage
est obtenu par deux processus de Poisson indépendants.
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1. Introduction

In the last decade, studies on covariance estimation has attracted considerable attention thanks to the applications in
mathematical finance and econometrics; see, e.g., Andersen and Bollerslev [1], Comte and Renault [9], Andersen et al.
[2,3], Barndorff-Nielsen and Shephard [6]. All these papers consider the situation where two diffusion processes are
observed at the same discrete instants. In contrast with this, covariance estimation under a “non-synchronous” sam-
pling scheme has rarely been treated theoretically in spite of its importance in the analysis of high-frequency financial
data [26,37,39]. The first contributions to the statistical inference for covariance estimation with non-synchronous
data have been made by Hayashi and Yoshida [18,20]. They proposed an estimator of the covariation and explored
its statistical properties such as the consistency and the asymptotic normality. Interestingly, it follows from the results
in [20] that the drifts of the observed diffusions do not affect the asymptotic variance of the covariance estimator. The
aim of the present paper is to complement the results in [18,20] by establishing a second-order asymptotic expansion
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for the distribution of the covariance estimator. In particular, we get explicit expressions that have the advantage of
reflecting the impact of drifts on the asymptotic distribution of the estimator.

One common approach to cope with non-synchronicity is the following. First, two regularly spaced time series are
generated by interpolating the observed non-synchronous data. Then the realized covariance estimator is computed
for the interpolated time series. However, it is known that such a synchronization technique causes estimation bias,
which is often referred to as the Epps effect [11]. Another estimator of the covariance, based on the harmonic analysis,
has been proposed by Malliavin and Mancino [27]. In the case where in addition to the non-synchronicity the data is
contaminated by a microstructure noise, estimators of the covariance have been proposed by Palandri [32], Barndorff-
Nielsen et al. [5] and Zhang [44]. A detailed account on covariance estimation for non-synchronous data can be found
in [19] and [44].

In order to present the framework and to describe our contributions, we need some notation. Let X = (X1,X2) be
a two-dimensional diffusion process given by

dXt = β t dt + diag(σ t )dBt , (1)

where B = ((B1,t ,B2,t )
T, t ≥ 0) is a two-dimensional Gaussian process with independent increments, zero mean and

covariance matrix

E[Bt · BT
t ] =

(
t

∫ t

0 ρs ds∫ t

0 ρs ds t

)
∀t ≥ 0.

In (1), β = (β1, β2)
T is a progressively measurable process, σ = (σ1, σ2)

T is a deterministic function and diag(σ )

stands for the diagonal matrix having σi as ith diagonal entry, i = 1,2. In what follows, we restrict our attention to
the case when σ1, σ2 and ρ are deterministic functions; the functions σi , i = 1,2, take positive values while ρ takes
values in the interval [−1,1]. Note that the marginal processes B1 and B2 are Brownian motions (BM). Moreover,

we can define a process B∗
t such that (B1,t ,B

∗
t )t≥0 is a two-dimensional BM and dB2,t = ρt dB1,t +

√
1 − ρ2

t dB∗
t for

every t ≥ 0.
We will assume that the processes X1 and X2 are observed respectively at the time instants 0 = S0 < S1 < · · · <

SN1 = T and 0 = T 0 < · · · < T N2 = T . Let us denote I i = (Si−1, Si] and J j = (T j−1, T j ]. The families Π1 =
{I i, i = 1, . . . ,N1} and Π2 = {J j , j = 1, . . . ,N2} are partitions of the interval [0, T ]. We will also use the notation
�iX1 = X1,Si − X1,Si−1 and �jX2 = X2,T j − X2,T j−1 .

In this paper, we are concerned with the problem of estimating the parameter

θ =
∫ T

0
ρtσ1,t σ2,t dt = 〈X1,X2〉T

based on the observations (X1,Si ,X2,T j , i = 0, . . . ,N1, j = 0, . . . ,N2). The parameter θ represents the covariance
between the martingale parts of X1 and X2. Therefore, it can be used to evaluate the correlation between the two BMs
B1 and B2.

If the processes X1 and X2 are synchronously observed, the sum of cross products
∑N1

i=1 �iX1 · �iX2 is a natural
estimator of θ . Indeed, it converges in probability to θ when the maximum lag of the sampling times tends to 0
in probability. In the field of statistical inference for stochastic processes, this fact has been applied to estimating
the volatility and the covariation between semimartingales. The asymptotic distributions are well investigated; see
Dacunha-Castelle and Florens-Zmirou [10], Florens-Zmirou [12], Prakasa Rao [33,34], Yoshida [42], Genon-Catalot
and Jacod [14], Kessler [25] and Mykland and Zhang [30].

An estimator of θ , which is unbiased when the drift β is identically zero, has been proposed in [18]. Henceforth
called HY-estimator, it is defined as follows:

θ̂ =
N1∑
i=1

N2∑
j=1

�iX1 · �jX2 · 1
(
I i ∩ J j �= ∅

)
. (2)

It is established in [18] that under mild assumptions, θ̂ is consistent as the maximum lag of the sampling times tends
to 0 in probability. Kusuoka and Hayashi [17] extended the consistency result to a more general sampling scheme.
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Asymptotic normality of the HY-estimator was proved in Hayashi and Yoshida [20] under the assumption that the
sampling times are independent of the process X. For related literature, see Hoshikawa et al. [22], Griffin and Oomen
[15], Robert and Rosenbaum [35] and Voev and Lunde [41]. The general case of a sampling scheme depending on the
process X has been studied in Hayashi and Yoshida [19,21], where a stochastic analytic proof of the asymptotic mixed
normality of the HY-estimator is presented. An estimator for the variance of the HY-estimator under the assumption
that the observed process X has no drift has been recently proposed by Mykland [29].

In the present work, the main emphasis is put on the higher-order asymptotic behavior of the HY-estimator. Note
that the theory of asymptotic expansions is one of chapters of statistics that received a revival of interest owing to its
usefulness for exploring properties of bootstrap-based statistical methods. For a comprehensive introduction to this
subject we refer the reader to Hall [16]. Results on asymptotic expansions in other contexts can be found in Bose [8],
Mykland [28], Koul and Surgailis [24], Bertail and Clémençon [7], Zhang et al. [45], Fukasawa [13] and the references
therein.

Section 3 contains an asymptotic expansion of the distribution of the HY-estimator. As a first step for deriving
asymptotic expansions for the distribution of the HY-estimator, we give in Section 3.2 a representation of the cumu-
lants of θ̂ as functionals of the sampling times, and obtain asymptotic estimates for them. This is used to derive a
second-order asymptotic expansion of the characteristic function of the estimator while the asymptotic normality is
also proved as an application of those estimates.

The application of these results in the setup of Poisson sampling schemes is presented in Section 4. We assume that
the Poisson processes generating the sampling times have constant intensities np1 and np2, where n is a parameter
guaranteeing the high-frequency of the observations (n → ∞). This setup has the advantage of making it possible
to compute all the quantities involved in the asymptotic expansion. We show that the residual term in the proposed
asymptotic expansion of the distribution of

√
n(θ̂n − θ) behaves nearly like n−1, as n goes to infinity.

When there are (possibly random) drift terms in the stochastic differential equation of Xt , some additional terms
appear in the asymptotic expansion. In order to identify these terms, we derive in Section 5 a stochastic decomposition
of the HY-estimator and explore the asymptotic behavior of the variables appearing in the second-order terms. Since
the asymptotics we get is non-Gaussian, the classical techniques leading to Edgeworth expansions cannot be used.
Instead, our arguments rely on the limit theory for semimartingales.

The asymptotic expansion of the distribution of the HY-estimator is carried out in Section 6 using a perturbation
method. We apply the Malliavin calculus first to ensure the regularity of the distribution of the principal part – a
quadratic form of Gaussian random variables – and then to extend this property to the model under the perturbation.
To enhance the legibility, we postpone the most technical proofs to the last three sections.

2. Elementary properties of θ̂

As noticed by Mykland [29], the estimator θ̂ is the Maximum Likelihood Estimator (MLE) of θ . Let us present here
some computations that not only show that θ̂ is the MLE of θ , but also give some interesting insight concerning the
efficiency properties of the HY-estimator θ̂ . Let us deal with a slightly more general setup. Assume that ξ ∈ R

N is a
random vector having centered Gaussian distribution with unknown covariance matrix Σ . The entries of the matrix
Σ are σ	,	′ = E[ξ	ξ	′ ] for 	, 	′ = 1, . . . ,N . We want to estimate a linear combination

θ =
N∑

	,	′=1

a	,	′σ	,	′,

where a	,	′ ∈ R, 	, 	′ = 1, . . . ,N , are some known numbers verifying a	,	′ = a	′,	.
In order to use results on the exponential family, it is convenient to consider the parametrization by the entries of

the inverse, denoted by V = Σ−1, of the covariance matrix Σ . Set p = (N2 + N)/2 and write

V =

⎛
⎜⎜⎝

v1 v2 . . . vN

v2 vN+1 . . . v2N−1
...

...
. . .

...

vN v2N−1 . . . vp

⎞
⎟⎟⎠ .
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The log-likelihood function can now be written as follows:

	(V ) = 1

2
log |V | − 1

2

p∑
k=1

vkTk(ξ ), (3)

where |V | denotes the determinant of the matrix V and T(ξ) = (T1(ξ),T2(ξ), . . .) is defined by

T1(ξ) = ξ2
1 , T2(ξ) = 2ξ1ξ2, T3(ξ ) = 2ξ1ξ3, . . . , Tp(ξ) = ξ2

N.

It follows from (3) that the distribution PV of the Gaussian vector ξ ∼ NN(0,V −1) belongs to the (simple) exponential
family. This implies that the statistic T(ξ) is the MLE of the parameter τ = E[T(ξ )] = (σ11,2σ12, . . . , σNN)T. Hence,
the MLE of θ =∑	,	′ a	,	′σ	,	′ is θ̂ =∑	,	′ a	,	′ξ	ξ	′ . It is easily seen that this estimator is unbiased. Furthermore,

since T(ξ) is a complete sufficient statistic, the MLE θ̂ =∑	,	′ a	,	′ξ	ξ	′ is the best unbiased estimator of θ in the

sense that any other unbiased estimator will have a variance at least as large as that of θ̂ .
We can now return to our model. The vector

ξ = (�1X1, . . . ,�N1X1,�1X2, . . . ,�N2X2)
T

is drawn from an N = N1 + N2 dimensional centered Gaussian distribution. In addition, the parameter θ =
Cov(X1,T ,X2,T ) can be represented in the form

∑
	,	′ a	,	′σ	,	′ with

a	,	′ = 1

2
1
(
	 ≤ N1, 	

′ > N1, I
	 ∩ J 	′−N1 �= ∅

)
for every 	 ≤ 	′ and a	,	′ = a	′,	 for 	 > 	′. Therefore, the arguments presented above yield the following result.

Proposition 1. The estimator θ̂ defined by (2) is the MLE of θ . Moreover, it is the estimator having the smallest
quadratic risk among all unbiased estimators of θ .

This proposition advocates for using the HY-estimator in the case where β ≡ 0. If the latter condition is not satisfied,
θ̂ is not necessarily unbiased, but under very mild assumptions it is consistent [18] and asymptotically normal [20] as
the maximum lag of the sampling times tends to 0. This explains the popularity of the HY-estimator motivating our
interest in its second-order asymptotic expansion. At a heuristical level, the construction of the HY-estimator can be
derived from the decomposition θ =∑i,j 1(I i ∩J j �= ∅)

∫
I i∩J j σ1,t σ2,t ρt dt . Indeed, each term of that decomposition

is nearly equal to the covariance of the increments �iX1 and �jX2, since the martingale part of a small increment of a
semi-martingale dominates the increment of the bounded-variation part. Hence, if I i and J j are small, it is reasonable
to estimate

∫
I i∩J j σ1,t σ2,t ρt dt by the product �iX1 · �jX2 and, therefore, to estimate θ by the HY-estimator θ̂ .

3. Asymptotic expansion of the distribution in Gaussian setup

3.1. Notation and main results

In this section, we will derive the second-order asymptotic expansion of the distribution of b
−1/2
n (θ̂n − θ), where bn is

a suitably chosen normalization factor, for the model (1) without drifts. We will treat a model with drifts in Section 5,
where we will resort to the Malliavin calculus for dealing with general non-linear Wiener functionals.

Given positive numbers M and γ , let E (M,γ ) denote the set of measurable functions f : R → R satisfying
|f (x)| ≤ M(1 + |x|γ ) for all x ∈ R. For positive numbers C, η, r0 and c∗ we set

E 0 = E 0(C, η, r0, c
∗)= {f :

∫
R

ω̄f (z, r)φ
(
z; c∗)dz ≤ Crη,∀r ≤ r0

}
,

where

ω̄f (z, r) = sup
x:|x|≤r

∣∣f (z + x) − f (z)
∣∣
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and φ(z;Σ) is the density of the centered normal distribution with variance Σ . Note that this class is large enough
to contain most functions that are encountered in practice. In particular, all functions satisfying the generalized
Hölder condition |f (z + x) − f (z)| ≤ F(z)|x|η with some function F such that

∫
F(z)φ(z; c∗)dz ≤ C belong

to E 0(C, η,∞, c∗). It is also easy to check that the set of all indicator functions of intervals of R is included in
E 0(

√
2πc∗,1,∞, c∗) for any c∗ > 0.

Our aim is now to get uniformly in f ∈ E ∗ an asymptotic expansion for the sequence E[f (b
−1/2
n (θ̂n − θ))] with

E ∗ = E (M,γ ) ∩ E 0(C, η, r0, c
∗). To this end, define hr(z;Σ) as the r th Hermite polynomial given by

hr(z;Σ) = (−1)rφ(z;Σ)−1 ∂r
z φ(z;Σ) ∀z ∈ R.

In particular, h2(z;Σ) = (z2 − Σ)/Σ2 and h3(z;Σ) = (z3 − 3Σz)/Σ3. Along with the Hermite polynomials, it
is customary to express the second-order asymptotic expansion of a distribution in terms of the first-order and the
second-order cumulants. To define this quantities in the present framework, let us denote, for any Borel set S ⊂ R,

v(S) =
∫

S

ρtσ1,t σ2,t dt, v1(S) =
∫

S

σ 2
1,t dt, v2(S) =

∫
S

σ 2
2,t dt, (4)

and introduce

μ2 = 1

2

{∑
I,J

v1(I )v2(J )KIJ +
∑

I∈Π1

v(I )2 +
∑

J∈Π2

v(J )2 −
∑
I,J

v(I ∩ J )2
}
, (5)

μ3 = 1

4

{∑
I∈Π1

v(I )3 +
∑

J∈Π2

v(J )3 + 2
∑
I,J

v(I ∩ J )3 + 3
∑
I,J

v1(I )v2(J )v(I ∪ J )KIJ

− 3
∑
I,J

[
v(I ∩ J )2(v(I ) + v(J )

)− v(I ∩ J )v(I )v(J )
]}

, (6)

where KIJ = 1(I ∩J �= ∅) and
∑

I,J =∑I∈Π1
∑

J∈Π2 . Since we are dealing with the asymptotics of high frequency

data, we will assume that all the intervals I i = I i
n and J j = J

j
n depend on some parameter n – representing the fre-

quency of the sampling – that is large. To make the dependence on n explicit, we will write μ2,n and μ3,n instead of μ2

and μ3. Furthermore, as the time interval [0, T ] is fixed, the maximal sampling step rn = [(maxi |I i
n|) ∨ (maxj |J j

n |)]
is assumed to tend to zero as n → ∞. Using this notation, we define

λ̄2,n = 2b−1
n μ2,n and λ̄3,n = 8b−2

n μ3,n (7)

for some deterministic sequence bn, tending to zero as n → ∞. To some extent, one can think of bn as the rate of
convergence of μ2,n to zero. This point will become clearer in Section 4, where the concrete example of the Poisson
sampling scheme is analyzed.

We introduce a σ [Π ]-dependent random signed-measure Ψ Π
n on R by the density

p3,n(z) = φ(z; λ̄2,n)

[
1 + b

1/2
n

6
λ̄3,nh3(z; λ̄2,n)

]
.

It is not hard to check that the Fourier transform of Ψ Π
n is given by

Ψ̂ Π
n (u) = e−(1/2)λ̄2,nu2

[
1 + b

1/2
n

6
λ̄3,n(iu)3

]
.

In the case where no assumption on the convergence of μ2,n is made, the measure Ψ Π
n will serve as the second-order

approximation to the distribution of Xn = b
−1/2
n (θ̂n − θ). However, for many sampling schemes one can prove the

convergence of λ̄2,n to some constant c, implying that the estimator θ̂n is asymptotically normal with asymptotic
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variance c. It is therefore natural to address the issue of approximating the distribution of Xn by a measure similar to
Ψ Π

n but based on the Gaussian density with variance c. To this end, we define the signed measure Ψ̃ Π
n on R by the

density

p̃3,n(z) = φ(z; c)
[

1 + 1

2
(λ̄2,n − c)h2(z; c) + b

1/2
n

6
λ̄3,nh3(z; c)

]
.

The following result, the proof of which is deferred to Section 7, asserts that p3,n and p̃3,n are good approximations
to the density of (θ̂n − θ)/

√
bn.

Theorem 1. Let M,γ,η,C, r0, c
∗ > 0 be the parameters describing the set of functions of interest. For a ∈ ( 3

4 ,1) and
c, c0, c1 ∈ (0, c∗) set

Pn(c0, c1, a) = {c0 < λ̄2,n < c1, rn ≤ ba
n

}
,

An(a) = {(λ̄2,n − c)2 ≤ b2a−1
n , rn ≤ ba

n

}
,

where rn is the maximal lag of the sampling times and λ̄2,n = 2b−1
n μ2,n. Then, there exists a sequence εn =

εn(M,γ,η,C, r0, a, c0, c1) such that εn = O(b2a−1
n ) and the inequalities

sup
f ∈E (M,γ )∩E 0(C,η,r0,c

∗)

∣∣EΠ
[
f (Xn)

]− Ψ Π
n [f ]∣∣≤ εn ∀Πn ∈ Pn(c0, c1, a), (8)

sup
f ∈E (M,γ )∩E 0(C,η,r0,c

∗)

∣∣EΠ
[
f (Xn)

]− Ψ̃ Π
n [f ]∣∣≤ εn ∀Πn ∈ An(a), (9)

hold true, where Xn = b
−1/2
n (θ̂n − θ).

