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Abstract. We consider the standard first passage percolation model in Z
d for d ≥ 2. We are interested in two quantities, the

maximal flow τ between the lower half and the upper half of the box, and the maximal flow φ between the top and the bottom
of the box. A standard subadditive argument yields the law of large numbers for τ in rational directions. Kesten and Zhang have
proved the law of large numbers for τ and φ when the sides of the box are parallel to the coordinate hyperplanes: the two variables
grow linearly with the surface s of the basis of the box, with the same deterministic speed. We study the probabilities that the
rescaled variables τ/s and φ/s are abnormally small. For τ , the box can have any orientation, whereas for φ, we require either
that the box is sufficiently flat, or that its sides are parallel to the coordinate hyperplanes. We show that these probabilities decay
exponentially fast with s, when s grows to infinity. Moreover, we prove an associated large deviation principle of speed s for τ/s

and φ/s, and we improve the conditions required to obtain the law of large numbers for these variables.

Résumé. Nous considérons le modèle standard de percolation de premier passage dans Z
d pour d ≥ 2. Nous nous intéressons

à deux quantités, le flux maximal τ entre la moitié inférieure et la moitié supérieure d’une boîte, et le flux maximal φ entre le
sommet et la base de la boîte. Un argument sous-additif standard implique une loi des grands nombres pour τ dans les directions
rationnelles. Kesten et Zhang ont prouvé que τ et φ suivent une loi des grands nombres quand les faces de la boîte sont parallèles
aux hyperplans des coordonnées: les deux variables grandissent linéairement en la surface s de la base de la boîte, avec la même
vitesse déterministe. Nous étudions les probabilités que les variables renormalisées τ/s et φ/s soient anormalement petites. Pour τ ,
la boîte peut avoir n’importe quelle orientation, tandis que pour φ, nous imposons soit que la boîte soit suffisamment plate, soit
que ses faces soient parallèles aux hyperplans des coordonnées. Nous montrons que ces probabilités décroissent exponentiellement
vite avec s, quand s tend vers l’infini. De plus, nous prouvons les principes de grandes déviations de vitesse s associés pour τ/s et
φ/s, et nous améliorons les conditions requises pour obtenir la loi des grands nombres pour ces variables.
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1. Introduction

The model of maximal flow in a randomly porous medium with independent and identically distributed capacities
has been initially studied by Kesten (see [14]), who introduced it as a “higher dimensional version of First Passage
Percolation.” The purpose of this model is to understand the behaviour of the maximum amount of flow that can cross
the medium from one part to another.
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All the precise definitions will be given in Section 2, but let us be a little more accurate. The random medium is
represented by the lattice Z

d . We see each edge as a microscopic pipe which the fluid can flow through. To each edge e,
we attach a nonnegative capacity t (e) which represents the amount of fluid (or the amount of fluid per unit of time)
that can effectively go through the edge e. Capacities are then supposed to be random, identically and independently
distributed with common distribution function F . Let A be some hyperrectangle in R

d (i.e., a box of dimension d −1)
and n be an integer. The portion of media that we will look at is a box Bn of basis nA and of height 2h(n), which nA

splits into two equal parts. The boundary of Bn is thus split into two parts, A1
n and A2

n. We define two flows through Bn:
the maximal flow τn for which the fluid can enter the box through A1

n and leave it through A2
n, and the maximal flow φn

for which the fluid enters Bn only through its bottom side and leaves it through its top side. Existing results for φn

and τn are essentially of two types: laws of large numbers and large deviation results. Subadditivity implies a law
of large numbers for τn, when Bn is oriented to a rational direction (as defined in [3]). It is important to note that
all the results concerning φn we present now were obtained for “straight” hyperrectangles A, i.e. hyperrectangles of
the form

∏d−1
i=1 [0, ai] × {0}. Due to the symmetries of the lattice Z

d , this simplifies considerably the task. Kesten
proved a law of large numbers for φn in straight cylinders in Z

3 (see [14]), under various conditions on the height
h(n), the value of F(0) and an exponential moment condition on F . In a remarkable paper, Zhang (see [22]) recently
optimized Kesten’s condition on F(0) and extended the result to Z

d , d ≥ 2 (see Theorem 3.4 below). Théret proved
a large deviation principle for φn at volume order for upper deviations (see [17]). Lower large deviations for φn far
from its asymptotic behaviour were investigated for Bernoulli capacities in [7], and for general functions in [18], and
are shown to be of surface order, although a full large deviation principle was not proved.

The main results of this paper are the lower large deviation principles for τn and φn under various conditions,
and the improvement of the moment conditions required to state the law of large numbers for these variables. More
precisely, we shall show lower large deviation principles at the surface order for τn for general A and height h(n),
and for φn when h(n) is small compared to n (see Theorem 3.10 and Corollary 3.14). We also show a lower large
deviation principle at the surface order for φn when logh(n) is small compared to nd−1 and when A is straight (see
Theorem 3.17). Unfortunately, when d ≥ 3, we are not able to prove the lower large deviation principle for φn through
general hyperrectangles and heights (see Remark 6.3). Incidentally, we prove deviation results which are interesting
on their own for φn and τn, for general hyperrectangles A (see Theorems 3.9, 3.13 and 3.18). A consequence of
these deviation results is a law of large numbers for τn in any fixed direction, even irrational, under an optimal
moment condition (see Theorem 3.8). We also obtain a law of large numbers for φn in straight boxes under an optimal
condition on the height of the box, and a weak moment condition. We stress the fact that we do not use any subadditive
ergodic theorem for the law of large numbers for τn, since in our general setting, subadditivity of τn is lost in irrational
directions. Instead, we use the “almost subadditivity” of τn combined with a lower deviation inequality.

The paper is organized as follows. In Section 2, we give the precise definitions and notations. In Section 3, we
state the important background we shall rely on and the main results of the paper. In Section 4, we prove the deviation
results for τn, and for φn in flat cylinders, the proof of the corresponding result for φn in straight boxes being completed
at the end of the paper. We also obtain also the law of large numbers for τn in this section. Section 5 is devoted to the
large deviation principle for τn, and its corollary, the large deviation principle for φn in flat boxes. Finally, we prove
the law of large numbers, the order of the lower large deviations and the large deviation principle for φn in straight
boxes in Section 6.

2. Definitions and notations

The most important notations are gathered in this section.

2.1. Maximal flow on a graph

First, let us define the notion of a flow on a finite unoriented graph G = (V , E ) with set of vertices V and set of
edges E . We write x ∼ y when x and y are two neighbouring vertices in G. Let t = (t (e))e∈E be a collection of
non-negative real numbers, which are called capacities. It means that t (e) is the maximal amount of fluid that can go
through the edge e per unit of time. To each edge e, one may associate two oriented edges, and we shall denote by−→E the set of all these oriented edges. Let Y and Z be two finite, disjoint, non-empty sets of vertices of G: Y denotes
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the source of the network, and Z the sink. A function θ on
−→E is called a flow from Y to Z with strength ‖θ‖ and

capacities t if it is antisymmetric, i.e. θ−→
xy

= −θ−→
xy

, if it satisfies the node law at each vertex x of V \ (Y ∪ Z):∑
y∼x

θ−→
xy

= 0,

if it satisfies the capacity constraints:

∀e ∈ E
∣∣θ(e)

∣∣≤ t (e),

and if the “flow in” at Y and the “flow out” at Z equal ‖θ‖:

‖θ‖ =
∑
y∈Y

∑
x∼y

x /∈Y

θ(
−→
yx) =

∑
z∈Z

∑
x∼z

x /∈Z

θ(
−→
xz).

The maximal flow from Y to Z, denoted by φt (G,Y,Z), is defined as the maximum strength of all flows from Y to Z

with capacities t . We stress the fact that φt (G,Y,Z) is non-negative for any choice of G, Y and Z. We shall in general
omit the subscript t when it is understood from the context. The max-flow min-cut theorem (see [4], for instance)
asserts that the maximal flow from Y to Z equals the minimal capacity of a cut between Y and Z. Precisely, let us
say that E ⊂ E is a cut between Y and Z in G if every path from Y to Z borrows at least one edge of E. Define
V (E) =∑

e∈E t(e) to be the capacity of a cut E. Then,

φt (G,Y,Z) = min
{
V (E) s.t. E is a cut between Y and Z in G

}
. (1)

2.2. On the cubic lattice

We use many notations introduced in [13] and [14]. Let d ≥ 2. We consider the graph (Zd ,E
d) having for ver-

tices Z
d and for edges E

d , the set of pairs of nearest neighbours for the standard L1 norm: ‖z‖1 = ∑d
i=1 |zi | for

z = (z1, . . . , zd) ∈ R
d . To each edge e in E

d we assign a random capacity t (e) with values in R
+. We suppose that

the family (t (e), e ∈ E
d) is independent and identically distributed, with a common distribution function F : this is the

standard model of first passage percolation on the graph (Zd ,E
d). More formally, we take the product measure P on

Ω =∏
e∈Ed [0,∞[, and we write its expectation E.

For a subset X of R
d , we denote by Hs(X) the s-dimensional Hausdorff measure of X (we will use s = d − 1 and

s = d−2). Let A ⊂ R
d be a non-degenerate hyperrectangle (for the usual scalar product), i.e., a box of dimension d−1

in R
d . All hyperrectangles will be supposed to be closed and non-degenerate in R

d . Thus, every hyperrectangle A

we will consider is the image by an isometry of R
d of a set of the form

∏d−1
i=1 [0, ki] × {0} for strictly positive real

numbers ki . With this notation, we define the smallest length of A, denoted by lmin(A) as

lmin(A) = min
i=1,...,d−1

ki,

i.e. the smallest length of a side of A. We denote by �v one of the two vectors of unit Euclidean norm, orthogonal to
hyp(A), the hyperplane spanned by A. For h a positive real number, we denote by cyl(A,h) the cylinder of basis A

and height 2h, i.e., the set

cyl(A,h) = {
x + t �v | x ∈ A, t ∈ [−h,h]}.

The set cyl(A,h) \ hyp(A) has two connected components, which we denote by C1(A,h) and C2(A,h). For i = 1,2,
let Ah

i be the set of the points in Ci (A,h) ∩ Z
d which have a nearest neighbour in Z

d \ cyl(A,h):

Ah
i = {

x ∈ Ci (A,h) ∩ Z
d | ∃y ∈ Z

d \ cyl(A,h),‖x − y‖1 = 1
}
.

Let T (A,h) (respectively, B(A,h)) be the top (respectively, the bottom) of cyl(A,h), i.e.,

T (A,h) = {
x ∈ cyl(A,h) | ∃y /∈ cyl(A,h), 〈x, y〉 ∈ E

d and 〈x, y〉 intersects A + h�v}
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and

B(A,h) = {
x ∈ cyl(A,h) | ∃y /∈ cyl(A,h), 〈x, y〉 ∈ E

d and 〈x, y〉 intersects A − h�v}.
The notation 〈x, y〉 corresponds to the edge of endpoints x and y. We define also the r-neighbourhood V (H, r) of a
subset H of R

d as

V (H, r) = {
x ∈ R

d | d(x,H) < r
}
,

where the distance is the Euclidean one, i.e. d(x,H) = inf{‖x − y‖2 | y ∈ H } and ‖z‖2 =
√∑d

i=1 z2
i for z =

(z1, . . . , zd) ∈ R
d .

The main characters. For a given realization (t (e), e ∈ E
d) we define τ(A,h) by

τ(A,h) = φt

(
cyl(A,h) ∩ Z

d ,Ah
1,Ah

2

)
,

where φt is defined in Section 2.1 and cyl(A,h) ∩ Z
d denotes the induced subgraph of Z

d with set of vertices
cyl(A,h) ∩ Z

d , equipped with capacities t . This definition makes sense if Ah
1 and Ah

2 are non-empty, otherwise we
put τ(A,h) = 0. Notice that if h > 2

√
d and lmin(A) >

√
d , then Ah

1 and Ah
2 are non-empty. Similarly, we define the

variable φ(A,h) by

φ(A,h) = φt

(
cyl(A,h) ∩ Z

d ,B(A,h),T (A,h)
)
.

Finally, pc(d) denotes the critical parameter for the Bernoulli bond percolation on Z
d .

3. Background and main results

3.1. Background

The following result allows do define the flow constant ν( �v0) when �v0 ∈ R
d is the vector (0, . . . ,0,1). It follows from

the subadditive ergodic theorems of [1,15,16]. Let k = (k1, . . . , kd−1) ∈ (N∗)n, and define Ak =∏d−1
i=1 [0, ki] × {0}.

Theorem 3.1 ([14]). Suppose that h(n) goes to infinity when n goes to infinity, and that∫ ∞

0
x dF(x) < ∞.

Then, τ(nAk, h(n))/(nd−1∏d−1
i=1 ki) converges almost surely and in L1, when n goes to infinity, to a non-negative,

finite constant ν( �v0) which does not depend on k.

An important problem is to know when ν( �v0) equals zero. It is proved in [18] (see also [7] for capacities equal to
zero or one) that F(0) < 1−pc(d) implies ν( �v0) > 0. Conversely, Zhang proved in [21], Theorem 1.10, that ν( �v0) = 0
if F(0) = 1 − pc(d), and so by a simple coupling of probability if F(0) ≥ 1 − pc(d). Actually, he wrote the proof
for d = 3 but said himself that the argument works for d ≥ 3 (see Remark 1 of [21]). This property is also satisfied
in dimension d = 2 where we can use duality arguments (see [13], Theorem 6.1 and Remark 6.2). We gather these
results in the following theorem.

Theorem 3.2. Suppose that
∫∞

0 x dF(x) is finite. Then, ν( �v0) = 0 if and only if F(0) ≥ 1 − pc(d).

Finally, a crucial result is the following theorem of Zhang, which allows to control the number of edges in a cut of
minimal capacity. Let k = (k1, . . . , kd−1) ∈ (N∗)n, m ∈ N

∗ and define

B(k,m) =
d−1∏
i=1

[0, ki] × [0,m].
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Table 1
Hypotheses on the distribution and the height

Hypotheses on the distribution Hypotheses on the height

(F1) F (0) < 1 − pc(d) (H1) limn→∞ h(n) = +∞
(F2)

∫∞
0 x dF(x) < ∞ (F4) ∃γ > 0,

∫∞
0 eγ x dF(x) < ∞ (H2) limn→∞ logh(n)

nd−1 = 0

(F3)
∫∞

0 x1+1/(d−1) dF(x) < ∞ (F5) ∀γ > 0,
∫∞

0 eγ x dF(x) < ∞ (H3) limn→∞ h(n)
n = 0

Let N(k,m) be the number of edges of a cut E between B(k,m) and ∞ which achieves the minimal capacity V (E) =∑
e∈E t(e) among all these cuts. If there are more than one cut achieving the minimum, we use a deterministic method

to select a unique one with the minimum number of edges among these.

Theorem 3.3 ([22], Theorem 1). If F(0) < 1 − pc(d), then there exists constants β = β(F,d), m0(F, d) and Ci =
Ci(F, d), for i = 1,2 such that for all n ≥ β

∏d−1
i=1 ki and m0 ≤ m ≤ mini=1,...,d−1 ki ,

P
(
N(k,m) ≥ n

)≤ C1e−C2n.

