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Abstract. Let (X,X,μ) be a standard probability space. We say that a sub-σ -algebra B of X decomposes μ in an ergodic way if
any regular conditional probability BP with respect to B and μ satisfies, for μ-almost every x ∈ X, ∀B ∈ B,BP(x,B) ∈ {0,1}. In
this case the equality μ(·) = ∫

X
BP(x, ·)μ(dx), gives us an integral decomposition in “B-ergodic” components.

For any sub-σ -algebra B of X, we denote by B the smallest sub-σ -algebra of X containing B and the collection of all sets A

in X satisfying μ(A) = 0. We say that B is μ-complete if B = B.
Let {Bi : i ∈ I } be a non-empty family of sub-σ -algebras which decompose μ in an ergodic way. Suppose that, for any finite

subset J of I ,
⋂

i∈J Bi = ⋂
i∈J Bi ; this assumption is satisfied in particular when the σ -algebras Bi , i ∈ I , are μ-complete. Then

we prove that the sub-σ -algebra
⋂

i∈I Bi decomposes μ in an ergodic way.

Résumé. Soit (X,X,μ) un espace probabilisé standard. Nous disons qu’une sous-tribu B de X décompose ergodiquement μ si
toute probabilité conditionnelle régulière BP relativement à B et μ, vérifie, pour μ-presque tout x ∈ X, ∀B ∈ B,BP(x,B) ∈ {0,1}.
Dans ce cas l’égalité μ(·) = ∫

X
BP(x, ·)μ(dx), nous donne une décomposition intégrale en composantes “B-ergodiques.”

Pour toute sous-tribu B de X, nous notons B la plus petite sous-tribu de X contenant B et tous les sous-ensembles mesurables
de X de μ-mesure nulle. Nous disons que la tribu B est μ-complète si B = B.

Soit {Bi : i ∈ I } une famille non vide de sous-tribus de X décomposant ergodiquement μ. Supposons que, pour toute partie finie
J de I ,

⋂
i∈J Bi = ⋂

i∈J Bi ; cette hypothèse est satisfaite si les tribus Bi , i ∈ I , sont μ-complètes. Alors la sous-tribu
⋂

i∈I Bi

décompose ergodiquement μ.
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1. Introduction

There are several versions of ergodic decomposition theorems in the literature (cf. [3,4,6–8]) which give an integral
decomposition of a probability measure μ, on a standard measurable space, in ergodic components. Most of these
decompositions are based on abstract results like Choquet’s theorem. A probabilistic approach which can prove to
be more convenient due to the properties of the conditional expectation (see [2]) is the following. Let (X,X,μ) be a
standard Borel probability space. Let B be a sub-σ -algebra of X. We denote by BP a regular conditional probability
of B and μ. We say that B decomposes μ in an ergodic way if for μ-almost every x ∈ X, ∀B ∈ B,BP(x,B) ∈ {0,1}.
In this case, the equality μ(dx) = ∫

X
BP(x, ·)μ(dx) gives us an integral decomposition in B-ergodic components.

In [7,8] Shimomura proves that the intersection of a decreasing sequence of separable sub-σ -algebras of X decom-
poses μ in an ergodic way. He also gives an example of a standard probability space and a suitable sub-σ -algebra for
which the above decomposition is not ergodic.
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Let {Bi : i ∈ I } be a non-empty family of sub-σ -algebras which decompose μ in an ergodic way. Suppose that,
for any finite subset J of I ,

⋂
i∈J Bi = ⋂

i∈J Bi . The aim of this paper is to prove that the sub-σ -algebra
⋂

i∈I Bi

decomposes μ in an ergodic way.

2. Preliminaries

It is not necessary to work with standard Borel spaces. We only need probability space for which any sub-σ -algebra
has regular conditional probabilities. In this section we recall some results about this property. On a standard Borel
space (X,X), it is well known that, for any probability measure μ and any sub-σ -algebra B of X, there exists a regular
conditional probability with respect to μ and B.

Definition 2.1. A σ -algebra on a set X is called separable if it is generated by a countable sub-algebra.

