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Abstract. In a spiked population model, the population covariance matrix has all its eigenvalues equal to units except for a few
fixed eigenvalues (spikes). This model is proposed by Johnstone to cope with empirical findings on various data sets. The question
is to quantify the effect of the perturbation caused by the spike eigenvalues. A recent work by Baik and Silverstein establishes the
almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalues when the population and the sample sizes
become large. This paper establishes the limiting distributions of these extreme sample eigenvalues. As another important result of
the paper, we provide a central limit theorem on random sesquilinear forms.

Résumé. Dans un modèle de variances hétérogènes, les valeurs propres de la matrice de covariance des variables sont toutes
égales à l’unité sauf un faible nombre d’entre elles. Ce modèle a été introduit par Johnstone comme une explication possible de
la structure des valeurs propres de la matrice de covariance empirique constatée sur plusieurs ensembles de données réelles. Une
question importante est de quantifier la perturbation causée par ces valeurs propres différentes de l’unité. Un travail récent de Baik
et Silverstein établit la limite presque sûre des valeurs propres empiriques extrêmes lorsque le nombre de variables tend vers l’infini
proportionnellement à la taille de l’échantillon. Ce travail établit un théorème limite central pour ces valeurs propres empiriques
extrêmes. Il est basé sur un nouveau théorème limite central pour les formes sesquilinéaires aléatoires.

MSC: Primary 62H25; 62E20; secondary 60F05; 15A52
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1. Introduction

It is well known that the empirical spectral distribution (ESD) of a large sample covariance matrix converges to the
family of Marčenko–Pastur laws under fairly general condition on the sample variables [3,10]. On the other hand,
the study of the largest or smallest eigenvalues is more complex. In a variety of situations, the almost sure limits of
these extreme eigenvalues are proved to coincide with the boundaries of the support of the limiting distribution. As an
example, when the sample vectors have independent coordinates and unit variances and assuming that the ratio p/n
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of the population size p over the sample size n tends to a positive limit y ∈ (0,1), then the limiting distribution is the
classical Marčenko–Pastur law Fy(dx)

Fy(dx) = 1

2πxy

√
(x − ay)(by − x)dx, ay ≤ x ≤ by, (1.1)

where ay = (1−√
y)2, and by = (1+√

y)2. Moreover, the smallest and the largest eigenvalue converge almost surely
to the boundary ay and by , respectively.

Recent empirical data analysis from fields like wireless communication engineering, speech recognition or gene
expression experiments suggest that frequently, some extreme eigenvalues of sample covariance matrices are well-
separated from the rest. For instance, see Figs 1 and 2 in [9] which display the sample eigenvalues of the functional
data consisting of a speech data set of 162 instances of a phoneme “dcl” spoken by males calculated at 256 points.
As a way for possible explanation of this phenomenon, this author proposes a spiked population model where all
eigenvalues of the population covariance matrix are equal to one except a fixed and relatively small number among
them (spikes). Clearly, a spiked population model can be considered as a small perturbation of the so-called null case
where all the eigenvalues of the population covariance matrix are unit. It then raises the question how such a small
perturbation affects the limits of the extreme eigenvalues of the sample covariance matrix as compared to the null
case.

The behavior of the largest eigenvalue in the case of complex Gaussian variables has been recently studied in [7].
These authors prove a transition phenomenon: the weak limit as well as the scaling of the largest eigenvalue is different
according to whether the largest spike eigenvalue is larger, equal or less than the critical value 1 + √

y. In [6], the
authors consider the spiked population model with general random variables: complex or real and not necessarily
Gaussian. For the almost sure limits of the extreme sample eigenvalues, they also find that these limits depend on the
critical values 1 +√

y and 1 −√
y from above and below, respectively. For example, if there are M eigenvalues in the

population covariance matrix larger than 1 + √
y, then the M largest eigenvalues from the sample covariance matrix

will (almost surely) have their limits above the right edge by of the limiting Marčenko–Pastur law. Analogous results
are also proposed for the case y > 1 and y = 1.