An analogue result is obtained in [22], Theorem 2, for the minimal cut between the top and the bottom of B(k,m)

inside B(k,m). We shall make use of Theorem 3.3 through a slight modification, Proposition 4.2 below.
Finally, Kesten proved in 1987 the law of large numbers for φ in vertical boxes in dimension 3 under the additional

assumption that F(0) is sufficiently small and h(n) not too large, plus an assumption of finite exponential moment (see
Theorem 2.12 in [14]). In a remarkable paper, Zhang recently improved Kesten’s result by relaxing the assumption
on F(0) to the relevant one F(0) < 1 − pc(d), and extended it to any dimension d ≥ 3 (see [22]). Zhang proved the
following result.

Theorem 3.4 ([22]). Suppose F(0) < 1 − pc(d), and there exists γ > 0 such that∫
eγ x dF(x) < ∞.

If k1, . . . , kd−1, m go to infinity in such a way that for some 0 < η ≤ 1, we have

logm ≤ max
1≤i≤d−1

k
1−η
i ,

then

lim
k1,...,kd−1,m→∞

φ(Ak,m)

k1 · · ·kd−1
= ν( �v0) a.s. and in L1.

3.2. Hypotheses on the distribution F and the height h

We gather and present in Table 1 the main hypotheses that we shall do on F and on the height h. Notice that (F5) ⇒
(F4) ⇒ (F3) ⇒ (F2) and (H3) ⇒ (H2).

Table 2 summarizes the needed hypotheses for the main results presented in the next sections. SLLN stands for
Strong Law of Large Numbers, LDP for Large Deviation Principle and R.F. for Rate Function (of the large deviation
principles).

Let us comment this table a bit. First, assumption (H1) is not necessary to study the flows τ and φ, but it is necessary
to obtain a flow constant ν(�v) which does not depend on the height h, and moreover it is natural when we interpret
our system as a model for porous media. All the other assumptions are optimal concerning τ (cf. Remarks 3.6, 3.11
and 5.7) except perhaps (F3) (see Remark 4.10). In addition, our assumptions are also essentially optimal concerning φ

(cf. Remarks 3.11 and 3.21) except perhaps assumption (F4) (see Remark 6.5) and (F3), for the same reason as for τ .
Finally, assumption (H3), used to obtain results for cylinders which are not straight, is certainly far from optimality
(see Remark 6.3). This assumption gives results only for “flat cylinders.”
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Table 2
Hypotheses need for the main results to hold

SLLN for τ SLLN for
(and flat φ) straight φ

Existence Positivity LDP for τ LDP for
of the R.F. of the R.F. 0 ∈ A 0 /∈ A 0 ∈ A 0 /∈ A (and flat φ) straight φ

(F1) × × ×
(F2) × × × × × × ×
(F3) × × × ×
(F4) × ×
(F5) ×
(H1) × × × × × × × ×
(H2) × × ×
(H3) (×) (×) (×)

3.3. Results concerning τ

First, we will extend the definition of ν(·) in all directions.

Proposition 3.5 (Definition of ν). We suppose that (F2) and (H1) hold. For every non-degenerate hyperrectangle A,
the limit

lim
n→∞

E(τ (nA,h(n)))

Hd−1(nA)

exists and depends on the direction of �v, one of the two unit vectors orthogonal to hyp(A), and not on A itself nor h.
We denote it by ν(�v) (the dependence in F and d is implicit).

Remark 3.6. We chose to define simply the flow constant ν from the convergence of the rescaled expectations. Having
made this choice, condition (F2) is necessary for the limit to be finite. Indeed, for most orientations, there exists two
vertices x ∈ Ah

1 and y ∈ Ah
2 which are neighbours in Z

d . Thus, the corresponding edge must belong to any cutsets,
and this implies that the mean of τ(nA,h(n)) is finite only if (F2) holds. Notice however that with some extra work,
one could probably define a flow constant without any moment condition as in [13], Section 2.

The following proposition states some basic properties of ν, and notably settles the question of its positivity.

Proposition 3.7 (Properties of ν). Suppose that (F2) and (H1) hold. Let δ = inf{λ | P(t (e) ≤ λ) > 0}. Then:

(i) For every unit vector �v, ν(�v) ≥ δ‖�v‖1.
(ii) If F(δ) < 1 −pc(d), then ν(�v) > δ‖�v‖1 for all unit vector �v. In the case δ = 0, the previous implication is in fact

an equivalence.
(iii) For every unit vector �v, and every non-degenerate hyperrectangle A orthogonal to �v,

ν(�v) ≤ inf
n∈N

{
E(t (e))K(d,A)

n
+ E(τ (nA,h(n)))

Hd−1(nA)

}
,

where K(d,A) = c(d)Hd−2(∂A)/Hd−1(A), and c(d) is a constant depending only on the dimension d .

We will derive the law of large numbers for τ(A,h) in big cylinders cyl(A,h) as a consequence of an almost
subadditive argument.

Theorem 3.8 (LLN for τ ). We suppose that (F2) and (H1) hold. Then

lim
n→∞

τ(nA,h(n))

Hd−1(nA)
= ν(�v) in L1.
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Moreover, if 0 ∈ A, where 0 denotes the origin of Z
d , or if (F3) holds,

lim
n→∞

τ(nA,h(n))

Hd−1(nA)
= ν(�v) a.s.

Propositions 3.5, 3.7 and Theorem 3.8 will be proven in Section 4.3. Concerning large deviations, we will show
two results: the first gives the speed of decay of the probability that the rescaled flow τ is abnormally small, and the
second one states a large deviation principle for the rescaled variable τ .

The estimate of lower large deviations is the following. Notice that Theorem 3.3 is the key to obtain the relevant
condition F(0) < 1 − pc(d).

Theorem 3.9 (Lower deviations for τ ). Suppose that (F1), (F2) and (H1) hold. Then for every ε > 0 there exists a
positive constant C(d,F, ε) such that for every unit vector �v and every non-degenerate hyperrectangle A orthogonal
to �v, there exists a constant C̃(d,F,A, ε) (possibly depending on all the parameters d , F , A, ε) such that

P

(
τ(nA,h(n))

Hd−1(nA)
≤ ν(�v) − ε

)
≤ C̃(d,F,A, ε) exp

(−C(d,F, ε)Hd−1(A)nd−1).
Now we can state a large deviation principle.

Theorem 3.10 (LDP for τ ). Suppose that (F1), (F5) and (H1) hold. Then for every unit vector �v and every non-
degenerate hyperrectangle A orthogonal to �v, the sequence(

τ(nA,h(n))

Hd−1(nA)
,n ∈ N

)
satisfies a large deviation principle of speed Hd−1(nA) with the good rate function J�v . Moreover, we know that J�v
is convex on R

+, infinite on [0, δ‖�v‖1[∪ ]ν(�v),+∞[, where δ = inf{λ | P(t (e) ≤ λ) > 0}, equal to 0 at ν(�v), and if
δ‖�v‖1 < ν(�v) we also know that J�v is finite on ]δ‖�v‖1, ν(�v)], continuous and strictly decreasing on [δ‖�v‖1, ν(�v)] and
strictly positive on [δ‖�v‖1, ν(�v)[.

Remark 3.11. Notice that, from Proposition 3.7, assumption (F1) is necessary to have positive asymptotic rescaled
maximal flow, and thus to give a sense to the study of lower large deviations. Moreover, Theorem 3.10 is interesting
only if ν(�v) > δ‖�v‖1. Proposition 3.7 states that it is the case at least if F(δ) < 1 − pc(d), and in the case δ = 0, this
condition is optimal. We do not know the optimal condition on F(δ) when δ �= 0.

Remark 3.12. In [20], Wouts shows a similar lower large deviations result in the context of the dilute Ising model.
More precisely, for every temperature T , a Gibbs measure Φn,T with i.i.d. non-negative, bounded random interactions
(Je)e∈Ed is constructed on the set of configurations {0,1}En , where En is the set of edges of a cube Bn of length n,
and 0 (resp. 1) means the edge is closed (resp. open). Wouts defines the quenched surface tension in this box as the
normalized logarithm of the Φn,T -probability of the event that there is a disconnection between the upper and lower
parts of the boundary of Bn. Then, Wouts shows that for Lebesgue-almost every temperature T , the quenched surface
tension satisfies a large deviation principle at surface order. A remarkable feature of this work is that the proof, quite
simple, relies on a concentration property that avoids the use of any estimate like that of Theorem 3.3. A similar
treatment could be done in our setting, with the value of F(0) playing the role of the inverse temperature. Of course,
this is quite artificial and unsatisfactory for our purpose, since one would not obtain any information for a precise
distribution function F , but rather for almost all distributions of the form pδ0 + (1 − p)dF , p ∈ [0,1]. Still, it seems
to us that Wouts’ method deserves further investigation.

3.4. Results concerning φ in flat cylinders

Under the additional assumption that the cylinder we study is sufficiently flat, in the sense that we suppose
limn→∞ h(n)/n = 0, we can transport results from τ to φ even in non-straight boxes, because the behaviour of these
two variables are very similar in that case. We obtain the following two results:
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Theorem 3.13 (Lower deviations for flat φ). Suppose (F1), (F2), (H1) and (H3) hold. Then for every ε > 0 there
exists a positive constant C′(d,F, ε) such that for every unit vector �v, every non-degenerate hyperrectangle A or-
thogonal to �v, there exists a constant C̃′(d,F,A,h, ε) (possibly depending on all the parameters d , F , A, h, ε) such
that

P

(
φ(nA,h(n))

Hd−1(nA)
≤ ν(�v) − ε

)
≤ C̃′(d,F,A,h, ε) exp

(−C′(d,F, ε)Hd−1(A)nd−1).
Corollary 3.14 (of Theorem 3.10, LDP for flat φ). Suppose (F1), (F5), (H1) and (H3) hold. Then, for every unit
vector �v and every non-degenerate hyperrectangle A orthogonal to �v, the sequence(

φ(nA,h(n))

Hd−1(nA)
,n ∈ N

)
satisfies a large deviation principle of speed Hd−1(nA) with the good rate function J�v (the same as in Theorem 3.10).

Remark 3.15. Theorem 3.13 will be proven exactly as Theorem 3.9, using the fact that the convergence of
E[τ(nA,h(n))]/Hd−1(nA) implies the convergence of E[φ(nA,h(n))]/Hd−1(nA) under the hypotheses (F2) and
(H3). Corollary 3.14 will be proven using the exponential equivalence of the rescaled variables τ(nA,h(n)) and
φ(nA,h(n)) under hypotheses (F5) and (H3).

3.5. Results concerning φ in straight but high cylinders

We shall say that a hyperrectangle A is straight if it is of the form
∏d−1

i=1 [0, ai] × {0} (ai ∈ R
+∗ for all i, so a straight

hyperrectangle is non-degenerate). In particular, Theorem 3.4 implies that for a straight hyperrectangle A, for every
function h : N → R

+ satisfying limn→∞ h(n) = +∞ and logh(n) ≤ n1−η for some 0 < η ≤ 1, we have

lim
n→∞

φ(nA,h(n))

Hd−1(nA)
= ν

(
(0, . . . ,0,1)

)
a.s. and in L1.

We obtain three results for the rescaled variable φ in straight cylinders. Using subadditivity and symmetry arguments,
we can prove the law of large numbers for φ in straight boxes under a minimal moment condition, and the hypothesis
(H2) on h.

Theorem 3.16 (LLN for straight φ). Suppose that (F2), (H1) and (H2) hold, and that A is a straight hyperrectangle.
Then

lim
n→∞

φ(nA,h(n))

Hd−1(nA)
= ν( �v0) a.s. and in L1,

where �v0 = (0, . . . ,0,1).

Under the additional condition of an exponential moment for F , we can prove a large deviation principle for φ in
straight boxes.

Theorem 3.17 (LDP for straight φ). Suppose (F1), (F4), (H1) and (H2) hold. Then for every straight hyperrectan-
gle A, the sequence(

φ(nA,h(n))

Hd−1(nA)
,n ∈ N

)
satisfies a large deviation principle of speed Hd−1(nA) with the good rate function J�v with �v = (0, . . . ,0,1) (the
same as in Theorem 3.10).

We also obtain a result similar to Theorem 3.9 for φ.



LDP and LLN for maximal flows 1101

Theorem 3.18 (Lower deviations for straight φ). Suppose (F1), (F2), (H1) and (H2) hold. Then, for every ε > 0
there exists a positive constant C′′(d,F, ε) such that for every straight hyperrectangle A, there exists a strictly positive
constant C̃′′(d,F,A,h, ε) (possibly depending on all the parameters d , F , A, h and ε) such that

P

(
φ(nA,h(n))

Hd−1(nA)
≤ ν

(
(0, . . . ,0,1)

)− ε

)
≤ C̃′′(d,F,A,h, ε) exp

(−C′′(d,F, ε)Hd−1(A)nd−1).
This result answers question (2.25) in [14]. We have to comment these three theorems by some remarks.

Remark 3.19. We decided to state the law of large numbers (Theorem 3.16) in the case were the origin of the graph
belongs to the straight hyperrectangle A since it is the case in the literature (see [14,22]). We also could state the
same result for a hyperrectangle A of the form

∏d−1
i=1 [ai, bi] × {c} for real numbers ai < bi and c. In this case,

exactly as in Theorem 3.8, the same hypotheses (F2), (H1) and (H2) are required to obtain the convergence of
φ(nA,h(n))/Hd−1(nA) in L1, but we need moreover the stronger hypothesis (F3) to obtain the a.s. convergence of
the variable if the origin of the graph does not belong to A.

Remark 3.20. The proofs of these three theorems are a little bit tangled. It comes from our willingness to obtain
the best hypotheses on F each time. Indeed, we stress the fact that Theorem 3.18 is not a simple consequence of
Theorem 3.17 when (F4) does not hold. In fact, we will prove first a proposition, Proposition 6.1, that will lead
to Theorem 3.16 and Theorem 3.17 independently. Theorem 3.18 will be proven exactly as Theorems 3.9 and 3.13,
using Theorem 3.16.

Remark 3.21. Actually the condition (H2), i.e. limn→∞ logh(n)/nd−1 = 0, is essentially the good one. For instance,
if A = [0,1]d−1 × {0}, h(n) ≥ exp(knd−1) for a constant k sufficiently large and F(0) > 0, then the maximal flow
φ(nA,h(n)) eventually equals 0, almost surely. Indeed if the nd−1 vertical edges of the cylinder that intersect one
fixed horizontal plane have all 0 for capacity then φ(nA,h(n)) = 0. By independence and translation invariance of
the model, we obtain

P
[
φ
(
nA,h(n)

) �= 0
]≤ [

1 − F(0)n
d−1]2 exp(knd−1)

,

which is summable for k large enough, and so we conclude by the Borel–Cantelli lemma.

Remark 3.22. Notice that our setting in Theorem 3.16 is not entirely similar to the one of [22] since each side of nA

grows at the same speed, whereas Zhang considers A =∏d−1
i=1 [0, ki] × {0} and lets all the ki go to infinity, possibly

at different speeds. In the case we consider, we improve the height and moment conditions in Theorem 3 of [22] to the
relevant one, and so partially answer the question contained in Remark (2.17) and question (2.24) in [14]. See also
Remark 6.4.

4. Lower large deviations for τ and φ and law of large numbers for τ

In Section 4.2, we derive the crucial deviation inequalities from their means of the flows τ and φ. This will lead to the
law of large numbers for τ rescaled in Section 4.5, and the deviations from ν of τ and flat φ rescaled in Section 4.6.
Of course, we need to define properly ν in any direction, and this is done in Section 4.3, whereas properties of ν are
proven in Section 4.4, using a combinatorial result stated in Section 4.1.

