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Abstract. Motivated by the recent development in the theory of jump processes, we investigate its conservation property. We will
show that a jump process is conservative under certain conditions for the volume-growth of the underlying space and the jump rate
of the process. We will also present examples of jump processes which satisfy these conditions.

Résumé. Motivés par les récents développements dans la théorie des processus de sauts, nous étudions leur propriété de conser-
vation. Nous montrons qu’un processus de saut est conservatif sous certaines conditions sur la croissance du volume de l’espace
sous-tendant et sur le taux de saut du processus. Nous donnons des examples de processus satisfaisant ces conditions.
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1. Introduction

One of the most fundamental properties for a stochastic process is its conservativeness; that is, the process stays al-
most surely for all time t > 0 in the state space. Motivated by the recent development in the theory of jump processes,
there have been some results for the conservation property of a jump process or of the associated non-local operator;
Schilling [19] obtained a criteria for the conservation property via the symbol of the generator; the second named
author established another criteria [12], which generalize the Oshima’s conservativeness test [18] (see also Theo-
rem 1.5.5 in [8]), and applied it to obtain the conservation property of a jump process. These two results are sharp,
and therefore, in order to apply them, one needs certain information of the generator which is hard to determine for a
given Dirichlet form. Other works are, for examples, [2,3,5], where they showed the conservation properties for some
jump processes for their own purposes (see Section 4).

On the other hand, due to the corresponding researches for a diffusion process [6,9–11,14,21,22], we know that the
main factor for the conservation property (for a diffusion process) is the volume growth of the underlying space. As
far as the authors are concerned, there are no results which had addressed the relationships between the conservation
property of a jump process and the volume growth of the underlying space. In this article we wish to understand
what are the keys for a jump process to be conservative, in particular, in the connections with the volume growth
of the space and the jump rate of the process without any knowledge of the generator. The suitable setting for our
purpose is the Dirichlet form (E , F ). Let us now specify our space X and the Dirichlet form. Let (X,d) be a locally
compact metric space with a positive Radon measure m with full support. We assume that any ball with respect to d
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is relatively compact (however, we will relax this assumption later). Let μ(x,dy) be a kernel defined on the product
space X × B(X). Define the quadratic form E as

E (u, v) :=
∫ ∫

x �=y

(
u(x) − u(y)

)(
v(x) − v(y)

)
μ(x,dy)m(dx)

for u,v ∈ L2 = L2(X;m), whenever the right-hand side makes sense. We assume

Condition (C).

(i) μ(x,dy)m(dx) is a symmetric measure on X × X\D, where D = {(x, x) :x ∈ X} is the diagonal set; namely,

μ(x,dy)m(dx) = μ(y,dx)m(dy).

(ii) M = sup
x∈X

∫
y �=x

(
1 ∧ d2(x, y)

)
μ(x,dy) < ∞.

Let C
lip
0 = C

lip
0 (X) be the space of all Lipschitz continuous functions defined on X with compact support. Recall

that Condition (C) implies that (E ,C
lip
0 ) is a closable Markovian symmetric form on L2 (see [8,24]), and thus, there

exists a symmetric Hunt process associated with its closure (E , F ). Note that the corresponding process is of pure
jump. Set

E1[u] = E (u,u) + ‖u‖2 for u ∈ F .

Here ‖u‖ = √
(u,u) stands for the L2-norm of u. Fix an arbitrary point x0 ∈ X and set r(x) = d(x0, x).

The principal purpose of this article is to show:

Main result. Assume (C). If

e−ar(x) ∈ L1 for every a > 0, (1.1)

then the associated symmetric jump process is conservative.

This Main result shows that the conservativeness is controlled by the volume growth of the underlying space
together with the jump rate; namely, even if the volume grows rapidly at least satisfying (1.1), the process should stay
in the space, provided it jumps sufficiently rarely (at infinity of X) satisfying (C)-(ii). Since (1.1) is satisfied for any
Euclidean space, this result implies the conservation properties in [2,5] (see Section 4). It should be noted that for the
Lp-Liouville property of a jump process, we need a condition on the jump rate but not on the volume growth [17].