An important question here is to find the limiting distributions of these extreme eigenvalues. As mentioned above,
the results are proposed in [7] for the largest eigenvalue and the Gaussian complex case. In this perspective, assuming
that the population vector is real Gaussian with a diagonal covariance matrix and that the M spike eigenvalues are all
simple, [12] found that each of the M largest sample eigenvalues has a Gaussian limiting distribution.

In this paper, we follow the general set-up of [6]. Assuming y ∈ (0,1) and general population variables, we will
establish central limit theorems for the largest as well as for the smallest sample eigenvalues associated to spike eigen-
values outside the interval [1 − √

y,1 + √
y]. Furthermore, we prove that the limiting distribution of such sample ex-

treme eigenvalues is Gaussian only if the corresponding spike population eigenvalue is simple. Otherwise, if a spiked
eigenvalue is multiple, say of index k, then there will be k packed-consecutive sample eigenvalues λn,1, . . . , λn,k

which converge jointly to the distribution of a k × k symmetric (or Hermitian) Gaussian random matrix. Consequently
in this case, the limiting distribution of a single λn,j is generally non Gaussian.

The main tools of our analysis are borrowed from the random matrix theory on one hand. For general background
of this theory, we refer to the book [11] and a modern review by Bai [3]. On the other hand, we introduce in this paper
another important tool, namely a CLT for random sesquilinear forms which should have its own interests. This CLT,
independent from the rest of the paper, is presented in the last section (Section 7).

The remaining sections of the paper are organized as follows. First in Section 2, we introduce the spiked population
model and recall known results on the almost sure limits of extreme sample eigenvalues. The main result of the paper,
namely a general CLT for extreme sample eigenvalues, Theorem 3.1, is then introduced in Section 3. To provide
a better account of this CLT, Section 4 develops in details several meaningful examples. Several sets of numerical
computations are also conducted to give concrete illustration of the main result. In particular, we recover a CLT given
in [12] as a special instance. In Section 5, we discuss some extensions of these results to the case where spiked
eigenvalues are inside the gaps located in the center of the spectrum of the population covariance matrix. Finally,
Section 6 collects the proofs of the presented results based on a CLT for random sesquilinear forms which is itself
introduced and proved in Section 7.



Eigenvalues in a spiked population model 449

2. Spiked population model and convergence of extreme eigenvalues

We consider a zero-mean, complex-valued random vector x = (ξT, ηT)T where ξ = (ξ(1), . . . , ξ(M))T, η =
(η(1), . . . , η(p))T are independent, of dimension M and p, respectively. Moreover, we assume that E[‖x‖4] < ∞
and the coordinates of η are independent and identically distributed with unit variance. The population covariance
matrix of the vector x is therefore

V = cov(x) =
(

Σ 0
0 Ip

)
.

We consider the following spiked population model by assuming that Σ has K non null and non unit eigenvalues
α1, . . . , αK with respective multiplicity n1, . . . , nK (n1 +· · ·+nK = M). Therefore, the eigenvalues of the population
covariance matrix V are units except the (αj ), called spike eigenvalues.

Let xi = (ξT
i , ηT

i )T be n copies i.i.d. of x. The sample covariance matrix is

Sn = 1

n

n∑
i=1

xix
∗
i ,

which can be rewritten as

Sn =
(

S11 S12
S21 S22

)
=
(

X1X
∗
1 X1X

∗
2

X2X
∗
1 X2X

∗
2

)
= 1

n

(∑
ξiξ

∗
i

∑
ξiη

∗
i∑

ηiξ
∗
i

∑
ηiη

∗
i

)
, (2.1)

with

X1 = 1√
n
(ξ1, . . . , ξn)M×n = 1√

n
ξ1:n, X2 = 1√

n
(η1, . . . , ηn)p×n = 1√

n
η1:n.

It is assumed in the sequel that M is fixed, and p and n are related so that when n → ∞, p/n → y ∈ (0,1).
The ESD of Sn, as well as the one of S22, converges to the Marčenko–Pastur distribution Fy(dx) given in (1.1).
As explained in the Introduction, a central question is to quantify the effect caused by the small number of spiked
eigenvalues on the asymptotic of the extreme sample eigenvalues.