Proposition 2.2. Let (X,X) be a measurable space with a separable σ -algebra X. Then two positive σ -finite mea-
sures are equal if they coincide on a countable algebra generating X.

Definition 2.3. A class C of subsets of X is said to be compact if, for any sequence (Cn)n∈N of elements of C with an
empty intersection

⋂
n∈N

Cn, there exists a natural integer p such that
⋂p

n=0 Cn = ∅.

Definition 2.4. Let (X,X,μ) be a probability space. Let C be a compact subclass of X. We say that C is μ-
approximating if

∀A ∈ X μ(A) = sup
{
μ(C): C ∈ C,C ⊂ A

}
.

Definition 2.5. Let (X,X,μ) be a probability space. Let B be a sub-σ -algebra of X. We call regular conditional
probability with respect to B and μ a map P from X × X to [0,1] such that:

(i) for any x ∈ X, P(x, ·) is a probability measure on X.
(ii) for any A ∈ X, the map x ∈ X �→ P(x,A) is a version of the conditional expectation Eμ[1A|B]; that is, this

map is B-measurable and, for any B ∈ B,∫
X

1A(x)1B(x)μ(dx) =
∫

X

P (x,A)1B(x)μ(dx).

Then for any non-negative (or bounded) X-measurable function f , the function Pf defined by Pf (x) = ∫
X

f (y) ×
P(x,dy) (expectation of f with respect to the probability P(x, ·)) is a version of the conditional expectation Eμ[f |B].

Theorem 2.6 ([5], corollaire Proposition V-4-4). Let (X,X,μ) be a probability space with a separable σ -algebra
X containing a μ-approximating compact class.

Then, for any sub-σ -algebra B of X there exists a regular conditional probability with respect to B and μ.

Remarks. Let (X,X,μ) be a probability space with a separable σ -algebra X containing a μ-approximating compact
class. Let B be a sub-σ -algebra of X.

1. If P and Q are two regular conditional probabilities with respect to B and μ then, for μ-almost every x ∈ X,
the probability measures P(x, ·) and Q(x, ·) are equal.

2. If P is a regular conditional probability with respect to B and μ, then for any B ∈ B, we have, for μ-almost
every x ∈ X,

P(x,B) = Eμ[1B |B](x) = 1B(x) = δx(B) ∈ {0,1},
where δx is the Dirac measure at the point x.

When the σ -algebra B is separable, from Proposition 2.2 we can permute “for any B ∈ B” and “for μ-almost
every x ∈ X.”
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3. Let B be the smallest sub-σ -algebra containing B and the collection of all sets A in X satisfying μ(A) = 0.
One sees easily that any regular conditional probability with respect to B and μ is a regular conditional probability
with respect to B and μ. For two sub-σ -algebras B1 and B2 of X, the sub-σ -algebra B1 ∩ B2 is not necessarily
equal to B1 ∩ B2; consequently L

2(X,B1 ∩ B2,μ) is not necessarily equal to L
2(X,B1 ∩ B2,μ).

3. Main results

Throughout this section, we assume that (X,X,μ) is a probability space with a separable σ -algebra X containing a
μ-approximating compact class. The preceding Remark 2 leads us to introduce the following definition.

Definition 3.1. We say that a sub-σ -algebra B of X decomposes μ in an ergodic way if one (and thus all) regular
conditional probability BP with respect to B and μ satisfies, for μ-almost every x ∈ X, ∀B ∈ B,BP(x,B) ∈ {0,1}.

From the preceding Remarks 2 and 3 it follows that:

• Any separable sub-σ -algebra of X decomposes μ in an ergodic way.
• If B decomposes μ in an ergodic way then so does B. (Any regular conditional probability BP with respect to B

and μ is a regular conditional probability with respect to B and μ. If B decomposes μ in an ergodic way then,
for μ-almost every x ∈ X, BP(x,B) ∈ {0,1} for any B ∈ B and a fortiori for any B ∈ B. Which proves that B

decomposes μ in an ergodic way.)