Condition (C) is so general that most of the typical examples of μ(x,dy) satisfy; the kernels μ(x,dy) = k(x, y)dy

of symmetric α-stable processes; symmetric stable-like processes; and symmetric Lévy processes (see Section 4) on
a Riemannian manifold with non-negative Ricci curvature outside a compact set. In general, (1.1) and (C)-(ii) do not
imply each other (see Section 4). Comparing to the diffusion case, we need the additional condition (C)-(ii) and the
stronger volume growth condition (1.1).

Our technique to prove the Main result is a perturbation method (see Section 4 in [20]); we will first establish
the conservation property for the truncated process; that is, the process which jumps no more than distance R > 0
with some (uniform) R > 0, and secondly, show that there will be no explosion at infinity of X. More precisely, in
order to prove the conservation property of the truncated process we apply both (1.1) and (C)-(ii). We will follow
the standard steps (due to Gaffney [9] and Garding) but we need to develop and apply an integral derivation property
(Proposition 2.2), which is interesting by its own (see, e.g., [17]). To show the conservation property of the original
process, we will prove that under (C)-(ii), the generator B of the form E 2 = E − E 1, where E 1 is the form associated
to the truncated process, is extended to a bounded operator on L∞, and in particular, it becomes a (one order) integro-
differential operator. This implies that B1 = 0. Then, combining this together with the previous result, we will obtain
the Main result.
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Let us point out that we may relax the assumptions for our Main result in the following two points: first, that the
distance d on X may be replaced by a quasi-distance d ′; that is, d ′ satisfies all of the properties of d but the constant
in the triangle inequality may be an arbitrary positive constant; and secondly, that the balls in X do not need to be
relatively compact but the Cauchy boundary (or b-boundary [7]) of X is polar (Corollary 3.3 in Section 3.1).

Therefore, our result is applicable also for singular spaces; for instance, algebraic varieties, cone-manifolds, orb-
ifolds (Satake’s V -manifolds), etc. Note that even for X ⊂ Rd , its completion X does not need to be locally compact
(see, e.g., [7], page 283), and if any ball in X is relatively compact, then X is complete, and, in particular, the Cauchy
boundary is almost polar (see [16] when the space X is a Riemannian manifold).

We organize this article as follows. In Section 2 we prove the conservation property for the truncated process. We
also prove the integral derivation property (Proposition 2.2). In Section 3, we will prove Main result (Theorem 3.1)
and its extension to the incomplete space. Finally, we present some examples of the kernels k in Section 4.

2. Conservation property of truncated processes

In this section we consider the truncated (jump) kernel μ1(x,dy):

μ1(x,A) = μ
(
x,A ∩ B(x,1)

)
for x ∈ X and A ∈ B(X),

where B(x,1) = {y ∈ X: d(y, x) < 1}. We will establish the associated integral derivation property, and by applying
it, we will prove the conservation property of truncated processes.

We can show that the following Dirichlet form (E 1, F ) associated with μ1 is regular:

E 1(u, v) =
∫ ∫

x �=y

(
u(x) − u(y)

)(
v(x) − v(y)

)
μ1(x,dy)m(dx), u, v ∈ F .

Let Clip be the space of uniformly Lipschitz continuous functions on X and C
lip
b := Clip ∩ L∞.

Lemma 2.1. Assume (C). If u ∈ F and v ∈ C
lip
b , then u · v ∈ F .

Proof. Assume u ∈ F and v ∈ C
lip
b . Then there exists a sequence {un} ⊂ C

lip
0 such that un converges to u in

√
E1, and

hence in
√

E 1
1 . Note that unv ∈ C

lip
0 and it is easy to see that unv converges to uv in L2. To show uv ∈ F , we need to

estimate E 1[unv] as follows:

E 1[unv] =
∫ ∫

x �=y

(
un(x)v(x) − un(y)v(y)

)2
μ1(x,dy)m(dx)

≤ 2
∫ ∫

x �=y

v2(x)
(
un(x) − un(y)

)2
μ1(x,dy)m(dx)

+ 2
∫ ∫

x �=y

u2
n(x)

(
v(x) − v(y)

)2
μ1(x,dy)m(dx)

≤ 2‖v‖2∞
∫ ∫

x �=y

(
un(x) − un(y)

)2
μ1(x,dy)m(dx)

+ 2‖v‖2
Lip

∫
u2

n(x)

∫
0<d(x,y)<1

d2(x, y)μ(x,dy)m(dx)

≤ 2
(‖v‖2∞ + M‖v‖2

Lip

)
E 1[un].