As a first general answer to this question, Baik and Silverstein [6] completely determines the almost sure limits
of largest and smallest sample eigenvalues. More precisely, assume that among the M eigenvalues of Σ , there are
exactly Mb greater than 1 + √

y and Ma smaller than 1 − √
y:

α1 > · · · > αMb
> 1 + √

y, αM < · · · < αM−Mb+1 < 1 − √
y, (2.2)

and 1 − √
y ≤ αk ≤ 1 + √

y for the other αk’s. Moreover, for α 	= 1, we define the function

λ = φ(α) = α + yα

α − 1
. (2.3)

As y < 1, we have p ≤ n for large n. Let

λn,1 ≥ λn,2 ≥ · · · ≥ λn,p

be the eigenvalues of the sample covariance matrix Sn. Let si = n1 + · · · + ni for 1 ≤ i ≤ Mb and tj = nM + · · · + nj

for 1 ≤ j ≤ Ma (by convention s0 = t0 = 0).
Therefore, Baik and Silverstein [6] proves that for each k ∈ {1, . . . ,Mb} and sk−1 < j ≤ sk (largest eigenvalues) or

k ∈ {1, . . . ,Ma} and p − tk < j ≤ p − tk−1 (smallest eigenvalues),

λn,j → φ(αk) = αk + yαk

αk − 1
, almost surely. (2.4)

In other words, if a spike eigenvalue αk lies outside the interval [1 − √
y,1 + √

y] and has multiplicity nk , then φ(αk)

is the limit of nk packed sample eigenvalue {λn,j , j ∈ Jk}. Here we have denoted by Jk the corresponding set of
indexes: Jk = {sk−1 + 1, . . . , sk} for αk > 1 + √

y and Jk = {p − tk + 1, . . . , p − tk−1} for αk < 1 − √
y.
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3. Main results

The aim of this paper is to derive a CLT for the nk-packed sample eigenvalues
√

n
[
λn,j − φ(αk)

]
, j ∈ Jk,

where αk /∈ [1 − √
y,1 + √

y] is some fixed spike eigenvalue of multiplicity nk . The statement of the main result of
the paper, Theorem 3.1, needs several intermediate notations and results.

3.1. Determinant equation and a random sesquilinear form

By definition, each λn,j solves the equation

0 = |λI − Sn| = |λI − S22|
∣∣λI − Kn(λ)

∣∣, (3.1)

where

Kn(λ) = S11 + S12(λI − S22)
−1S21. (3.2)

As when n → ∞, with probability 1, the limit λn,j → φ(αk) /∈ [ay, by] and the eigenvalues of S22 go inside the
interval [ay, by], the probability of the event Qn

Qn = {
λn,j /∈ [ay, by]

}∩ {
spectrum of S22 ⊂ [ay, by]

}
tends to 1. Conditional on this event, the (λn,j )’s then solve the determinant equation∣∣λI − Kn(λ)

∣∣= 0. (3.3)

Therefore without loss of generality, we can assume that λn,j /∈ [ay, by] and they are solutions of this equation.
Furthermore, let

An = (aij ) = An(λ) = X∗
2

(
λI − X2X

∗
2

)−1
X2, λ /∈ [ay, by]. (3.4)

Lemma 6.1 detailed in Section 6.1 establishes the convergence of several statistics of the matrix An. In particular,
n−1 trAn, n−1 trAnA

∗
n and n−1∑n

i=1 a2
ii converges in probability to ym1(λ), ym2(λ) and (y[1 + m1(λ)]/{λ − y[1 +

m1(λ)]})2, respectively. Here, the mj(λ) are some specific transforms of the Marčenko–Pastur law Fy (see Section 6.1
for more details).

Therefore, the random form Kn in (3.2) can be decomposed as follows

Kn(λ) = S11 + X1AnX
∗
1 = 1

n
ξ1:n(I + An)ξ

∗
1:n

= 1

n

{
ξ1:n(I + An)ξ

∗
1:n − Σ tr(I + An)

}+ 1

n
Σ tr(I + An)

= 1√
n
Rn + [

1 + ym1(λ)
]
Σ + oP

(
1√
n

)
, (3.5)

with

Rn = Rn(λ) = 1√
n

{
ξ1:n(I + An)ξ

∗
1:n − Σ tr(I + An)

}
. (3.6)