Remark 1. The approximating measure Ψ Π
n provided by Theorem 1 contains the Gaussian density with variance

λ̄2,n, which depends on n. One can easily deduce from that result that the distribution of (bnλ̄2,n)
−1/2(θ̂n − θ) can be

approximated by the measure

[
1 +

√
bnλ̄3,n

6

(
z3 − 3

λ̄2,n

z

)]
φ(z;1)dz.

The following result is an immediate consequence of (9) and provides an unconditional asymptotic expansion for
the distribution of Xn = b

−1/2
n (θ̂n − θ).

Theorem 2. Under the notation of Theorem 1, if P(An(a)c) = o(b
p
n ) for every p > 1, and E[λ̄2,n − c] = O(b2a−1

n ),
then

sup
f ∈E (M,γ )∩E 0(C,η,r0,c

∗)

∣∣∣∣E[f (Xn)
]− ∫

R

f (z)p∗
n(z)dz

∣∣∣∣= O
(
b2a−1
n

)
, (10)

where p∗
n(z) = φ(z; c)[1 + b

1/2
n

6 E[λ̄3,n]h3(z; c)]. Moreover, if supn∈N E[λ̄3,n] < ∞, then relation (10) holds with p∗
n

replaced by

p+
n (z) = max(0,p∗

n(z))∫
R

max(0,p∗
n(u))du

,

which is a probability density.
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3.2. Gaussian analysis and expansion of the characteristic function

The goal of this section is to prepare the ground for the proof of Theorem 1. To this end, we present in Section 3.2.1
general results on the characteristic function of a random variable that can be written as a quadratic functional of
a standard Gaussian vector. As usual, this characteristic function involves the cumulants that take a simplified form
in the context of the HY-estimator. Section 3.2.2 is devoted to proving that the second and the third cumulants for
the HY-estimator can be computed using formulae (5) and (6). These results lead to a second-order expansion of the
characteristic function of the HY-estimator, which is rigorously stated and proved in Section 3.2.3. Finally, the proof
of Theorem 1 is presented in Section 3.3.

3.2.1. General Gaussian setup
In order to determine the asymptotic expansion of the distribution of θ̂ , we start with expanding its characteristic
function. It will be useful for our purposes to consider the more general setup defined via Gaussian vector ξ and the
matrix A = (a	,	′)N

	,	′=1, see Section 2.
Recall that

θ̂ = ξTAξ and ξ ∼ NN(0,Σ).

In other terms, θ̂ is a quadratic form of a centered Gaussian vector. The aim of the present subsection is twofold. Firstly,
we compute the cumulants of any quadratic form Q of a Gaussian vector ξ as functions of the matrix associated to
the quadratic form Q and the covariance matrix of ξ . Among other things, this computation allows us to give a simple
condition implying the weak convergence of a series of quadratic forms of Gaussian vectors. The second goal of the
present subsection is to show that the tails of the characteristic function of a quadratic form of a Gaussian vector have
at least polynomial decay. To achieve this second goal, we establish an explicit upper bound for the characteristic
function of interest. It should be pointed out that most results and conditions are stated in terms of the spectral
characteristics of the matrix Σ1/2AΣ1/2.

Since A is a symmetric matrix, the N -by-N matrix Σ1/2AΣ1/2 is symmetric and therefore diagonalizable. Let
Λ and U be respectively the N -by-N diagonal and orthogonal matrices such that Σ1/2AΣ1/2 = UTΛU . Let ζ be a
Gaussian NN(0, IN) vector such that ξ = Σ1/2 · UTζ . Such a vector exists always and it is unique if Σ is invertible.
In this notation, we have

θ̂ = ζTΛζ =
N∑

	=1

λ	ζ
2
	 ,

where λ1, . . . , λN are the eigenvalues of the matrix Σ1/2AΣ1/2 and ζ1, . . . , ζN are independent Gaussian random
variables. This implies that ζ 2

	 ’s are independent and distributed according to the χ2
1 distribution. Hence E[eiuζ 2

	 ] =
(1 − 2iu)−1/2 and

ϕ
θ̂
(u) := E

[
eiuθ̂
]= N∏

	=1

(1 − 2iλ	u)−1/2.

By taking the logarithm and using its Taylor series we get

logϕ
θ̂
(u) = −1

2

N∑
	=1

log(1 − 2iλ	u) = 1

2

N∑
	=1

∞∑
k=1

(2iλ	u)k

k
,

as soon as |u| < 1/(2 max	 |λ	|). Since all the series in the above formula are absolutely convergent, we can change
the order of summation. This yields

logϕ
θ̂
(u) =

∞∑
k=1

(2iu)k

2k
μk, |u| < 1/

(
2‖λ‖∞

)
, (11)
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with ‖λ‖∞ = max	 |λ	| and μk =∑N
	=1 λk

	 = Tr[(Σ1/2AΣ1/2)k] = Tr[(Σ ·A)k], where the last equality follows from
the property Tr(M1 · M2) = Tr(M2 · M1) provided that both products are well defined. Separating the first two terms
in the right-hand side of (11), we arrive at

logϕ
θ̂
(u) = iθu − u2μ2 +

∞∑
k=3

(2iu)k

2k
μk, |u| < 1/

(
2‖λ‖∞

)
. (12)

Let us define ᾱ = ‖λ‖∞/‖λ‖2. Using simple inequalities, one checks that |μk| ≤ ᾱk−2μ
k/2
2 for every k ≥ 3. Therefore,∣∣∣∣∣

∞∑
k=3

(2iu)kμk

2k

∣∣∣∣∣≤ 2μ2|u|2
∑
k≥0

(2|u|ᾱ√
μ2)

k+1

k + 1
= −2μ2|u|2 log

(
1 − 2|u|ᾱ√

μ2
)

for every u satisfying |u| < (2ᾱ
√

μ2)
−1. This leads to the inequality

∣∣∣∣logϕ
θ̂−θ

(
v/
√

2μ2
)+ v2

2

∣∣∣∣≤ −v2 log
(
1 − √

2|v|ᾱ) (13)

for every |v| < (
√

2ᾱ)−1. As a first application of our approach, we obtain a central limit theorem for θ̂n.

Proposition 2. Suppose that the matrices A = An and Σ = Σn as well as the number N = Nn depend on n ∈ N. If
λ1,n, . . . , λN,n, the eigenvalues of Σ

1/2
n AnΣ

1/2
n , satisfy limn→∞ ‖λn‖2∞/μ2,n = 0, then

θ̂n − θn√
2μ2,n

D−→
n→∞ N (0,1),

where θ̂n = ξTAnξ , θn = E[θ̂n] = Tr[ΣnAn], μ2,n = Tr[(ΣnAn)
2] and

D→ stands for the convergence in distribution.

Proof. Set μk,n = Tr[(ΣnAn)
k] = ∑

	 λk
	,n and ηn = (θ̂n − θn)/

√
2μ2,n. The inequality (13) and the condition

limn→∞ ‖λn‖2∞/μ2,n = 0 imply that the characteristic function of ηn converges pointwise to the characteristic func-
tion of a standard Gaussian distribution. This completes the proof of the proposition. �

This result states that the distribution of the estimator θ̂n is well approximated by a Gaussian distribution. In order
to give a more precise sense to this approximation and to obtain more accurate approximations, we focus our attention
on a second-order asymptotic expansion of the distribution of θ̂n. To this end, we prove first that the tails of this
distribution are sufficiently small.

Lemma 1. If for some p ∈ N the inequality ‖λ‖2∞ ≤ μ2/(2p) holds, then for every j ∈ N

∣∣∣∣ dj

duj
E
[
eiu(θ̂−θ)

]∣∣∣∣≤ j !(2N‖λ‖∞ + |θ |)j (p/2)p/4(1 + μ2u
2)−p/4 ∀u ∈ R.

Proof. Thanks to the fact that ζ 2
	 is distributed according to the χ2

1 distribution, one easily checks that |ϕ
θ̂
(u)| =

|∏N
	=1(1 − 2iuλ	)

−1/2| =∏N
	=1(1 + 4u2λ2

	)
−1/4. In view of the assumptions of the lemma, for every i = 1, . . . , p,

there exists an integer 	i verifying μ−1
2

∑	i

	=1 λ2
	 < i/p and μ−1

2

∑	i+1
	=1 λ2

	 ≥ i/p. For this sequence 	i , we get

μ−1
2

∑	i+1
	=	i+1 λ2

	 ≥ (i + 1)/p − 1/(2p) − i/p = 1/(2p) and therefore

N∏
	=1

(
1 + 4u2λ2

	

)−1/4 ≤
p∏

i=1

(
1 + 4u2

	i+1∑
	=	i+1

λ2
	

)−1/4

≤ (p/2)p/4(1 + μ2u
2)−p/4

. (14)
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This gives the desired estimate in the case where j = 0.
For j > 0, the explicit form of ϕ

θ̂
allows one to check that

ϕ
(j)

θ̂
(u) =

∑
j1+···+jN=j

j !
j1! · · · jN !

N∏
	=1

dj	

duj	
(1 − 2iuλ	)

−1/2.

Simple computations yield

∣∣∣∣ dj	

duj	
(1 − 2iuλ	)

−1/2
∣∣∣∣≤
∣∣∣∣ j	!(2iλ	)

j	

(1 − 2iuλ	)j	+1/2

∣∣∣∣≤ j	!‖2λ‖j	∞
(1 + 4u2λ2

	)
1/4

.

Therefore,

∣∣∣∣ dj

duj
ϕ

θ̂
(u)

∣∣∣∣≤ j !(2N‖λ‖∞
)j N∏

	=1

(
1 + 4u2λ2

	

)−1/4

and the desired inequality for θ = 0 follows from (14). For θ different from zero, it suffices to use the relation
|ϕ(j)

θ̂−θ
(u)| ≤∑j

k=0 Ck
j |iθ |k|ϕ(j−k)

θ̂
(u)| and the obtained estimate for |ϕ(j−k)

θ̂
(u)|. �

Remark 2. We will use the result of Lemma 1 in the asymptotic setup described in Proposition 2, essentially for
bounding the tails of the derivatives of the characteristic function ϕ

θ̂−θ
(u) of θ̂ − θ , when the absolute value of u is

larger than Nq0/
√

μ2 for some q0 > 0. As we see later, in the asymptotic setup, the ratio ‖λ‖2∞/μ2 tends to zero under
mild assumptions on the sampling schemes. This will allow us to take the parameter p of Lemma 1 large enough to
guarantee suitable decay properties for the tails of the derivatives of ϕ

θ̂−θ
.

3.2.2. Computation of μk in our setup
We showed in the previous subsection that the asymptotic expansion of the characteristic function of θ̂ involves the
traces of integer powers of the matrix Σ · A. In our setup, both matrices A and Σ have special forms. In particular,
they contain only a small number of non-zero entries and, therefore, the expression of μk takes a simplified form.

Prior to presenting the formula for μk , we need a definition. Let k > 0 be an integer.

Definition 1. We call chain of length k, any vector (i, j) ∈ {1, . . . ,N1}k × {1, . . . ,N2}k such that I ip ∩ J jp �= ∅ and
J jp ∩ I ip+1 �= ∅ for all p ∈ {1, . . . , k} with the convention ik+1 = i1. The set of all chains of length k will be denoted
by Ck .

In the definition of Ck , ip (resp. jp) stands for the pth coordinate of i (resp. j).

Proposition 3. The coefficients μ2 and μ3 can be computed by the formulae

μ2 = 1

2

∑
(i,j)∈C2

2∏
p=1

v
(
I ip ∩ J jp

)+ 1

2

∑
(i,j)∈C1

v1
(
I i
)
v2
(
J j
)
,

μ3 = 1

4

∑
(i,j)∈C3

3∏
p=1

v
(
I ip ∩ J jp

)+ 3

4

∑
(i,j)∈C2

v1
(
I i1
)
v2
(
J j1
)
v
(
I i2 ∩ J j2

)
,

where v, v1 and v2 are defined by (4).
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Proof. We give only the proof of the second formula. The proof of the first formula is analogous but simpler, therefore
it is omitted. Since μ3 = Tr[(Σ · A)3], we have

μ3 =
N∑

	1,...,	6=1

σ	1	2a	2	3σ	3	4a	4	5σ	5	6a	6	1 . (15)

In our setup, the entries of the matrix A are

a	,	′ = 1

2
· 1
(
	 ≤ N1, 	

′ > N1, I
	 ∩ J 	′−N1 �= ∅

)
+ 1

2
· 1
(
	 > N1, 	

′ ≤ N1, I
	′ ∩ J 	−N1 �= ∅

)
, (16)

and those of Σ are

σ	,	′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v
(
I 	 ∩ J 	′−N1

)
if 	 ≤ N1, 	

′ > N1,

v
(
I 	′ ∩ J 	−N1

)
if 	′ ≤ N1, 	 > N1,

v1
(
I 	
)

if 	 = 	′ ≤ N1,
v2
(
J 	−N1

)
if 	 = 	′ > N1,

0 otherwise.

(17)

To compute the sum in the right-hand side of (15), we consider different cases separately.
Case A: 	1 ≤ N1. Our aim now is to compute

μ3,A =
∑

	1≤N1

N∑
	2,...,	6=1

σ	1	2a	2	3σ	3	4a	4	5σ	5	6a	6	1 .

This can be done by considering the following four subcases:

Case A.1: 	1 �= 	2 and 	3 �= 	4, Case A.2: 	1 = 	2 and 	3 = 	4,

Case A.3: 	1 �= 	2 and 	3 = 	4, Case A.4: 	1 = 	2 and 	3 �= 	4.

In the case A.1, in order that the corresponding term in (15) be non-zero, the indices 	i, i ≤ 6, should satisfy
	1 ≤ N1, 	2 > N1, 	3 ≤ N1, 	4 > N1, 	5 ≤ N1 and 	6 > N1. Moreover, if we set i = (	1, 	3, 	5) and j = (	2, 	4, 	6),
then (i, j) should belong to C3. Therefore, σipjp = v(I ip ∩ J jp ) for p = 1,2,3 and

σ	1	2a	2	3σ	3	4a	4	5σ	5	6a	6	1 = 1

8
1
(
(i, j) ∈ C3

) 3∏
p=1

v
(
I ip ∩ J jp

)
. (18)

In the case A.2, in order to get non-zero term in (15), the indices 	i, i ≤ 6, should satisfy 	1 = 	2 ≤ N1, 	3 = 	4 >

N1, 	5 ≤ N1 and 	6 > N1. Moreover, if we set i = (	1, 	5) and j = (	3, 	6), then (i, j) should belong to C2. Therefore,

σ	1	2a	2	3σ	3	4a	4	5σ	5	6a	6	1 = σi1i1ai1j1σj1j1aj1i2σi2j2aj2i1

= 1

8
1
(
(i, j) ∈ C2

)
v1
(
I i1
)
v2
(
J j1
)
v
(
I i2 ∩ J j2

)
. (19)

In the cases A.3 and A.4, it is easily seen that the corresponding summand in the right-hand side of (15) is �= 0
only if 	5 = 	6. Using the symmetry of a		′ ’s and σ		′ ’s, we infer that the results in these cases are equal and equal to
the result of the case A.2.
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Case B: 	1 > N1. We want to evaluate the term

μ3,B =
∑

	1>N1

N∑
	2,...,	6=1

σ	1	2a	2	3σ	3	4a	4	5σ	5	6a	6	1 .

In view of the symmetry of matrices A and Σ , we can rewrite μ3,B in the form

μ3,B =
∑

	1>N1

N∑
	2,...,	6=1

σ	6	5a	5	4σ	4	3a	3	2σ	2	1a	1	6 .

Since a	1	6 �= 0 and 	1 > N1 entails 	6 ≤ N1, and a	1	6 �= 0 and 	6 ≤ N1 entails 	1 > N1, we get μ3,B =∑
	6≤N1

∑N
	1,	2,...,	5=1 σ	6	5a	5	4σ	4	3a	3	2σ	2	1a	1	6 . By reordering the indices we get μ3,B = μ3,A and the asser-

tion of the proposition follows. �

Corollary 1. The terms μ2 and μ3 may alternatively be computed by formulae (5) and (6).

Proof. Let us prove the second equality. Let us denote by T1 and T2, respectively, the first and the second sums in the
expression of μ3 given in Proposition 3. In this notation, 4μ3 = T1 + 3T2.

On the one hand, (i, j) ∈ C2 implies that both I i1 and I i2 have non-empty intersections with each of J j1 and J j2 .
This obviously implies that i1 = i2 or j1 = j2. Therefore,

T2 =
∑

(i,j)∈C2

v1
(
I i1
)
v2
(
J j1
)
v
(
I i2 ∩ J j2

)

=
∑

I,J,J ′
v1(I )v2(J )v

(
I ∩ J ′)KIJ +

∑
I,I ′,J

v1(I )v2(J )v
(
I ′ ∩ J

)
KIJ −

∑
I,J

v1(I )v2(J )v(I ∩ J ),

the last term resulting from the fact that the terms with i1 = i2 and j1 = j2 are present both in the first and in
the second sums of the right-hand side. Since the set of intervals Π2 = {J j } forms a partition of [0, T ], we have∑

J ′ v(I ∩ J ′) = v(I ). Similarly,
∑

I ′ v(I ′ ∩ J ) = v(J ). Therefore

T2 =
∑
I,J

v1(I )v2(J )
[(

v(I ) + v(J )
)
KIJ − v(I ∩ J )

]= v(I ∪ J )KIJ . (20)

To compute the term T1, we decompose the sum
∑

(i,j)∈C3
into the sum of three terms

T1q =
∑

(i,j)∈C3
#{j1,j2,j3}=q

3∏
p=1

v
(
I ip ∩ J jp

)
, q = 1,2,3.