Since this shows that unv is a bounded sequence with respect to E 1
1 , we can conclude that uv ∈ F . �
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Let Γ :Clip
0 × C

lip
0 → L1 be the relative carré du champ operator; namely,

Γ (u, v)(x) = 1

2

∫
y �=x

(
u(x) − u(y)

)(
v(x) − v(y)

)
μ1(x,dy). (2.1)

Proposition 2.2 (Integral derivation property). Assume (C).

∫
Γ (u, v · w)dm =

∫
vΓ (u,w)dm +

∫
wΓ (u, v)dm ∀u,v ∈ Fb,∀w ∈ C

lip
b . (2.2)

Proof. Once the convergence of each integral in (2.2) is justified, the equality is easily seen as in [17]. The left-hand
side makes sense because u,vw ∈ F by Lemma 2.1. Since w is bounded, it follows that the integral of the second
term of the right-hand side converges by the Schwarz inequality. Thus, we only need to show that the first term of the
right-hand side converges.

By applying the Schwarz inequality twice, we have

∣∣∣∣
∫

vΓ (u,w)dm

∣∣∣∣
≤

∫ ∣∣v(x)
∣∣ ∫

x �=y

∣∣u(x) − u(y)
∣∣ · ∣∣w(x) − w(y)

∣∣μ1(x,dy)m(dx)

≤
∫ ∣∣v(x)

∣∣{√∫
x �=y

∣∣u(x) − u(y)
∣∣2

μ1(x,dy)

√∫
x �=y

∣∣w(x) − w(y)
∣∣2

μ1(x,dy)

}
m(dx)

≤
√∫ ∫

x �=y

∣∣u(x) − u(y)
∣∣2

μ1(x,dy)m(dx)

√∫ ∫
0<d(x,y)<1

v2(x)
∣∣w(x) − w(y)

∣∣2
μ1(x,dy)m(dx)

≤ ‖w‖Lip · √E (u,u)

√∫ ∫
0<d(x,y)<1

v2(x)d2(x, y)μ1(x,dy)m(dx)

≤ √
M‖w‖Lip · √E (u,u) · ‖v‖ < ∞. �

Set ga = e−ar with a > 0, where r is the distance d(x0, ·) from an arbitrary fixed point x0 ∈ X.

Lemma 2.3. If (C) and (1.1), then ga ∈ F for any a > 0.

Proof. Let χn be a sequence of cut-off functions on X defined as

χn(x) := (n − r(x))

n
∨ 0, x, y ∈ X with

∣∣r(x) − r(y)
∣∣ ≤ 1.

Fix a > 0 and set gn := gaχn for n ∈ N. By condition (1.1) and the Lebesgue convergence theorem, we see that gn

converges to ga in L2 as n → ∞. Utilizing the following inequality (which takes place of the chain rule for a local-
operator [21]):

∣∣ga(x) − ga(y)
∣∣ ≤ aeaga(x)

∣∣r(x) − r(y)
∣∣, x, y ∈ X with

∣∣r(x) − r(y)
∣∣ ≤ 1,

and taking into account that |r(x) − r(y)| ≤ d(x, y), we have

E 1(ga, ga) ≤ C

∫ ∫
g2

a(x)
∣∣r(x) − r(y)

∣∣2
μ1(x,dy)m(dx) ≤ CM

∫
g2

a(x)m(dx) < ∞,
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where C = aea . Moreover, by setting ηn = 1 − χn, it follows that

E 1(ga − gn, ga − gn) =
∫ ∫ (

ga(x)ηn(x) − ga(y)ηn(y)
)2

μ1(x,dy)m(dx)

=
∫ ∫ {(

ga(x) − ga(y)
)
ηn(x) + ga(y)

(
ηn(x) − ηn(y)

)}2
μ1(x,dy)m(dx)

≤ 2
∫ ∫ (

ga(x) − ga(y)
)2

η2
n(x)μ1(x,dy)m(dx)