4.1. Minimal size of a cutset

For every hyperrectangle A, we denote by N (A,h) the minimal number of edges in A that can disconnect Ah
1 from Ah

2
in cyl(A,h), if Ah

1 and Ah
2 are non-empty. The following lemma gives the asymptotic order of N (nA,h(n)) when n

goes to infinity.
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Lemma 4.1. Let �v be a unitary vector. Then for all hyperrectangle A orthogonal to �v, for all function h : N →
]2√

d,+∞[, and for every n ∈ N such that lmin(nA) >
√

d ,∣∣∣∣N (nA,h(n))

Hd−1(nA)
− ‖�v‖1

∣∣∣∣≤ dHd−2(∂A)

nHd−1(A)
.

Proof. We introduce some definitions. For A a hyperrectangle orthogonal to �v, we denote by Pi(A) the orthogonal
projection of A on the ith hyperplane of coordinates, i.e., the hyperplane {(x1, . . . , xd) ∈ R

d | xi = 0}. We have the
property∑d

i=1 Hd−1(Pi(A))

Hd−1(A)
= ‖�v‖1.

Indeed, Hd−1(Pi(A)) = |vi |Hd−1(A), where �v = (v1, . . . , vd). We define now Ei(nA) the set of edges orthogonal to
the ith hyperplane of coordinates that ‘intersect’ the hyperrectangle nA in the following sense:

Ei(nA) = {
e = 〈x, y〉 ∈ E

d | yi = xi + 1 and [x, y[ ∩ nA �= ∅ and [x, y[ �⊂ nA
}
.

We exclude here the extremity y in the segment [x, y[ to avoid problems of non uniqueness of such an edge intersect-
ing nA at a given point. On the one hand, we have a straight path that goes from (nA)

h(n)
1 to (nA)

h(n)
2 through each

edge of Ei(nA), i = 1, . . . , d , except maybe the edges that intersect nA along ∂(nA), and these paths are disjoint, so
a set of edges that disconnect (nA)

h(n)
1 from (nA)

h(n)
2 in cyl(nA,h(n)) must cut each one of these paths, thus

N
(
nA,h(n)

)≥
d∑

i=1

(
Hd−1(Pi(nA)

)− Hd−2(∂Pi(nA)
))≥

(
‖�v‖1 − d

Hd−2(∂(nA))

Hd−1(nA)

)
Hd−1(nA).

On the other hand, each path from (nA)
h(n)
1 to (nA)

h(n)
2 in cyl(nA,h(n)) must go through nA and so contains an edge

of one of the Ei(nA), i = 1, . . . , d . It suffices then to remove all the edges in the union of the sets Ei(nA), i = 1, . . . , d ,
to disconnect (nA)

h(n)
1 from (nA)

h(n)
2 in cyl(nA,h(n)), and so

N
(
nA,h(n)

)≤
d∑

i=1

(
Hd−1(Pi(nA)

)+ Hd−2(∂Pi(nA)
))≤

(
‖�v‖1 + d

Hd−2(∂(nA))

Hd−1(nA)

)
Hd−1(nA).

We conclude that∣∣∣∣N (nA,h(n))

Hd−1(nA)
− ‖�v‖1

∣∣∣∣≤ d
Hd−2(∂(nA))

Hd−1(nA)
= dHd−2(∂A)

nHd−1(A)
. �

4.2. Lower deviations of the maximal flows from their means

Let A be a non-degenerate hyperrectangle. In this section, we obtain deviation inequalities for φ(A,h) and τ(A,h)

from their means. These inequalities, stated below in Proposition 4.3, give the right speed for the lower large deviation
probabilities as soon as the convergence of the rescaled expectation of the variables is known. This will be used in
Section 4.3 to prove the law of large numbers for τ , but above all this will be essential to show the positivity of the rate
function for lower large deviations in Section 5.4. This positivity will be used to prove Theorem 3.16 in Section 6.2.

To get this result, we state below in Proposition 4.2 a slight modification of Zhang’s Theorem 3.3, which allows to
control the number of edges in a cut of minimal capacity. Notice that in this precise form, Proposition 4.2 is almost a
strict analogue for flow problems of Proposition 5.8 in [13], the latter being of utmost importance in the study of First
Passage Percolation.

We introduce the following notation: Eτ(A,h) (resp. Eφ(A,h)) is a cut whose capacity achieves the minimum in
the dual definition (1) of τ(A,h) (resp. φ(A,h)). If there are more than one cut achieving the minimum, we use a
deterministic method to select a unique one with the minimum number of edges among these. Recall also that for a
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hyperrectangle A, we defined lmin(A) as the “smallest length of A,” i.e. the number t such that A is the isometric
image of

∏d−1
i=1 [0, ti] × {0}, with t = t1 ≤ · · · ≤ td−1.

Proposition 4.2. Suppose that (F1) holds, i.e. F(0) < 1 − pc(d). Then, there are constants ε(F,d), C1(F (0), d),
C2(F (0), d) and t0(F (0), d), such that, for every s ∈ R, every non-degenerate hyperrectangle A such that lmin(A) ≥
t0, and every h > 2

√
d , we have

P
(
card(Eτ(A,h)) ≥ s and τ(A,h) ≤ ε(F,d)s

)≤ C1
(
F(0), d

)
e−C2(F (0),d)s

and

P
(
card(Eφ(A,h)) ≥ s and φ(A,h) ≤ ε(F,d)s

)≤ C1
(
F(0), d

)
he−C2(F (0),d)s .

Furthermore, the constant ε depends on F only on the neighbourhood of 0 in the sense that if (Fn)n∈N is a sequence
of possible distribution functions for t (e), which coincide on [0, η] for some η > 0, then one can take the same
constants ε, C1 and C2 for the whole sequence in the above inequalities.

Proof. First notice that when d = 2, this is a consequence of Proposition 5.8 in [13], through duality. In fact, when
d = 3, all the hard work has been done by Zhang, giving Theorem 3.3, so we only stress the minor differences
for the reader who would like to check how one goes from the proof of Theorem 3.3 (i.e., Theorem 1 in [22]) to
Proposition 4.2, and we rely heavily on the proof and notations of [22].

The first thing is to see that one can perform the renormalization argument of Section 2 of [22]. To do this for
τ(A,h), replace ∞ by Ah

2 and the box B(k,m) by Ah
1 . For φ(A,h), replace ∞ by T (A,h) and B(k,m) by B(A,h).

For both τ(A,h) and φ(A,h) also, one requires that all the connectedness properties happen “in cyl(A,h).” Then, the
construction of the linear cutset is identical, except for one thing: when Bt(u) is a block of the “block cutset” such that
Bt(u) intersects ∂ cyl(A,h), it has a property slightly different than the “blocked property” of Zhang. Define B ′

t (u)

to be the set of t -cubes which are Ld -neighbours of the cubes in Bt(u). Let us say that a set of vertices V0 of Z
d is

of smallest length t if there is a hyperrectangle H in R
d , isometric image of [0, t]d−1 × {0}, such that for each edge e

of Z
d intersecting H , there is an endpoint of e which belongs to V . Now, let us say that a block Bt(u) has a “blocking

surface property” if either one of the following holds:

(i) there are two subsets of vertices V1 and V2 of smallest length t/2 in B ′
t (u) which cannot be connected by an open

path in B ′
t (u),

(ii) or there are a subset of vertices V1 of smallest length t/2 and an open path γ connecting Bt(u) to Bt(u) in B ′
t (u)

such that γ and V1 cannot be connected by an open path in B ′
t (u).

Then, if A is of smallest length larger than t , and if Bt(u) is a block of the “block cutset” such that Bt(u) intersects
∂ cyl(A,h), it has a “blocking surface property.” Now, it is easy to see, using the same arguments as Zhang from [9],
Section 7, that the probability that Bt(u) has a “blocking surface property” decays exponentially to zero as t goes
to infinity, when F(0) < 1 − pc(d). This shows that the renormalization works if A is of smallest length larger than
some t0(F (0), d), see the choice of t above (5.26) in [22]. Notice that to prove Lemma 8 in [22], Zhang appeals to
Lemma 7.104 in [9] whereas it seems better to see this as a direct consequence of the fact that percolation in slabs
occurs.

The rest of the proof is almost identical. Note however that when considering τ(A,h), there is no need to put a
sum over the possible intersections of the cutset with L (in (5.4), and before (5.26)), since we know there is a constant
R(d) such that there is a set of R(d) edges that a cut needs to intersect (it is essentially “pinned” at the border of A).
This is why we do not have any condition on the height in the first inequality of Proposition 4.2, and why on the
contrary h appears in our second inequality: for φ(A,h), we only know a set of h edges that a cut needs to intersect.

Finally, notice that we do not have any condition of moment on F , since we are bounding the probability that
{card(Eτ(A,h)) ≥ k} and {τ(A,h) ≤ εk} occur, not only P(card(Eτ(A,h)) ≥ k), and Zhang uses the moment condition
only to bound P(τ (A,h) ≤ εk). Also, the last statement on the constants is easily seen by tracking the choice of ε

(see (5.2) and below (5.10)). �
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Thanks to Proposition 4.2 and general deviation inequalities due to [5], we obtain the following deviation result for
the maximal flows τ(nA,h(n)) and φ(nA,h(n)).

Proposition 4.3. Suppose that hypotheses (F1) and (F2) occur. Then, for any η ∈]0,1], there are positive constants
C(η,F,d), C3(F (0), d) and t0(F, d) such that, for every n ∈ N

∗, every non-degenerate hyperrectangle A such that nA

has smallest length at least t0:

P
(
τ
(
nA,h(n)

)≤ E
(
τ
(
nA,h(n)

))
(1 − η)

)≤ C3
(
F(0), d

)
e−C(η,F,d)E(τ (nA,h(n))) (2)

and

P
(
φ
(
nA,h(n)

)≤ E
(
φ
(
nA,h(n)

))
(1 − η)

)≤ C3
(
F(0), d

)
h(n)e−C(η,F,d)E(φ(nA,h(n))). (3)

Proof. To shorten the notations, define τn = τ(nA,h(n)) and φn = φ(nA,h(n)). We prove the result for τn, the
variant for φn being entirely similar. Since P(τn ≤ E(τn)(1 − η)) is a decreasing function of η, it is enough to prove
the result for all η less or equal to some absolute η0 ∈]0,1[. We use this remark to exclude the case η = 1 in our study,
thus, from now on, let η be a fixed real number in ]0,1[.

Fix A a non-degenerate hyperrectangle, and n such that nA has smallest length at least t0(F, d), with t0 as in Propo-
sition 4.2. We order the edges in cyl(nA,h(n)) as e1, . . . , emn . For every hyperrectangle A, we denote by N (A,h) the
minimal number of edges in A that can disconnect Ah

1 from Ah
2 in cyl(A,h), as in Section 4.1. For any real number

r ≥ N (nA,h(n)), we define

τ r
n = min

{
V (E) s.t. card(E) ≤ r and E cuts (nA)

h(n)
1 from (nA)

h(n)
2 in cyl

(
nA,h(n)

)}
.

Now, suppose that F(0) < 1 − pc(d), let ε, C1 and C2 be as in Proposition 4.2, and define r = (1 − η)E(τn)/ε.
Suppose first that r < N (nA,h(n)). Then,

P
(
τn ≤ (1 − η)E(τn)

) = P
(
τn ≤ (1 − η)E(τn) and card(Eτn) ≥ (1 − η)E(τn)/ε

)
≤ C1e−C2(1−η)E(τn)/ε

from Proposition 4.2, and the desired inequality is obtained. Suppose now that r ≥ N (nA,h(n)). Then,

P
(
τn ≤ (1 − η)E(τn)

) ≤ P
(
τn ≤ (1 − η)E(τn) and τ r

n �= τn

)+ P
(
τ r
n ≤ (1 − η)E(τn)

)
≤ C1e−C2r + P

(
τ r
n ≤ (1 − η)E

(
τ r
n

))
(4)

from Proposition 4.2 and the fact that τ r
n ≥ τn. Now, we truncate our variables t (e). Let a be a positive real number to

be chosen later, and define t̃ (e) = t (e) ∧ a. Let

τ̃ r
n = min

{∑
e∈E

t̃(e) s.t. card(E) ≤ r and E cuts (nA)
h(n)
1 from (nA)

h(n)
2 in cyl

(
nA,h(n)

)}
.

Notice that τ̃ r
n ≤ τ r

n . We shall denote by Eτ̃r
n

a cut whose capacity achieves the minimum in the definition of τ̃ r
n . If

there are more than one cut achieving the minimum, we use a deterministic method to select a unique one with the
minimum number of edges among these. Then

0 ≤ E
(
τ r
n

)− E
(
τ̃ r
n

)≤ E

[ ∑
e∈Eτ̃r

n

t (e) −
∑

e∈Eτ̃r
n

t̃(e)

]
≤ E

[ ∑
e∈Eτ̃r

n

t (e)1t (e)≥a

]

=
mn∑
i=1

E
(
t (ei)1t (ei )≥a1ei∈Eτ̃r

n

)=
mn∑
i=1

E
[
E
(
t (ei)1t (ei )≥a1ei∈Eτ̃r

n

∣∣(t (ej )
)
j �=i

)]
.

Now, when (t (ej ))j �=i is fixed, t (ei) �→ 1ei∈Eτ̃r
n

is a non-increasing function and t (ei) �→ t (ei)1t (ei )≥a is of course
non-decreasing. Furthermore, since the variables (t (ei)) are independent, the conditional expectation E(·|(t (ej ))j �=i )
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corresponds to expectation over t (ei), keeping (t (ej ))j �=i fixed. Thus, Chebyshev’s association inequality (see [12],
p. 43) implies

E
(
t (ei)1t (ei )≥a1ei∈Eτ̃r

n

∣∣(t (ej )
)
j �=i

) ≤ E
(
t (ei)1t (ei )≥a

∣∣(t (ej )
)
j �=i

)
E
(
1ei∈Eτ̃r

n

∣∣(t (ej )
)
j �=i

)
= E

(
t (e1)1t (e1)≥a

)
E
(
1ei∈Eτ̃r

n

∣∣(t (ej )
)
j �=i

)
.

Thus,

0 ≤ E
(
τ r
n

)− E
(
τ̃ r
n

)≤ E
(
t (e1)1t (e1)≥a

)
E
(
card(Eτ̃ r

n
)
)≤ rE

(
t (e1)1t (e1)≥a

)
. (5)

Now, since F has a finite moment of order 1, we can choose a(η,F,d) such that

1 − η

ε
E
(
t (e1)1t (e1)≥a

)≤ η

2
,

to get

E
(
τ r
n

)− E
(
τ̃ r
n

)≤ η

2
E(τn) ≤ η

2
E
(
τ r
n

)
,

(6)

P
(
τ r
n ≤ (1 − η)E

(
τ r
n

))≤ P

(
τ̃ r
n ≤ E

(
τ̃ r
n

)− η

2
E
(
τ r
n

))
.

Now, we shall use Corollary 3 in [5]. To this end, we need some notation. We take t̃ ′ an independent collection
of capacities with the same law as t̃ = (t̃(ei))i=1,...,mn . For each edge ei ∈ cyl(A,h), we denote by t̃ (i) the collec-
tion of capacities obtained from t̃ by replacing t̃ (ei) by t̃ ′(ei), and leaving all other coordinates unchanged. De-
fine

V− := E

[
mn∑
i=1

(
τ̃ r
n (t) − τ̃ r

n

(
t (i)
))2

−
∣∣∣t],

where τ̃ r
n (t) is the maximal flow through cyl(nA,h(n)) when capacities are given by t . We shall denote by

Rτ̃r
n

the intersection of all the cuts whose capacity achieves the minimum in the definition of τ̃ r
n . Observe

that

τ̃ r
n

(
t (i)
)− τ̃ r

n (t) ≤ (
t̃ ′(ei) − t̃ (ei)

)
1ei∈Rτ̃r

n
,

and thus,

V− ≤ a2
E
(
card(Rτ̃ r

n
)
)≤ a2r = a2(1 − η)E(τn)/ε.