Lemma 3.2. Let B be a sub-σ -algebra of X, and let BP be a regular conditional probability with respect to B and μ.
Then, for μ-almost every x ∈ X, we have the probability equalities

BP(y, ·) = BP(x, ·) for BP(x, ·)-almost every y ∈ X

and consequently for any B ∈ B, we have for μ-almost every x ∈ X,

∀A ∈ X

∫
X

1A(y)1B(y)BP(x,dy) =
∫

X

BP(y,A)1B(y)BP(x,dy).

The following proposition tells us that the sub-σ -algebra B of X decomposes μ in an ergodic way if and only if,
in the last equalities, we can permute “for any B ∈ B” and “for μ-almost every x ∈ X.”

Proposition 3.3. Let B be a sub-σ -algebra of X, and let BP be a regular conditional probability with respect to B

and μ.
Then the two following assertions are equivalent:

(i) B decomposes μ in an ergodic way;
(ii) For μ-almost every x ∈ X, BP is a regular conditional probability with respect to B and BP(x, ·).
In this case, for any sub-σ -algebra C of B and any regular conditional probability CP with respect to C and μ, for

μ-almost every x ∈ X, BP is a regular conditional probability with respect to B and CP(x, ·); that is, for μ-almost
every x ∈ X,

∀(A,B) ∈ X × B

∫
X

BP(y,A)1B(y)CP(x,dy) =
∫

X

1A(y)1B(y)CP(x, dy).

Moreover, this assertion is true for any sub-σ -algebra C of X such that, for μ-almost every x ∈ X,

CP BP(x, ·) def=
∫

X

CP(x,dy)BP(y, ·) = CP(x, ·).

This last property is satisfied when C is a sub-σ -algebra of B.
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Theorem 3.4. Let (X,X,μ) be a probability space with a separable σ -algebra X containing a μ-approximating
compact class. Let {Bi : i ∈ I } be a non-empty family of sub-σ -algebras which decompose μ in an ergodic way. We
suppose that, for any finite subset J of I ,

⋂
i∈J Bi = ⋂

i∈J Bi .
Then the sub-σ -algebra

⋂
i∈I Bi decomposes μ in an ergodic way.

4. Proof of the results

Throughout this section, we assume that (X,X,μ) is a probability space with a separable σ -algebra X containing a
μ-approximating compact class. For any sub-σ -algebra B of X, we denote by BP a regular conditional probability
with respect to B and μ.

4.1. Proof of Lemma 3.2

Let A ∈ X. The functions g(x) = BP(x,A) and (g(x))2 are B-measurable. Therefore, for μ-almost every x ∈ X,

BPg(x) = Eμ[g|B](x) = g(x) and BPg2(x) = g2(x) = (
BPg(x)

)2
.

From the Cauchy–Schwarz equality it follows that, for μ-almost every x ∈ X,

BP(x,A) = g(x) = g(y) = BP(y,A) for BP(x, ·)-almost every y ∈ X.

The first assertion of the lemma is then a consequence of Proposition 2.2.
For any B ∈ B and for μ-almost every y ∈ X,

BP(y,B) = Eμ[1B |B](y) = 1B(y).

As μ(dy) = ∫
X

BP(x,dy)μ(dx), for μ-almost every x ∈ X,

1B(y) = BP(y,B) for BP(x, ·)-almost every y ∈ X.

Hence, for any A ∈ X and for μ-almost every x ∈ X,∫
X

1A(y)1B(y)BP(x,dy) =
∫

X

1A(y)BP(y,B)BP(x,dy)

=
∫

X

1A(y)BP(x,B)BP(x,dy) (first assertion)

= BP(x,A)BP(x,B)

=
∫

X

BP(x,A)1B(y)BP(x,dy)

=
∫

X

BP(y,A)1B(y)BP(x,dy) (first assertion). (1)

The Proposition 2.2 allows us to permute “for any A ∈ X” and “for μ-almost every x ∈ X.”