+ 2
∫ ∫

g2
a(y)

(
ηn(x) − ηn(y)

)2
μ1(x,dy)m(dx)

≤ 2C

∫ ∫
g2

a(x)d2(x, y)η2
n(x)μ1(x,dy)m(dx)

+ 2

n2

∫ ∫
g2

a(y)d2(x, y)μ1(x,dy)m(dx)

≤ 2CM

∫
g2

a(x)η2
n(x)m(dx) + 2M

n2
‖ga‖2,

where the last line tends to 0 as n → ∞ by the Lebesgue convergence theorem. Therefore, since gn ∈ F (because
every ball associated to d is relative compact), we have the assertion. �

We are in a position to prove the conservation property of the truncated process.

Theorem 2.4. If (C) and (1.1) hold, then the form (E 1, F ) is conservative.

Proof. Let f ∈ C
lip
0 and ut = Ttf , where Tt is the L2-semigroup associated with (E 1, F ). Set

θ = er and θn = θ ∧ n

for every n ∈ N. Taking into account Lemma 2.3, we have the equality:

(ut , ga) − (f, ga) =
∫ t

0
(u̇s , ga)ds, (2.3)

where u̇s = d
ds

us . We will show that for any t > 0,

∫ t

0
(u̇s , ga)ds → 0, a → 0. (2.4)

If this is the case, then by the dominated convergence theorem, we deduce

(Ttf,1) = (ut , g0) = (f, g0) = (f,1),

which clearly implies the conservation property.
To the end we show (2.4). It follows that∣∣∣∣

∫ t

0
(u̇s , ga)ds

∣∣∣∣ =
∣∣∣∣
∫ t

0
E 1(us, ga)ds

∣∣∣∣
=

∣∣∣∣
∫ t

0

∫ ∫ (
us(x) − us(y)

)(
ga(x) − ga(y)

)
μ1(x,dy)m(dx)ds

∣∣∣∣
≤ aea

∫ t

0

∫ ∫ ∣∣us(x) − us(y)
∣∣e−ar(x)

∣∣r(x) − r(y)
∣∣μ1(x,dy)m(dx)ds
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≤ aea

∫ t

0

√∫ ∫
θ(x)

(
us(x) − us(y)

)2
μ1(x,dy)m(dx)ds

×
√∫ ∫

e−2ar(x)

θ(x)
d2(x, y)μ1(x,dy)m(dx)

≤ aea

∫ t

0

√∫
θΓ (us, us)dmds

√
M

∫
e−(2a+1)r dm

≤ aea
√

t · √M · ‖g2a+1‖1/2
L1

∫ t

0

∫
θΓ (us, us)dmds.

Therefore, by (1.1), it suffices to prove

∫ t

0

∫
θΓ [us]dmds < ∞. (2.5)

For any λ > 0 and n ≥ 1, by applying Lemma 2.1 and Proposition 2.2, we have

0 = (u̇s , θnus) +
∫

θnΓ (us, us)dm +
∫

uΓ (us, θn)dm

≥ (u̇s , θnus) +
∫

θnΓ (us, us)dm − e

∣∣∣∣
∫ ∫

u(x)θn(x)d(x, y)
(
u(x) − u(y)

)
μ1(x,dy)m(dx)

∣∣∣∣
≥ (u̇s , θnus) +

∫
θnΓ (us, us)dm − e

√∫ ∫
u2

s (x)θn(x)d2(x, y)μ1(x,dy)m(dx)

√∫
θnΓ (us, us)dm

≥ (u̇s , θnus) +
∫

θnΓ (us, us)dm − e

√
M

∫
u2

s θn dm

√∫
θnΓ (us, us)dm

≥ (u̇s , θnus) +
∫

θnΓ (us, us)dm − eM

2

(
λ

∫
u2

s θn + 1

λ

∫
θnΓ (us, us)dm

)

= 1

2

d

ds

∥∥√
θnus

∥∥2 − λeM

2

∥∥√
θnus

∥∥2 +
(

1 − eM

2λ

)∫
θnΓ (us, us)dm.