Thus, Corollary 3 in [5] implies that, for every η ∈]0,1[,

P

(
τ̃ r
n ≤ E

(
τ̃ r
n

)− η

2
E
(
τ r
n

))≤ exp

(
− E(τ r

n)2η2ε

16a2(1 − η)E(τn)

)
≤ exp

(
− E(τn)η

2ε

16a2(1 − η)

)
,

which, with inequalities (6) and (4) finishes the proof of inequality (2). �

Remark 4.4. If we suppose the existence of an exponential moment for F , then one can get concentration inequalities:
there are positive constants D1 and D2, depending only on F and d and such that, for every hyperrectangle A, every
h > 0 and every u > 0,

P
(∣∣τ(A,h) − E

(
τ(A,h)

)∣∣≥ u
)≤ D1 exp

(
− u2

D2 Hd−1(A)

)
+ D1 exp

(
− 1

D2
Hd−1(A)

)
.
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Furthermore, for every h ≤ exp(Hd−1(A)) and every u > 0,

P
(∣∣φ(A,h) − E

(
φ(A,h)

)∣∣≥ u
)≤ D1 exp

(
− u2

D2 Hd−1(A)

)
+ D1 exp

(
− 1

D2
Hd−1(A)

)
.

This can be proved much as in [22], Section 9. It should be noted that these results certainly do not give the right
order of the “typical fluctuations,” i.e., fluctuations that occur with a non-negligible probability. Indeed, let Sn be the
square

Sn = ∂

([
−1

2
, n − 1

2

]d−1

×
{

1

2

})
.

We say that a set of edges E “is a cut based on Sn” if it is finite, and if every closed path in Z
d which is not contractible

to one point in R
d \ Sn has to contain one edge of E. Let En be the set of all sets of edges which are a cut based on Sn

and define

τ̃n = inf
{
V (E) | E ∈ En

}
.

Then, mimicking the work of [2], one can prove that the variance of τ̃n is at most of order C(nd−1/ logn) where C

is a constant (and there is no reason for this bound to be optimal). It is then very reasonable to think that τ(A,h)

and φ(A,h) will inherit this property to have “submean” variance, i.e. their typical fluctuations should be small with
respect to (Hd−1(A))1/2 when the side lengths of A tend to infinity.

Remark also that these concentration inequalities, while they reflect the right order of lower large deviations, do
not give the right asymptotic of upper large deviations, which are of volume order. We do not know a simple route to
reach that which would avoid the work of [17].

4.3. Asymptotic of E(τ )

Here, we prove Proposition 3.5, so we suppose that the capacity of the edges is in L1. Let us consider two hy-
perrectangles A, A′ which have a common orthogonal unit vector �v, and two functions h,h′ : N → R

+ such that
limn→∞ h(n) = limn→∞ h′(n) = +∞. We take n,N ∈ N such that N ≥ N0(n) with N0(n) large enough to have
h(N) ≥ h′(n) + 1 and N diam(A) > ndiam(A′) for all N ≥ N0(n) (here diam(A) = sup{‖x − y‖2 | x, y ∈ A}). We
define

D(n,N) = {
x ∈ NA | d(x, ∂(NA)

)
> 2ndiamA′}.

There exists a finite collection of sets (T (i), i ∈ I ) such that each T (i) is a translate of nA′ intersecting the set
D(n,N), the sets (T (i), i ∈ I ) have pairwise disjoint interiors, and their union

⋃
i∈I T (i) contains the set D(n,N)

(see Fig. 1). For all i, there exists a vector �ti in R
d such that ‖�ti‖∞ < 1 and T ′(i) = T (i) + �ti is the image of nA′

by an integer translation (that leaves Z
d globally invariant). The cylinders cyl(T ′(i), h′(n)) are still included in

cyl(NA,h(N)) for all i ∈ I , and the family (τ (T ′(i), h′(n)), i ∈ I ) is identically distributed (but not independent
in general). For each i, by the max-flow min-cut theorem, we know that τ(T ′(i), h′(n)) is equal to the minimal ca-
pacity V (E) =∑

e∈E t(e) of a set of edges E ⊂ cyl(T ′(i), h′(n)) that cuts T ′(i)h
′(n)

1 from T ′(i)h
′(n)

2 . For each i ∈ I ,
let Ei be such a set of edges of minimal capacity, i.e., τ(T ′(i), h′(n)) = V (Ei).

We fix ζ = 4d . Let E1
0 (resp. E2

0 , E0) be the set of the edges included in E 1
0 (resp. E 2

0 , E0), where we define

E 1
0 =

⋃
i∈I

(
V
(
cyl
(
∂T ′(i),+∞)

, ζ
)∩ V

(
hyp(NA), ζ

))
,

E 2
0 = cyl

(
NA \ D(n,N), ζ

)
and

E0 = E 1
0 ∪ E 2

0 .
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Fig. 1. The hyperplane hyp(A).

The set of edges E0 ∪⋃i∈I Ei cuts (NA)
h(N)
1 from (NA)

h(N)
2 in cyl(NA,h(N)), so

τ
(
NA,h(N)

)≤ V (E0) +
∑
i∈I

V (Ei) ≤ V (E0) +
∑
i∈I

τ
(
T ′(i), h′(n)

)
. (7)

Taking the expectation of (7), we obtain

E(τ (NA,h(N)))

Hd−1(NA)
≤ card(E0)

Hd−1(NA)
E(t) + card(I )E(τ (nA′, h′(n)))

Hd−1(NA)

≤ card(E0)

Hd−1(NA)
E(t) + E(τ (nA′, h′(n)))

Hd−1(nA′)
. (8)

There exists a constant c(d) such that

card
(
E1

0

)≤ c(d)
Hd−1(NA)

Hd−1(nA′)
Hd−2(∂(nA′)) and card

(
E2

0

)≤ c(d)Hd−2(∂(NA)
)

diam
(
nA′), (9)

thus

card(E0) ≤ c(d)

[Hd−1(NA)

Hd−1(nA′)
Hd−2(∂(nA′))+ Hd−2(∂(NA)

)
diam

(
nA′)], (10)

and so

lim
n→∞ lim

N→∞
card(E0)

Hd−1(NA)
= 0.
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By sending N to infinity, and then n to infinity, we obtain that

lim sup
N→∞

E(τ (NA,h(N)))

Hd−1(NA)
≤ lim inf

n→∞
E(τ (nA′, h′(n)))

Hd−1(nA′)
.

For A = A′ and h = h′, we deduce from this inequality that limn→∞ E(τ (nA,h(n)))/Hd−1(nA) exists. For differ-
ent A,A′, and h,h′, we conclude that this limit does not depend on A and h, but only on the direction of �v (and on F

and d of course). We denote this limit by ν(�v).

4.4. Properties of ν

Here we prove Proposition 3.7. Lemma 4.1 implies that ν(�v) ≥ δ‖�v‖1 for every unit vector �v, so we only need to
prove assertions (ii) and (iii) in Proposition 3.7. First, let us show that ν(�v) > 0 is equivalent to F(0) < 1 −pc(d). We
begin by stating the weak triangle inequality for ν(�v).

Proposition 4.5. We suppose that (F2) holds. Let (ABC) be a non-degenerate triangle in R
d and let �vA, �vB and �vC

be the exterior normal unit vectors to the sides [BC], [AC], [AB] in the plane spanned by A, B , C. Then

H1([AB])ν( �vC) ≤ H1([AC])ν( �vB) + H1([BC])ν( �vA).

We do not prove Proposition 4.5 as it is the strict analogue of Proposition 11.2 in [6]. We stress the fact that it uses
only the definition of ν(�v) as the limit of the expectation of the rescaled variable τ , i.e. Proposition 3.5. As in [13],
one can extend ν as a function on R

d as follows

ν(�0) = 0 and ∀�u �= �0 ν(�u) := ‖�u‖ · ν
( �u

‖�u‖
)

.

Then, Proposition 4.5 shows that ν is convex (and even subadditive). Using this convexity, it is standard to obtain that

∃�v �= �0 s.t. ν(�v) = 0 ⇐⇒ ∀�v ν(�v) = 0,

see, for example, (3.15) in [13]. We deduce that

F(0) ≥ 1 − pc(d) ⇐⇒ ∃�v �= 0 s.t. ν(�v) = 0 ⇐⇒ ∀�v ν(�v) = 0. (11)

Now we study the case δ > 0. For a given realization of (t (e), e ∈ E
d), we define the family of variables (t ′(e), e ∈

E
d) by t ′(e) = t (e) − δ for all e. Then the variables (t ′(e), e ∈ E

d) are independent and identically distributed, and
if we denote by F ′ their distribution function, we have F ′(λ) = F(λ + δ) for all λ ∈ R. We compare the variable
τ(nA,h(n)) and the corresponding variable τ ′(nA,h(n)) for the capacities (t ′(e)), for a given hyperrectangle A of
normal unit vector �v, and a given height function h such that limn→∞ h(n) = +∞. We still denote by N (nA,h(n))

the minimal number of edges that can disconnect (nA)
h(n)
1 from (nA)

h(n)
2 in cyl(nA,h(n)). By the max-flow min-cut

theorem, we easily obtain that

τ
(
nA,h(n)

)≥ τ ′(nA,h(n)
)+ δN

(
nA,h(n)

)
and so

E(τ (nA,h(n)))

Hd−1(nA)
≥ E(τ ′(nA,h(n)))

Hd−1(nA)
+ δ

N (nA,h(n))

Hd−1(nA)
.

Proposition 3.5 and Lemma 4.1 give us that

νF (�v) ≥ νF ′(�v) + δ‖�v‖1

with trivial notations. Now F(δ) = F ′(0) < 1 − pc(d) implies that νF ′(�v) > 0, so (ii) is proved.
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Finally, from inequalities (8) and (10), with A = A′ and letting N go to infinity, we get, for every non-degenerate
hyperrectangle A orthogonal to some unit vector �v:

ν(�v) ≤ inf
n∈N

{
E(t (e))c(d)Hd−2(∂A)

nHd−1(A)
+ E(τ (nA,h(n)))

Hd−1(nA)

}
.

Thus, Proposition 3.7 is proved.

4.5. Law of large numbers for τ

Here, we prove Theorem 3.8. We begin with the almost sure convergence of τ(nA,h(n))/Hd−1(nA). To deduce it
from the convergence of its expectation, we will use the following result.

Lemma 4.6. Suppose that hypotheses (F1) and (F2) occur. Then

lim inf
n→∞

τ(nA,h(n)) − E(τ (nA,h(n)))

Hd−1(nA)
≥ 0 a.s.

Proof. It is a simple consequence of Proposition 4.3 and the fact that E(τ (nA,h(n))) is equivalent to Hd−1(nA)ν(�v),
using Borel–Cantelli’s lemma. �

We shall use (7) with h = h′ and A = A′, i.e. the sets T ′(i) are integer translates of nA. We emphasize the depen-
dence on N and n by writing Ei

0 = Ei
0(N,n) for i ∈ {1,2}, I = I (N,n) and T ′(i) = T ′

N,n(i). Suppose first that 0 ∈ A.
Then, we can construct the sets T ′

N,n(i) in order to have

∀n ≥ 1,∀N ′ ≥ N ≥ N0(n)
(
T ′

N,n(i)
)
i∈I (N,n)

⊂ (
T ′

N ′,n(i)
)
i∈I (N ′,n)

.

We obtain that

∀n ≥ 1,∀N ′ ≥ N ≥ N0(n) E1
0(N,n) ⊂ E1

0

(
N ′, n

)
.

Thus, the strong law of large numbers for i.i.d. random variables implies, using inequality (9):

lim sup
N→∞

V (E1
0)

Hd−1(NA)
≤ E

(
t (e)

)
lim sup
N→∞

card(E1
0)

Hd−1(NA)
≤ E(t (e))K(d,A)

n
a.s., (12)

where K(d,A) = c(d)Hd−2(∂A)/Hd−1(A). Moreover, we know (see (9)) that

cardE2
0 ≤ c(d)Hd−2(∂A)diam(A)Nd−2n.

Under the assumption (F2), Theorem 4.1 in [11] states that V (E2
0(N,n))/Hd−1(NA) converges completely to 0,

with the definition of the complete convergence given by Gut (Definition (1.1) in [11]). Complete convergence implies
almost sure convergence through Borel–Cantelli’s lemma, thus

lim
N→∞

V (E2
0(N,n))

Hd−1(NA)
= 0 a.s.

Also, we claim that

lim sup
N→∞

∑
i∈I (N,n) τ (T ′(i), h′(n))

Hd−1(NA)
= E(τ (nA,h(n)))

Hd−1(nA)
a.s. (13)

Indeed, notice that (for n large enough) τ(T ′(i), h′(n)) is independent of all the other τ(T ′(j), h′(n)) except for at
most 3d − 1 values of j corresponding to the T ′(j) that can intersect T ′(i). Thus, (13) follows by partitioning the
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sets T ′(j) into 3d − 1 classes of i.i.d. variables, and then applying the strong law of large numbers for i.i.d. random
variables. Thus, for n large enough,

lim sup
N→∞

τ(NA,h(N))

Hd−1(NA)
≤ E(t (e))K(d,A)

n
+ E(τ (nA,h(n)))

Hd−1(nA)
a.s.

and using Proposition 3.5:

lim sup
N→∞

τ(NA,h(N))

Hd−1(NA)
≤ ν(�v) a.s. (14)

If ν(�v) = 0, since τ is non-negative, we get the desired result. We suppose that ν(�v) > 0. From Proposition 3.7, we
know that ν(�v) > 0 is equivalent to F(0) < 1 − pc(d). Then it follows from Lemma 4.6 and the convergence of
E(τ (nA,h(n)))/Hd−1(nA) to ν(�v) that

ν(�v) ≤ lim inf
N→∞

τ(NA,h(N))

Hd−1(NA)
a.s.

which, together with (14) gives the law of large numbers for τ .
Now, what happens if 0 /∈ A? Then, we suppose that (F3) holds, and we can combine Borel–Cantelli’s lemma

with the complete convergence in the law of large numbers for subsequences (Theorem 4.1 in [10], or more generally
Theorem 4.1 in [11]) to replace the classical law of large numbers to prove (12) and (13).

This ends the proof of the almost sure convergence. Now, let us prove the convergence in L1. Suppose first that
0 ∈ A. Then, one can find a sequence of sets of edges (E(n))n∈N such that for each n, E(n) is a cut between (nA)

h(n)
1

and (nA)
h(n)
2 , E(n) ⊂ E(n + 1) and

card(E(n))

Hd−1(nA)
−−→
n→∞‖�v‖1.

Now, define

fn = τn

Hd−1(nA)
and gn = 1

Hd−1(nA)

∑
e∈E(n)

t (e).

Then, we know the following:

(i) 0 ≤ fn ≤ gn for every n,
(ii) (gn)n∈N converges almost surely and in L1, thanks to the usual law of large numbers,

(iii) (fn)n∈N converges almost surely to ν(�v), thanks to the almost sure convergence for 0 ∈ A that we have just
proven,

(iv) (E(fn))n∈N converges to ν(�v), thanks to Proposition 3.5.

It is then standard to show that fn converges in L1 to ν(�v): apply the monotone convergence theorem to bn =
infm≥n(gm − fm), and then show that (g − f − bn)n∈N and (gn − fn − bn)n∈N are positive sequences converging
to zero in L1.