In the last derivation, we have used the fact

1

n
tr(I + An) = 1 + ym1(λ) + oP

(
1√
n

)
,

which follows from a CLT for tr(An) (see [4]).
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3.2. Limit distribution of the random matrices {Rn(λ)}

The next step is to find the limit distribution of the sequence of random matrices {Rn(λ)}. The situation is different
for the real and complex cases. Define the constants

θ = 1 + 2ym1(λ) + ym2(λ), (3.7)

ω = 1 + 2ym1(λ) +
(

y[1 + m1(λ)]
λ − y[1 + m1(λ)]

)2

. (3.8)

Proposition 3.1 (Limiting distribution of Rn(λ): real variables case). Assume that the variables ξ and η are real-
valued. Then, the random matrix Rn converges weakly to a symmetric random matrix R = (Rij ) with zero-mean
Gaussian entries having the following covariance function: for 1 ≤ i ≤ j ≤ M , 1 ≤ i′ ≤ j ′ ≤ M

cov(Rij ,Ri′j ′) = ω
{
E
[
ξ(i)ξ(j)ξ

(
i′
)
ξ
(
j ′)]− ΣijΣi′j ′

}+ (θ − ω)
{
E
[
ξ(i)ξ

(
j ′)]

E
[
ξ
(
i′
)
ξ(j)

]}
+ (θ − ω)

{
E
[
ξ(i)ξ

(
i′
)]

E
[
ξ(j)ξ

(
j ′)]}. (3.9)

Note that in particular, the following formula holds for the variances

var(Rij ) = θ
(
ΣiiΣjj + Σ2

ij

)+ ω
{
E
[
ξ2(i)ξ2(j)

]− 2Σ2
ij − ΣiiΣjj

}
. (3.10)

In case of a diagonal element Rii , this expression simplifies to

var(Rii) = [2θ + βiω]Σ2
ii , with βi = E[ξ(i)4]

Σ2
ii

− 3. (3.11)

If moreover, ξ(i) is Gaussian, βi = 0.

Remark 1. If the coordinates {ξ(i)} of ξ are independent, then the limiting covariance matrix in (3.9) is diagonal: the
limiting Gaussian matrix is made with independent entries. Their variances simplify to (3.11) and

var(Rij ) = θΣiiΣjj , i < j. (3.12)

Proposition 3.2 (Limiting distribution of Rn(λ): complex variables case). Assume the general case with complex-
valued variables ξ and η and that the following limit exists

m4(λ) = lim
n

1

n
trAnA

T
n, λ /∈ [ay, by]. (3.13)

Then, the random matrix Rn converges weakly to a zero-mean Hermitian random matrix R = (Rij ). Moreover, the joint
distribution of the real and imaginary parts of the upper-triangular bloc {Rij ,1 ≤ i ≤ j ≤ M} is a 2K-dimensional
Gaussian vector with covariance matrix

Γ =
(

Γ11 Γ12
Γ21 Γ22

)
, (3.14)

where

Γ11 = 1

4

3∑
j=1

{
2�(Bj ) + Bja + Bjb

}
,

Γ22 = 1

4

3∑
j=1

{−2�(Bj ) + Bja + Bjb

}
,
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Γ12 = 1

2

3∑
j=1

�(Bj ),

and for 1 ≤ i ≤ j ≤ M and 1 ≤ i′ ≤ j ′ ≤ M ,

B1
(
ij, i′j ′)= ω

(
E[ξ(i)ξ̄ (j)ξ(i′)ξ̄ (j ′)] − ΣijΣi′j ′

)
,

B2
(
ij, i′j ′)= (θ − ω)Σij ′Σi′j ,

B3
(
ij, i′j ′)= (τ − ω)

(
E[ξ(i)ξ(i′)]E[ξ̄ (j )ξ̄ (j ′)]),

B1a

(
ij, i′j ′)= ω

(
E
[|ξ(i)ξ(i′)|2]− ΣiiΣi′i′

)
,

B1b

(
ij, i′j ′)= ω

(
E
[|ξ(j)ξ(j ′)|2]− ΣjjΣj ′j ′

)
,

B2a

(
ij, i′j ′)= (θ − ω)|Σii′ |2,

B2b

(
ij, i′j ′)= (θ − ω)|Σjj ′ |2,

B3a

(
ij, i′j ′)= (τ − ω)