Thus

d

ds

∥∥√
θnus

∥∥2 ≤ λeM
∥∥√

θnus

∥∥2 −
(

2 − eM

λ

)∫
θnΓ (us, us)dm. (2.6)

Now we specify λ so that 2 − (eM/λ) > 0; that is, λ > eM/2 and obtain

d

ds

∥∥√
θnus

∥∥2 ≤ λeM
∥∥√

θnus

∥∥2
. (2.7)

Solving this inequality, we have

∥∥√
θnus

∥∥2 ≤ eλeMs
∥∥√

θnu0
∥∥2 = eλeMs

∥∥√
θnf

∥∥2
. (2.8)

Integrating (2.6) on [0, t],
∥∥√

θut

∥∥2 − ∥∥√
θnf

∥∥2 ≤
∫ t

0
λeM

∥∥√
θnus

∥∥2 ds −
(

2 − eM

λ

)∫ t

0

∫
θnΓ (us, us)dmds,
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hence, it follows by (2.8) that(
2 − eM

λ

)∫ t

0

∫
θnΓ (us, us)dmds ≤ −∥∥√

θnut

∥∥2 + ∥∥√
θnf

∥∥2 +
∫ t

0
λeM

∥∥√
θus

∥∥2
ds

≤ ∥∥√
θnf

∥∥2 + λeM
∫ t

0
eλeMs

∥∥√
θnf

∥∥2 ds < ∞.

Letting n → ∞ we obtain (2.5) and arrive at the conclusion. �

3. Conservation property of general jump processes

In this section, we prove the Main result, and extend it to a singular space X.
Since both (E , F ) and (E 1, F ) are symmetric regular Dirichlet forms on L2, there are associated sub-Markovian

semigroups and resolvent operators, which we denote by Tt , T
1
t and Rλ,R

1
λ, respectively. We also denote by A,A1

the associated L2-generators, respectively. Let B be the generator of the form

E (u, v) − E 1(u, v) =
∫ ∫

d(x,y)>1

(
u(x) − u(y)

)(
v(x) − v(y)

)
μ(x,dy)m(dx), u, v ∈ F .

Clearly, B = A − A1. By (C)-(ii), we deduce that

Bu(x) = 2
∫

d(x,y)>1

(
u(y) − u(x)

)
μ(x,dy)

and

‖Bu‖∞ ≤ 4

(
sup
x∈X

∫
d(x,y)>1

μ(x,dy)

)
‖u‖∞ for u ∈ C

lip
0 .

This means that B extends to a bounded operator on L∞, which we denote by the same symbol B . Note that
since Rλ,R

1
λ are sub-Markovian operators, these operators can be extended naturally to L∞.

Theorem 3.1. If μ(x,dy) and m satisfy (C) and (1.1), then (E , F ) is conservative.

Proof. Recall that Tt is conservative if and only if so is λRλ. For λ > 0,

Rλ − R1
λ = Rλ

(
A − A1)R1

λ = RλBR1
λ.

Thus, since λR1
λ1 = 1 by Theorem 2.4 and B1 = 0, we have

λRλ1 − 1 = λRλ1 − λR1
λ1 = RλB

(
λR1

λ

)
1 = RλB1 = Rλ0 = 0.

This shows the conservativeness of the semigroup Tt . �

Now we remove the assumption such that any ball in X is relatively compact. Note that this assumption implies
the completeness of (X,d) (see the remark below).

Define the Cauchy boundary ∂CX of X as

∂CX := X \ X,

where X is the completion of X with respect to d . We say ∂CX is almost polar if there exists a sequence of functions
en ∈ Clip ∩ F with n ∈ N such that

• 0 ≤ en ≤ 1 for every n ∈ N;



Conservation property of symmetric jump processes 657

• There exists an open set On ⊃ ∂CX of X for each n such that en = 1 on On ∩ X;
• E1[en] → 0 as n → ∞.

The key for this generalization is to extend Lemma 2.3 to

Lemma 3.2. Assume that ∂CX is almost polar (but any ball in X is not necessarily a relatively compact). If (C)
and (1.1) hold, then ga ∈ F for every a > 0.