It remains to show the convergence in L1 when we do not know whether 0 ∈ A. Let A′′ be the translate of A such
that 0 ∈ A′′, and 0 is the center of A′′. For any fixed n, there exists a hyperrectangle A′

n which is a translate of nA

by an integer vector and such that d∞(0, nA′
n) < 1 and d∞(nA′′,A′

n) < 1, where d∞ denotes the distance induced by
‖ · ‖∞. We want to compare the maximal flow through cyl(nA′′, h(n)) to the maximal flow through cyl(A′

n,h(n)).
The difficulty is that one of these cylinders is not included in the other. This is the reason why we will construct bigger
and smaller version of cyl(nA′′, h(n)). We recall that lmin(A) is the smallest length of A, i.e.,

lmin(A) = min
i=1,...,d−1

ki,
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where A is the image by an isometry of the set
∏d−1

i=1 [0, ki] × {0}. We define the biggest length of A as

lmax(A) = max
i=1,...,d−1

ki

with the same notation. We only consider n large enough such that h(n) > 1. Thus the following inclusions holds

cyl

((
n −

⌈
2

lmin(A)

⌉)
A′′, h(n) − 1

)
⊂ cyl

(
A′

n,h(n)
)⊂ cyl

((
n +

⌈
2

lmin(A)

⌉)
A′′, h(n) + 1

)
,

where �x� is the smallest integer bigger than or equal to x. For all n, we have

∂

[(
n −

⌈
2

lmin(A)

⌉)
A′′
]

⊂ V
(

∂A′
n, lmax(A)

⌈
2

lmin(A)

⌉
+ 1

)
and

∂

[(
n +

⌈
2

lmin(A)

⌉)
A′′
]

⊂ V
(

∂A′
n, lmax(A)

⌈
2

lmin(A)

⌉
+ 1

)
.

Arguing as in Section 4.3, let Fn be the edges included in Fn defined as

Fn = V
(

∂A′
n, lmax(A)

⌈
2

lmin(A)

⌉
+ 1 + 4d

)
.

We get, for n large enough,

τ

((
n +

⌈
2

lmin(A)

⌉)
A′′, h(n) + 1

)
− V (Fn)

≤ τ
(
A′

n,h(n)
)≤ τ

((
n −

⌈
2

lmin(A)

⌉)
A′′, h(n) − 1

)
+ V (Fn).

Using the convergence in L1 for A′′ which contains 0, we see that

τ

((
n +

⌈
2

lmin(A)

⌉)
A′′, h(n) + 1

)/
Hd−1(nA) and τ

((
n −

⌈
2

lmin(A)

⌉)
A′′, h(n) − 1

)/
Hd−1(nA)

converge to ν(�v) in L1 as n goes to infinity. Furthermore, since card(Fn) is negligible compared to nd−1,
V (Fn)/Hd−1(nA) go to zero in L1, and we get the convergence of τ(A′

n,h(n))/Hd−1(nA) to ν(�v) in L1. But since
A′

n is an integer translate of nA, it implies the convergence of τ(nA,h(n))/Hd−1(nA) to ν(�v) in L1.

Remark 4.7. Most likely, the almost sure convergence of (τ (nA,h(n))/Hd−1(nA),n ∈ N) could also be obtained
by adapting the proof of [1], and thus relaxing the independence hypothesis on (t (e))e to stationarity. In any case,
general subadditive results existing in the literature are not well adapted to treat the case of irrational directions, i.e.
directions �v such that τ(nA,h(n)) is not exactly subadditive and stationary. Some authors circumvent this problem
by proving that the almost sure convergence is uniform with respect to rational directions, which allows to extend
the convergence to irrational directions, see [13] and [3], for instance. But for flows like τ , the uniform convergence
requires a moment of order strictly larger than 1, see, for instance, Theorems 1.3, 1.9 and Section 4 in [3]. Notice also
that Theorem 6.1 in [3] shows directly the convergence in any direction for First Passage Percolation in dimension 2,
using techniques some of which are similar to ours and others belong to the realm of ergodic theory. In this paper,
the strategy we adopt is to use the fact that our space R

d has one dimension more than the hyperrectangles which are
the indices of the almost subadditive family: we can move the hyperrectangles T (i) out of the hypersurface spanned
by NA to obtain the hyperrectangles T ′(i) that have good properties. Moreover, the non-negativity of our variables τ

implies that it is simpler to use a concentration inequality than a maximal inequality as in the classical subadditive
ergodic theorems.
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Remark 4.8. We have obtained readily the independence of the limit with regard to the precise form of the hyperrec-
tangle we consider and this is not surprising since it appears already in subadditive ergodic theorems like in [15].

Remark 4.9. The almost sure convergence of (τ (nA,h(n))/Hd−1(nA),n ∈ N) is not necessary to prove Theorem 3.9,
but we need the convergence in probability to prove Theorem 3.10.

Remark 4.10. If 0 /∈ A, it is not clear to us whether condition (F3) is necessary or not: it is necessary for complete
convergence to hold, but complete convergence is stronger than the a.s. convergence.

4.6. Lower deviations for τ and flat φ: Proofs of Theorems 3.9 and 3.13

Now, we can prove Theorem 3.9, and so we consider F , h, �v and A as in the statement of this theorem. If ν(�v) = 0,
there is nothing to prove. Suppose now that ν(�v) > 0 and let ε ≤ ν(�v) be a positive real number. Let u = ε/(2νmax),
where νmax = max{ν(�v) | �v unit vector}. Then u > 0 and we have

ν(�v) − ε

ν(�v) − ε/2
≤ 1 − u.

Using assertion (iii) in Proposition 3.7, we know that there exists a n0 = n0(A) (not depending on h) large enough to
have

∀n ≥ n0
E(τ (nA,h(n)))

Hd−1(nA)
≥ ν(�v) − ε

2
.

Then, for all n ≥ n0,

P
[
τ
(
nA,h(n)

)≤ (
ν(�v) − ε

)
Hd−1(nA)

]≤ P

[
τ(nA,h(n))

E(τ (nA,h(n)))
≤ 1 − u

]
.

Now, the result follows easily from Proposition 4.3, for n larger than some n1 = n1(A). Adapting the constant for
n ≤ n1 leads to C̃(d,F,A, ε).

Remark 4.11. Notice that for every hyperrectangle A:

2

lmin(A)
≤ Hd−2(∂A)

Hd−1(A)
≤ 2(d − 1)

lmin(A)
.

Thus, from the proof above, Proposition 3.7(iii) and Proposition 4.3, it can be seen that n1(A) and thus the constant
C̃(d,F,A, ε) depends on A only through K(d,A), or equivalently, only through lmin(A).

We can do the same calculus for φ(nA,h(n)) as soon as we know that E(φ(nA,h(n)))/Hd−1(nA) converges to
ν(�v). To prove Theorem 3.13, it is sufficient to prove that it is the case under hypotheses (F2), (H1) and (H3). We
have to compare φ and τ . We suppose that limn→∞ h(n)/n = 0, and fix ζ ≥ 2d . We consider n large enough such that
the sides of nA have length bigger than ζ , i.e., lmin(A) ≥ ζ . Let E+

1 be the set of the edges that belong to E +
1 , defined

as

E +
1 = V

(
cyl
(
∂(nA),h(n)

)
, ζ
)∩ cyl

(
nA,h(n)

)
.

We have, for all n large enough,

τ
(
nA,h(n)

)≥ φ
(
nA,h(n)

)≥ τ
(
nA,h(n)

)− V
(
E+

1

)
.

There exists a constant C+ such that

card
(
E+

1

)≤ C+nd−2h(n),
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so we have

|E[φ(nA,h(n))] − E[τ(nA,h(n))]|
Hd−1(nA)

≤ C+nd−2h(n)

nd−1 Hd−1(nA)
−→ 0 as n → ∞,

and this proves the convergence of E[φ(nA,h(n))]/Hd−1(nA) to ν(�v). Notice that the speed of convergence depends
on h. Using Proposition 4.3, we can find n1(d,F,A,h, ε) such that for all n ≥ n1(d,F,A,h, ε) we have

P
(
φ
(
nA,h(n)

)≤ (
ν(�v) − ε

)
Hd−1(nA)

)
≤ C3

(
F(0), d

)
h(n) exp

(−C(ε,F,d)
(
ν(�v) − ε/2

)
Hd−1(nA)

)
≤ C3

(
F(0), d

)
exp

(
logh(n)

nd−1
nd−1 − C(ε,F,d)

(
ν(�v) − ε/2

)
Hd−1(nA)

)
.

Using hypothesis (H2), which is implied by (H3), Theorem 3.13 is proved for n ≥ n2(d,F,A,h, ε), for n2(d,F,

A,h, ε) large enough. Adapting the constant C3(F (0), d) for the n2 first terms, Theorem 3.13 is proved for all n with
a constant C̃′ depending on d , F , A, h, ε.

To prove Theorem 3.18, it remains to prove the convergence of E[φ(nA,h(n))]/Hd−1(nA) to ν(�v) under the
hypotheses (F1), (F2), (H1) and (H2). This will be done during the proof of Theorem 3.16 in Section 6.2, so we
postpone the end of the proof of Theorem 3.18 until Section 6.3.

Remark 4.12. Using Theorems 3.13, 3.8 and the fact that φ(nA,h(n)) ≤ τ(nA,h(n)), we obtain the law of large
numbers for φ(nA,h(n)) in flat cylinders (i.e., under hypothesis (H3)) under the same hypothesis as the one for
τ(nA,h(n)).

5. Large deviation principle for τ and φ in flat cylinders

In this section, we show the large deviation principle for τ . We construct a precursor of the rate function in Sec-
tion 5.1, and then study its properties. Precisely, we show it is convex in Section 5.2, finite (and thus continuous) on
]δ‖�v‖1,+∞[ in Section 5.3, and strictly positive on [0, ν(�v)[ in Section 5.4. After having shown in Section 5.5 that
upper large deviations occur at an order bigger than the surface order, we can complete the proof of the full large
deviation principle for τ in Section 5.6 and deduce the one for φ in flat cylinders in Section 5.7.

5.1. Construction of the rate function

We will prove the following lemma, for which no condition on F is required.

Lemma 5.1. For every function h : N → R
+ satisfying (H1), for every non-degenerate hyperrectangle A, for all λ in

R
+, the limit

lim
n→∞

−1

Hd−1(nA)
logP

[
τ
(
nA,h(n)

)≤
(

λ − 1√
n

)
Hd−1(nA)

]
exists in [0,+∞] and depends only on the direction of �v, one of the two unit vectors orthogonal to hyp(A). We denote
it by I�v(λ).

We introduce a factor 1/
√

n in the definition of I�v(λ) because we want to work with subadditive objects, but
τ(A,h) is not subadditive in A, except for straight cylinders. Indeed, if A and B are two hyperrectangles with a
common orthogonal vector and with a common side, to glue together a set of edges in cyl(A,h) that cuts Ah

1 from Ah
2

and a set of edges in cyl(B,h) that cuts Bh
1 from Bh

2 , we have to add edges at the common side of A and B (see the
set of edges E0 defined in Section 4.3). These edges may not have a capacity 0, so they perturb the subadditivity of τ .
We add the factor 1/

√
n to compensate.
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Remark 5.2. It is natural to have no condition on F in Lemma 5.1 since it comes essentially from an almost subaddi-
tive property for a non-random quantity.

Proof of Lemma 5.1. For the proof of Lemma 5.1, we consider the same construction as in Section 4.3 (see Fig. 1).
From (7) we deduce that for all λ ∈ R

+∗ , we have

P

[
τ
(
NA,h(N)

)≤
(

λ − 1√
N

)
Hd−1(NA)

]
≥ P

[
V (E0) +

∑
i∈I

τ
(
T ′(i), h′(n)

)≤
(

λ − 1√
N

)
Hd−1(NA)

]
.

Let D = {λ | P(t (e) ≤ λ) > 0}, and δ = inf D. We take u = δ + ζ , so p = P(t (e) ≤ u) > 0. We use first the FKG
inequality and then the fact that the family (τ (T ′(i), h′(n)), i ∈ I ) is identically distributed to obtain that

P

[
τ
(
NA,h(N)

)≤
(

λ − 1√
N

)
Hd−1(NA)

]

≥ P
[
V (E0) ≤ u card(E0)

]∏
i∈I

P

[
τ
(
T ′(i), h′(n)

)≤ (λ − 1/
√

N)Hd−1(NA) − u card(E0)

card(I )

]

≥ P
[
t (e) ≤ u

]card(E0)
P

[
τ
(
nA′, h′(n)

)≤ (λ − 1/
√

N)Hd−1(NA) − u card(E0)

card(I )

]card(I )

.

We have immediately that card(I ) ≤ Hd−1(NA)/Hd−1(nA′), so

−1

Hd−1(NA)
logP

[
τ
(
NA,h(N)

)≤
(

λ − 1√
N

)
Hd−1(NA)

]
≤ −1

Hd−1(nA′)
logP

[
τ
(
nA′, h′(n)

)≤ β
]− card(E0)

Hd−1(NA)
logp,

where

β = (λ − 1/
√

N)Hd−1(NA) − u card(E0)

card(I )
.

As we saw in Section 4.3, there exists a constant c(d, ζ,A,A′) such that

card(E0) ≤ c
(
d, ζ,A,A′)(Nd−2n + Nd−1/n + 1

)
.

On the one hand, we obtain that

lim
n→∞ lim

N→∞
card(E0)

Hd−1(NA)
logp = 0.

On the other hand, we want to compare β with (λ − 1/
√

n)Hd−1(nA′). Obviously, we have

λHd−1(NA)

card(I )
≥ λHd−1(nA′).

We also know that

card(I ) ≥ Hd−1(D(n,N))

Hd−1(nA′)
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so there exist a constant c′(d,A,A′) and an integer N1(n) large enough to have, for all N ≥ N1(n),

card(I ) ≥ c′(d,A,A′)(N

n

)d−1

.

Thus, there exist constants ci(d, ζ,A,A′) such that for all N ≥ N1(n), we have

Hd−1(NA)

card(I )
√

N
≤ c1(d, ζ,A,A′)√

N
Hd−1(nA′)

and

u card(E0)

card(I )
≤ c2

(
d, ζ,A,A′)( n

N
+ 1

n

)
Hd−1(nA′).

There exists n0 such that for all n ≥ n0, c2/n ≤ 1/(4
√

n). Then there exists N2(n) ≥ N0(n) ∨ N1(n) such that for all
N ≥ N2(n), c2n/N ≤ 1/(4

√
n) and c1/

√
N ≤ 1/(2

√
n). Thus for a fixed n ≥ n0, for all N ≥ N2(n), we have

β ≥
(

λ − 1√
n

)
Hd−1(nA′).

Now in the following inequality, obtained for n ≥ n0 and N ≥ N2(n),

−1

Hd−1(NA)
logP

[
τ
(
NA,h(N)

)≤
(

λ − 1√
N

)
Hd−1(NA)

]
≤ −1

Hd−1(nA′)
logP

[
τ
(
nA′, h′(n)

)≤
(

λ − 1√
n

)
Hd−1(nA′)]− card(E0)

Hd−1(NA)
logp,

we send N to infinity for a fixed n ≥ n0, and then we send n to infinity. We thus obtain

lim sup
N→∞

−1

Hd−1(NA)
logP

[
τ
(
NA,h(N)

)≤
(

λ − 1√
N

)
Hd−1(NA)

]
≤ lim inf

n→∞
−1

Hd−1(nA′)
logP

[
τ
(
nA′, h′(n)

)≤
(

λ − 1√
n

)
Hd−1(nA′)].