If q = 1, then J j1 = J j2 = J j3 := J and using the same arguments as for evaluating T2, we get T11 =∑J v(J )3.
If q = 2, then j1 = j2 �= j3 or j1 = j3 �= j2 or j1 �= j2 = j3. Because of the symmetry, it suffices to consider one of
these cases. Let j1 = j2 �= j3 and set J = J j1 and J ′ = J j3 . The relations (i, j) ∈ C3 implies that both J and J ′ have
non-empty intersections with both I i1 and I i3 . Therefore, I i1 = I i3 := I and setting I i2 = I ′ we get

T12 = 3
∑

J �=J ′,I,I ′
v(I ∩ J )v

(
I ′ ∩ J

)
v
(
I ∩ J ′)

= 3
∑

J �=J ′,I
v(I ∩ J )v(J )v

(
I ∩ J ′)

= 3
∑
I,J

v(I ∩ J )v(J )
[
v(I ) − v(I ∩ J )

]
.



Expansion for the HY-estimator 759

In the case when all indices j1, j2 and j3 are different, it is easily seen that (i, j) ∈ C3 entails i1 = i2 = i3. Therefore,

T13 =
∑

I,J,J ′,J ′′
#{J,J ′J ′′}=3

v(I ∩ J )v
(
I ∩ J ′)v(I ∩ J ′′)

=
∑

I,J,J ′,J �=J ′
v(I ∩ J )v

(
I ∩ J ′)[v(I ) − v

(
I ∩ J ′)− v(I ∩ J )

]

=
∑

I,J,J ′,J �=J ′
v(I ∩ J )v

(
I ∩ J ′)v(I ) − 2

∑
I,J �=J ′

v(I ∩ J )2v
(
I ∩ J ′).

Using the identity
∑

J ′:J �=J ′ v(I ∩J ′) = v(I )−v(I ∩J ) we get T13 =∑I v(I )3 −∑I,J v(I ∩J )2[3v(I )−2v(I ∩J )].
Summing up the terms T11, T12, T1,3 and T2 we get equality (6). Equality (5) can be proved along the same lines. �

Remark 3. If the observations are synchronous, that is Π1 = Π2 = Π , then μ2 and μ3 have the following simple
expressions:

2μ2 =
∑
I∈Π

[
v(I )2 + v1(I )v2(I )

]
, 4μ3 =

∑
I∈Π

[
v(I )3 + 3v1(I )v2(I )v(I )

]
.

Lemma 2. Assume that we are given two sequences of partitions Π1
n = {I i

n, i ≤ N1,n} and Π2
n = {J j

n , j ≤ N2,n} of
the interval [0, T ]. Define the matrices An and Σn by (16) and (17). If the functions σ1 and σ2 are bounded on [0, T ]
by some constant σ , then

max
	

λ2
	,n = ∥∥(Σ1/2

n AnΣ
1/2
n

)2∥∥≤ 3σ 4r2
n,

where rn = [(maxi |I i
n|) ∨ (maxj |J j

n |)].

Proof. Let us define a new partition Π̃1
n as follows: I ∈ Π̃1

n if and only if either I ∈ Π1
n and it has non-empty

intersection with two distinct intervals from Π2
n or there is J ∈ Π2

n such that I is the union of all intervals from Π1
n

included in J . The partition Π̃2
n is defined analogously. It is easy to check that the estimator θ̂n based on (Π̃1

n , Π̃2
n) is

equal to the one based on (Π1
n ,Π2

n). It follows that μp,n = μ̃p,n for every p ∈ N. Therefore, the relation max	 λ2
	,n =

limp→∞ μ
1/p

2p,n implies that max	 λ2
	,n = max	 λ̃2

	,n. It is clear that rn = r̃n, but the advantage of working with (Π̃1
n , Π̃2

n)

is that

max
J∈Π̃2

∑
I∈Π̃1

KIJ ≤ 3, max
I∈Π̃1

∑
J∈Π̃2

KIJ ≤ 3. (21)

In the remaining of this proof, without loss of generality we assume that (21) is fulfilled for partitions (Π1,Π2). The
estimate ‖(Σ1/2

n AnΣ
1/2
n )2‖ ≤ ‖Σn‖2‖An‖2 implies that it suffices to estimate ‖An‖ and ‖Σn‖. To bound from above

‖An‖2, we use ‖An‖2 = maxu:|u|=1 |Anu|2 and

|Anu|2 = 1

4

∑
i

(∑
j

KIiJ j uN1+j

)2

+ 1

4

∑
j

(∑
i

KI iJ j ui

)2

.

Applying the Cauchy–Schwarz inequality and changing the order of summation, we get the inequalities
∑

i ×
(
∑

j KIiJ j uN1+j )
2 ≤ 3

4

∑
j u2

N1+j and
∑

j (
∑

i KI iJ j ui)
2 ≤ 3

4

∑
i u

2
i , which imply that ‖An‖2 ≤ 3/4.

On the other hand,

‖Σn‖ = max
u:|u|=1

N∑
	,	′=1

σ	,	′u	u	′ = max
u:|u|=1

(
N∑

	=1

σ	,	u
2
	 + 2

∑
i,j

v
(
I i
n ∩ J

j
n

)
uiuN1+j

)
.
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Since σ	,	′ ’s are given by (17), the first sum in the right-hand side is bounded by σ 2(maxi |I i
n|)∨ (maxj |J j

n |), whereas
the second sum can be bounded using the inequality relating the geometrical and the arithmetical means:

2
∑
i,j

v
(
I i
n ∩ J

j
n

)
uiuN1+j ≤

∑
i,j

v
(
I i
n ∩ J

j
n

)
u2

i +
∑
i,j

v
(
I i
n ∩ J

j
n

)
u2

N1+j

=
∑

i

v
(
I i
n

)
u2

i +
∑
j

v
(
J

j
n

)
u2

N1+j

≤ |u|2σ 2
(

max
i

∣∣I i
n

∣∣)∨
(

max
j

∣∣J j
n

∣∣).
This completes the proof of the lemma. �

As a by-product of the preceding lemma, we give below a simple sufficient condition for the asymptotic normality
of θ̂n.

Corollary 2. In the notation of Lemma 2, if

lim
n→∞

r2
n

μ2,n

= 0, (22)

then (θ̂n − θ)/
√

2μ2,n converges in distribution to a standard Gaussian random variable.

Proof. According to Proposition 2, it is enough to show that limn→∞ ‖(Σ1/2
n AnΣ

1/2
n )2‖

Tr[(ΣnAn)2] = 0. This convergence follows
from assumption (22) and Lemma 2. �

3.2.3. Expansion of the characteristic function for random sampling schemes
We assume now that the partitions Π1

n and Π2
n are random and independent of {X1,t − X1,0,X2,t − X2,0}t∈[0,T ]. We

denote by EΠ the conditional expectation given Πn, where Πn = (Π1
n ,Π2

n). Since in this setup the quantities rn and
μ2,n – introduced in Lemma 2 and in Proposition 2, respectively – are random, Corollary 2 can not be applied directly.
The following result gives a sufficient condition for the convergence in distribution of Corollary 2 to hold in the setup
of random sampling scheme.

Proposition 4. Let rn be defined as in Lemma 2. If r2
n/μ2,n tends to zero in probability as n → ∞, then (θ̂n −

θn)/
√

2μ2,n converges in distribution to a standard normal random variable. If, moreover, 2μ2,n/bn
P−→

n→∞ c for some

deterministic sequence {bn} and some positive constant c, then (θ̂n − θ)/
√

bn
D−→

n→∞N(0, c).

Proof. Denote σ [Π ] = σ [Πn,n ∈ N]. Our aim is to show that for every u ∈ R the convergence E[exp(iu(θ̂n −
θn)/

√
2μ2,n)] −→

n→∞ E[e−(1/2)u2 ] holds. Let us denote an = E[exp(iu(θ̂n − θn)/
√

2μ2,n)] and a = E[e−(1/2)u2 ]. To

show the desired convergence, it suffices to check that every convergent subsequence of {an} converges to a. For
checking this property, one can simply remark that for any subsequence {ank

}, there is a sub-subsequence {nkj
} such

that r2
nkj

/μ2,nkj
converges almost surely. Then, Corollary 2 implies that ankj

converges to a as j → ∞. Therefore, a

is also the limit of the sequence {ank
} and the first assertion of the proposition follows. The second assertion follows

from the first one by a simple application of the Slutsky lemma. �

From now on, we assume that the assumptions of Proposition 4 are fulfilled and aim at finding the asymptotic
expansion of the distribution of the random variable Xn = (θ̂n − θ)/

√
bn as n → ∞. The first step in deriving the

asymptotic expansion of a distribution is the expansion of the characteristic function. As usual, the desired expansion
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involves the r th conditional cumulant of Xn given Π , henceforth denoted by κr [Xn]. Let λ̄r,n be the normalized r th
conditional cumulant of Xn:

λ̄r,n = b
−(r−2)/2
n κr [Xn] = 2r−1(r − 1)!b−r+1

n μr,n.

Note that this notation is consistent with those introduced in (7).

Lemma 3. For every positive integer r , we have

|μr,n| ≤
∑

	

|λ	,n|r ≤ max
	

|λ	|r−2μ2,n ≤ (αn

√
bn

)r−2
μ2,n, (23)

where αn = √
3σ 2rnb

−1/2
n . In terms of the conditional cumulants, this is equivalent to |κr [Xn]| ≤ crα

r−2
n λ̄2,n, where

cr = 2r−2(r − 1)!.

Proof. This is an immediate consequence of Lemma 2. �

Proposition 5. Let the sequence {bn} be as in Proposition 4. For some fixed c1 > 0, let

Pn(δ) = {Π : αn < δ, λ̄2,n < c1} ∀δ > 0.

Then, for every j ∈ Z+, there exist some positive constants C and q such that

dj

duj

(
EΠ
[
eiuXn

])= dj

duj

{
e−λ̄2,nu2/2

(
1 + (iu)3b

1/2
n

6
λ̄3,n

)}
+ O

(
δ2)(1 + |u|q)e−(λ̄2,n/2)u2

for every u satisfying |u| ≤ Cδ−1/3 and for every Πn ∈ Pn(δ). In this formula, O(δp) stands for a random variable
depending only on partitions Πn = (Π1

n ,Π2
n) and satisfying the condition lim supδ→0 supn supΠn∈Pn(δ) |O(δp)|δ−p <

∞.

Proof. Let us define a0(u) = −λ̄2,nu
2/2, a1,n(u) = (iu)3b

1/2
n λ̄3,n

6 and rn(u) =∑∞
k=4

(2iu)kμk,n

2kb
k/2
n

. Using (11) and the fact

that in our setup max	 |λ	| is bounded by
√

3σ 2rn, we get

EΠ
[
eiuXn

]= exp

{ ∞∑
k=2

(2iu)kμk,n

2kb
k/2
n

}
= exp

{
− λ̄2,nu

2

2
+ (iu)3b

1/2
n λ̄3,n

6
+ rn(u)

}

for every u ∈ R such that |u| < 1/(2δ). One easily checks that

EΠ
[
eiuXn

]− ea0(u)
(
1 + a1,n(u)

)= ea0(u)
(
a1,n(u) + rn(u)

)2 ∫ 1

0

∫ 1

0
vetv(a1,n(u)+rn(u)) dt dv + rn(u)ea0(u). (24)

Inequalities (23) imply that there exists some constant C > 0 such that for every 	 ≤ j and for every Πn ∈ Pn(δ), it
holds that∣∣∣∣d	rn(u)

du	

∣∣∣∣≤ C
(1 + u4)α2

nμ2,n

bn

≤ C1
(
1 + u4)δ2,

as soon as |u| ≤ 1/(4αn). Similarly, for every 	 ∈ N,

∣∣∣∣ d	

du	
a1,n(u)

∣∣∣∣≤ C2
(
1 + |u|3)αnμ2,n

3bn

≤ C2
(
1 + |u|3)δ, if Πn ∈ Pn.
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These inequalities in conjunction with Eq. (24) yield the estimate

dj

duj

(
EΠ
[
eiuXn

]− ea0(u)
(
1 + a1,n(u)

))= O
(
δ2)(1 + |u|q)ea0(u).

This completes the proof of the proposition. �

Remark 4. As usual in asymptotic expansions, the coefficient of the second-order term (i.e., the coefficient of
(iu)3b

1/2
n ) in the obtained decomposition is given by the normalized third cumulant divided by 6. It also admits the

following representations:

b
1/2
n

6
λ̄3,n = 1

6
κ3[Xn] = 4μ3,n

3bn

√
bn

,

where μ3,n is defined by (6).

3.3. Proof of Theorem 1

Let us start by proving relation (8). Let h(x) = 1 + |x|γ . Let K be a probability density on R such that the Fourier
transform K̂ of K is compactly supported,

∫
R

|x|γ+2 K(x)dx < ∞ and
∫ 1
−1 K(x)dx ≥ 2/3. Let K > 0. For ε > 0,

define the measure Kε by Kε(x) = K(ε−1x) for all x ∈ R. Using the modified version of the Sweeting lemma [40]
stated in Babu and Singh [4], Lemma 1, we get∣∣EΠ

[
f (Xn)

]− Ψ Π
n [f ]∣∣≤ 9γ M

(
P Xn|Π + ∣∣Ψ Π

n

∣∣)[h](A0 + A1 + A2) + A3, (25)

where

A0 =
∫

R

h(x)
∣∣KbK

n
∗ (P Xn|Π − Ψ Π

n

)∣∣(dx), A1 = bK
n

∫
R

|x|γ+2 K(x)dx,

A2 = 21−b
−K/4
n , A3 = sup

|x|≤bK
n

∫
R

ωf

(
x − y,2bK

n

)∣∣Ψ Π
n

∣∣(dy).

As we already mentioned, the Rosenthal inequality yields that P Xn|Π [h] = 1 + EΠ [|Xn|γ ] is bounded uniformly in
n. Furthermore, it is obvious that the term |Ψ Π

n |[h] is bounded uniformly in n.

If n is sufficiently large, [x − y − 2bK
n , x − y + 2bK

n ] ⊂ [−y − 3b
K/4
n ,−y + 3b

K/4
n ] and therefore

A3 ≤ 2
∫

R

ωf

(−y,3b
K/4
n

)∣∣Ψ Π
n

∣∣(dy) ≤ C◦
∫

R

ωf

(
y,3b

K/4
n

)
φ
(
y; c∗)dy ≤ Cb

Kη/4
n .

On the other hand, A0 admits the estimate

A0 ≤
2+γ∑
α=0

∫
R

∣∣∂α
u

[(
ϕΠ

Xn
(u) − Ψ̂ Π

n (u)
)

K̂
(
bK
n u
)]∣∣du,

where ϕΠ
Xn

(u) = EΠ [eiuXn]. Let δn = b
a−1/2
n . By virtue of Proposition 5 and Lemma 1, we have

∫
R

∣∣∂α
u

[(
ϕΠ

Xn
(u) − Ψ̂ Π

n (u)
)

K̂
(
bK
n u
)]∣∣du

≤
∫

u:|u|≤Cδ
−1/3
n

∣∣∂α
u

[(
ϕΠ

Xn
(u) − Ψ̂ Π

n (u)
)

K̂
(
bK
n u
)]∣∣du +

∫
u:|u|>Cδ

−1/3
n

∣∣∂α
u

[(
ϕΠ

Xn
(u) − Ψ̂ Π

n (u)
)

K̂
(
bK
n u
)]∣∣du
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≤
∫

u:|u|≤Cδ
−1/3
n

O
(
δ2
n

)(
1 + |u|q)e−μ2,nu2/2 du +

∫
u:|u|>Cδ

−1/3
n

C2

1 + |u|L du +
2+γ∑
α′=0

∫
u:|u|>Cδ

−1/3
n

∣∣∂α′
u Ψ̂ Π

n (u)
∣∣du

≤ C3
[

O
(
δ2
n

)+ δ
(L−1)/3
n

]≤ C4δ
2
n,

where L can be chosen as large as we need, therefore A0 ≤ C5δ
2
n. Combining all these estimates, we get

∣∣EΠ
[
f (Xn)

]− Ψ Π
n [f ]∣∣≤ C

(
b2a−1
n + bK

n + 2−b
−K/4
n + b

Kη/4
n

)
.

Choosing K > max(2a − 1,4(2a − 1)/η), we get the relation stated in (8).
To prove (9), we notice that |λ̄3,n(λ̄2,n − c)| = O(b−1

n rn × b
a−1/2
n ) = O(b

2a−3/2
n ) = o(1) uniformly on the event

An. Expanding φ(z; λ̄2,n) in Ψ Π
n around c we get the desired result.

4. Poisson sampling scheme

As an application of previous results let us consider the case when the partitions Π1
n and Π2

n are generated by Poisson
point processes. Let P i,n = (P i,n

t , t ≥ 0), i = 1,2, be two independent homogeneous Poisson processes with inten-
sities npi , i = 1,2. Moreover, assume that these processes are independent of B. Let the sampling times S1, . . . , SN1

and T 1, . . . , T N2 be the time instants corresponding to the jumps of P1,n and P2,n occurred before the instant T .
Note that Si ’s and T j ’s depend also on n. However, for simplicity of exposition this dependence will not be reflected
in our notation.

Prior to stating the main result of this section, let us recall several notation. We denote by h(t) the function σ1,t σ2,t ρt

and by x+ the positive part of a real x. Finally, we write g1(z) ∝ g2(z) if for some Cg ∈ R the equality g1(z) = Cgg2(z)

holds for every z.

Theorem 3. Let the sampling scheme be generated by two independent Poisson processes with intensities np1 and
np2, independent of the driving BM B. If the functions σ1, σ2 and ρ are Lipschitz continuous then, for every a ∈ ( 3

4 ,1),
it holds that

sup
f ∈E (M,γ )∩E 0(C,η,r0,c

∗)

∣∣∣∣E[f (√n(θ̂n − θ)
)]− ∫

R

f (z)p◦
n(z)dz

∣∣∣∣= O
(
n1−2a

)
, (26)

where

p◦
n(z) ∝ 1√

2πc

[
1 + 2κ(z3 − 3cz)√

nc3

]
+

e−z2/(2c)

is a probability density with

c =
(

2

p1
+ 2

p2

)∫ T

0
σ 2

1,t σ
2
2,t

(
1 + ρ2

t

)
dt − 2

p1 + p2

∫ T

0
(σ1,t σ2,t ρt )

2 dt,

κ =
(

1

p2
1

+ 1

p2
2

)∫ T

0
h(t)3 dt + 3p2

1 + 2p1p2 + 3p2
2

p2
1p

2
2

∫ T

0
σ 2

1,t σ
2
2,t h(t)dt.