4.2. Proof of Proposition 3.3

Let X0 be a measurable subset of X such that μ(X0) = 1 and for any x ∈ X0,

BP(y, ·) = BP(x, ·) for BP(x, ·)-almost every y ∈ X.
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(i) ⇒ (ii) If the σ -algebra B decomposes μ in an ergodic way, then there exists a measurable subset X1 of X such
that μ(X1) = 1 and for any x ∈ X1,

∀B ∈ B
BP(x,B) ∈ {0,1}.

For x ∈ X0 ∩ X1, we have for any (A,B) ∈ X × B,∫
X

1A(y)1B(y)BP(x,dy) = BP(x,A)BP(x,B) =
∫

X

BP(y,A)1B(y)BP(x,dy),

which shows that, for any x ∈ X0 ∩ X1, BP is a regular conditional probability with respect to B and BP(x, ·).
(ii) ⇒ (i) Assume there exists a measurable subset X2 of X such that μ(X2) = 1 and for any x ∈ X2,

∀A ∈ X
BP(y,A) = EBP(x,·)[1A|B](y) for BP(x, ·)-almost every y ∈ X.

Then for x ∈ X0 ∩ X2, we have, for any B ∈ B,

BP(x,B) = BP(y,B) = EBP(x,·)[1B |B](y) = 1B(y) for BP(x, ·)-almost every y ∈ X.

Hence the assertion (i).
To prove the last assertion of the proposition we need the following lemma.

Lemma 4.1. Let B and C be two sub-σ -algebras of X such that C ⊂ B. Then for μ-almost every x ∈ X, we have the
probability equalities

CP BP(x, ·) = BP CP(x, ·) = CP(x, ·).

Proof. For any A ∈ X, we have the classical μ-almost everywhere equalities

Eμ

[
Eμ[1A|B]|C] = Eμ

[
Eμ[1A|C]|B] = Eμ[1A|C].

Moreover, if f and g are non-negative (or bounded) measurable functions, we know that: f = g μ-a.e. ⇒ Eμ[f |B] =
Eμ[g|B] μ-a.e. It follows that, for any A ∈ X,

CP BP(x,A) = BP CP(x,A) = CP(x,A) for μ-almost every x ∈ X.

Then the result follows from Proposition 2.2. �

Assume (ii), for μ-almost every z ∈ X, we have: for any (A,B) ∈ X × B,∫
X

1A(y)1B(y)BP(z,dy) =
∫

X

BP(y,A)1B(y)BP(z,dy).

As μ(dz) = ∫
X

CP(x,dz)μ(dx), for μ-almost every x ∈ X and CP(x, ·)-almost every z ∈ X, for any (A,B) ∈ X × B,∫
X

1A(y)1B(y)BP(z,dy) =
∫

X

BP(y,A)1B(y)BP(z,dy).

Integration by CP(x,dz) gives us, for μ-almost every x ∈ X,

∀(A,B) ∈ X × B

∫
X

1A(y)1B(y)CP BP(x,dy) =
∫

X

BP(y,A)1B(y)CP BP(x,dy).

Then the result follows from Lemma 4.1.
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4.3. Proof of Theorem 3.4

Case of two σ -algebras
We need the following result.

Theorem 4.2. Let (Ω,F,P) be a probability space. Let F1 [resp. F2] be a sub-σ -algebra of F; we call P1 [resp. P2]
the operator of conditional expectation relative to F1 [resp. F2] on the space L

1(Ω,F,P).
Then, for f ∈ L1(Ω,F,P), the sequences of functions(

1

n

n−1∑
k=0

(P1P2)
kf

)
n≥1

and

(
1

n

n−1∑
k=0

(P2P1)
kf

)
n≥1

converge P-almost everywhere and in norm L
1(P) towards EP[f |F1 ∩ F2].

Proof. It’s a consequence of the classical ergodic theorem of E. Hopf (see [5], Proposition V-6-3). To identify the
limit we note that: P2P1 is the dual operator of P1P2 and, as the operators P1 and P2 are idempotent, the common
limit is P1- and P2-invariant (see also [1]). �

Let B1 and B2 be two sub-σ -algebras of X decomposing μ in an ergodic way which satisfy B1 ∩B2 = B1 ∩ B2.
We set C = B1 ∩ B2.