For A = A′ and h = h′, this gives us the existence of

lim
n→∞

−1

Hd−1(nA)
logP

[
τ
(
nA,h(n)

)≤
(

λ − 1√
n

)
Hd−1(nA)

]
for all λ ∈ R

+∗ , and for different A,A′, h,h′ this shows that the limit is independent of A and h. We denote this limit
by I�v(λ).

For λ = 0,

P

[
τ
(
nA,h(n)

)≤ − Hd−1(nA)√
n

]
= 0

for all n ∈ N, so the previous limit equals +∞, independently of A and �v. This ends the proof of Lemma 5.1. �

Remark 5.3. The function I�v is not exactly the rate function we will consider later: we will change its value from 0 to
+∞ on ]ν(�v),+∞] and we will regularize it at ‖�v‖1δ.
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5.2. Convexity of I�v

We will prove that I�v is convex, i.e., for all λ1 ≥ λ2 ∈ R
+ and α ∈]0,1[, we have

I�v
(
αλ1 + (1 − α)λ2

)≤ αI�v(λ1) + (1 − α)I�v(λ2).

For λ2 = 0, the result is obvious, so we suppose λ2 > 0. We keep the same notations as in the previous section, for
D(n,N), T (i), Ei , etc., except that we take A = A′. We define

γ = ⌊
α card(I )

⌋
.

If we have

τ
(
T ′(i), h(n)

)≤ (
λ1 − 1/

√
n
)

Hd−1(nA) for i = 1, . . . , γ, (15)

τ
(
T ′(i), h(n)

)≤ (
λ2 − 1/

√
n
)

Hd−1(nA) for i = γ + 1, . . . , card(I ), (16)

and

V (E0) ≤ u card(E0),

then we obtain that

τ
(
NA,h(N)

) ≤
(

γ

(
λ1 − 1√

n

)
+ (

card(I ) − γ
)(

λ2 − 1√
n

))
Hd−1(nA) + u card(E0)

≤ (
αλ1 + (1 − α)λ2

)
card(I )Hd−1(nA) − card(I )Hd−1(nA)√

n
+ u card(E0)

≤ (
αλ1 + (1 − α)λ2

)
Hd−1(NA) − ρ,

where

ρ = card(I )Hd−1(nA)√
n

− u card(E0).

We want to prove that ρ ≥ Hd−1(NA)/
√

N for N large enough. We have seen in the previous section that there exists
a constant c(d, ζ,A) such that

card(E0) ≤ c(d, ζ,A)Nd−1
(

n

N
+ 1

n

)
,

and that there exists a constant c′(d,A) and a N1(n) large enough to have, for all N ≥ N1(n),

card(I ) ≥ c′(d,A)

(
N

n

)d−1

.

There exists n1 such that for all n ≥ n1, 2c/n ≤ c′/(2
√

n). For a fixed n ≥ n1, there exists constants ci(d, ζ,A) and
N3(n) such that for all N ≥ N3(n) we have

u card(E0)

Hd−1(NA)
≤ 2c

n
≤ c′

2
√

n
,

card(I )Hd−1(nA)

Hd−1(NA)
√

n
≥ c′

√
n

and
c′

2
√

n
≥ 1√

N
.

We conclude that for n ≥ n1 and N ≥ N3(n), γ ≥ Hd−1(NA)/
√

N and then

τ
(
NA,h(N)

)≤
(

αλ1 + (1 − α)λ2 − 1√
N

)
Hd−1(NA),
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as long as (15) and (16) hold. Then, for all n ≥ n1 and N ≥ N3(n), we have, by the FKG inequality:

P

(
τ
(
NA,h(N)

)≤
(

αλ1 + (1 − α)λ2 − 1√
N

)
Hd−1(NA)

)
≥ P

(
τ
(
nA,h(n)

)≤
(

λ1 − 1√
n

)
Hd−1(nA)

)γ

× P

(
τ
(
nA,h(n)

)≤
(

λ2 − 1√
n

)
Hd−1(nA)

)card(I )−γ

pcard(E0).

We take the logarithm of this expression, we divide it by Hd−1(NA), we send N to infinity and then n to infinity to
obtain

I�v
(
αλ1 + (1 − α)λ2

)≤ αI�v(λ1) + (1 − α)I�v(λ2).

The convexity of I�v is so proved.

5.3. Continuity of I�v

Now we come back to the problem of the continuity of I�v . Since I�v is convex, we first try to determine its domain.
Recall that δ = δ(F ) = inf{λ | P(t (e) ≤ λ) > 0}.

• λ > ‖�v‖1δ: there exists ε > 0 such that λ > (‖�v‖1 + ε)(δ + 2ε). Then there exists n0 such that, for all
n ≥ n0, there exists a set of edges E0(n) that disconnects (nA)

h(n)
1 from (nA)

h(n)
2 in cyl(nA,h(n)) and such that

card(E0(n)) ≤ (‖�v‖1 + ε)Hd−1(nA). We obtain for n ≥ n0,

P

(
τ
(
nA,h(n)

)≤
(

λ − 1√
n

)
Hd−1(nA)

)
≥ P

(
V
(
E0(n)

)≤
(

λ − 1√
n

)
Hd−1(nA)

)

≥ P

(
t (e) ≤ λ − 1/

√
n

‖�v‖1 + ε

)�(‖�v‖1+ε)Hd−1(nA)�
.

But there exists n1 large enough to have for all n ≥ n1, λ− 1/
√

n ≥ (‖�v‖1 + ε)(δ + ε), so for all n ≥ n0 ∨n1, we have

P

(
τ
(
nA,h(n)

)≤
(

λ − 1√
n

)
Hd−1(nA)

)
≥ P

(
t (e) ≤ δ + ε

)�(‖�v‖1+ε)Hd−1(nA)�
,

and finally

I�v(λ) ≤ −(‖�v‖1 + ε
)

logP
(
t (e) ≤ δ + ε

)
< ∞.

• λ ≤ ‖�v‖1δ: for λ > 0, there exists n0 such that for all n ≥ n0,

τ(nA,h(n))

Hd−1(nA)
≥ δ

N (nA,h(n))

Hd−1(nA,h(n))
≥ δ‖�v‖1 − 1

2
√

n
> λ − 1√

n
,

and so for all n ≥ n0,

P

(
τ
(
nA,h(n)

)≤
(

λ − 1√
n

)
Hd−1(nA)

)
= 0.

The same result is true for λ = 0. We obtain that I�v(λ) = +∞.
Now, we know that I�v is convex and finite on ]δ‖�v‖1,+∞[ so it is continuous on ]δ‖�v‖1,+∞[, and it is infinite

on [0, δ‖�v‖1].



1118 R. Rossignol and M. Théret

Fig. 2. Examples of cuts.

Remark 5.4. The only point we did not study is the behaviour of the function near δ‖�v‖1. In fact, we will eventually
change the value of I�v(δ‖�v‖1) to obtain a lower semicontinuous function. Moreover, the fact that I�v(δ‖�v‖1) = +∞
even if there exists an atom of the law of t (e) at δ is linked with the fact that we added a term 1/

√
n and not with

the behaviour of P(τ (nA,h(n)) ≤ δ‖�v‖1 Hd−1(nA)). This remark can be illustrated by an example in dimension 2:
let A = [−1/2,1/2] × {1/2}. Here �v = (0,1) so ‖�v‖1 = 1. We consider a law of capacities with an atom at δ.
We remark (see Fig. 2) that N ((2n + 1)A,2n + 1) = 2n + 1. Moreover, there exists a unique cut E0(2n + 1) in
cyl((2n + 1)A,2n + 1) composed by 2n + 1 edges (see it on the figure). So we have

P
(
τ
(
(2n + 1)A,2n + 1

)≤ (2n + 1)δ
)= P

(
V
(
E0(2n + 1)

)= (2n + 1)δ
)= P

(
t (e) = δ

)2n+1

and

lim
n→∞

−1

2n + 1
logP

(
τ
(
(2n + 1)A,2n + 1

)≤ (2n + 1)δ
)= − logP

(
t (e) = δ

)
< ∞.

We also remark that N (2nA,2n) = 2n + 1 because a cut in cyl(2nA,2n) must contain a vertical edge of first coordi-
nate i for i = 0, . . . ,2n. Then we have

P
(
τ(2nA,2n) ≤ 2nδ

)= 0

and

lim
n→∞

−1

2n
logP

(
τ(2nA,2n) ≤ 2nδ

)= +∞.

This example shows that the behaviour of P(τ (nA,h(n)) ≤ δ‖�v‖1 Hd−1(nA)) is not clear, and we will avoid the
problem by taking later at ‖�v‖1δ the value of the limit

lim
λ>‖�v‖1δ,λ→‖�v‖1δ

I�v(λ)

instead of I�v(‖�v‖1δ).
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5.4. Positivity of I�v

From now on we need the assumptions (F1) and (F2), i.e. F(0) < 1 − pc(d), and F admits a moment of order 1.
It is an immediate consequence of Theorem 3.8 that I�v is equal to zero on ]ν(�v),+∞[, and Theorem 3.9 implies
immediately too that I�v is strictly positive on [0, ν(�v)[ if ν(�v) > 0.

Remark 5.5. We did not study the function I�v at ν(�v), i.e., if I�v(ν(�v)) = 0 or not. If ν(�v) > δ‖�v‖1, then I�v is
continuous at ν(�v) and so I�v(ν(�v)) = 0. If ν(�v) = δ‖�v‖1, the value of I�v(ν(�v)) is not relevant for the understanding
of the system as explained in Remark 5.4. Finally, Proposition 3.7 gives a sufficient condition to have ν(�v) > δ‖�v‖1,
and this condition is also necessary when δ = 0.

5.5. Upper large deviations for τ

We will need the following result to prove the large deviation principle for τ in the next section.

Lemma 5.6. Suppose that (H1) and (F5) hold. Then we have, for all λ > ν(�v),

lim
n→∞

1

Hd−1(nA)
logP

[
τ(nA,h(n))

Hd−1(nA)
≥ λ

]
= −∞. (17)

We do not prove Lemma 5.6 here. The proof is an adaptation of Section 3.7 in [17], that proves that the upper large
deviations for φ(nA,h(n))/Hd−1(nA) in straight boxes are of volume order. It is written completely in [19], where
other assumptions on F are also considered. We describe here only the two adaptations required to get Lemma 5.6
from the proof in [17]. The proof for φ is based on a comparison between the variable φ(NA,h(N)) in a big cylinder,
and the minimum over h(N)/h(n) possible choices of sums of Hd−1(NA)/Hd−1(nA) independent variables equal
in law with τ(nA,h(n)), where n is small compared to N . This comparison is obtained by dividing the big cylinder
cyl(NA,h(N)) into h(N)/h(n) slabs, and diving each slab in Hd−1(NA)/Hd−1(nA) translates of cyl(nA,h(n)).
Then, in any fixed slab, if we glue together cutsets in the small cylinder of size n, we can construct a cutset in
cyl(NA,h(N)). There are two difficulties to replace φ(NA,h(N)) by τ(NA,h(N)) in this construction, and to
consider potentially tilted cylinders. First, the fact that the cylinders we consider may be tilted implies a default of
subadditivity of the variable τ , so we have to add edges between the small cylinders of size n to glue together the
different cutsets, and we have to control the number of the edges we must consider. Then, when the small cutsets are
glued together, they form a set of edges that cuts the top from the bottom of cyl(NA,h(N)). It remains to link this
cutset to the boundary of NA to obtain a cutset corresponding to the variable τ(NA,h(N)). To obtain a control on
the number of edges we must add at this step, we have to consider only slabs whose distance to NA is negligible
compared to N . Using Cramér theorem for each possible sum of independent variables in a slab, and optimizing over
the possible choices of slab, we obtain the desired result.

Remark 5.7. For the variable φ, it suffices to have one exponential moment for the law F to obtain this speed of decay
(see [17]). For τ , one exponential moment is not a sufficiently strong condition. Consider, for example, an exponential
law of parameter 1 for the capacities of the edges. We know that E(exp(γ t)) < ∞ for all γ < 1. Let x0 be a fixed
point of the boundary ∂(nA). There are, at distance at most 4d of x0, one vertex of (nA)

h(n)
1 and another of (nA)

h(n)
2 .

Let γ be some smallest path in cyl(nA,h(n)) joining those two vertices. Its length is at most some constant R(d),
and we know that every set of edges that cuts (nA)

h(n)
1 from (nA)

h(n)
2 in cyl(nA,h(n)) must contain one of the edges

of γ . The probability that all of them have a capacity bigger than λHd−1(nA) for some λ > ν(�v), and therefore that
τ(nA,h(n)) is bigger than λHd−1(nA), is greater than exp(−R(d)λHd−1(nA)). Then the property (17) cannot hold.

Remark 5.8. It is also proved in [19] that if the capacity of the edges is bounded, the upper large deviations are of
order nd−1 min(n,h(n)), and this is the right order of the upper large deviations in this case.
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5.6. Proof of Theorem 3.10

We define the function J�v on R
+ by

J�v(λ) =
{I�v(λ) if λ ≤ ν(�v) and λ �= ‖�v‖1δ,

limμ>‖�v‖1δ,μ→‖�v‖1δ I�v(μ) if λ = ‖�v‖1δ,
+∞ if λ > ν(�v).

The study of the function I�v made previously and the construction of J�v gives us immediately that the function J�v
is a good rate function. As soon as we know that the upper large deviations are of order bigger than the lower large
deviations, the techniques we will use to prove the large deviation principle are standard (see, for example, [6]).

• Lower bound
We have to prove that for all open subset O of R

+,

lim inf
n→∞

1

Hd−1(nA)
log P

[
τ(nA,h(n))

Hd−1(nA)
∈ O

]
≥ − inf

O
J�v.

Classically, it suffices to prove the local lower bound:

∀α ∈ R
+,∀ε > 0 lim inf

n→∞
1

Hd−1(nA)
logP

[
τ(nA,h(n))

Hd−1(nA)
∈]α − ε,α + ε[

]
≥ −J�v(α).

If J�v(α) = +∞, the result is trivial. Otherwise, suppose J�v(α) < +∞. The function I�v is convex, equal to zero on
[ν(�v),+∞[, positive on [0, ν(�v)[ and finite on ]‖�v‖1δ,+∞]. Then I�v is strictly decreasing on ]‖�v‖1δ, ν(�v)], and
so is J�v (because I�v = J�v on ]‖�v‖1δ, ν(�v)]). Yet J�v(α) < +∞ implies that α ∈]‖�v‖1δ, ν(�v)] or α = ‖�v‖1δ and
J�v(‖�v‖1δ) < +∞. In both cases, we so obtain that J�v(α) < J�v(α − ε/2). Then the following inequality, true for
n > 4/ε2,

P

[
τ(nA,h(n))

Hd−1(nA)
∈]α − ε,α + ε[

]
≥ P

[
τ(nA,h(n))

Hd−1(nA)
≤ α − 1√

n

]
− P

[
τ(nA,h(n))

Hd−1(nA)
≤ α − ε

2
− 1√

n

]
leads to

lim inf
n→∞

1

Hd−1(nA)
log P

[
τ(nA,h(n))

Hd−1(nA)
∈]α − ε,α + ε[

]
≥ −J�v(α).

• Upper bound
We have to prove that for all closed subset F of R

+,

lim sup
n→∞

1

Hd−1(nA)
log P

[
τ(nA,h(n))

Hd−1(nA)
∈ F

]
≤ − inf

F
J�v.