Proof. Let FN be the completion of Clip ∩ {u ∈ L2: E (u,u) < ∞} in E1-norm. It suffices to prove

F = FN,

because ga ∈ FN . Let u ∈ FN . Clearly we may assume that u ∈ L∞ without loss of generality. If en is the function
which is in the definition of the almost polarity above, then un = (1 − en)u ∈ F and un → u in E1 as n → ∞. This
shows: F = FN . �

Then, since Theorems 2.4 and 3.1 extend to this setting, we have:

Corollary 3.3. Assume (C) and (1.1). If the Cauchy boundary of X is almost polar, then (E , F ) is conservative.

Remark 3.1. We can argue as follows the fact that if any ball in X is relatively compact, then X is complete. Let x ∈ X

and xn ∈ X such that d(x, xn) → 0 as n → ∞, where d is the extended distance of d to X. For any r > 0, there exists
n0 ∈ N such that d(x, xn) < r for every n > n0. Then xn ∈ B3r (x0) ⊂ X for ∀n > n0, and due to the assumption, we
conclude that x = limn→∞ xn ∈ B3r (x0) ⊂ X. Therefore X ⊃ X, which says that X is complete.

4. Examples

In this section, we present some examples. Let d ≥ 1. We assume that X is a d-dimensional complete non-compact
Riemannian manifold M without boundary and m is the associated Riemannian measure. We also assume that the
Ricci curvature is non-negative outside a compact set.

In the following, we assume that the kernel μ(x,dy) is absolutely continuous with respect to m for each x; namely,
there exists a non-negative symmetric function k(x, y) = k(y, x) such that

μ(x,dy) = k(x, y)m(dy).

In this case, the condition (C)-(i) is always satisfied.

4.1. Finite range jumping kernel

Example 4.1. Consider the following kernel k(x, y):

k(x, y) = k(y, x) = C(x, y)

d(x, y)d+α
1{d(x,y)≤κ}, x, y ∈ M,

where κ > 0, 0 < α < 2 and C(x, y) is a measurable function that is pinched by two positive constants. Applying the
curvature condition, it is easy to verify (C)-(ii).

Example 4.2. Let 0 < α < β < 2 and C,c > 0. If the kernel k(x, y) is defined by⎧⎨
⎩

c

d(x, y)d+α
≤ k(x, y) = k(y, x) ≤ C

d(x, y)d+β
for d(x, y) ≤ 1,

k(x, y) = 0 for d(x, y) > 1,

then, it satisfies (C)-(ii).
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Remark 4.1. It is proved in [2,5] (see also [4]) that the processes associated to k on Rd in Examples 4.1 and 4.2 are
conservative, respectively. The approach to the conservation property in [2] is to make use of the estimates of the heat
kernel corresponding to the semigroup, and to apply the Mosco convergence of the Dirichlet forms associated to the
following kernels kn(x, y) to the Dirichlet form in the problem:

kn(x, y) =
{

k(x, y) for|x − y| ≥ 1/n,

C|x − y|−d−β for|x − y| < 1/n.

4.2. Symmetric stable-like jumping kernel

Let α(x) be a positive measurable function defined on M , which takes values in (0,2). Set

k̃(x, y) = C(α(x))

d(x, y)d+α(x)
,

where C(α) satisfies C(α) ≈ α(2 − α). Here, ≈ means that the ratio of the left and right-hand sides of ≈ is pinched
by two positive constants.

Let us consider the following quadratic form on L2(M) = L2(M;dm):

E (u, v) =
∫ ∫

x �=y

(
u(x) − u(y)

)(
v(x) − v(y)

)
k̃(x, y)m(dx)m(dy),

D[E ] = {
u ∈ L2(M): E (u,u) < ∞}

.

Then it is shown in [12] (see also [23]) that D[E ] contains C
lip
0 (M) if and only if

∫
r(x)>1

α(x)

r(x)d+α(x)
m(dx) < ∞. (4.1)

This result is originally proven for Rd and it extends to M without any difficulties. So, under this condition,
(E ,C

lip
0 (M)) is a symmetric closable Markovian form on L2(M); accordingly, there exists a symmetric Hunt process

called a symmetric stable-like process corresponding to the closure (E , F ) of (E ,C
lip
0 (M)). Let us point out that

(C)-(ii) implies (4.1).
Due to the Beurling–Deny formula (see [8]), E has the following alternative expression:

E (u, v) = 1

2

∫ ∫
x �=y

(
ũ(x) − ũ(y)

)(
ṽ(x) − ṽ(y)

)
k(x, y)m(dx)m(dy), u, v ∈ F ,

where k(x, y) = k̃(x, y) + k̃(y, x) and ũ is a quasi-continuous modification of u ∈ F .