The above theorem tells us that, for any f ∈ L1(X,X,μ) the sequence of functions ( 1
n

∑n−1
k=0(

B1P B2P)kf )n≥1

converges μ-a.e. and in L
1(μ)-norm towards CPf = CPf .

As μ(·) = ∫
X

CP(x, ·)μ(dx), it follows that, for any f ∈ L1(X,X,μ) and for μ-almost every x ∈ X, the sequence

of functions ( 1
n

∑n−1
k=0(

B1P B2P)kf )n≥1 converges CP(x, ·)-a.e. towards CPf .
We call X0 a measurable subset of X, such that μ(X0) = 1 and for any x ∈ X0, for i ∈ 1,2, BiP is a regular

conditional probability with respect to Bi and CP(x, ·) (Proposition 3.3).
The same theorem tells us that, for any x ∈ X0 and for any f ∈ L1(X,X,CP(x, ·)), the sequence of functions

( 1
n

∑n−1
k=0(

B1P B2P)kf )n≥1 converge CP(x, ·)-a.e. and in L
1(CP(x, ·))-norm towards ECP(x,·)[f |B̃1 ∩ B̃2] where, for

i = 1 or 2, B̃i is the CP(x, ·)-completed σ -algebra of Bi .
Let X be a countable subalgebra of X generating X. From above and Lemma 3.2, it follows that, for μ-almost any

x ∈ X, for any A ∈ X ,

for CP(x, ·)-almost every y ∈ X, CP(x,A) = CP(y,A) = ECP(x,·)[1A|B̃1 ∩ B̃2](y).

We deduce that, for μ-almost every x ∈ X,

∀(A,C) ∈ X × (B̃1 ∩ B̃2)

∫
X

1A(y)1C(y)CP(x,dy) =
∫

X

CP(y,A)1C(y)CP(x,dy).

These equalities extend to the couples (A,C) ∈ X × (B̃1 ∩ B̃2) (Proposition 2.2).
Since C = B1 ∩ B2 ⊂ B̃1 ∩ B̃2, the above equalities show that, for μ-almost every x ∈ X, CP is a regular con-

ditional probability with respect to C and CP(x, ·). From the Proposition 3.3, the σ -algebra C decomposes μ in an
ergodic way.

Case of a sequence of σ -algebras
Let (Bn)n≥1 be a sequence of sub-σ -algebras of X which decompose μ in an ergodic way and satisfy the hypothesis
of Theorem 3.4.

For any n ≥ 2, we have⋂
1≤i≤n

Bi ⊂
⋂

1≤i≤n−1

Bi ∩ Bn ⊂
⋂

1≤i≤n

Bi .
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From our hypothesis, it follows that⋂
1≤i≤n

Bi =
⋂

1≤i≤n

Bi

and consequently⋂
1≤i≤n

Bi =
⋂

1≤i≤n−1

Bi ∩ Bn =
⋂

1≤i≤n

Bi .

We set

∀n ≥ 1 Cn =
n⋂

k=1

Bk and C =
⋂
k≥1

Bk.

From the case treated previously, we prove by induction that, for any n ≥ 1, the σ -algebra Cn decomposes μ in an
ergodic way. From Proposition 3.3, for μ-almost every x ∈ X,

∀(A,C) ∈ X × Cn

∫
X

1A(y)1C(y)CP(x,dy) =
∫

X

CnP (y,A)1C(y)CP(x,dy).

The decreasing martingale theorem implies that, for any A ∈ X and for μ-almost every x ∈ X, Eμ[1A|Cn](x) −→
n→+∞

Eμ[1A|C](x). Consequently, for any A ∈ X and for μ-almost every x ∈ X, CnP (x,A) −→
n→+∞

CP(x,A).

As μ(·) = ∫
X

CP(x, ·)μ(dx), it follows that: for any A ∈ X and for μ-almost every x ∈ X,

for CP(x, ·)-almost every y ∈ X, CnP (y,A) −→
n→+∞

CP(y,A).

While limiting itself to elements C of C, the dominated convergence theorem implies that, for any A ∈ X and for
μ-almost every x ∈ X,

∀C ∈ C

∫
X

1A(y)1C(y)CP(x,dy) =
∫

X

CP(y,A)1C(y)CP(x,dy).