Let F be a closed subset of R
+. If ν(�v) ∈ F , the result is obvious. We suppose now that ν(�v) /∈ F . We consider

F1 = F ∩ [0, ν(�v)] and F2 = F ∩]ν(�v),+∞[. Let f1 = sup F1 (f1 < ν(�v) because F is closed) and f2 = inf F2
(f2 > ν(�v) for the same reason). Then,

lim sup
n→∞

1

Hd−1(nA)
log P

[
τ(nA,h(n))

Hd−1(nA)
∈ F

]
≤ lim sup

n→∞
1

Hd−1(nA)
log

(
P

[
τ(nA,h(n))

Hd−1(nA)
≤ f1

]
+ P

[
τ(nA,h(n))

Hd−1(nA)
≥ f2

])
.
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We know that:

lim sup
n→∞

1

Hd−1(nA)
log P

(
τ(nA,h(n))

Hd−1(nA)
≤ f1

)
≤ lim

η→0
lim sup
n→∞

1

Hd−1(nA)
logP

(
τ(nA,h(n))

Hd−1(nA)
≤ f1 + η − 1√

n

)
= − lim

η→0
I�v(f1 + η) = −J�v(f1),

and since J�v is non-increasing on [0, ν�v] and the upper large deviations of τ(nA,h(n)) are of order bigger than nd−1,
we obtain

lim sup
n→∞

1

Hd−1(nA)
log P

[
τ(nA,h(n))

Hd−1(nA)
∈ F

]
≤ −J�v(f1) = − inf

F
J�v.

5.7. Large deviation principle for φ in small boxes

In this section, we shall prove Corollary 3.14, i.e., under the assumption that limn→∞ h(n)/n = 0, the sequence(
φ(nA,h(n))

Hd−1(nA)
,n ∈ N

)
satisfies the same large deviation principle as (τ (nA,h(n))/Hd−1(nA),n ∈ N).

We will use a result of exponential equivalence. For (Xn) and (Yn) two sequences of random variables defined on
the same probability space (Ω, A,P), and for a given speed function v(n) which goes to infinity with n, we say that
(Xn) and (Yn) are exponentially equivalent with regard to v(n) if and only if for all positive ε, we have

lim sup
n→∞

1

v(n)
log P

(|Xn − Yn| ≥ ε
)= −∞.

The following result is classical in large deviations theory (see [8], Theorem 4.2.13).

Theorem 5.9. Let (Xn) and (Yn) be two sequences of random variables defined on the same probability space
(Ω, A,P). If (Xn) satisfies a large deviation principle of speed v(n) with a good rate function, and if (Xn) and
(Yn) are exponentially equivalent with regard to v(n), then (Yn) satisfies the same large deviation principle as (Xn).

We will prove that the sequences (φ(nA,h(n))/Hd−1(nA)) and (τ (nA,h(n))/Hd−1(nA)) are exponentially
equivalent with regard to Hd−1(nA) under the assumptions that there exist exponential moment of the law of ca-
pacity of all orders and for height functions h satisfying limn→∞ h(n)/n = 0.

We take a hyperrectangle A and use the same notations as in Section 4.6. Let ζ ≥ 2d , and n large enough such that
the sides of nA have length bigger than ζ . Let E+

1 be the set of the edges that belong to E +
1 defined as

E +
1 = V

(
cyl
(
∂(nA),h(n)

)
, ζ
)∩ cyl

(
nA,h(n)

)
.

We have for all n ≥ p

φ
(
nA,h(n)

)≤ τ
(
nA,h(n)

)≤ φ
(
nA,h(n)

)+ V
(
E+

1

)
.

Thus for all ε > 0, for all n ≥ p, we obtain

P

(∣∣∣∣φ(nA,h(n))

Hd−1(nA)
− τ(nA,h(n))

Hd−1(nA)

∣∣∣∣≥ ε

)
≤ P

(
V
(
E+

1

)≥ εHd−1(nA)
)
.

We know that there exists a constant C+ such that

card
(
E+

1

)≤ C+nd−2h(n),
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so for all ε > 0, for all γ > 0, for a family (tk) of independent variables with the same law as the capacities of the
edges, we have

P
[
V
(
E+

1

)≥ εHd−1(nA)
] ≤ P

[
C+nd−2h(n)∑

k=1

tk ≥ εHd−1(nA)

]

≤ E
(
eγ t
)C+nd−2h(n) exp

(−γ εHd−1(nA)
)

≤ exp

(
−Hd−1(nA)

(
γ ε − C+ nd−2h(n)

Hd−1(nA)
logE

(
eγ t
)))

.

For a fixed R > 0, we can choose γ large enough to have γ ε ≥ 2R, and also there exists n2 such that for all n ≥ n2,
we have

C+ nd−2h(n)

Hd−1(nA)
log E

(
eγ t
)≤ R,

so for all R > 0

lim sup
n→∞

1

Hd−1(nA)
log P

[
V
(
E+

1

)≥ εHd−1(nA)
]≤ −R

and then

lim sup
n→∞

1

Hd−1(nA)
log P

[
V
(
E+

1

)≥ εHd−1(nA)
]= −∞.

We obtain immediately that (φ(nA,h(n))/Hd−1(nA)) and (τ (nA,h(n))/Hd−1(nA)) are exponentially equivalent
with regard to Hd−1(nA), and so by Theorem 5.9, (φ(nA,h(n))/Hd−1(nA)) satisfies the same large deviation prin-
ciple as (τ (nA,h(n))/Hd−1(nA)).

6. Law of large numbers, large deviation principle and lower large deviations for φ in straight boxes

The main work is done in Section 6.1, where one proves that φ and τ share the same rate function in straight boxes.
Then, the law of large numbers is proven in Section 6.2. The large deviation principle is proven in Section 6.3, as well
as the deviation inequality from ν (Theorem 3.18).

6.1. Comparison between φ and τ

We prove in this section that under hypotheses (F1), (F4), (H1) and (H2), the lower large deviations of φ(nA,h(n))

and τ(nA,h(n)) are of the same exponential order. The following proposition is the key to prove both Theorems 3.16
and 3.17.

Proposition 6.1. Suppose that (F1), (F4), (H1) and (H2) hold. Let A be a non-degenerate straight hyperrectangle.
Then, for every λ in R

+,

lim
n→∞

−1

Hd−1(nA)
log P

[
φ
(
nA,h(n)

)≤
(

λ − 1√
n

)
Hd−1(nA)

]
= I�v(λ),

where �v = (0, . . . ,0,1).
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Proof. Since φ(nA,h(n)) ≤ τ(nA,h(n)), we only need to show that

lim inf
n→∞

−1

Hd−1(nA)
logP

[
φ
(
nA,h(n)

)≤
(

λ − 1√
n

)
Hd−1(nA)

]
≥ I�v(λ).

To shorten the notations, we shall suppose that

A = [0,1]d−1 × {0},
the general case of a straight hyperrectangle being handled exactly along the same lines. Notice that Hd−1(nA) =
nd−1. As in Section 4.2, we shall write φn instead of φ(nA,h(n)), and denote by Eφn a cut whose capacity achieves
the minimum in the dual definition (1) of φn.

The idea of the proof is the following. The minimal cut Eφn has a certain intersection with the sides of the cylin-
der cyl(A,h). Thanks to Zhang’s result, Theorem 3.10, and after having eventually reduced a little the cylinder, one
can prove that the intersection of Eφn with the sides of this reduced cylinder has less than Cnd−1/n1/3 edges with
very high probability (here C is a constant). This shows that (with very high probability) φn is larger than the min-
imum of a collection of random variables (τF )F∈In , where F designs a possible trace of Eφn , i.e., its intersection
with the sides of the reduced cylinder, and where In is the set of all the possible choices for F . Since Eφn itself
has less than Cnd−1 edges, and since it is connected (in the dual sense), a trivial bound for the cardinal of In is
roughly:

card(In) ≤ h(n)
(
C′n2d−3)Cnd−1/n1/3

.

The important point here is that log card(In) is small compared to nd−1. Having done this, a subadditive argument
using symmetries can be performed to show that in fact the smallest τF (in distribution) behaves essentially like
τ(nA,h(n)), which has I�v as a rate function.

Now, we turn to a formal proof. In the sequel, we shall suppose that n is large enough to ensure that

logh(n) ≤ nd−1, nlmin(A) ≥ t0 and h(n) > 2
√

d,

where t0 is defined in Proposition 4.2. We consider γ > 0 such that E(exp(γ t (e))) < ∞. Let En be the cutset defined
by En = {e = 〈x, y〉 ∈ E

d | x ∈ nA and yd = 1}. Notice that for n large enough,

card(En) ≤ 2nd−1.

For a fixed L, and for ε, C1 and C2 as in Proposition 4.2, using this proposition we obtain

P
(
card(Eφn) ≥ Lnd−1) ≤ P

(
card(Eφn) ≥ Lnd−1 and φn ≤ εLnd−1)+ P

(
φn ≥ εLnd−1)

≤ C1h(n) exp
[−C2Lnd−1]+ P

(
V (En) ≥ εLnd−1)

≤ C1 exp
[−(C2L − 1)nd−1]+ P

(
2nd−1∑
j=1

t (ej ) ≥ εLnd−1

)

≤ C1 exp
[−(C2L − 1)nd−1]+ exp

[−(γ εL − 2 logE
(
eγ t (e)

))
nd−1].

Thus, there exist constants β(F,d) and C′
i (F, d) for i = 1,2 such that for all L ≥ β and every n, we have

P
(
card(Eφn) ≥ Lnd−1)≤ C′

1(F, d)e−C′
2(F,d)Lnd−1

.

We fix a real number L ≥ β to be chosen later. Define

φL,n = min
{
V (E) | E is a

(
B
(
nA,h(n)

)
, T
(
nA,h(n)

))
-cut in cyl

(
nA,h(n)

)
and card(E) ≤ Lnd−1}.
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Thus,

P
(
φn ≤ λnd−1)≤ P

(
φL,n ≤ λnd−1)+ C′

1e−C′
2Lnd−1

. (18)

We shall now concentrate on the first summand in the right-hand side of the last inequality. Let ψ(n) = �n1/3�. For
any k in {1, . . . ,ψ(n)}, define

An,k = [k,n − k]d−1 × {0},
Bn,k = [k,n − k]d−1 × [−h(n),h(n)

]
and

Sn,k = ∂
([k,n − k]d−1)× [−h(n),h(n)

]
.

In order to perform the announced subadditive argument, we shall need to patch together two cuts of neighbouring
boxes which share a same trace in the intersection of these boxes. It is not so trivial to show that one obtains a cut
doing so. This is why we shall impose a kind of “connection trace” on the sides of the box, which remembers if a
vertex of the side is connected to the top or the bottom of the cylinder once the cut Eφn has been removed. Let us
precise the needed definitions. If X is a subset of vertices of a subgraph G of Z

d , we denote by CG(X) the union
of all the connected components of G intersecting X. If v is a vertex of G, we write CG(v) instead of CG({v}). We
shall say that a function x from some Sn,k to {0,1,2} is a weak connection function for F in Sn,k if for every u and v

in Sn,k ,

u ∈ CSn,k\F (v) ⇒ x(u) = x(v).

If E cuts B(An,k, h(n)) from T (An,k, h(n)) in Bk,n, we define xE , the connection function of E (in Bk,n) as follows

∀u ∈ cyl
(
An,k, h(n)

)
xE(u) =

⎧⎨⎩1 if u ∈ CBk,n\E
(
T
(
An,k, h(n)

))
,

0 if u ∈ CBk,n\E
(
B
(
An,k, h(n)

))
,

2 else.

Clearly, x̃E , the restriction of xE to Sn,k is a weak connection function for E ∩ Sn,k . Then, define the following set of
“good” couples (F, x) of a trace F and a weak connection function x:

In =
ψ(n)⋃
k=1

h(n)−Lnd−1⋃
h=−h(n)

{
(F, x)

∣∣∣ F ⊂ E
d ∩ ∂

([k,n − k]d−1)× [
h,h + Lnd−1], card(F ) ≤ Lnd−1

ψ(n)
,

x is a weak connection function for F in Sn,k

}
.

If F satisfies the conditions in the above definition, then there are at most 2dLnd−1/ψ(n) distinct connected compo-
nents in Sn,k \F . Thus, for a fixed F , there are at most 32dLnd−1/ψ(n) distinct weak configuration functions x such that
(F, x) belongs to In. Thus, there is a constant C3, which depends only on d , such that(

2h(n) + 1
)≤ card(In) ≤ 2h(n)ψ(n)

(
C3Ln2d−3)Lnd−1/ψ(n)

. (19)

On the other hand, define, for (F, x) in In and k such that F ⊂ Sn,k ,

CF,x = {
E ⊂ E

d | E is a
(
B
(
An,k, h(n)

)
, T
(
An,k, h(n)

))
-cut in Bn,k,

E ∩ Sn,k = F, card(E) ≤ Lnd−1 and x̃E = x
}

and

τ(F,x) = min
{
V (E) | E ∈ CF,x

}
.
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We claim that

φL,n ≥ min
(F,x)∈In

τ(F,x). (20)

To see why (20) is true, notice that for any k in {1, . . . ,ψ(n)}, EφL,n
∩ Bn,k cuts B(An,k, h(n)) from T (An,k, h(n)) in

Bn,k , and has less than Lnd−1 edges. EφL,n
is connected in the dual sense (see the proof of Lemma 12 in [22]), and

has less than Lnd−1 edges. Then there is an h such that EφL,n
is included in [0, n]d−1 × [h,h + Lnd−1]. Thus, there

is an h such that EφL,n
∩ Bn,k is included in [k,n − k]d−1 × [h,h + Lnd−1]. Furthermore, since Sn,1, . . . , Sn,ψ(n) are

pairwise disjoint, there is at least one k in {1, . . . ,ψ(n)} such that

card(EφL,n
∩ Sn,k) ≤ card(EφL,n

)

ψ(n)
≤ Lnd−1

ψ(n)
.

Thus, denoting F = EφL,n
∩ Sn,k and x = x̃EφL,n

∩Sn,k
, this shows that φL,n ≥ τ(F,x), and claim (20) is proved.

Now, we need to show that min(F,x)∈In τ(F,x)/n
d−1 has lower large deviations given by I�v . First, notice that

P
(
φL,n ≤ λnd−1)≤ P

(
min

(F,x)∈In

τ(F,x) ≤ λnd−1
)

≤
∑

(F,x)∈In

P
(
τ(F,x) ≤ λnd−1). (21)

Since, according to inequality (19), log card(In) is small compared to nd−1, we shall be done if we can show
that, uniformly in (F, x) ∈ In, the probability of deviation P(τ(F,x) ≤ λnd−1) is asymptotically of order at most
exp(−I�v(λ)nd−1). We shall do this using a subadditivity argument. From now on, we fix (F, x) in In and k such that
F ⊂ Sn,k . The notations and rigorous proofs are a little cumbersome, but everything can be guessed in two stages,
looking at Figs 3 and 4.

Let N be an integer such that for every N ′ ≥ N , h(2(n−2k)N ′) ≥ h(n). Define, for i = 1, . . . , d −1, the following
hyperplanes:

Hi = R
i−1 × {n − k} × R

d−i .

Fig. 3. Patching Eb for b ∈ {0,1}d−1 when d = 3.
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Fig. 4. Patching cuts with the same perimeter.