Example 4.3. Suppose that there exist 0 < α < β < 2 such that

α ≤ α(x) ≤ β, a.e. x ∈ M.

Then, as in the previous examples, we easily see that the kernel k(x, y) satisfies (C)-(ii). Thus, the associated symmet-
ric stable-like process is conservative.

In the next example, we consider the case α(x) tends to 2 as r(x) → ∞.

Example 4.4. Let 0 < β < 2. Let γ be a decreasing function defined on [0,∞), which takes values in (0, β]. Set

α(x) = 2 − γ
(
r(x)

)
, x ∈ M.
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Proposition 4.5. If γ satisfies

lim
t→∞γ (t) = 0, lim sup

t→∞
γ (t − 1)

γ (t + 1)
< ∞, (4.2)

then, the kernel k satisfies (C)-(ii), therefore, the associated symmetric stable-like process is conservative.

Proof. In the sequel, c and c′ are positive constants which are independent on x ∈ M and may differ from line to line.
We check (C)-(ii) in all possible cases. Assume (4.2).

Case: k̃(x, y) = d(x, y)−d−α(x). For any x ∈ M , it follows:∫
y �=x

C
(
α(x)

)(
d(x, y)2 ∧ 1

)
d(x, y)−d−α(x)m(dy)

≤ cα(x)
(
2 − α(x)

) ∫
y �=x

(
d(x, y)2 ∧ 1

)
d(x, y)−d−α(x)m(dy)

= cα(x)
(
2 − α(x)

)(∫
0<d(x,y)≤1

d(x, y)2−d−α(x)m(dy) +
∫

d(x,y)>1
d(x, y)−d−α(x)m(dy)

)

≤ c′α(x)
(
2 − α(x)

)(∫ 1

0
u1−α(x) du +

∫ ∞

1
u−1−α(x) du

)

= c′α(x)
(
2 − α(x)

)( 1

2 − α(x)
+ 1

α(x)

)

= c′(α(x) + (
2 − α(x)

)) = 2c′ < ∞.

Case: k̃(y, x) = d(x, y)−d−α(y) when d(x, y) > 1. For any x ∈ M , it follows:∫
d(x,y)>1

C
(
α(y)

)
d(x, y)−d−α(y)m(dy) ≤ c

∫
d(x,y)>1

d(x, y)−d−2+γ (r(y))m(dy)

≤ c

∫
d(x,y)>1

d(x, y)−d−2+βm(dy)

≤ c′
∫ ∞

1
u−3+β du = c′

2 − β
< ∞.

Case: k̃(y, x) = d(x, y)−d−α(y) when 0 < d(x, y) ≤ 1 and r(x) ≤ 2. Noting that r(y) ≤ 3 and γ is decreasing, so
that γ (r(y)) ≥ γ (3), it follows:

∫
0<d(x,y)≤1

C
(
α(y)

)
d(x, y)2−α(y)−dm(dy) ≤ c

∫
0<d(x,y)≤1

d(x, y)γ (r(y))−dm(dy)

≤ c

∫
0<d(x,y)≤1

d(x, y)γ (3)−dm(dy)

≤ c′
∫ 1

0
uγ (3)−1 du = c′

γ (3)
< ∞.

Case: k̃(y, x) = d(x, y)−d−α(y) when 0 < d(x, y) ≤ 1 and r(x) > 2. Since γ (r(y)) ≥ γ (r(x) + 1), by combining
those calculus above, we conclude that

sup
x∈M

∫
y �=x

(
d(x, y)2 ∧ 1

)
k(x, y)m(dy) < ∞.
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Namely, the Dirichlet form generated by the kernel k(x, y) is conservative. �

Example 4.6. For some c1, c2 > 0, set γ (t) = c1e−c2t . Then γ satisfies (4.2) since

lim
t→∞ e−c2t = 0

and for any t > 0,

γ (t − 1)

γ (t + 1)
= e−c2(t−1)+c2(t+1) = e2c2 < ∞.