Now from Proposition 2.2, we can permute “for any A ∈ X” and “for μ-almost every x ∈ X,” which shows that C

decomposes μ in an ergodic way.
The preceding proof shows the following corollary which improves Shimomura’s result.

Corollary 4.3. Let (Bi )i∈N be a sequence of sub-σ -algebras of X. If for any n ∈ N the σ -algebra
⋂n

i=0 Bi decom-
poses μ in an ergodic way, then the intersection

⋂
i∈N

Bi decomposes μ in an ergodic way.

Case of an uncountable family of σ -algebras
We need the following lemmas.

Lemma 4.4. Let (H, 〈·, ·〉) be a separable Hilbert space. Let {Vi : i ∈ I } a noncountable family of closed vector
subspaces of H. Then there exists a countable subset J of I such that

⋂
i∈I Vi = ⋂

i∈J Vi .

Proof. We easily see that the orthogonal complement V ⊥ of V = ⋂
i∈I Vi in H is equal to Vect(

⋃
i∈I V ⊥

i ) (the
closure of the subspace generated by

⋃
i∈I V ⊥

i ). We choose a dense sequence of vectors (un)n≥1 of Vect(
⋃

i∈I V ⊥
i ) in

V ⊥. The Schmidt orthonormalization process allows us to extract a maximal orthonormal system; that is, an Hilbert
basis (en)n≥1 de V ⊥. For any p ≥ 1, ep is a finite linear combination of vectors from {un: n ≥ 1}; each un is itself
a finite linear combination of vectors of

⋃
i∈I V ⊥

i . Therefore, there exists a countable subset J of I such that, ∀p ≥
1, ep ∈ Vect(

⋃
i∈J V ⊥

i ). Hence V ⊥ = Vect(
⋃

i∈J V ⊥
i ) and V = ⋂

i∈J Vi . �
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Lemma 4.5. Let B be a sub-σ -algebra of X which decomposes μ in an ergodic way. Let C be a sub-σ -algebra of
B such that, for any bounded B-measurable function f , there exists a bounded C-measurable function g satisfying
f = g μ-a.e.

Then C decomposes μ in an ergodic way.

Proof. From Proposition 3.3, for μ-almost every x ∈ X, BP is a regular conditional probability with respect to B and
CP(x, ·), that is,

∀(A,B) ∈ X × B

∫
X

1A(y)1B(y)CP(x,dy) =
∫

X

BP(y,A)1B(y)CP(x,dy).

In these equalities, we have to replace BP(y,A) by CP(y,A). From Proposition 2.2, we can restrict our equalities
to A ∈ X a separable sub-algebra of X generating X.

Let f be a bounded B-measurable function. There exists a bounded C-measurable function g such that f = g

μ-a.e. Then we have, μ-a.e.,

Eμ[f |B] = f = g = Eμ[g|C] = Eμ[f |C].
It follows that, for μ-almost every y ∈ X,

∀A ∈ X BP(y,A) = CP(y,A).

Now from μ(dy) = ∫
X

CP(x,dy)μ(dx) we deduce that, for μ-almost every x ∈ X, for CP(x, ·)-almost every y ∈ X,

∀A ∈ X BP(y,A) = CP(y,A)

and consequently, for μ-almost every x ∈ X,

∀(A,B) ∈ X × B

∫
X

1A(y)1B(y)CP(x,dy) =
∫

X

CP(y,A)1B(y)CP(x,dy).

Hence the result. �

Lemma 4.6. Let {Bn: n ∈ N
∗} be a sequence of sub-σ -algebras of X satisfying, for any n ≥ 2,

⋂
1≤k≤n Bk =⋂

1≤k≤n Bk .

Then
⋂

n≥1 Bk = ⋂
n≥1 Bk .