∣∣E[ξ(i)ξ(i′)]∣∣2,
B3b

(
ij, i′j ′)= (τ − ω)

∣∣E[ξ(j)ξ(j ′)]∣∣2.
Here, the constant τ equals

τ = lim
n

1

n
tr(I + An)(I + An)

T = 1 + 2ym1(λ) + m4(λ). (3.15)

The limiting covariance matrix Γ has a complicated expression. However, the variance of a diagonal element Rii

has a much simpler expression if moreover, E[ξ2(i)] = 0 for all 1 ≤ i ≤ M ,

var(Rii) = [
θ + β ′

iω
]
Σ2

ii , with β ′
i = E[ξ(i)4]

Σ2
ii

− 2. (3.16)

In particular, if ξ(i) is Gaussian, β ′
i = 0.

3.3. CLT for extreme eigenvalues

In order to introduce the main result of the paper, let the spectral decomposition of Σ ,

Σ = U

⎛⎝α1In1 · · · 0

0
. . . 0

· · · 0 αKInK

⎞⎠U∗, (3.17)

where U is an unitary matrix. Following Section 2, for each spiked eigenvalue αk /∈ [1−√
y,1+√

y], let {λn,j , j ∈ Jk}
be the nk packed eigenvalues of the sample covariance matrix which all tend almost surely to λk = φ(αk). Let R(λk)

be the Gaussian matrix limit of the sequence of matrices of random forms [Rn(λk)]n given in Proposition 3.1 (real
variables case) and Proposition 3.2 (complex variables case), respectively. Let

R̃(λk) = U∗R(λk)U. (3.18)

Theorem 3.1. For each spike eigenvalue αk /∈ [1 − √
y,1 + √

y], the nk-dimensional real vector

√
n{λn,j − λk, j ∈ Jk},
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converges weakly to the distribution of the nk eigenvalues of the Gaussian random matrix

1

1 + ym3(λk)αk

R̃kk(λk),

where R̃kk(λk) is the kth diagonal bloc of R̃(λk) corresponding to the indexes {u,v ∈ Jk}.
One striking fact from this theorem is that the limiting distribution of such nk packed sample extreme eigenvalues

are generally non-Gaussian and asymptotically dependent. Indeed, the limiting distribution of a single sample extreme
eigenvalue λn,j is Gaussian if and only if the corresponding population spike eigenvalue is simple.

4. Examples and numerical results

This section is devoted to describe in more details the content of Theorem 3.1 with several meaningful examples
together with extended numerical computations.

4.1. A special Gaussian case from Paul [12]

We consider a particular situation examined in [12]. Assume that the variables are real Gaussian, Σ diagonal whose
eigenvalues are all simple. In other words, K = M and nk = 1 for all 1 ≤ k ≤ M . Hence, U = IM. Following
Theorem 3.1, for any λk = φ(αk), with αk /∈ [1 ∓ √

y] √
n(λn,k − λk) converges weakly to the Gaussian variable

(1 + ym3(λk)αk)
−1R(λk)kk. This variable is zero-mean. For the computation of its variance, we remark that by

Eq. (3.11)

varR(λk)kk = 2θα2
k ,

where

θ = 1 + 2ym1(λk) + ym2(λk) = (αk − 1 + y)2

(αk − 1)2 − y
.

Taking into account (6.6), we get finally, for 1 ≤ k ≤ M

√
n(λn,k − λk)

D�⇒ N
(
0, σ 2

αk

)
, σ 2

αk
= 2α2

k [(αk − 1)2 − y]
(αk − 1)2

.

This coincides with Theorem 3 of [12].