Before proceeding with the proof of this theorem, let us note that it extends the asymptotic normality result proved
in Hayashi and Yoshida [20], providing the second-order term in the asymptotic expansion of the distribution of θ̂n.
Note however that the price to pay for getting this expansion is a slightly stronger assumption on the functions σ1, σ2

and ρ. Indeed, we assume in Theorem 3 that these functions are Lipschitz, while in [20] only the continuity of these
functions was required.
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Remark also that the constant of proportionality in the definition of p◦
n can be replaced by one. Indeed, p◦

n(z) is the
positive part of the function

z �→ 1√
2πc

[
1 + 2κ(z3 − 3cz)√

nc3

]
e−z2/(2c), (27)

whose integral over R is equal to one. Moreover, for some c > 0, the function (27) is positive on the inter-
val [−cn1/6, cn1/6] and its absolute value is bounded by an exponentially decreasing function outside the interval
[−cn1/6, cn1/6]. This implies that the proportionality constant in the definition of p◦

n is 1 + O(e−n1/3/(4c)) and, conse-
quently, its exact value is unimportant.

Proof of Theorem 3. We want to apply Theorem 2. To this end, we have to accomplish the following tasks:

[T1] prove that λ̄2,n = 2nμ2,n is very close to c in expectation and in probability,
[T2] check that the maximal sampling step rn is smaller than ba

n with high probability,
[T3] determine the asymptotic behavior of E[λ̄3,n],

with bn = 1/n and some a < 1. In fact, we will show that any a < 1 can be used.
Concerning the task [T1], it is proved in [20] that 2nμ2,n converges in probability to c. In the present work, we

need a result providing the rate of convergence of 2nμ2,n to c. It is done in the following

Proposition 6. If the functions σ1, σ2 and ρ are Lipschitz continuous, then there exists a constant C > 2 depending
only on p1 and p2 such that, for every x > C logn and for every n ≥ 2, it holds that

P
(

|2nμ2,n − c| > C log3 n

n
+ x√

n

)
≤ Cne−x/C. (28)

Furthermore, E[2nμ2,n] = c + O(n−1 log3 n) as n goes to infinity.

The proof of this proposition is deferred to Section 7.
The task [T2], consisting in bounding the probability of the event rn > ba

n = n−a is done using the following
lemma.

Lemma 4. There exists a constant C depending only on p1 and p2 such that, for every x > 0, the inequality P(nrn >

x) ≤ Cne−x/C holds.

Proof. We start with bounding P(maxI∈Π1
n
n|I | > x). According to the Markov inequality, for every u > 0,

P
(

max
I∈Π1

n

n|I | > x
)

≤ e−uxE
[∑

I∈Π1
n

eun|I |
]
.

The last sum can be bounded by the sum of N1 independent random variables each of which has the same law as euζ/p1 ,
with ζ being exponentially distributed with mean 1. In view of the Wald equation, this yields E[∑I∈Π1

n
eun|I |] =

np1T E[euζ/p1]. Choosing u smaller than p1 and repeating the same arguments for maxJ∈Π2
n
n|J |, we obtain the

desired result. �

Replacing x by n1/2−a in (28) and by n1−a in Lemma 4, we obtain that the probability of the event An(a)c is
exponentially small as n → ∞. Therefore, P(An(a)c) = o(b

p
n ) = o(n−p) for every p > 0. One also deduces from

Proposition 6 that E[λ̄2,n] − c = o(n1−2a) as n → ∞. Thus, it remains to accomplish the task [T3], which is done
using the following proposition, the proof of this proposition is deferred to Section 7.

Proposition 7. Under the assumptions of Theorem 3, it holds that E[μ3,n] = 3
2κn−2 + O(

log3 n

n3 ).

Combining these results, we get the assertion of Theorem 3. �
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5. Stochastic decomposition for θ̂n in a model with drift terms

So far we have considered a Gaussian system (X1,t −X1,0,X2,t −X2,0) as the underlying model and essentially finite-
dimensional Gaussian calculus served as a tool. In this section, we will treat a system that has random drift terms. It
will be seen that the principal part of the estimator is the same as in the case without drifts. Thus, the contribution of
the principal part to the asymptotic expansion of the estimator has already been assessed in the previous section.

Beyond being a useful tool for deriving asymptotic expansions of the distribution of θ̂n, the stochastic decompo-
sition of the HY-estimator that we obtain below bridges the problem of estimating the covariance and that of signal
detection in Gaussian white noise. The latter problem has been extensively studied in the statistical literature and we
believe that the methodology developed for the problem of signal detection may be of interest for our problem.

To state the main result of this section, let us recall that we deal with processes X1 and X2 given by{
dX1,t = β1,t dt + σ1,t dB1,t , t ∈ [0, T ],
dX2,t = β2,t dt + σ2,t dB2,t , t ∈ [0, T ],

where βi,t are progressively measurable processes and assumed to be unknown to the observer. We will assume that
these drift processes admit the following stochastic decompositions:

dβi,t = β
[0]
i,t dt + β

[1]
i1,t dB1,t + β

[1]
i2,t dB2,t , i = 1,2,

where β
[0]
i , β

[1]
ij , i, j = 1,2, are progressively measurable processes with respect to the filtration {σ(Bs , s ≤ t)}t∈[0,T ].

In this section, we will separate the assumptions on the sampling scheme from those on ρ and on the drifts and
volatilities of X1 and X2. For this reason, let us introduce the following measures on ([0, T ]2,B[0,T ]2):

V I
n (·) = b−1

n

∣∣∣∣· ∩
{⋃

I

I × I

}∣∣∣∣, V J
n (·) = b−1

n

∣∣∣∣· ∩
{⋃

J

J × J

}∣∣∣∣,
V I∩J

n (·) = b−1
n

∣∣∣∣· ∩
{⋃

I,J

(I ∩ J ) × (I ∩ J )

}∣∣∣∣,
V I,J

n (·) = b−1
n

∑
I,J

KIJ

∣∣· ∩ (I × J )
∣∣.

Note that these measures depend on the sampling schemes and, therefore, they are random if the sampling schemes
are random. Similarly, let V I,I ′,J

n (·) = b−2
n | · ∩ {⋃J J × I (J ) × I (J )}|, V I,J,J ′

n (·) = b−2
n | · ∩ {⋃I I × J (I) × J (I)}|

and V J (I),I (J ),J∩I
n (·) = b−2

n | · ∩ {⋃I,J J (I ) × I (J ) × J ∩ I }| be (random) measures defined on ([0, T ]3,B[0,T ]3).

Assumption P1. The random measures V I
n , V J

n , V I∩J
n and V I,J

n converge weakly to some deterministic measures
V I , V J , V I∩J and V I,J in probability, as n → ∞. These measures are concentrated on the diagonal D2

T = {(s, t) ∈
[0, T ]2: s = t} and absolutely continuous w.r.t. the Lebesgue measure on the line.

Assumption P2. As n → ∞, the random measures V I,I ′,J
n , V I,J,J ′

n and V J (I),I (J ),I∩J
n converge weakly to some deter-

ministic measures V I,I ′,J , V I,J,J ′
and V J (I),I (J ),I∩J in probability. These measures are concentrated on the diagonal

D3
T = {(s, t, u) ∈ [0, T ]3: s = t = u} and absolutely continuous w.r.t. the Lebesgue measure on the line.

The weak convergence of V I
n to V I in probability should be understood as follows: for every continuous function

ϕ : [0, T ]2 → R, the sequence of random variables
∫
[0,T ]2 ϕ dV I

n converges in probability to
∫
[0,T ]2 ϕ dV I as n tends

to infinity. For the purposes of the present work, it is probably possible to slightly relax Assumption P2 by replacing
the weak convergence by the tightness condition. However, to avoid additional technicalities we assume that the weak
convergence of measures stated in Assumption P2 holds.

Recall that according to our assumptions Π is independent of B, where Π is the collection of random intervals
I i := (Si−1 ∧ T ,Si ∧ T ], J j := (T j−1 ∧ T ,T j ∧ T ] with i = 1, . . . ,N1 and j = 1, . . . ,N2. In what follows, the
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following notation will be used: for two functions f,g : [0, T ] → R, we denote by f · g the function t �→ ∫ t

0 fs dgs

and we often write I or J instead of 1I or 1J . Thus the estimator θ̂n can be rewritten as

θ̂n =
N1∑
i=1

N2∑
j=1

Kij

{
I i · X1

}
T

× {J j · X2
}
T
.

We want to derive an asymptotic expansion of the distribution of this estimator using a perturbation method based on
a stochastic expansion of the estimator θ̂n itself. The main term in this stochastic expansion is

Mn
T = b

−1/2
n

(∑
i,j

Kij

{(
I iσ1

) · B1
}
T

{(
J jσ2

) · B2
}
T

− θ

)
.

Note that the asymptotic expansion of the distribution of Mn
T has already been obtained in preceding sections. In this

section, we will need a representation of Mn as a stochastic integral with respect to the BM (B1,B2) that can be
written – using the Itô formula – as follows:

Mn = H
1,n · B1 + H

2,n · B2, (29)

where H
1,n =∑I,J b

−1/2
n KIJ (Jσ2 · B2)Iσ1 and H

2,n =∑I,J b
−1/2
n KIJ (Iσ1 · B1)Jσ2.

Lemma 5. Assume that σ1, σ2 and ρ are bounded and β
[	−1]
ij ’s are bounded in L4 uniformly in [0, T ] for every

i, j, 	 ∈ {1,2}. If r3
n = op(b2

n), then

b
−1/2
n (θ̂n − θ) = Mn

T + b
1/2
n

(
Nn

T + An
T

)+ op

(
b

1/2
n

)
,

where dNn
t = G

1,n
t dB1,t + G

2,n
t dB2,t is a local martingale with

G
1,n = b−1

n

∑
i,j

Kij

{((
J jβ2

) · t)(I iσ1
)}+ b−1

n

∑
i,j

Kij

{(
T j − T j−1 ∨ ·)+I iσ1β2,Si−1

}
,

G
2,n = b−1

n

∑
i,j

Kij

{((
I iβ1

) · t)(J jσ2
)}+ b−1

n

∑
i,j

Kij

{(
Si − Si−1 ∨ ·)+J jσ2β1,T j−1

}
,

and An is a bounded variation process defined by

An = b−1
n

∑
i,j

Kij

{
J j
{[

I iσ1
(
β

[1]
21 + β

[1]
22 ρ

)] · s}+ I i
{[

J jσ2
(
β

[1]
11 ρ + β

[1]
12

)] · s}} · t

+ b−1
n

∑
i,j

Kij

{(
I iβ1

) · t}× {(J jβ2
) · t}.

Lemma 5 provides a stochastic decomposition of the HY-estimator with a RHS depending on n. Under the As-
sumptions P1 and P2 of the convergence of random measures associated to the sampling scheme, it is possible to
obtain a refinement of this result with a RHS depending on n exclusively through bn. To this end, limit theorems for
martingales will be used. An important step for proving limit theorems for martingales is the computation of the limits
of their quadratic variations and covariations, which will be treated below.

5.1. Convergence of quadratic variations and covariations

To establish an asymptotic expansion of b
−1/2
n (θ̂n − θ) that is more explicit than the one given by Lemma 5, we need

to identify the limiting distribution of the martingale (B1,B2,M
n,Nn) as n goes to infinity. The convergence of the
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quadratic variation-matrix is a classical tool for proving the convergence of a martingale. Most results of the present
section being quite technical, we postponed their proofs to Section 8.

We start with the cross terms 〈Mn,B1〉 and 〈Mn,B2〉. In view of (29), for ν = 1,2, we have〈
Mn,Bν

〉 = H
1,n · 〈B1,Bν〉 + H

2,n · 〈B2,Bν〉
=
∑
I,J

b
−1/2
n KIJ

[{
(Jσ2 · B2)Iσ1

} · 〈B1,Bν〉 + {(Iσ1 · B1)Jσ2
} · 〈B2,Bν〉

]
.

Lemma 6. If σ1, σ2 and ρ are bounded in [0, T ] and r2
n = op(bn), then

sup
ν=1,2

∣∣∣∣∑
I,J

b
−1/2
n KIJ

({
(Jσ2 · B2)Iσ1

} · 〈B1,Bν〉
)
t

∣∣∣∣ P−→
n→∞ 0,

sup
ν=1,2

∣∣∣∣∑
I,J

b
−1/2
n KIJ

({
(Iσ1 · B1)Jσ2

} · 〈B2,Bν〉
)
t

∣∣∣∣ P−→
n→∞ 0

for every t ∈ [0, T ]. As a consequence, for every t ∈ [0, T ], maxν=1,2 |〈Mn,Bν〉t | tends to zero in probability as
n → ∞.

We study now the behavior of the quadratic variation

〈
Mn,Mn

〉
t
=

2∑
c,d=1

(
H

c,n
H

d,n
) · 〈Bc,Bd〉t (30)

as n tends to infinity. First, we note that

H
1,n

H
2,n =

∑
i,j,i′,j ′

b−1
n KijKi′j ′

(
J jσ2 · B2

)
I iσ1

(
I i′σ1 · B1

)
J j ′

σ2

=
∑

i,j,i′,j ′
b−1
n KijKi′j ′

(
J jσ2 · B2

)
J j ′

σ21{j≤j ′}
(
I i′σ1 · B1

)
I iσ11{i′≤i}.

Denote by Rn(i, i′, j, j ′) the summand on the right-hand side of the last equation. This term is different from zero
only if the conditions I i ∩ J j �= ∅, I i ∩ J j ′ �= ∅, I i′ ∩ J j ′ �= ∅, j ≤ j ′ and i′ ≤ i are fulfilled. If i′ < i, then these
conditions are fulfilled only if j = j ′. Similarly, the terms with j < j ′ are non-zero only if i = i′. This leads to

H
1,n

H
2,n =

∑
i,j,j ′:j≤j ′

b−1
n KijKij ′

(
J jσ2 · B2

)
J j ′

σ2
(
I iσ1 · B1

)
Iσ1

+
∑

i′,j,i:i′≤i

b−1
n KijKi′j

(
J jσ2 · B2

)
J jσ2

(
I i′σ1 · B1

)
I iσ1

−
∑
I,J

b−1
n Kij

(
J jσ2 · B2

)
J jσ2

(
I iσ1 · B1

)
I iσ1.

Sum them up in j ′ and in i, respectively, and use

(
J jσ2 · B2

)
I
∑

j ′:j≤j ′
Kij ′J j ′ = (J jσ2 · B2

)
I1[T j−1,T ] = (J jσ2 · B2

)
I,

(
I i′σ1 · B1

)
J
∑
i:i′≤i

Kij I
i = (I i′σ1 · B1

)
J1[Si−1,T ] = (I i′σ1 · B1

)
J
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to obtain H1,nH2,n = b−1
n

∑
I,J σ1σ2KIJ (Jσ2 · B2)(Iσ1 · B1)(I + J − IJ ). This implies that

H
1,n

H
2,n · 〈B1,B2〉t =

∫ t

0
σ1,sσ2,s

∑
I,J

K̃n
IJ (s)(Jσ2 · B2)s(Iσ1 · B1)s d〈B1,B2〉s ,

where K̃n
IJ (t) = b−1

n KIJ (It + Jt − ItJt ).

Lemma 7. Assume that r3
n = op(b2

n) and the functions σ1, σ2 and ρ are continuous. If Assumption P1 is fulfilled then,
for any t ∈ [0, T ],

∫ t

0
H

1,n
s H

2,n
s d〈B1,B2〉s P−→

n→∞
1

2

∫ t

0
h2

s

{
V I (ds) + V J (ds) − V I∩J (ds)

}
,

∫ t

0

(
H

1,n
s

)2 d〈B1,B1〉s +
∫ t

0

(
H

2,n
s

)2 d〈B2,B2〉s P−→
n→∞σ 2

1,sσ
2
2,s V I,J (ds)

and consequently

〈
Mn,Mn

〉
t

P−→
n→∞

∫ t

0
h2

s

{
V I (ds) + V J (ds) − V I∩J (ds)

}+
∫ t

0
σ 2

1,sσ
2
2,s V I,J (ds).

Using the claims of two last lemmas, one can already derive the asymptotic distribution of the martingale
(B1,B2,M

n) as n → ∞. However, for our purposes, it is crucial to know the asymptotics of the joint distribution
of the triplet (B1,B2,M

n) with the martingale Nn.

Lemma 8. If σ1, σ2 and ρ are bounded, supt∈[0,T ] E[β2
i,t ] < ∞, i = 1,2 and r4

n = op(b3
n) as n → ∞, then for any

t ∈ [0, T ] the sequence of random variables 〈Mn,Nn〉t tends in probability to zero as n tends to infinity.

An interesting fact revealed by this lemma is the orthogonality of Mn and Nn in terms of quadratic covariation.
This indicates that the limiting distribution of (Mn,Nn) is that of two independent martingales. This statement will
be rigorously proved at the end of this section. Prior to presenting that proof, we wish to investigate the structure of
the limiting distribution of Nn and how it relates to the BM B.

Lemma 9. Assume that r3
n = op(b2

n) and that supt∈[0,T ] E[(β[	−1]
ij,t )2] < ∞ for every i, j, 	 ∈ {1,2}. Then, under

Assumption P1, for every fixed t ∈ [0, T ], we have

〈
Nn,B1

〉
t

P−→
n→∞

∫ t

0
(β2,sσ1,s + β1,sσ2,sρs)V I,J (ds),

〈
Nn,B2

〉
t

P−→
n→∞

∫ t

0
(β1,sσ2,s + β2,sσ1,sρs)V I,J (ds).

This lemma describes the parts of the limit of Nn that can be described or explained by B1 and B2. This is however
not enough. One also needs to evaluate the limiting quadratic variation of the process Nn.