Proof. Let f ∈ L1(X,X,μ). From the decreasing martingale theorem, we have, μ-almost everywhere,

Eμ

[
f

∣∣∣∣ ⋂
k≥1

Bk

]
= lim

n→+∞ Eμ

[
f

∣∣∣∣ ⋂
1≤k≤n

Bk

]
= lim

n→+∞ Eμ

[
f

∣∣∣∣ ⋂
1≤k≤n

Bk

]

= lim
n→+∞ Eμ

[
f

∣∣∣∣ ⋂
1≤k≤n

Bk

]
= Eμ

[
f

∣∣∣∣ ⋂
k≥1

Bk

]
. (2)

Hence the result. �

Consider the separable Hilbert space L
2(X,X,μ). It is well known that, for each sub-σ -algebra B of X, the

space L
2(X,B,μ) is identified to a closed subspace of L

2(X,X,μ) and the conditional expectation relative to B is
identified to the orthogonal projection onto this closed subspace.

Let {Bi : i ∈ I } be an uncountable family of μ-complete sub-σ -algebras which decompose μ in an ergodic way
and satisfy the hypothesis of Theorem 3.4. From the Lemmas 4.4 and 4.6, there exists a countable subset J of I such
that

L
2
(

X,
⋂
i∈I

Bi ,μ

)
⊂

⋂
i∈I

L
2(X,Bi ,μ) =

⋂
i∈J

L
2(X,Bi ,μ) = L

2
(

X,
⋂
i∈J

Bi ,μ

)
.
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It follows that for any f ∈ L2(X,
⋂

i∈I Bi ,μ) there exists a function g ∈ L2(X,
⋂

i∈J Bi ,μ) such that f = g,
μ-a.e. According to the case treated previously, we know that the sub-σ -algebra

⋂
i∈J Bi decomposes μ in an ergodic

way. Then the result follows from Lemma 4.5.

5. Examples and applications

1. Let (X,X,μ) be a probability space with a separable σ -algebra X containing a μ-approximating compact class.
Let τ be an invertible bi-measurable transformation of (X,X) such that μ is quasi-invariant for the action of τ . We
consider the sub-σ -algebra J = Jτ of X defined by J = {B ∈ X: τ−1(B) = B}. Then the following result is well
known.

Proposition 5.1. The σ -algebra J decomposes μ in an ergodic way.

Proof. An idea of the proof is the following. We consider the contraction T of L
1(X,X,μ) defined by

Tf (x) = f ◦ τ−1(x)
d(τ (μ))

d(μ)
(x).

Replacing τ by τ−1 we obtain the inverse operator T −1.
From the Chacon–Ornstein ergodic theorem, one proves [2] that, with obvious notations: for any f ∈ L1(X,X,μ)

and for μ-almost every x ∈ X,

n∑
k=−n

T kf (x)

/ n∑
k=−n

T k1(x) −→
n→+∞

JPf (x).

One sees easily that there exists a measurable subset X0 of X such that μ(X0) = 1 and for any x ∈ X0 the proba-

bility JP(x, ·) is τ -quasi-invariant with d(τJP(x,·))
dJP(x,·) = d(τμ)

dμ
.

Then the same ergodic theorem tells us that, for any x ∈ X0, for any f ∈ L1(X,X,JP(x, ·)) and for JP(x, ·)-almost
every y ∈ X,

n∑
k=−n

T kf (y)

/ n∑
k=−n

T k1(y) −→
n→+∞ EJP(x,·)[f |J](x).

As in the first case of Theorem 3.4, we prove that for μ-almost every x ∈ X, JP is a regular conditional probability
with respect to J and JP(x, ·). The result follows from Proposition 3.3. �

In [3], Greshchonig and Schmidt consider the case of a Borel action of a locally compact second countable group
G on a standard probability space (X,X,μ); that is, a group homomorphism g �→ τg from G into the group Aut(X)

of Borel automorphisms of X such that the map (g, x) �→ τgx from G × X to X is Borel and μ is quasi-invariant
under each τg , g ∈ G. They prove that the σ -algebra

⋂
g∈G Jτg decomposes μ in an ergodic way.

The Theorem 3.4 makes it possible to find and improve this result.