In the next example, α(x) → 0 as r(x) → ∞. Let us point out that this example confirms that our assumption is
sharp in the sense stated below.

Example 4.7. Put α(x) = (ln(r(x) + 1))−ε, x ∈ X for ε > 0. Then the condition (C)-(ii) is satisfied, namely, the
associated process (exists and) is conservative if ε �= 1; and (4.1) does not need to be true for ε = 1. For instance, if X

is Rd with standard Lebesgue measure, then we can show that (4.1) is violated, whence (E ,C
Lip
0 (Rd)) may not be

closable and there are no associated Hunt processes. Moreover, since the symbol associated with the (L2)-generator
of the Dirichlet form is indeed singular (see [20], Corollary 3.2) even if the function α is smooth, we can not adopt
the martingale theory to estimate some path properties of the processes different from the cases of diffusion processes
or Lévy-type jump processes whose symbols are smooth (see, e.g., [13]).

Remark 4.2.

(i) In the Riemannian manifold case, all examples we mentioned above seem to be new. Even when X = Rd , the
result in Example 4.3 still seems to be new if the function α is only assumed to be measurable (cf. [20]).

(ii) (e.g., [1]) A classical example of C(α) on Rd is

C(α) = Γ (1 + α/2)Γ ((α + d)/2) sin((πα)/2)

21−απd/2+1
.

4.3. Non-Lebesgue measure cases

Let M = R and m(dx) = e2λ|x| dx, where λ > 0. Consider

k(x, y) = (
e−λ(|x|+|y|))1{|x−y|<1}.

Then

M(x) =
∫

|x−y|<1
|x − y|2e−λ(|x|+|y|)e2λ|y| dy

= e−λ|x|
∫

|y|<1
y2eλ|x−y| dy

≤ e−λ|x|
∫

|y|<1
y2eλ(|x|+|y|) dy =

∫
|y|<1

y2eλ|y| dy < 2eλ.

Since e−ar /∈ L1(R;m(dx)) for every a ≤ 2λ, this confirms the fact that (1.1) does not need to imply (C)-(ii). On the
other hand, we can easily construct an example of the kernel on Rd which violates (C)-(ii) (of course (1.1) holds true
on Rd ).
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4.4. Continuous-time Markov chains

Let X be a countable set and m a measure (a function) on X with m(i) > 0 for every i ∈ X. Suppose we are given a
function q(i, j) defined on X × X satisfying

q(i, i) =
∑
i �=j

q(i, j) < ∞ for each i ∈ X.

It is well known that, considering the exponential holding time at each state, there exists a time homogeneous
continuous-time Markov chain Xt satisfying

P(Xt+h = j |Xt = i) = q(i, j)h + o(h) for every i, j ∈ X and h > 0.

Moreover, if m is a reversible measure with respect to q(i, j); namely

q(i, j)mj = q(j, i)mi for every i, j ∈ X,

we may associate a symmetric Dirichlet form as follows: for suitable functions u,v

E (u, v) = 1

2

∑
i,j∈X

(ui − uj )(vi − vj )q(i, j)mi = −
∑

i,j∈X

q(i, j)uivjmi.

Then, by replacing the integral by the summation, our Main result says that Xt is conservative provided

sup
i∈X

∑
j∈X

q(i, j) < ∞ and
∑
i∈X

e−aimi < ∞ for every a > 0. (4.3)

Example 4.8 (Birth-and-Death process). Let us consider

q(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

λi, j = i + 1,

μi, j = i − 1,

1 − (λi + μ1), j = i,

0, otherwise,

(4.4)

where λi > 0 for every i ∈ Z+, μ0 = 0 and μi > 0 for i ∈ Z+i = 1,2, . . . . This is the birth-and-death process Xt

on Z+, with birth and death rates λi and μi , respectively. The associated reversible measure mi is 2−i . Due to [15],
Xt is not conservative. Clearly, the second condition in (4.3) is satisfied but the first condition fails. It is possible to
find, applying the property which the birth-and-death process shares with diffusion processes, a conservative birth-
and-death process which does not satisfy (4.3). Of course, our result covers more general type of processes. (See
also [3] for more general jump processes on a discrete space).
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