Lemma 10. If Assumption P2 is fulfilled, then for every t ∈ [0, T ], we have

〈
Nn,Nn

〉
t

P−→
n→∞

∫ t

0
β2

2σ 2
1 dV I,J,J ′ +

∫ t

0
β2

1σ 2
2 dV I,I ′,J + 2

∫ t

0
β2β1σ1σ2ρ dV J (I),I (J ),I∩J .

The last step before stating the main result on the convergence of the processes involved in the stochastic decom-
position presented in Lemma 5 is the proof of the convergence of the bounded variation process An. Recall that the
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latter is defined by

An = b−1
n

∑
I,J

KIJ

{
J
{[

Iσ1
(
β

[1]
21 + β

[1]
22 ρ

)] · s}+ I
{[

Jσ2
(
β

[1]
11 ρ + β

[1]
12

)] · s}} · t

+ b−1
n

∑
I,J

KIJ

{
(Iβ1) · t}× {(Jβ2) · t}.

Obviously, it can be written as An
t = A

1,n
t + A

2,n
t , where

A
1,n
t = b−1

n

∑
I,J

KIJ

∫
I

∫
J

{
σ1,u

(
β

[1]
21,u + β

[1]
22,uρu

)+ σ2,s

(
β

[1]
11,sρs + β

[1]
12,s

)}
1{u≤s≤t} duds

A
2,n
t = b−1

n

∑
I,J

KIJ

∫
I

∫
J

β1,uβ2,s1{u∨s≤t} duds =
∫

[0,t]2
β1,uβ2,s V I,J

n (du,ds).

Using Assumption P1 and the fact that the measures V I,J
n are concentrated on the diagonal of the square [0, t]2, we

get An
t = A∞

t + op(1) with

A∞
t = 1

2

∫ t

0

{
σ1,u

(
β

[1]
21,u + β

[1]
22,uρu

)+ σ2,u

(
β

[1]
11,uρu + β

[1]
12,u

)+ 2β1,uβ2,u

}
V I,J (du). (31)

Proposition 8. Assume that the functions σ1, σ2 and ρ are continuous in [0, T ] and that supt∈[0,T ] E[(β[	−1]
ij )4] < ∞

for every i, j, 	 ∈ {1,2}. If Assumptions P1 and P2 are fulfilled, then the sequence of two-dimensional processes
(Mn,Nn + An) converges weakly to a process (M∞,N∞ + A∞). Furthermore, N∞ + A∞ is independent of M∞.

Proof. We already did the major part of the proof by showing the convergence in probability of the sequences of
quadratic variations–covariations and that of An

t . Now, if we apply Theorem 2-1 from [23] to the semimartingale
Zn = (Mn,Nn + An)T with B serving as a martingale of reference (denoted by Mn in [23]), we obtain the weak
convergence of Zn to a process Z. Moreover, it follows from (ii) of the aforementioned theorem that Z may be
constructed on an enlargement of the original probability space on which there is a two-dimensional Brownian motion
B̃ independent of B such that

Zt =
(

0
A∞

t

)
+
∫ t

0

dV I,J

dt
(s)

(
0 0

β2,sσ1,s β1,sσ2,s

)
dBs +

∫ t

0

(
ms 0
0 ws

)
dB̃s ,

where

m2
s = h2

s

{
dV I

ds
+ dV J

ds
− dV I∩J

ds

}
+ σ 2

1,sσ
2
2,s

dV I,J

ds

stands for the Radon–Nikodym derivative of limn→∞〈Mn,Mn〉t with respect to the Lebesgue measure (cf. Lemma 7)
and ws is a predictable process (hence independent of B̃). If we denote (M∞,N∞) = ZT − (0,A∞), we get M∞

t =∫ t

0 ms dB̃1,s and N∞
t = ∫ t

0 n1,s dB1,s + ∫ t

0 n2,s dB2,s + ∫ t

0 w1,s dB̃2,s with a predictable process ns = (n1,n2), and the
assertion of the proposition follows. �

This result implies in particular that E[N∞
t +A∞

t |M∞
t ] = E[N∞

t +A∞
t ] = E[A∞

t ] for every t ∈ [0, T ]. Therefore,
using (31), we get

A = E
[
N∞

T + A∞
T

∣∣M∞
T

]
= 1

2

∫ T

0

{
σ1,uE

(
β

[1]
21,u + β

[1]
22,uρu

)+ σ2,uE
(
β

[1]
11,uρu + β

[1]
12,u

)+ 2E[β1,uβ2,u]
}

V I,J (du).
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As we see in the next section, this expression of A appears in the asymptotic expansion of the distribution function of
b

−1/2
n (θ̂n − θ).

6. Expansion of the distribution for a model with drift terms

The aim of this section is to obtain an asymptotic expansion for the distribution of the HY-estimator in the case where
the diffusions X1 and X2 have non-zero drifts. As shows the stochastic expansion of θ̂n obtained in Lemma 5, the
main term in the expansion of b

−1/2
n (θ̂n − θ) is independent of the drifts. Therefore, asymptotic expansions for its

distribution are already obtained in Sections 3 and 4. This indicates that the influence of the drifts on the distribution
of θ̂n can be regarded as a small perturbation of the distribution in the case where there is no drift. Before stating the
main result of this section, let us give a theorem that allows to derive the second-order expansion of the distribution
of a random variable defined on the Wiener space in presence of a random perturbation.

6.1. Perturbation

Since the drift terms are possibly non-linear functionals of the Brownian motion B, we need the Malliavin calculus to
carry out computations on the infinite-dimensional Gaussian space.

The basis of our arguments is a perturbation method for deriving asymptotic expansion. It was used in [43] for the
perturbation of a martingale but the proof was written inseparably from the martingale structure. In order to apply this
methodology to the present situation, we will begin with generalizing Theorem 2.1 of Sakamoto and Yoshida [36].

We consider a probability space equipped with a differential calculus in Malliavin’s sense, an integration-by-parts
formula and the Sobolev spaces Dp,	 equipped with the norm ‖ · ‖p,	. For positive numbers M and γ , let E (M,γ ) be
the set of all measurable functions f : Rd → R satisfying |f (x)| ≤ M(1 + |x|γ ) for all x ∈ R

d . Let E ′ be a subset of
E (M,γ ).

Let Xn and Yn be R
d -valued Wiener functionals and put

Zn = Xn + snYn

for some sequence of positive numbers sn tending to 0 as n → ∞. We write Gn(f ) = ō(sn) if s−1
n supf ∈E |Gn(f )| → 0

as n → ∞.

Theorem 4. Let 	 be an integer such that 	 > d + 2. Suppose that the following conditions are satisfied:

(1) supn ‖Xn‖p,	 + supn ‖Yn‖p,	 < ∞ for any p > 1.

(2) (Xn, Yn)
D→ (X∞, Y∞) for some random variables X∞ and Y∞.

In addition, assume that there exists a functional τn such that

(3) supn ‖τn‖p,	−1 < ∞ for any p > 1.
(4) P[|τn| > 1/2] = o(sα

n ) for some α > 1.
(5) supn E[1{|τn|<1}(detσXn

)−p] < ∞ for any p > 1.
(6) There is a sequence of signed measures Ψn on Bd such that for any positive numbers M and γ , E[f (Xn)] =

Ψn[f ] + ō(sn) as n → ∞ for f ∈ E ′. Moreover, for every polynomial π(x) in x, there exists a constant cπ such
that |Ψn[eiu·xπ(x)]| ≤ cπ (1 + |u|	−1)−1 for all u ∈ R

d .

Then X∞ has a density pX∞ with respect to the Lebesgue measure and, for any positive numbers M and γ ,

E
[
f (Zn)

]= Ψn[f ] + sn

∫
R

f (x)g∞(x)dx + ō(sn) (32)

for f ∈ E ′, where g∞(x) = −divx

(
E[Y∞|X∞ = x]pX∞(x)

)
.
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6.2. Asymptotic expansion of the distribution

We are now in a position to state and to prove the main result of this section, which provides an unconditional asymp-
totic expansion of the distribution of the HY-estimator. It is also possible to derive asymptotic expansions conditionally
to the processes generating the sampling times, but they have more complicated form and are not presented here.

Theorem 5. Suppose that Assumptions P1 and P2 are satisfied and

sup
t∈[0,T ]

∥∥β[l−1]
i,t

∥∥
p,4 < ∞ for all p > 1 and i, l ∈ {1,2}.

Let us define

c =
∫ T

0
σ 2

1,t σ
2
2,t V I,J (dt) +

∫ T

0
σ1,t σ2,t ρt

{
V I (dt) + V I (dt) − V I∩J (dt)

}
,

A = 1

2

∫ T

0

{
σ1,uE

(
β

[1]
21,u + β

[1]
22,uρu

)+ σ2,uE
(
β

[1]
11,uρu + β

[1]
12,u

)+ 2E[β1,uβ2,u]
}

V I,J (du).

Under the notation of Theorem 1, if for some a ∈ (3/4,1), P(An(a)c) = o(b
p
n ) for every p > 1, and E[2μ2,n − c] =

O(b2a−1
n ), then

sup
f ∈E (M,γ )∩E 0(C,η,r0,c

∗)

∣∣∣∣E[f (b−1/2
n (θ̂n − θ)

)]− ∫
R

f (z)p∗
n(z)dz

∣∣∣∣= o
(
b

1/2
n

)
, (33)

where

p∗
n(z) = e−z2/(2c)

√
2πc

[
1 + b

1/2
n

6c3

(
E[λ̄3,n]

(
z3 − 3cz

)+ 6Ac2z
)]

.

Moreover, if supn∈N E[λ̄3,n] < ∞, then inequality (33) holds with p∗
n replaced by

p+
n (z) = max(0,p∗

n(z))∫
R

max(0,p∗
n(u))du

,

which is a probability density.

Proof. We apply Theorem 4 to Zn = b
−1/2
n (θ̂n − θ) with 	 = 4, Xn = Mn

T and Yn = b
−1/2
n (Zn − Mn

T ). Thus, we
need to check that all the 6 conditions of Theorem 4 are fulfilled. In view of Lemma 5 and Proposition 8, (Xn, Yn)

converges in distribution to some random vector (X∞, Y∞). Thus the second condition of Theorem 4 is verified.
We have already seen in Section 3.2.1 that the principal part Xn of b

−1/2
n (θ̂n − θ) can be written in the form

Xn = b
−1/2
n (ξTAξ − θ) = b

−1/2
n

∑N
	=1 λ	,n(ζ

2
	,n − 1), where

ξ = ({I 1σ1 · B1
}
T
, . . . ,

{
IN1σ1 · B1

}
T
,
{
J 1σ2 · B2

}
T
, . . . ,

{
JN2σ2 · B2

}
T

)T ∼ NN(0,Σ)

and the entries of the matrices Σ and A are given by (17) and (16), respectively. Recall that the vector ζ ∈ R
N is

obtained as a linear transformation of ξ and is distributed according to N (0, I ).
Let W = C0([0, T ],R

2) be the Wiener space of continuous functions from [0, T ] to R
2 vanishing at the origin.

Recall that W is a measurable space equipped with the Borel σ -field induced by the uniform topology. The reference
measure on W is the measure generated by the standard Wiener process (in our case, the two-dimensional Brownian
motion).

Let w = (w1,w2) be the canonical process on W . Then, (B1,B2) can be defined by

B1,t = w1,t , B2,t =
∫ t

0
ρs dw1,s +

∫ t

0

√
1 − ρ2

s dw2,s .
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Obviously, for every 	 = 1, . . . ,N , there is some function φ	 ∈ L2([0, T ],R
2) such that ζ	,n = ∫ T

0 φ	
1,t dw1,t +∫ T

0 φ	
2,t dw2,t := w(φ	).

The process w is an isonormal Gaussian process on H = L2([0, T ],R
2) (see [31], Definition. 1.1.1). Using the

definition of the Malliavin derivative (see [31], Definition 1.2.1) and the chain rule [31], Proposition 1.2.3, we get the
following expression for the Malliavin derivative of Xn:

Dt Xn = 2b
−1/2
n

N∑
	=1

λ	,nζ	,nφ
	
t .

Since the components of ζ are non-correlated with variance equal to one, the family {φ	}	≤N is orthonormal. As a
first consequence of this fact, we get that supn ‖Xn‖p,4 < ∞ for every p > 1. To show this, Rosenthal’s inequality
and the result of Lemma 3 can be used. As a second consequence, we obtain that the Malliavin covariance of Xn is

σXn
= 4b−1

n

n∑
	=1

λ2
	,nζ

2
	,n = 4b−1

n μ2,n + 4b−1
n

n∑
	=1

λ2
	,n

(
ζ 2
	,n − 1

)
. (34)

Let us introduce the random variable τn that will play a role of truncation:

τn = −(2 − 8μ2,n(cbn)
−1)

+ + 8(cbn)
−1

N∑
	=1

λ2
	,n

(
ζ 2
	,n − 1

)
.

In this notation, we have σXn
≥ c + cτn

2 and, therefore, 1{|τn|<1}|σ−1
Xn

| < 2/c. Thus, the condition (5) of Theorem 4 is
obviously fulfilled. Let us check now that τn satisfies conditions (3) and (4) of the aforementioned theorem.

To verify condition (3) of Theorem 4, we remark that

Dτn = 16(cbn)
−1

N∑
	=1

λ2
	,nζ	,nφ

	, D2τn = 16(cbn)
−1

N∑
	=1

λ2
	,nφ

	 ⊗ φ	

Dkτn ≡ 0 for every k ≥ 3. Therefore,

‖Dτn‖2
H = 256(cbn)

−2
N∑

	=1

λ4
	,nζ

2
	,n,

∥∥D2τn

∥∥2
H⊗H

= 256(cbn)
−2

N∑
	=1

λ4
	,n.

In view of the Rosenthal inequality, we get

EΠ
[‖Dτn‖p

H

]≤ C(p)b
−p
n

(
μ

p/2
4,n + μ2p,n + μ

p/4
8,n

)
for every p ≥ 2. Using the definition of μk,n, one can check that μ2k,n ≤ μ

k/2
4,n . In view of inequality (23) and the

obvious bound μ2,n ≤ Crn, we get

EΠ
[‖Dτn‖p

H

]≤ Cb
−p
n r

3p/2
n , EΠ

[∥∥D2τn

∥∥p

H⊗H

]≤ Cb
−p
n r

3p/2
n ∀p ≥ 4.

Similar arguments yield

E
[
τ

p
n

]= EΠ
[
τ

p
n

]≤ C
(
1 + b

−p
n E

[
r

3p/2
n

])≤ C
(
1 + b

−p
n b

9p/8
n + T 3p/2b

−p
n P

[
An(a)c

])
< ∞.

To check condition (4) of Theorem 4, we use the inequality

P
(|τn| > 1/2

)≤ P
(
2 − 8μ2,n(cbn)

−1 > 0
)+ P

(
8(cbn)

−1

∣∣∣∣∣
N∑

	=1

λ2
	,n

(
ζ 2
	,n − 1

)∣∣∣∣∣> 1/2

)
.
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On the one hand, since the event {2 − 8μ2,n(cbn)
−1 > 0} = {λ̄2,n − c < −c/2} is included in An(a)c , its probability is

o(b
p
n ) for every p > 1. On the other hand, combining the Tchebychev and the Rosenthal inequalities, for every k ≥ 16

we get

P

(
8(cbn)

−1

∣∣∣∣∣
N∑

	=1

λ2
	,n

(
ζ 2
	,n − 1

)∣∣∣∣∣> 1/2

)
≤ Cb−k

n E
[
μ

k/2
4,n + μ2k,n

]≤ Cb−k
n E

[
r

3k/2
n

]

≤ Cb
−k+9k/8
n + Cb−k

n P
(
An(a)c

)= O
(
b2
n

)
.

Thus, we proved that conditions (2)–(5) of Theorem 4 are fulfilled and that supn ‖Xn‖p,4 < ∞. Condition (6) is
ensured by Theorem 2. To complete the proof, it remains to check that supn ‖Yn‖p,4 < ∞. This inequality can be
proved using the identity Yn = b−1

n (Φ2
n + Φ3

n), where Φ2
n and Φ3

n are the random variables defined in the proof of
Lemma 5. The proof is rather technical, but is based on the arguments that we have already used several times in this
and the previous sections. Therefore it will be omitted. �

In the case when the sampling scheme is generated by two Poisson processes, we get the following consequence
of the last theorem.

Proposition 9. Let the sampling times of processes X1 and X2 be generated by two independent Poisson processes
with intensities np1 and np2, p1p2 > 0. If

• the sampling times are independent of the process X,
• the functions σ1, σ2 and ρ are Lipschitz continuous,
• supt∈[0,T ] ‖β[l−1]

i,t ‖p,4 < ∞ for all p > 1, i, l ∈ {1,2},
then

sup
f ∈E (M,γ )∩E 0(C,η,r0,c

∗)

∣∣∣∣E[f (n1/2(θ̂n − θ)
)]− ∫

R

f (z)p◦
n(z)dz

∣∣∣∣= o
(
n−1/2), (35)

where

p◦
n(z) ∝ e−z2/(2c)

√
2πc

[
1 + 1√

nc3

(
2κz3 − 6κcz + Ac2z

)]
+

is a probability density with

c =
(

2

p1
+ 2

p2

)∫ T

0
σ 2

1,t σ
2
2,t

(
1 + ρ2

t

)
dt − 2

p1 + p2

∫ T

0
(σ1,t σ2,t ρt )

2 dt,

κ =
(

1

p2
1

+ 1

p2
2

)∫ T

0
h(t)3 dt + 3p2

1 + 2p1p2 + 3p2
2

p2
1p

2
2

∫ T

0
σ 2

1,t σ
2
2,t h(t)dt,

A =
(

1

p1
+ 1

p2

)∫ T

0

{
σ1,tE

(
β

[1]
21,t + β

[1]
22,t ρt

)+ σ2,tE
(
β

[1]
11,t ρt + β

[1]
12,t

)+ 2E[β1,t β2,t ]
}

dt.