Corollary 5.2. Let {τi : i ∈ I } be a non-empty family of Borel automorphisms of X. Then the sub-σ -algebra
⋂

i∈I Jτi

of X decomposes μ in an ergodic way.

Proof. Taking into account the Proposition 5.1, it is enough to show that, for any finite subset J of I ,
⋂

i∈J Jτi
=⋂

i∈J Jτi
.

Let f be a
⋂

i∈J Jτi
-measurable function. We set X0 = ⋂

i∈J {f ◦ τi = f }; we have μ(X0) = 1.
We call G the algebraic subgroup of Aut(X) generated by the Borel automorphisms {τi : i ∈ J }; G is a countable

subset of Aut(X). The subset X1 = ⋂
s∈G sX0 of X0 belongs to

⋂
i∈J Jτi

and μ(X1) = 1. Then the function g = f 1X1

is
⋂

i∈J Jτi
-measurable and f = gμ-a.e. Which shows that f is

⋂
i∈J Jτi

-measurable. �
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2. Let (X,X,μ, τ) be a dynamical system with a polish space and a not necessarily invertible transformation. We
denote by (Y,F, λ, η) the natural extension of our dynamical and by π the natural projection of Y onto X. With
obvious notations, one sees easily that f is Jη ∩ π−1(X)-measurable (resp. Jη ∩ π−1(X)-measurable) if and only if
there exists g ∈ Jτ such that f = g ◦ π (resp. f = g ◦ π λ-a.e.). It follows that

Jη ∩ π−1(X) = Jη ∩ π−1(X).

We know that the σ -algebra Jη decomposes λ in an ergodic way. The σ -algebra π−1(X) is separable. Therefore
the σ -algebra C = Jη ∩ π−1(X) decomposes λ in an ergodic way.

Let P be a regular conditional probability with respect to Jτ and μ. Let Q be a regular conditional probability with
respect to C and λ. For any A ∈ X and C ∈ Jτ we have:∫

X

P (x,A)1C(x)μ(dx) =
∫

X

1A(x)1C(x)μ(dx)

and therefore∫
Y

P
(
π(y),A

)
1C

(
π(y)

)
λ(dy) =

∫
Y

1A

(
π(y)

)
1C

(
π(y)

)
λ(dy)

=
∫

Y

Eλ[1A ◦ π |C](y)1C

(
π(y)

)
λ(dy)

=
∫

Y

Q
(
y,π−1(A)

)
1C

(
π(y)

)
λ(dy). (3)

Which proves, via the Proposition 2.2, that

for λ-almost every y ∈ Y, P
(
π(y), ·) = Q

(
y,π−1(·))

and the σ -algebra Jτ decomposes μ in an ergodic way.
3. Let P be a transition probability on a measurable space (X,X) with a separable σ -algebra X containing a

μ-approximating compact class.
We denote by Π the set of P -invariant probability measures on (X,X):

π ∈ Π ⇔
∫

X

f (x)πP (dx) =
∫

X

Pf (x)π(dx) =
∫

X

f (x)π(dx)

for any non-negative or bounded measurable function f on X. We assume that Π �= ∅.
For any π ∈ Π , we denote by Bπ the sub-σ -algebra of X defined by:

Bπ = {A ∈ X: P 1A = 1A π-a.e.}
and we set B = ⋂

π∈Π Bπ .
Let π ∈ Π . Let f be a bounded Bπ -measurable function on X. The function g, defined by

g(x) = lim inf
1

n

n−1∑
k=0

P kf (x),

satisfies g = f π -a.e. and Pg ≤ g. From the latter inequality, it follows that, for any σ ∈ Π , Pg = g σ -a.e. and g is
B-measurable. We deduce that Bπ = B π -a.e.

From the Hopf theorem ([3], Proposition V-6-3), for any f ∈ L1(X,X,π), the sequences of functions(
1

n

n−1∑
k=0

d((f π)P k)

dπ

)
n≥1

and

(
1

n

n−1∑
k=0

P kf

)
n≥1
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converge π -almost everywhere and in norm L
1(π) towards BπPf = BPf . As in Example 1, one deduces that B

decomposes π in an ergodic way.
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