We define σi to be the affine orthogonal reflection relative to Hi , and tri to be the following translation along coordi-
nate i:

tri (z) = z + 2(n − 2k)ei ,

where (e1, . . . , ed) is the canonical orthonormal basis of R
d . For any b ∈ {−2N, . . . ,2N − 1}d−1, we define the

map σb as follows. For every i in {1, . . . , d − 1}, let ai = �bi/2� and ci = bi − 2ai . Then, we denote by σb the
(commutative) product of translations and reflections

∏d−1
i=1 trai

i ◦∏d−1
i=1 σ

ci

i , where σ
ci

i (resp., trai

i ) is the ci th iterate
of σi (respectively the ai th iterate of tri ). Finally, we define also, for any set of vertices or set of edges X,

σN(X) =
⋃

b∈{−2N,...,2N−1}d−1

σb(X)

and

σ̃N (X) = σN(X) ∩ SN,

where

SN = ∂
([

k − 2N(n − 2k), k + 2N(n − 2k)
]d−1)× [−h(n),h(n)

]
.

The following lemma should be intuitive looking at Figs 3 and 4. In words, the main message of this lemma (asser-
tion (ii)) is the following. Let E (resp., E′) be a cut between the top and the bottom in some box B (resp., B ′). Suppose
that B and B ′ share exactly a face, and that the connection functions of E and E′ coincide on this face. Then, E ∪ E′
is a cut between the top and the bottom in B ∪ B ′. Notice that assertion (i) is just an obvious property of symmetry: if
you take a cut E between the top and the bottom in a box B , then σb(E) is a cut between the top and the bottom in
σb(B), for any b.
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Lemma 6.2. Let (F, x) be fixed in In. Suppose that for every b ∈ {−2N, . . . ,2N − 1}d−1, we are given a set Eb of
edges that cuts B(σb(An,k), h(n)) from T (σb(An,k), h(n)) in σb(Bn,k). Let 0 denote (0, . . . ,0) and define

E =
⋃

b∈{−2N,...,2N−1}d−1

Eb.

(i) If E0 ∩ Sn,k = F , and x̃E0 = x, then for every b ∈ {−2N, . . . ,2N − 1}d−1, the set of edges σb(E(0,...,0)) cuts
B(σb(An,k), h(n)) from T (σb(An,k), h(n)) in σb(Bn,k), has configuration function x ◦ σ−1

b , and satisfies

σb(E(0,...,0)) ∩ σb(Sn,k) = σb(F ).

(ii) If, for every b ∈ {−2N, . . . ,2N − 1}d−1,

x̃Eb
◦ σb = x,

then E cuts B(σN(An,k), h(n)) from T (σN(An,k), h(n)) in σN(Bn,k).

Proof. Assertion (ii) is the only non-trivial point to show. Let b and b′ be two members of {−2N, . . . ,2N −1}d−1. The
hypotheses on the cuts Eb and E′

b ensure that xEb
and xEb′ coincide on σb(Bn,k) ∩ σb′(Bn,k). Thus, we can extend all

the functions (xb)b∈{−2N,...,2N−1}d−1 in a single function x on σN(Bn,k). This implies that for every two neighbours u

and v in σN(Bn,k), if 〈u,v〉 /∈ E, then x(u) = x(v). Thus, x is constant on each connected component of σN(Bn,k)\E.
Since in each box σb(Bn,k), Eb cuts B(σb(An,k), h(n)) from T (σb(An,k), h(n)), we have that x takes the value 1 on
B(σN(An,k), h(n)), and 0 on T (σN(An,k), h(n)). Thus, these two sets are disconnected in σN(Bn,k) \ E. �

Now, for every b ∈ Z
d−1, define

CF,x,b = {
E ⊂ E

d | E is a
(
B
(
σb(An,k), h(n)

)
, T
(
σb(An,k), h(n)

))
-cut in σb(Bn,k),

E ∩ σb(Sn,k) = σb(F ), card(E) ≤ Lnd−1 and x̃E ◦ σb = x
}

and

τ(F,x,b) = min
{
V (E) | E ∈ CF,x,b

}
.

For every N , let EN denote the set of the edges e in σN(Bn,k) such that at least one endpoint of e belongs to SN .
Define M(N) = N + ψ(N) and, for N ′ ∈ {N,M(N)},

τN ′ = τ
(
σN ′(An,k), h

(
N ′)).

If E is a (B(σN(An,k), h(n)), T (σN(An,k), h(n)))-cut in σN(An,k), E ∪ EN ′ clearly cuts σN(An,k)
h(n)
1 from

σN(An,k)
h(n)
2 . Thus, part (ii) of Lemma 6.2 gives us that∑

b∈{−2M(N),...,2M(N)−1}d−1

τ(F,x,b) + min
N ′∈{N,...,M(N)}

∑
e∈EN ′

t (e) ≥ min
N ′∈{N,...,M(N)}

τN ′ .

Notice that some edges are counted twice on the left-hand side of the preceding inequality. From part (i) of Lemma 6.2,
we know that the random variables (τ(F,x,b))b∈{−2M(N),...,2M(N)−1}d−1 are identically distributed, with the same dis-
tribution as τ(F,x). Using the FKG inequality,

P
(
τ(F,x) ≤ λnd−1)(4M(N))d−1 =

∏
b∈{−2M(N),...,2M(N)−1}d−1

P
(
τ(F,x,b) ≤ λnd−1)

≤ P
(∀b ∈ {−2M(N), . . . ,2M(N) − 1

}d−1
, τ(F,x,b) ≤ λnd−1)
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≤ P

( ∑
b∈{−2M(N),...,2M(N)−1}d−1

τ(F,x,b) ≤ λnd−1(4M(N)
)d−1

)

≤ P

(
min

N ′∈{N,...,M(N)}
τN ′ − min

N ′∈{N,...,M(N)}
∑

e∈EN ′
t (e) ≤ λnd−1(4M(N)

)d−1
)

.

Let ε > 0 be a fixed positive real number:

P
(
τ(F,x) ≤ λnd−1) ≤

(
P

(
min

N ′∈{N,...,M(N)}
τN ′ ≤ (λ + ε)nd−1(4M(N)

)d−1
)

+ P

(
min

N ′∈{N,...,M(N)}
∑

e∈EN ′
t (e) ≥ εnd−1(4M(N)

)d−1
))1/(4M(N))d−1

. (22)

Now we shall let N go to infinity. Using Lemma 5.1, the fact that limN→∞ ψ(N)/N = 0 and a union bound,

lim inf
N→∞ − 1

(4N(n − 2k))d−1
logP

(
min

N ′∈{N,...,M(N)}
τN ′ ≤ (λ + ε)nd−1(4M(N)

)d−1
)

≥ lim inf
N→∞ − 1

(4N(n − 2k))d−1
max

N ′∈{N,...,M(N)}
logP

(
τN ′ ≤

(
λ + 2ε − 1√

4(n − 2k)N ′

)
nd−1(4N ′)d−1

)

≥ I�v
(

(λ + 2ε)

(
n

n − 2k

)d−1)
. (23)

Now, we use the fact that F possesses an exponential moment, and that the sets EN ′ are disjoint. Using Chebyshev
inequality, there are positive constants C4 and C5, depending only on F and d , such that

P

(
min

N ′∈{N,...,M(N)}
∑

e∈EN ′
t (e) ≥ εnd−1(4M(N)

)d−1
)

=
∏

N ′∈{N,...,M(N)}
P

( ∑
e∈EN ′

t (e) ≥ εnd−1(4M(N)
)d−1

)
,

≤ (
eC4h(n)nd−2M(N)d−2−C5n

d−1(4M(N))d−1)ψ(N)
.

Thus,

lim inf
N→∞ − 1

(4N(n − 2k))d−1
logP

(
min

N ′∈{N,...,M(N)}
∑

e∈EN ′
t (e) ≥ εnd−1(4M(N)

)d−1
)

= +∞.

Therefore, inequalities (22) and (23) imply

− 1

nd−1
logP

(
τ(F,x) ≤ λnd−1)≥ (n − 2k)d−1

nd−1
I�v
(

(λ + 2ε)

(
n

n − 2k

)d−1)
.

We choose ε = 1
n

, and replace λ by λ − 1√
n

to get

− 1

nd−1
logP

(
τ(F,x) ≤

(
λ − 1√

n

)
nd−1

)
≥ (n − 2k)d−1

nd−1
I�v
((

λ − 1√
n

+ 2

n

)(
n

n − 2k

)d−1)
.



LDP and LLN for maximal flows 1129

Since k ≤ ψ(n) and ψ(n) is small compared to
√

n, and since I�v is non-increasing, for n large enough,

− 1

nd−1
logP

(
τ(F,x) ≤

(
λ − 1√

n

)
nd−1

)
≥ (n − 2k)d−1

nd−1
I�v(λ).

Using inequalities (19) and (21),

lim inf
n→∞ − 1

nd−1
logP

(
φL,n ≤ λnd−1)≥ I�v(λ).

And thus, from inequality (18),

lim inf
n→∞ − 1

nd−1
logP

(
φn ≤ λnd−1)≥ min

{
I�v(λ),C′

2L
}
.

Letting L tend to infinity finishes the proof of Proposition 6.1. �

Remark 6.3. This “symmetric-subadditive” argument does not work in the “non-straight” case. It is perhaps im-
portant to note that in this case, it is not obvious at all to know in advance for which F the random variable τF

has the “minimal” distribution. It is natural to conjecture that this “minimal” F is a hyperrectangle, but we do not
know how to prove this for all dimensions. When d = 2, though, we are able to solve this problem and to show that if
h(n)/n converges towards tan(α) for some α in [0,π/2], and if �v = (cos θ, sin θ) = �vθ is orthogonal to A = Aθ , then
φ(nAθ ,h(n))/n converges towards min{ν( �vθ̃ )/ cos(θ̃ − θ) s.t. |θ̃ − θ | ≤ α}. A similar method gives an analog result
for the lower large deviations. This will be done rigorously in a forthcoming paper.

6.2. Law of large numbers

In this section, we prove Theorem 3.16. So we suppose that (F2), (H1) and (H2) hold, and that A is a straight (so
non-degenerate) hyperrectangle. Notice first that if (F1) does not hold, then ν always equals zero (cf. Proposition 3.7)
and the law of large numbers for φ is a consequence of the one for τ , Theorem 3.8. Thus, we may suppose that (F1)

holds. We first prove the a.s. convergence of the rescaled variable. Since φ(nA,h(n)) ≤ τ(nA,h(n)), we only need to
show that

lim inf
n→∞

φ(nA,h(n))

Hd−1(nA)
≥ ν( �v0) a.s., (24)

where �v0 = (0, . . . ,0,1).
Suppose first that F has bounded support. Then, (F4) is obviously satisfied, and we deduce from Proposition 6.1,

the positivity of I�v on [0, ν(�v)[ and Borel–Cantelli’s lemma that (24) is true.
Now, let F be general, i.e. satisfy (F2). We rely on the ideas of Proposition 4.3. Let a > 1/2 be a real number to

be chosen later, define t̃ (e) = t (e) ∧ a and let Fa be the distribution function of t̃ (e). We define

τ̃n = min

{∑
e∈E

t̃(e) s.t. E cuts (nA)
h(n)
1 from (nA)

h(n)
2 in cyl

(
nA,h(n)

)}
,

and define analogously φ̃n. We use the notations νF (�v) (resp. νFa (�v)) to denote the limit of the rescaled flow τ

corresponding to capacities of distribution function F (resp., Fa). As we obtained (5), we get

E(τn) − E(τ̃n) ≤ E
(
t (e1)1t (e1)≥a

)
E(cardEτ̃n

).

Proposition 4.2 implies that there are constants ε, C1 and C2 such that

E(cardEτ̃n
) ≤ C1

C2
+ 1

ε
E(τ̃n) ≤ C1

C2
+ 1

ε
E(τn),
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where the constants ε, C1 and C2 depend only on d and F , and not on a, since F and Fa coincide on [0,1/2]. Then,
for any ε′ > 0, one can choose a large enough so that

E(τn) − E(τ̃n) ≤ εHd−1(nA),

leading to νF ( �v0) − νFa ( �v0) ≤ ε. Since φn ≥ φ̃n, and using the result for Fa which has bounded support, we get for
every ε′ > 0:

lim inf
n→∞

φ(nA,h(n))

Hd−1(nA)
≥ νFa ( �v0) ≥ νF ( �v0) − ε a.s.

which gives the desired result.
It remains to prove the convergence in L1. It may be derived exactly as in the proof of the convergence in L1 of

Theorem 3.8 as soon as we have proved the convergence of the expectation of the rescaled maximal flow. But this is
immediate thanks to Fatou’s lemma:

ν( �v0) = E

[
lim

n→∞
φ(nA,h(n))

Hd−1(nA)

]
≤ lim inf

n→∞ E

[
φ(nA,h(n))

Hd−1(nA)

]
≤ lim sup

n→∞
E

[
φ(nA,h(n))

Hd−1(nA)

]
≤ lim

n→∞ E

[
τ(nA,h(n))

Hd−1(nA)

]
= ν( �v0).

This ends the proof of Theorem 3.16.

Remark 6.4. Our proof of Proposition 6.1 can be carried out in Kesten and Zhang’s setting [22], who consider
Ak =∏d−1

i=1 [0, ki] × {0} with k1 ≤ · · · ≤ kd−1 and let all the ki go to infinity, possibly at different speeds. The only
obstacle to do this is when one reduces the sides of the box: ψ(n) has to be replaced by ψ(k1), and the set In by a
set Ik satisfying:

card(Ik) ≤ C3h(k)ψ(k1)

(
C4L

d−1∏
i=1

ki

)LC5
∏d−1

i=1 ki/ψ(k1)

,

where C3, C4 and C5 are constants depending on d and h(k) is the height of the box. Then, the proof works as long
as log card(Ik) is small with respect to

∏d−1
i=1 ki , which is the case if logh(k) is small with respect to

∏d−1
i=1 ki and

logkd−1 is small with respect to k1. Thus, we obtain the law of large numbers (and also Proposition 6.1) under the
conditions:{(

logh(k)
)
/
∏d−1

i=1 ki
−−→k→∞ 0,

(logkd−1)/k1 −−→k→∞ 0

and condition (F1). So, in a sense, the height condition is better than in Theorem 3.4 (and essentially optimal),
however we are not able to get rid of the second ugly condition – which imposes that the sides of A do not have too
different asymptotic behaviours – without requiring a stronger condition on h, similar to the one of Kesten and Zhang.

6.3. Final steps of the proofs of Theorems 3.18 and 3.10

The proof of Theorem 3.18 is exactly the same as the one of Theorem 3.9, using Theorem 3.16 and Proposition 4.3. It
remains to end the proof of Theorem 3.17. Proposition 6.1 states in a sense that φ and τ share the same rate function.
Since this function has already been studied, and since the upper large deviations of φ have been studied in [17], the
construction of the rate function of φ was the main work to do in order to show the large deviation principle for φ in
straight boxes. Indeed, the only thing we have to prove is that for all λ > ν(�v),

lim
n→∞

1

Hd−1(nA)
log P

[
φ(nA,h(n))

Hd−1(nA)
≥ λ

]
= −∞. (25)
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As soon as we have (25), we can write exactly the same proof for Theorem 3.17 as for Theorem 3.10 (see Section 5.6),
since we have proved that φ(nA,h(n))/Hd−1(nA) converges a.s. to ν( �v0). To obtain (25), we can refer to Section 3.7
in [17] (here only the existence of one exponential moment is required).

Remark 6.5. We leave the following questions open: is condition (F4) necessary to obtain the existence of a rate
function for φ? If this rate function exists under weaker hypothesis than (F4), is it necessarily the same as the one
for τ? When the rate function exists, do we necessarily obtain the corresponding large deviation principle?
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