Proof. Lemmas 16–19 (cf. Section 9) imply that the partitions generated by independent Poisson processes satisfy
Assumptions P1 and P2. Therefore, using Theorems 5 and 3, we get the desired result. �
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7. Proofs of theorems and propositions

Proof of Proposition 6. Let us recall the relations

n
∑
I,J

v1(I )v2(J )KIJ
P−→

n→∞ 2
(
p−1

1 + p−1
2

)∫ T

0
σ 2

1,t σ
2
2,t dt,

n
∑
I∈Πi

v(I )2 P−→
n→∞ 2p−1

i

∫ T

0
(σ1,t σ2,t ρt )

2 dt, i = 1,2,

n
∑
I,J

v(I ∩ J )2 P−→
n→∞ 2(p1 + p2)

−1
∫ T

0
(σ1,t σ2,t ρt )

2 dt

proved in Hayashi and Yoshida [20]. The aim of the present proposition is to show that the rate of convergence in
these relations is 1/

√
n and to get an exponential control of the probabilities of large deviations. Thus, let us denote

T1 = n
∑

I,J v1(I )v2(J )KIJ and show that

P
(∣∣∣∣T1 − 2

(
p−1

1 + p−1
2

)∫ T

0
σ 2

1,t σ
2
2,t dt

∣∣∣∣≥ x√
n

)
≤ Cne−x/C.

Let N(x) = �nT/x� be the smallest positive integer such that N(x)x > nT and let us set Li = [iT N(x)−1, (i +
1)T N(x)−1]. The intervals Li define a uniform deterministic partition of [0, T ] with a mesh-size of order x/n. Let

E be the event “for every i = 1, . . . ,4N(x), the interval [ iT
4N(x)

,
(i+1)T
4N(x)

] contains at least one point from Π1
n and one

point from Π2
n .” The total probability formula implies that

P
(∣∣∣∣T1 −

∫ T

0
h̄(t)dt

∣∣∣∣≥ x√
n

)
≤ P
(∣∣∣∣T1 −

∫ T

0
h̄(t)dt

∣∣∣∣≥ x√
n

∣∣∣E
)

+ P
(

E c
)
,

where E c denotes the complementary event of E and h̄(t) = 2(p−1
1 + p−1

2 )σ 2
1,t σ

2
2,t . Easy computations show that

P(E c) ≤ Cnx−1e−x/C for some C > 0.
Let now li be a point in Li such that

∫
Li

h̄(t)dt = h̄(li)|Li |. Let us denote by aI the left endpoint of the interval I

and define the random variables

η◦
i = nh̄(li)

∑
I,J

|I ||J |KIJ 1{aI ∈Li }, i = 1, . . . ,N(x).

In what follows, we denote by EE the conditional expectation given E . It holds that T1 − ∫ T

0 h̄(t)dt = T11 + T12 +
T13 + O(n|L1|2) on E , where

T11 = EE
[

N(x)∑
i=1

η◦
i

]
−
∫ T

0
h̄(t)dt, T1s =

[N(x)/2]∑
i=1

(
η◦

2i+s−2 − EE [η◦
2i+s−2

])
, s = 2,3.

For evaluating the remainder term in T1, we have used the Lipschitz continuity of σ1 and σ2, as well as the fact that
rn ≤ |L1|/2 on E .

Remark that in view of Lemma 4, for any p > 0, we have

E
[
r
p
n

]= n−p

∫ ∞

0
P
(
(nrn)

p ≥ t
)

dt ≤ Cn−p

∫ ∞

0

(
ne−t1/p)∧ 1 dt = Cn−p O

(
logp n

)
. (36)
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On the one hand, since |∑N(x)
i=1 η◦

i | ≤ Cnrn, we have

∣∣∣∣∣EE
[

N(x)∑
i=1

η◦
i

]
− E

[
N(x)∑
i=1

η◦
i

]∣∣∣∣∣≤ nE[rn1E c ]
P(E )

.

Using the inequality of Cauchy–Schwarz, as well as the bounds P(E c) ≤ Cne−x/C and (36), we get |EE [∑N(x)
i=1 η◦

i ] −
E[∑N(x)

i=1 η◦
i ]| ≤ Cne−x/C , for some constant C and for every x > C logn.

On the other hand, in view of Lemma 15 presented in Section 9 below, we have

E
[
η◦

i

]≤ nh̄(li)E
[ ∑

I :aI ∈Li

(
|I |2 + 2|I |

np2

)]
≤ CnE

[(
rn + n−1)(|Li | + rn

)]
.

Therefore, using (36), we get E[η◦
i ] = O(n−1 log3 n) for every i ≤ N(x). Using once again Lemma 15, we get

E

[
N(x)∑
i=1

η◦
i

]
=

N(x)−1∑
i=2

nh̄(li)E
[ ∑

I :aI ∈Li

|I | · EΠ1
(∑

J∈Π2

|J |KIJ

)]
+ O

(
log3 n

n

)

=
N(x)−1∑

i=2

nh̄(li)E
[ ∑

I :aI ∈Li

(|I |2 + 2|I |/(np2)
)]+ O

(
log3 n

n

)
.

Wald’s equality yields E[∑I :aI ∈Li
|I |k] = E[N1(Li)] · E[ζ k/(np1)

k] + O(e− log2 n/C), for every k > 0 and for every

i ≤ N(x) − 1. Here, N1(Li) is the number of points of P1,n lying in Li and ζ ∼ E (1), the exponential distribution
with parameter one. Putting all these estimates together, we get

E

[
N(x)∑
i=1

η◦
i

]
=

N(x)−1∑
i=2

nh̄(li)

(
2|Li |
np1

+ 2|Li |
np2

)
+ O

(
log3 n

n

)
=
(

2

p1
+ 2

p2

)N(x)∑
i=1

h̄(li )|Li | + O
(

log3 n

n

)
.

Since li has been chosen such that h̄(li )|Li | =
∫
Li

h̄(t)dt , the last relation implies that T11 = O(n−1 log3 n).
The advantage of working with η◦

i ’s is that, conditionally to E , the random variables η◦
2i , i = 1, . . . , [N(x)/2], are

independent. Indeed, one easily checks that conditionally to E , η◦
2i depends only on the restrictions of P1,n and P2,n

onto the interval [ (4i−1)T
2N(x)

,
(4i+3)T
2N(x)

]. Since these intervals are disjoint for different values of i ∈ N, the restrictions of

Poisson processes Pk,n, k = 1,2, onto these intervals are independent. Therefore, η◦
2i , i = 1, . . . , [N(x)/2], form a

sequence of random variables that are independent conditionally to E . Moreover, they verify |η◦
i | ≤ Cn|Li |2 = C log4 n

n
.

These features enable us to use the Bernstein inequality in order to bound the probabilities of large deviations of
T12 as follows:

PE(|T12| ≥ x/
√

n
)≤ 2 exp

(
− x2

C(1 + xn−1/2 log4 n)

)
≤ 2e−x/C

for every x > 1. Obviously, the same inequality holds true for the term T13. These inequalities combined with the
bound on the error term T11 complete the proof of (28).

Moreover, since T12 and T13 are zero mean random variables, conditionally to E , and E c has a probability bounded
by Cne−x/C , it follows from the computations above that

E[T1] = 2
(
p−1

1 + p−1
2

)∫ T

0
σ 2

1,t σ
2
2,t dt + O

(
n−1 log3 n

)
.

Similar arguments entail that E[2nμ2,n] = c + O(n−1 log3 n). �
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Proof of Proposition 7. The assertion of the theorem follows from the following relations:

E
[∑

I∈Πi

v(I )3
]

= 6

n2p2
i

∫ T

0
h(t)3 dt + O

(
log3 n

n3

)
, i = 1,2,

E
[∑

I,J

v(I ∩ J )3
]

= 6

n2(p1 + p2)2

∫ T

0
h(t)3 dt + O

(
log3 n

n3

)
,

E
[∑

I,J

v(I ∩ J )2v(I )

]
= 18p1 + 12p2

n2p1(p1 + p2)2

∫ T

0
h(t)3 dt + O

(
log3 n

n3

)
,

E
[∑

I,J

v(I ∩ J )2v(J )

]
= 18p2 + 12p1

n2p2(p1 + p2)2

∫ T

0
h(t)3 dt + O

(
log3 n

n3

)
,

E
[∑

I,J

v(I ∩ J )v(I )v(J )

]
= 4

n2p2p1

∫ T

0
h(t)3 dt + O

(
log3 n

n3

)
,

E
[∑

I,J

v(I ∪ J )v1(I )v2(J )

]
= 6p2

1 + 4p1p2 + 6p2
2

n2p2
1p

2
2

∫ T

0

h(t)3

ρ2
t

dt + O
(

log3 n

n3

)
.

Let us prove in detail the fifth relation. The proofs of the other relations are based on similar arguments and are easier
than that of fifth relation.

Using the Lipschitz continuity of the function h, one can check that v(I ∩ J )v(I )v(J ) = h(aI )
3|I | · |J | · |I ∩ J | +

O(r3
n)|I ∩ J |, where aI is the left endpoint of the interval I .

In view of (36), we have E[∑I,J r3
n |I ∩ J |] ≤ T E[r3

n] = O(
log3 n

n3 ). On the other hand,

E
[∑

I∈Π1

h(aI )
3|I |

∑
J∈Π2

|J ||I ∩ J |
]

= E
[∑

I∈Π1

h(aI )
3|I |EI

(∑
J∈Π2

|J ||I ∩ J |
)]

,

where EI is the conditional expectation given I . According to Lemmas 13 and 15, presented in Section 9 below,

EI

(∑
J∈Π2

|J ||I ∩ J |
)

= 2|I |
np2

− (1 − e−np2|I |)(e−np2aI + e−np2(T −bI ))

n2p2
2

.

Now, let us show that

T1 := 2

np2
E
[∑

I∈Π1

h(aI )
3|I |2

]
= 4

n2p1p2

∫ T

0
h3(t)dt + O

(
n−3),

T2 := E
[∑

I∈Π1

h(aI )
3|I | (1 − e−np2|I |)e−np2aI

n2p2
2

]
= O

(
n−3),

T3 := E
[∑

I∈Π1

h(aI )
3|I | (1 − e−np2|I |)e−np2(T −bI )

n2p2
2

]
= O

(
n−3).

To this end, we use the characterization of a Poisson process as a renewal process with exponential waiting times. Let
(ζk, k ≥ 1) be a sequence of i.i.d. random variables drawn from the exponential distribution with mean 1/(np1). Then
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N1, Si can be defined by N1 = inf{k ≥ 1: ζ1 + · · · + ζk ≥ T } and Si = (ζ1 + · · · + ζi) ∧ T for i = 1, . . . ,N1. In this
notation,

T1 = 2

np2
E

[
N1−1∑
i=1

h
(
Si
)3

ζ 2
i+1

]
+ O

(
n−3), |T2| ≤ ‖h‖3∞E

[
N1−1∑
i=1

ζi+1e−np2S
i

n2p2
2

]
+ O

(
n−3),

where ‖h‖∞ = maxt∈[0,T ] |h(t)|. Remark that N1 is a stopping time with respect to the filtration Fk = σ(ζ1, . . . , ζk),
k ≥ 1. It is easily seen that

Mk =
k−1∑
i=1

h
(
Si
)3(

ζ 2
i+1 − E

[
ζ 2
i+1

])
, M ′

k =
k−1∑
i=1

(
ζi+1 − E[ζ1]

)
e−np2S

i

are Fk-martingales for which the conditions of the optional stopping theorem are fulfilled. Therefore

T1 = 2

np2
E
[
ζ 2

1

]
E

[
N1−1∑
i=1

h
(
Si
)3]+ O

(
n−3), T2 ≤ ‖h‖3∞

n2p2
2

E[ζ1]E
[

N1−1∑
i=1

e−np2S
i

]
+ O

(
n−3).

These relations imply that

T1 = 4

n2p1p2

∫ T

0
h(t)3 dt + O

(
n−3), |T2| ≤ ‖h‖3∞

n2p2
2

∫ T

0
e−np2t dt + O

(
n−3)= O

(
n−3).

In the above inequalities we used the fact that for any integrable function f on [0, T ], the equality E[∑N1−1
i=1 f (Si)] =

np1
∫ T

0 f (t)dt holds true.
The term T3 can be bounded in the same way as T2 by using the fact that if {t1, . . . , tN } is a realization of a

homogeneous Poisson point process in [0, T ], then {T − t1, . . . , T − tN } can be seen as a realization of the same
Poisson point process. This completes the proof of the proposition. �

Proof of Theorem 4. Let ψn be some truncation functional to be defined later and let ζ(x) = 1 + |x|2m (x ∈ R
d),

where m is an integer such that 2m > γ + d . We have

E
[
f (Zn)

]= E
[
f (Zn)ψn

]+ E
[
f (Zn)(1 − ψn)

]= ∫
Rd

f (x)p̃n(x)dx + E
[
f (Zn)(1 − ψn)

]
,

where p̃n(x) = 1
(2π)d

∫
Rd e−iu·xĝ0

n(u)du, with ĝ0
n(u) = E[eiu·Znψn].

We will show below (cf. (38)) that the term E[f (Zn)(1 − ψn)] is ō(sn) and is negligible with respect to
E[f (Zn)ψn]. To deal with this latter term, let us introduce the notation

h0
n(x) = 1

(2π)d

∫
Rd

e−iu·xĥ0
n(u)du, ĥ0

n(u) = Ψn[eiu·x] + snE
[
eiu·X∞ iu · Y∞

]
,

ĝn(u) = E
[
eiu·Znψnζ(Zn)

]
, ĥn(u) = ζ(−i ∂u)ĥ

0
n(u) = Ψn

[
eiu·xζ(x)

]+ snE
[
ζ(−i ∂u)

(
eiu·y iu

)∣∣
y=X∞· Y∞

]
.

Using the Integration By Parts (IBP) formula, we get

ζ(x)p̃n(x) = 1

(2π)d

∫
Rd

e−iu·xĝn(u)du, ζ(x)h0
n(x) = 1

(2π)d

∫
Rd

e−iu·xĥn(u)du.

Further, there is a linear form ζ2(x, y)[·] of polynomial elements such that

ζ(x + y) = ζ(x) + ∂ζ(x)[y] + ζ2(x, y)
[
y⊗2]
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for x, y ∈ Rd . We also notice that, for all u,y ∈ Rd ,

ζ(−i ∂u)
(
eiu·y iu

)= ζ(−i ∂u) ∂yeiu·y = ∂y

(
ζ(−i ∂u)e

iu·y)= ∂y

(
eiu·yζ(y)

)= eiu·yζ(y)iu + eiu·y ∂ζ(y).

Let ϕ(x) = f (x)/ζ(x) and Λn = {u ∈ R
d; |u| ≤ s−1

n }. Then

(2π)d
∫

Rd

f (x)
{
p̃n(x) − h0

n(x)
}

dx = A(n) + snB(n) + snC(n) + s2
nD(n) + E(n),

where

A(n) =
∫

Rd

dx ϕ(x)

∫
Λn

e−iu·x{E[eiu·Xnψnζ(Xn)
]− Ψn

[
eiu·xζ(x)

]}
du,

B(n) =
∫

Rd

dx ϕ(x)

∫
Λn

e−iu·x
{

E
[

eiu·Xn iu · Yn

∫ 1

0
exp(isnu · Yns)dsψnζ(Xn)

]

− E
[
eiu·X∞ iu · Y∞ζ(Xn)

]}
du,

C(n) =
∫

Rd

dx ϕ(x)

∫
Λn

e−iu·x{E[eiu·Znψn ∂ζ(Xn)[Yn]
]− E

[
eiu·X∞∂ζ(X∞)[Y∞]]}du,

D(n) =
∫

Rd

dx ϕ(x)

∫
Λn

e−iu·xE
[
eiu·Znψnζ2(Xn, snYn)

[
Y ⊗2

n

]]
du

E(n) =
∫

Rd

dx ϕ(x)

∫
Λc

n

e−iu·x(ĝn(u) − ĥn(u)
)

du.

Since ∫
Rd

dx ϕ(x)

∫
Rd

e−iu·xE
[
eiu·Xnψnζ(Xn)

]
du = (2π)dE

[
ϕ(Xn)ψnζ(Xn)

]
and

∫
Rd dx ϕ(x)

∫
Rd e−iu·xΨn[eiu·xζ(x)]du = (2π)dΨn[ϕζ ], we have∣∣A(n)

∣∣ ≤ (2π)d
∣∣E[ϕ(Xn)ψnζ(Xn)

]− Ψn[ϕζ ]∣∣+ F(n)

≤ (2π)d
∣∣E[ϕ(Xn)(1 − ψn)ζ(Xn)

]∣∣+ F(n) + ō(sn)

from condition (6) of Theorem 4, where

F(n) = (2π)d
∫

Rd

∣∣ϕ(x)
∣∣dx ×

∫
Λc

n

{∣∣E[eiu·Xnψnζ(Xn)
]∣∣+ ∣∣Ψn

[
eiu·xζ(x)

]∣∣}du.

In what follows C denotes a generic constant independent of n and u and it varies from line to line.
To evaluate F(n), we need the explicit form of ψn. Let us denote by ψ a smooth function from R into [0,1] such

that ψ(t) = 1 if |t | ≤ 1/2 and ψ(t) = 0 if |t | ≥ 1. We can write

det
[
Id + snσ

−1
Xn

(〈Xn, Yn〉 + 〈Yn, Xn〉
)]= 1 + sn detσ−d

Xn
Kn

with a certain functional Kn satisfying, for every p > 1, the condition supn ‖Kn‖p,	−1 < ∞. Let ψn =
ψ(τn)ψ(2sn detσ−d

Xn
Kn). Obviously, ψn ∈⋂p>1 Dp,	−1; in order to prove it, replace σXn

by σXn
+ k−1Id , differ-

entiate, and take limits in Lp-spaces as k → ∞. Furthermore, we infer that supn ‖ψn‖p,	−1 < ∞ for every p > 1. If
ψn > 0, then det(σ−1

Xn
σZn

) ≥ 1/2 leading to

detσZn
≥ 1

2
detσXn

. (37)
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By applying the IBP formula and the non-degeneracy assumption for Xn under truncation, we find that
supn |E[eiu·Xnψnζ(Xn)]| ≤ C

1+|u|	−1 for all u ∈ R
d . Combined with condition (6), this implies that F(n) = Ō(s2

n) =
ō(sn). Besides,∣∣E[ϕ(Xn)(1 − ψn)ζ(Xn)

]∣∣≤ Cq‖1 − ψn‖q = ō(sn). (38)

Here q is arbitrary constant such that q ∈ (0,1). Consequently, A(n) = ō(sn).
Taking the limit of supn |E[ζ(−i ∂u)(eiu·y iu)|y=Xn

· Yn]| ≤ C
1+|u|	−2 , we get

∣∣E[ζ(−i ∂u)
(
eiu·y iu

)|y=X∞ · Y∞
]∣∣≤ C

1 + |u|	−2

for all u ∈ R
d . On the other hand, from the IBP formula in view of the uniform non-degeneracy of Zn under truncation

deduced from that of Xn by (37), it follows that supn |ĝn(u)| ≤ C
1+|u|	−1 for all u ∈ R

d . From these estimates, we have

E(n) = Ō(s2
n) = ō(sn). Similar argument yields the estimate supn |D(n)| < ∞.

To obtain C(n) = ō(1), we apply Lebesgue’s dominated convergence theorem in conjunction with the estimate

sup
n

∣∣E[eiu·Znψn ∂ζ(Xn)[Yn]
]− E

[
eiu·X∞ ∂ζ(X∞)[Y∞]]∣∣≤ C

1 + |u|	−1

for all u ∈ R
d . In the same way, we can obtain B(n) = ō(1). However, we have to use more elaborately the estimate

sup
n

1Λn(u)

∣∣∣∣E
[

eiu·Xn iu · Yn

∫ 1

0
exp(isnu · Yns)dsψnζ(Xn)

]∣∣∣∣≤ C

1 + |u|	−2

(C is independent of u) and its limiting version |E[eiu·X∞ iu · Y∞ζ(X∞)]| ≤ C
1+|u|	−2 .

Combining all the estimates, we get
∫

Rd f (x)p̃n(x)dx − ∫
Rd f (x)h0

n(x)dx = ō(sn) as n → ∞. From the definition

of h0
n(x), it is easy to show that X∞ has a differentiable density pX∞ and that h0

n(x) = dΨn

dx
(x) − sn div{E[Y∞|X∞ =

x]pX∞(x)}. The existence of the integral
∫

Rd f (x)h0
n(x)dx is ensured as a consequence under the assumptions of

Theorem 4. �

8. Convergence of martingales and quadratic variations

This section collects the proofs of technical results stated in Section 5. The major part of them make use of stochastic
analysis and aim at controlling quadratic variations and covariations of some martingales.

Proof of Lemma 5. Let us denote by Φ1
n the difference b

−1/2
n (θ̂n −θ)−Mn

T and write it in the form Φ1
n = b

−1/2
n (Φ2

n +
Φ3

n), where

Φ2
n =

∑
I,J

KIJ

({
(Iβ1) · t}

T
× {(Jσ2) · B2

}
T

+ {(Jβ2) · t}
T

× {(Iσ1) · B1
}
T

)
,

Φ3
n =

∑
I,J

KIJ

{
(Iβ1) · t}

T
× {(Jβ2) · t}

T
.

Since we will be interested in applying martingale limit theorems, it is convenient to decompose Φ	
ns in a sum of a

martingale and a bounded variation process. This is achieved by the Itô formula,

Φ2
n =

∑
I,J

KIJ

({{(
(Iβ1) · t)(Jσ2)

} · B2
}
T

+ {{((Jβ2) · t)(Iσ1)
} · B1

}
T

)

+
∑
I,J

KIJ

({{(
(Jσ2) · B2

)
(Iβ1)

} · t}
T

+ {{((Iσ1) · B1
)
(Jβ2)

} · t}
T

)
.
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The last two terms in this expression need some further analysis. Let us introduce the notation Φ21
n =∑

I,J KIJ {{((Jσ2) · B2)(Iβ1)} · t}T . Since ((J jσ2) · B2)s = 0 for s ∈ (0, T j−1),

Φ21
n =

∑
i,j

Kij

{{((
J jσ2

) · B2
)
I i
[
β1,T j−1 + (1(T j−1,∞)β

[0]
1

) · t
+ (1(T j−1,∞)β

[1]
11

) · B1 + (1(T j−1,∞)β
[1]
12

) · B2
]} · t}

T

=
∑
i,j

Kij

({(
J jσ2

) · B2
}
I iβ1,T j−1

) · tT +
∑
I,J

KIJ

(
I
{(

Jσ2β
[1]
11

) · 〈B2,B1〉
}) · tT

+
∑
I,J

KIJ

(
I
{(

Jσ2β
[1]
12

) · 〈B2,B2〉
}) · tT + oP (bn). (39)

Let us explain how the last oP (bn) is obtained. In fact, the remainder term in the last equation contains five summands
which can all be treated similarly. Let us do it for one of them, which has the form Ψn =∑I,J KIJ {([{(Jσ2) ·B2}β[1]

11 ] ·
B1)I } · tT . We first use that

Ψn =
∑
I

{[({(
J (I)σ2

) · B2
}
β

[1]
11

] · B1
)
I
} · tT

=
∫ T

0

(∫ s

0

[∫ T

s

∑
I

1I (t)1J (I)(u)dt

]
σ2,u dB2,u

)
β

[1]
11,s dB1,s .

Then, by the Cauchy–Schwarz inequality and the martingale property of the stochastic integral, we get

EΠ
[
Ψ 2

n

] ≤
∫ T

0

(∫ s

0

[∫ T

s

∑
I

1I (t)1J (I)(u)dt

]2

σ 2
2,u du

)(
EΠ
[(

β
[1]
11,s

)4])1/2 ds

≤ C

∫ T

0

∫ s

0

[∑
I

|I |1J (I)(u)1J (I)(s)

]2

duds ≤ C
∑
I,I ′

|I |∣∣I ′∣∣∣∣J (I) ∩ J
(
I ′)∣∣2 ≤ Cr3

n

under the assumption that maxt∈[0,T ] E[(β[1]
11,t )

4] and maxt∈[0,T ] σ2,t are finite. Now, interchanging the order of inte-
grations, the first summand in the right-hand side of (39) can be rewritten as follows{(

(Jσ2) · B2
)
Iβ1,T j−1

} · tT = {{(Si − Si−1 ∨ ·)+Jσ2β1,T j−1

} · B2
}
T
. (40)

Using the same kind of arguments, one can check that the term Φ22
n = Φ2

n − Φ21
n admits the representation

Φ22
n :=

∑
I,J

KIJ

{{(
(Iσ1) · B1

)
(Jβ2)

} · t}
T

=
∑
i,j

Kij

({((
T j − T j−1 ∨ ·)+Iσ1β2,Si−1

) · B1
}
T

+
∑
I,J

KIJ

(
J
{(

Iσ1β
[1]
22

) · 〈B2,B1〉 + (Iσ1β
[1]
21

) · 〈B1,B1〉
}) · tT + op(bn). (41)

Combining (39)–(41) and using that 〈B1,B1〉t = 〈B2,B2〉t = t , 〈B2,B1〉t = ∫ t

0 ρs ds we get the desired result. �

Proof of Lemma 6. We will prove only the first relation, the proof of the second being quite similar. Consider the
case ν = 1, the case ν = 2 can be treated similarly in view of the relation 〈B1,B2〉t = ∫ t

0 ρs ds and the boundedness of

ρ. To simplify subsequent formulae, let us denote ξ [11] = b
−1/2
n

∑
ij KIJ {(Jσ2 · B2)Iσ1} · 〈B1,B1〉. In other words,
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ξ [11] is a random process indexed by t ∈ [0, T ] defined by

b
1/2
n ξ

[11]
t =

∑
I,J

KIJ

∫ t

0
1I (u)σ1,u

∫ u

0
1J (s)σ2,s dB2,s du

=
∑
I,J

KIJ

∫ t

0
1J (s)σ2,s

∫ t

s

1I (u)σ1,u dudB2,s

=
∫ t

0

∑
J

1J (s)σ2,s

∫ t

s

1I (J )(u)σ1,u dudB2,s .

The latter expression implies that conditionally to Πn, ξ [11] is a Gaussian process with zero mean. Moreover,

EΠ
[(

ξ
[11]
t

)2] = b−1
n

∑
J

∫ t

0
1J (s)σ 2

2,s

(∫ t

s

1I (J )(u)σ1,u du

)2

ds

≤ b−1
n

∥∥σ 2
1

∥∥∞
∥∥σ 2

2

∥∥∞
∑
J

|J |∣∣I (J )
∣∣2 ≤ Cb−1

n r2
n,

where C is a positive constant. This yields the desired result. �

Proof of Lemma 7. One easily checks that∫ t

0
H

1,n
s H

2,n
s d〈B1,B2〉s =

∫ t

0

∑
I,J

hsK̃
n
ij (s)(Jσ2 · B2)s(Iσ1 · B1)s ds. (42)

To prove the convergence of this expression, we apply the Itô formula to the product (Jσ2 · B2)s(Iσ1 · B1)s :

(Jσ2 · B2)s(Iσ1 · B1)s = {(Jσ2 · B2)Iσ1 · B1
}
s
+ {(Iσ1 · B1)Jσ2 · B2

}
s
+ {(IJh) · t}

s
.

One can show that the contribution of the first two terms is asymptotically negligible, that is∫ t

0

∑
I,J

hsK̃
n
ij (s)

({
(Jσ2 · B2)Iσ1 · B1

}
s
+ {(Iσ1 · B1)Jσ2 · B2

}
s

)
ds

p−→
n→∞ 0. (43)

Thus, the main term is∫ t

0

∑
I,J

hsK̃
n
ij (s)

{
(IJh) · t}

s
ds. (44)

To prove (43), we show the convergence in L2. More rigorously, using the notation Ǩn
IJ (s) = ∫ t

s
K̃n

IJ (s)hs ds and
interchanging the order of integrals, we get

EΠ

(∫ t

0

∑
I,J

hsK̃
n
ij (s)

{
(Jσ2 · B2)Iσ1 · B1

}
s

ds

)2

= EΠ

({∑
I,J

Ǩn
ij (Jσ2 · B2)Iσ1 · B1

}
t

)2

≤
∫ t

0
EΠ

[(∑
I,J

Ǩn
IJ (u)(Jσ2 · B2)uIuσ1,u

)2]
du
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=
∫ t

0

∫ u

0

(∑
I,J

Ǩn
IJ (u)Iuσ1,uJvσ2,v

)2

dv du

≤ Cb−2
n

∫ T

0

∫ T

0
r2
n

∑
I,J

(
KIJ 1I (u)1J (v)

)
dv du ≤ Cb−2

n r3
n.

Let us show now that the term (44) converges in probability. Simple algebra allows us to rewrite that term in the form

1

2bn

∑
I

(∫ t

0
hs1I (s)ds

)2

+ 1

2bn

∑
J

(∫ t

0
hs1J (s)ds

)2

− 1

2bn

∑
I,J

(∫ t

0
hs1I∩J (s)ds

)2

,

which in turn is nothing else but
∫
[0,t]2 hshs′1{s∨s′≤t}{V I

n + V J
n − V I∩J

n }(ds,ds′). The weak convergence of measures
stated in Assumption P1 completes the proof of the first assertion. The proof of the second assertion is quite similar
and therefore is omitted. �

Proof of Lemma 8. Using the representations of Mn and Nn as stochastic integrals, we get

〈
Mn,Nn

〉
t
=
∫ t

0

(
H

1,n
s G

1,n
s + H

1,n
s G

2,n
s ρs + H

2,n
s G

1,n
s ρs + H

2,n
s G

2,n
s

)
ds. (45)

Let us denote by G11,n the first summand b−1
n

∑
I,J KIJ {((Jβ2) · t)(Iσ1)} in G1,n and let us show that

∫ t

0 H
1,n
s G

11,n
s ds

tends to zero in probability as n → ∞. Simple algebra yields

∫ t

0
H

1,n
s G

11,n
s ds = b

−3/2
n

∫ t

0

∑
I

Isσ
2
1,s

∫ s

0
J (I)uβ2,u du

∫ s

0
J (I)uσ2,u dB2,u ds

= b
−3/2
n

∫ t

0

∑
I

Isσ
2
1,sβ2,aJ (I )

(s − aJ(I))

∫ s

0
J (I)uσ2,u dB2,u ds

+ b
−3/2
n

∫ t

0

∑
I

Isσ
2
1,s

∫ s

0
J (I)u(β2,u − β2,aJ (I )

)du

∫ s

0
J (I)uσ2,u dB2,u ds

:= T1,n + T2,n,

where we denoted by aJ(I) the left endpoint of the interval J (I). Let us show that both T1,n and T2,n tend to zero in
probability. Indeed,

EΠ
[

T 2
1,n] = b−3

n EΠ

[∫ t

0
σ 2

2,u

(∑
I

J (I )u

∫ t

u

Isσ
2
1,s(s − aJ(I))ds β2,aJ (I )

)2

du

]

≤ Cb−3
n EΠ

[∫ t

0

(∑
I

J (I )u|I |∣∣J (I)
∣∣|β2,aJ (I )

|
)2

du

]
≤ Cb−3

n r4
n sup

t∈[0,T ]
E
[
β2

2,t

]
,

and, after applying the Cauchy–Schwarz inequality several times,

EΠ
[

T 2
2,n

] ≤ b−3
n EΠ

[∫ t

0

∑
I

Isσ
4
1,s

(∫ s

0
J (I)u(β2,u − β2,aJ (I )

)du

∫ s

0
J (I)uσ2,u dB2,u

)2

ds

]

≤ Cb−3
n EΠ

[∫ t

0

∑
I

Is

∣∣J (I)
∣∣4 ds

]
≤ b−3

n r4
n.
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Similar arguments yield the convergence to zero of the sequence E[(∫ t

0 H
1,n
s G

12,n
s ds)2]. Thus

∫ t

0 H
1,n
s G

1,n
s ds tends to

zero in probability as n → ∞. The convergence to zero of the other terms of the sum in the right-hand side of (45)
can be shown similarly. �

Proof of Lemma 9. Let us prove the first assertion, the proof of the second one being completely similar. Since
Nn = G

1,n · B1 + G
n,2 · B2 with G

1,n and G
2,n defined in Lemma 5, we have 〈Nn,B1〉t = ∫ t

0 (G
1,n
s + G

n,2
s ρs)ds. It is

easily seen that∫ t

0
G

1,n
s ds = b−1

n

∑
i,j

Kij

∫ t

0

(((
J jβ2

) · t)
s
I i
s σ1,s + (T j − T j−1 ∨ s

)
+I i

s σ1,sβ2,Si−1

)
ds

=
∫ t

0

∫ t

0

(
β2,uσ1,s1(u ≤ s) + 1(u > s)σ1,sβ2,s

)
V I,J

n (ds,du)

+ b−1
n

∑
i,j

Kij

∫ t

0

(
T j − T j−1 ∨ s

)
+I i

s σ1,s(β2,Si−1 − β2,s)ds.

Since β2 is an Itô process with β
[0]
2 , β[1]

21 and β
[1]
22 being uniformly bounded in L2-norm, the expectation EΠ [|β2,Si−1 −

β2,s |] is bounded up to a constant factor by |I |1/2. This implies that the second term in the last formula is
op(b−1

n

∑
I,J KIJ |I |3/2|J |) = op(r

3/2
n b−1

n ), while the first term converges to
∫ t

0 β2,sσ1,s V I,J (ds) in view of Assump-
tion P1.

Identical arguments imply the convergence of
∫ t

0 G
n,2
s ρs ds to

∫ t

0 β1,sσ2,sρs V I,J (ds) and the assertion of the lemma
follows. �

Proof of Lemma 10. Since Nn = G
1,n · B1 + G

2,n · B2, its quadratic variation is given by 〈Nn,Nn〉 = [(G1,n)2 +
2G

1,n
G

2,nρ + (G2,n)2] · t . Using the semimartingale decomposition of β2, one checks that

∫ t

0

(
G

1,n
s

)2 ds = b−2
n

∫ t

0

(∑
I,J

KIJ

∫ t

0
Juβ2,u duIsσ1,s

)2

ds + op

(
r3
nb−2

n

)

= b−2
n

∫ t

0

∑
I

Isσ
2
1,s

(∫ t

0
J (I)uβ2,u du

)2

ds + op

(
r3
nb−2

n

)

=
∫

[0,t]3
σ 2

1,sβ2,uβ2,u′ V I,J,J ′
n

(
ds,du,du′)+ op

(
r3
nb−2

n

)
.

Analogous computations show that∫ t

0

(
G

2,n
s

)2 ds =
∫

[0,t]3
β1,sβ1,s′σ 2

2,uV I,I ′,J
t

(
ds,ds′,du

)+ op

(
r3
nb−2

n

)
,

∫ t

0
G

1,n
s G

2,n
s ρs ds =

∫
[0,t]3

β2,uβ1,s′σ1,sσ2,sρs V J (I),I (J ),I∩J
t

(
du,ds′,ds

)+ op

(
r3
nb−2

n

)
.

Now, the desired result follows from Assumption P2. �

9. Technical results on Poisson point processes

Lemma 11. For every λ > 0 it holds that
∑∞

k=0
λk

k!(k+2)
= λ−2(λeλ − eλ + 1).

Proof. It follows from the equality 1/(k!(k + 2)) = 1/((k + 1)!)− 1/((k + 2)!) and the power series expansion of the
exponential function. �
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Lemma 12. Let P be a homogeneous Poisson point process on R with intensity λ > 0 and let a ∈ R. For every ω,
let Ia(w) be the interval that contains a and that is an element of the partition of R generated by P . Then |Ia| is
distributed according to the law Gamma(2, λ).

Proof. W.l.o.g. we can assume that a = 0. Since the restrictions of P on (−∞,0) and [0,∞) are two independent
Poisson processes, the law of |Ia| coincides with the law of the sum of two i.i.d. random variables exponentially
distributed with parameter λ. Thus the assertion of the lemma follows from the well known properties of the Gamma
distribution. �

Lemma 13. Let P be a homogeneous Poisson point process on R with intensity λ > 0 and let I = [a, b] ⊂ R be
some interval. For every ω, let us denote by N = N(ω) the number of points of P(ω) lying in I and by ti = ti (ω),
i = 1, . . . ,N , the ordered sequence of these points. Then

E

[
N∑

i=0

(ti+1 − ti )
2

]
= 2(|I |λ − 1 + e−|I |λ)

λ2
,

where we used t0 = a and tN+1 = b.

Proof. Without loss of generality, we assume that I = [0,1]. We use the fact that conditionally to N(ω) = k, the
random vector (t1, . . . , tk) have the same distribution as (U(1), . . . ,U(k)), where U1, . . . ,Uk are independent uniformly
in [0,1] distributed random variables and U(1), . . . ,U(k) are the corresponding order statistics. Since the joint density
of (U(i),U(i+1)) is given by

f(U(i),U(i+1))(x, y) = k!
(i − 1)!(k − i − 1)!x

i−1(1 − y)k−i−11{x≤y},

the expectation E[(U(i+1) − U(i))
2] is equal to 2/[(k + 1)(k + 2)]. It is easily seen that E[U2

(1)] = E[(1 − U(k))
2] =

2/[(k + 1)(k + 2)]. Therefore,

E

[
N∑

i=0

(ti+1 − ti )
2

]
=

∞∑
k=0

(
k∑

i=0

2

(k + 1)(k + 2)

)
P(N = k) =

∞∑
k=0

2e−λλk

k!(k + 2)
.

The desired result follows now from Lemma 11. �

Lemma 14. Let ζ1 ∼ E (λ1) and P2 be a Poisson process with intensity λ2 independent of ζ1. Let us denote by Π2
ζ

the partition of [0, ζ1] generated by P2. Then

E
[
ζ1

∑
J∈Π2

ζ

|J |2
]

= 6λ1 + 4λ2

λ2
1(λ1 + λ2)2

.

Proof. By rescaling and by using Lemma 13, we get

E
[ ∑

J∈Π2
ζ

|J |2|ζ1

]
= 2ζ 2

1 (λ2ζ1 − 1 + e−λ2ζ1)

λ2
2ζ

2
1

.

Therefore,

E
[
ζ1

∑
J∈Π2

ζ

|J |2
]

= 2

λ2
E
[
ζ 2

1

]− 2

λ2
2

E[ζ1] + 2

λ2
2

E
[
ζ1e−λ2ζ1

]= 4

λ2λ
2
1

− 2

λ2
2λ1

+ 2

λ2
2

λ1

(λ1 + λ2)2
= 6λ1 + 4λ2

λ2
1(λ1 + λ2)2

.

This completes the proof of the lemma. �



Expansion for the HY-estimator 785

Lemma 15. Let I = [a, b] be an interval of [0, T ]. If P is a Poisson point process with intensity λ and Π is the
partition of [0, T ] generated by P , then

E
[∑

J∈Π

|J |KIJ

]
= |I | + 2λ−1 − λ−1(e−λa + e−λ(T −b)

)
,

E
[∑

J∈Π

|J \ I | · |J ∩ I |
]

= λ−2(1 − e−λ|I |)(2 − e−λa − e−λ(T −b)
)
.

Proof. We can consider the Poisson point process P on [0, T ] as the union of three independent Poisson point
processes: Pa on [0, a], PI on I = [a, b] and Pb on [b,T ]. Let t1 ≤ · · · ≤ tNa (resp. t ′′1 ≤ · · · ≤ t ′′Nb

) be the points
of Pa (resp. Pb). Then E[∑J |J |KIJ ] = E[(a − tNa ) + |I | + (t ′′1 − b)]. For every integer k ≥ 0, conditionally to
Na = k, the random variable tNa has the same law as the last order statistic U(k) of a sequence U1, . . . ,Uk of i.i.d.
uniformly in [0, a] distributed random variables. Therefore, E[a − tNa |Na = k] = a/(k + 1) and

E[a − tNa ] =
∞∑

k=0

(aλ)ka

k!(k + 1)
e−aλ = 1 − e−aλ

λ
.

The same arguments yield E[t ′′1 −b] = λ−1(1−e−(T −b)λ) and the first assertion of the lemma follows. Using the same
notation, we have

∑
J |J \ I | · |J ∩ I | = (a − tNa )(t

′
1 − a) + (b − t ′NI

)(t ′′1 − b), where t ′1 ≤ · · · ≤ t ′NI
are the points

of P lying in I . Thanks to the conditional independence of tNa , (t ′1, t ′NI
) and t ′′1 given Na , NI and Nb, as well as the

representation by means of order statistics of the uniform distribution we get the second assertion of the lemma. �

Lemma 16. Let t > 0 and let P be a Poisson process on [0, t] with intensity λ. We denote by Π the random partition
of [0, t] generated by P . For every continuous function h : [0, t]2 → R, it holds that

λ
∑
I∈Π

∫
I×I

h
(
s, s′)ds ds′ L1(P )−→

λ→∞ 2
∫ t

0
h(s, s)ds.

Proof. Let K be a positive integer and let as denote by

wh(δ) = max
{∣∣h(s, s′)− h

(
u,u′)∣∣: (s, s′, u,u′) ∈ [0, T ]4 and |s − u| ≤ δ,

∣∣s′ − u′∣∣≤ δ
}

(46)

the modulus of continuity of h. Since h is continuous and [0, t]2 is compact, we have wh(t/K) → 0 as K → ∞.
It holds that λ

∑
I∈Π

∫
I×I

h(s, s′)ds ds′ = 2
∫ t

0 h(s, s)ds + T1 + T3 + T3 with

T1 = λ
∑
I∈Π

∫
I×I

h
(
s, s′)ds ds′ − λ

K∑
i=1

h

(
it

K
,
it

K

) ∑
I∈ΠK

i

|I |2,

T2 =
K∑

i=1

h

(
it

K
,
it

K

)(
λ
∑

I∈ΠK
i

|I |2 − 2t

K

)
,

T3 = 2
K∑

i=1

t

K
h

(
it

K
,
it

K

)
− 2

∫ t

0
h(s, s)ds,

where ΠK
i is the restriction of the Poisson process P on the interval [(i − 1)t/K, it/K]. For the first term, easy

algebra yields

E
[|T1|

]≤ λ‖h‖∞E

[∑
I∈Π

|I |2 −
K∑

i=1

∑
I∈ΠK

i

|I |2
]

+ λwh(t/K)

K∑
i=1

E
[ ∑

I∈ΠK
i

|I |2
]
.
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This inequality combined with Lemma 13 implies that

lim sup
λ→∞

E
[|T1|

]≤ lim sup
λ→∞

(
λ‖h‖∞

K

λ2
+ λwh(t/K)

2t

λ

)
= 2twh(t/K).

In order to bound E[|T2|], we evaluate E[|λ∑I∈ΠK
i

|I |2 − 2t
K

|]. The value of this term being independent of i, we
only evaluate the term corresponding to i = 1. Let {ζj , j ∈ N} be a family of i.i.d. exponentially distributed random
variables with scaling parameter one and let N = min{k: ζ1 + · · · + ζk ≥ npt/K}. Then

∣∣∣∣λ ∑
I∈ΠK

i

|I |2 − 2t

K

∣∣∣∣≤ 1

λ

∣∣∣∣∣
N∑

j=1

(
ζ 2
j − 2

)∣∣∣∣∣+
∣∣∣∣2(N − 1)

λ
− 2t

K

∣∣∣∣+ ζ 2
N + 2

λ
.

Note that E[ζ 2
N ] = 6 by virtue of Lemma 12. In view of the Cauchy–Schwarz inequality and Wald’s identity [38],

Chapter VII, Theorem 3, Eq. (15), we get E[|∑N
j=1(ζ

2
j − 2)|] ≤ [Var(ζ 2

1 )E(N)]1/2 = O(λ1/2). Finally, it is clear that
|T3| ≤ 2twh(t/K). Putting these estimates together, we get lim supλ→∞ E[|T1 + T2 + T3|] ≤ 4twh(t/K). Using the
fact that wh(t/K) tends to zero as K → ∞, we arrive at the desired result. �

Lemma 17. Let t > 0 and let P i , i = 1,2, be two Poisson processes on [0, t] with intensities λi , i = 1,2. Let Πi be
the random partition of [0, t] generated by P i , i = 1,2, and let λ0 = λ1λ2/(λ1 + λ2). For every continuous function
h : [0, t]2 → R there exists a constant C > 0 such that for every x ∈ [C logλ0,Cλ

1/6
0 ] the inequality

P
(∣∣∣∣λ0

∑
I,J

KIJ

∫
I×J

h
(
s, s′)− 2

∫ t

0
h(s, s)ds

∣∣∣∣≥ x√
λ0

+ Cx

(
1

λ 0
+ wh

(
x

λ0

)))
≤ Cλ0e−x/C

holds for sufficiently large λ0, with wh(·) being defined by (46).

Proof. W.l.o.g. we assume that t = 1. Set T = λ0
∑

I∈Π1,J∈Π2 KIJ

∫
I×J

h(s, s′)ds ds′ and h̄(s) = h(s, s). Let us
denote by N(x) = �λ0/x� the smallest positive integer such that N(x)x > λ0 and let us set Li = [iN(x)−1, (i +
1)N(x)−1]. The intervals Li define a uniform deterministic partition of [0,1] with a mesh-size of order x/λ0. Let E
be the event “for every i = 1, . . . ,4N(x), the interval [ i

4N(x)
,

(i+1)
4N(x)

] contains at least one point from Π1 and one point

from Π2.” The total probability formula implies that

P
(∣∣∣∣T − 2

∫ 1

0
h̄(s)ds

∣∣∣∣≥ x√
λ0

)
≤ P
(∣∣∣∣T − 2

∫ 1

0
h̄(s)ds

∣∣∣∣≥ x√
λ0

∣∣∣E
)

+ P
(

E c
)
,

where E c denotes the complementary event of E . Easy computations show that, for some C > 0, the inequality P(E c) ≤
Cλ0x

−1e−x/C holds true.
Let now li be a point in Li such that

∫
Li

h̄(t)dt = h̄(li )|Li | and let aI be the left endpoint of I . We define the
random variables

η◦
i = λ0h̄(li)

∑
I,J

|I ||J |KIJ 1{aI ∈Li }, i = 1, . . . ,N(x),

and write T1 = T11 + T12 + T13 + O(λ0|L1|wh(|L1|)) on E , where

T11 = EE
[

N(x)∑
i=1

η◦
i

]
− 2

∫ 1

0
h̄(s)ds, T1s =

[N(x)/2]∑
i=1

(
η◦

2i+s−2 − EE [η◦
2i+s−2

])
, s = 2,3.

Let us emphasize that for evaluating the remainder term in T1, we have used the fact that r = maxI∈Π1 |I | ∨
maxJ∈Π2 |J | ≤ |L1|/2 on E .
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On the one hand, since |∑N(x)
i=1 η◦

i | ≤ Cλ0r , we have∣∣∣∣∣EE
[

N(x)∑
i=1

η◦
i

]
− E

[
N(x)∑
i=1

η◦
i

]∣∣∣∣∣≤ λ0E[r1E c ]
P(E )

.

Using the inequality of Cauchy–Schwarz, as well as the bounds P(E c) ≤ Cλ0e−x/C and (36), we get |EE [∑N(x)
i=1 η◦

i ]−
E[∑N(x)

i=1 η◦
i ]| ≤ Cλ0e−x/C , for some constant C and for every x > C logλ0.

On the other hand, in view of Lemma 15, we have

E
[
η◦

i

]≤ λ0h̄(li )E
[ ∑

I :aI ∈Li

(
|I |2 + 2|I |

λ2

)]
≤ Cλ0h̄(li )

(
λ−1

1 + λ−1
2

)|Li | = O
(
xλ−1

0

)
.

Using once again Lemma 15, we get

E

[
N(x)∑
i=1

η◦
i

]
=

N(x)−1∑
i=2

λ0h̄(li )E
[ ∑

I :aI ∈Li

|I | · EΠ1
(∑

j∈Π2

KIJ |J |
)]

+ O
(
xλ−1

0

)

=
N(x)−1∑

i=2

λ0h̄(li )E
[ ∑

I :aI ∈Li

(
|I |2 + 2|I |/λ2

)]
+ O

(
xλ−1

0

)
.

Wald’s equality yields

E
[ ∑

I :aI ∈Li

|I |k
]

= k!|Li |λ1−k
1 + O

(
λ−k

1

)
(47)

for every k > 0 and for every i ≤ N(x) − 1. Putting all these estimates together, we get

E

[
N(x)∑
i=1

η◦
i

]
=

N(x)−1∑
i=2

nλ0h̄(li )

(
2|Li |
λ1

+ 2|Li |
λ2

)
+ O

(
xλ−1

0

)= N(x)∑
i=1

2h̄(li )|Li | + O
(
xλ−1

0

)
.

Since li is chosen to verify h̄(li)|Li | =
∫
Li

h̄(t)dt , we get T11 = O(xλ−1
0 ).

The advantage of working with η◦
i ’s is that, conditionally to E , the random variables η◦

2i , i = 1, . . . , [N(x)/2],
are independent. Indeed, one easily checks that conditionally to E , η◦

2i depends only on the restrictions of P1 and

P1 onto the interval [ (4i−1)
2N(x)

,
(4i+3)
2N(x)

]. Since these intervals are disjoint for different values of i ∈ N, the restrictions

of Poisson processes Pk , k = 1,2, onto these intervals are independent. Therefore, η◦
2i , i = 1, . . . , [N(x)/2], form

a sequence of random variables that are independent conditionally to E . Moreover, conditionally to E , they verify
|η◦

i | ≤ Cλ0r|Li | ≤ Cx2/λ0. One can also check that EE [(η◦
i )

2] = O(x2λ−2
0 ).

These features enable us to use the Bernstein inequality in order to bound large deviations of T12 as follows:

PE(|T12| ≥ x/
√

λ0
)≤ 2 exp

(
− x2/(2λ0)

C(N(x)x2λ−2
0 + x3λ

−3/2
0 )

)
≤ 2e−x/C ∀x ∈ [1, λ

1/6
0

]
.

Obviously, the same inequality holds true for the term T13. These inequalities combined with the bound on the deter-
ministic error term T11 complete the proof. �

Lemma 18. Let T > 0 and let P i
n, i = 1,2, be two Poisson processes on [0, T ] with intensities npi , i = 1,2. For

every continuous function h : [0, T ]3 → R, it holds that

n2
∑

I∈Π1
n

∫
I×J (I)×J (I)

h(s, t, u)ds dt du
P−→

n→∞

(
6

p2
1

+ 8

p1p2
+ 6

p2
2

)∫ T

0
h(s, s, s)ds.
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Proof. Let us denote Tn = n2∑
I∈Π1

n

∫
I×J (I)×J (I)

h(s, t, u)ds dt du and let us consider the uniform partition {Li =
[(i − 1)/N, i/N), i = 1, . . . ,N} with N = [n1−ε] slightly smaller than n (ε is a small positive number). For every
integer i smaller than [n1−ε], we define li as the real number such that h̄(li ) = |Li |−1

∫
Li

h̄s ds, where h̄s = h(s, s, s).
The continuity of h implies that

Tn = n2(1 + o(1)
) N∑

i=1

∑
I

h̄(li )|I |∣∣J (I)
∣∣21Li

(aI ).

For every i, we set η◦
i = n2∑

I h̄(li )|I ||J (I)|21Li
(aI ). We first remark that

E
[∑

I

h̄(li)|I |∣∣J (I)
∣∣21Li

(aI )

]
= N−1O

(
E
[
r2
n

]) ∀i = 1, . . . ,N.

Let now i ∈ 2, . . . ,N − 1 and I be an interval of Π1 satisfying aI ∈ Li , then ||J (I)|−|I |−ξ◦
1 −ξ◦

2 | ≤ (ξ◦
1 −N−1)+ +

(ξ◦
2 − N−1)+, where ξ◦

1 and ξ◦
2 are two random variables distributed according to the exponential distribution with

parameters np2 conditionally to Π1. Moreover, conditionally to Π1, ξ◦
1 and ξ◦

2 are independent. Since N = O(n1−ε)

and EΠ1[(ξ◦
j )4] = O(n−4), by the Cauchy–Schwarz inequality we have EΠ1[(ξ◦

j −N−1)2+] = O(n−2−4ε) for j = 1,2.

This implies that EΠ1[|J (I)|2] = |I |2 + 4|I |(np2)
−1 + 6(np2)

2 + O(|I |n−1−2ε). Combining this estimate with (47),
we get

E
[
η◦

i

]= h̄(li )|Li |
(

6

p2
1

+ 8

p1p2
+ 6

p2
2

)
+ n2|Li |O

(
n−1−2ε

)= ( 6

p2
1

+ 8

p1p2
+ 6

p2
2

)∫
Li

h̄(s)ds + o(1).

By reasoning in a similar way, we get E[η◦
i η

◦
j ] − E[η◦

i ]E[η◦
j ] = o(|Li |2) as soon as |i − j | > 2. Standard argu-

ments imply that Var[∑i η
◦
i ] = O(N maxi Var(η◦

i )) + o(N2|L1|2). Since |η◦
i | ≤ C(nrn)

2|L1| for every i, we get
Var[∑i η

◦
i ] = O(N |L1|2E[(nrn)

4])+o(1) = o(1) and the desired convergence property follows from the convergence
of Tn in L2. �

Lemma 19. Let T > 0 and let P i
n, i = 1,2, be two Poisson processes on [0, T ] with intensities npi , i = 1,2. There

is a constant ν(p1,p2) depending only on p1 and p2 such that for every continuous function h : [0, T ]3 → R

n2
∑

I∈Π1
n

∑
J∈Π2

n

∫
I (J )×J (I)×I∩J

h(s, t, u)ds dt du
P−→

n→∞ν(p1,p2)

∫ T

0
h(s, s, s)ds.

Proof. The proof of this lemma follows from the invariance of the law of a Poisson process under scaling and trans-
lation, as well as from the independence of disjoint sets’ measures. It is similar to the proofs of preceding lemmas and
therefore will be omitted. �
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