4.2. More general Gaussian variables case

In this example, we assume that all variables are real Gaussian, and the coordinates of ξ are independent. As in [6],
we fix y = 0.5. The critical interval is then [1 − √

y,1 + √
y] = [0.293,1.707] and the limiting support [ay, by] =

[0.086,2.914].
Consider K = 4 spike eigenvalues (α1, α2, α3, α4) = (4,3,0.2,0.1) with respective multiplicity (n1, n2, n3, n4) =

(1,2,2,1). Let

λn,1 ≥ λn,2 ≥ λn,3 and λn,4 ≥ λn,5 ≥ λn,6

be, respectively, the three largest and the three smallest eigenvalues of the sample covariance matrix. Let, as in Sec-
tion 4.1,

σ 2
αk

= 2α2
k [(αk − 1)2 − y]

(αk − 1)2
. (4.1)

We have (σ 2
αk

, k = 1, . . . ,4) = (30.222, 15.75, 0.0175, 0.00765).
Following Theorem 3.1, taking into account Section 4.1 and Proposition 3.1, we have
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• for j = 1 and 6,

δn,j = √
n
[
λn,j − φ(αk)

] D�⇒ N
(
0, σ 2

αk

)
. (4.2)

Here, for j = 1, k = 1, φ(α1) = 4.667 and σ 2
α1

= 30.222; and for j = 6, k = 4, φ(α4) = 0.044 and σ 2
α4

= 0.00765;
• for j = (2,3) or j = (4,5), the two-dimensional vector δn,j = √

n[λn,j − φ(αk)] converges weakly to the distribu-
tion of (ordered) eigenvalues of the random matrix

G = σαk

(
W11 W12
W12 W22

)
.

Here, because the initial variables (ξ(i))’s are Gaussian, by Eqs (3.11) and (3.12), we have var(W11) =
var(W22) = 1, var(W12) = 1

2 , so that (Wij ) is a real Gaussian–Wigner matrix (with independent entries). Again,
the variance parameter σ 2

αk
is defined as previously but with k = 2 for j = (2,3) and k = 3 for j = (4,5), re-

spectively. Since the joint distribution of eigenvalues of a Gaussian–Wigner matrix is known (see [11]), we get the
following (unordered) density for the limiting distribution of δn,j :

g(δ, γ ) = 1

4σ 3
αk

√
π

|δ − γ | exp

[
− 1

2σ 2
αk

(
δ2 + γ 2)]. (4.3)

Experiments are conducted to compare numerically the empirical distribution of the δn,j ’s to their limiting value.
To this end, we fix p = 500 and n = 1000. We repeat 1000 independent simulations to get 1000 replications of the six
random variates {δn,j , j = 1, . . . ,6}. Based on these replications, we compute

• a kernel density estimate for two univariate variables δn,1 and δn,6, denoted by f̂n,1 f̂n,6 respectively;
• a kernel density estimate for two bivariate variables (δn,2, δn,3) and (δn,4, δn,5), denoted by f̂n,23 f̂n,45 respec-

tively.

The kernel density estimates are computed using the R software implementing an automatic bandwidth selection
method from [13].

Figure 1 compare the two univariate density estimates f̂n,1 and f̂n,6 to their Gaussian limits (4.2). As we can see,
the simulations confirm well the found formula.

To compare the bivariate density estimates f̂n,23 and f̂n,45 to their limiting densities given in (4.3), we choose to
display their contour lines. This is done in Fig. 2 for f̂n,23 and Fig. 3 for f̂n,45. Again we see that the theoretical result
is well confirmed.

4.3. A binary variables case

As in the previous example, we fix y = 0.5 and adopt the same spike eigenvalues (α1, α2, α3, α4) = (4,3,0.2,0.1)

with multiplicities (n1, n2, n3, n4) = (1,2,2,1). Let the σ 2
αk

’s be as defined in (4.1). Again we assume that all the
coordinates are independent but this time we consider binary entries. To cope with the eigenvalues, we set

ξ(i) = √
αkεi, η(j) = ε′

j ,

where (εi) and (ε′
j ) are two independent sequences of i.i.d. binary variables taking values {+1,−1} with equiproba-

bility. We remark that Eεi = 0, Eε2
i = 1 and βi = E[ξ4(i)]/[Eξ2(i)]2 − 3 = −2. This last value denotes a departure

from the Gaussian case.
As in the previous example, we examine the limiting distributions of the three largest and the three smallest eigen-

values {λn,j , j = 1, . . . ,6} of the sample covariance matrix. Following Theorem 3.1, we have

• for j = 1 and 6,

δn,j = √
n
[
λn,j − φ(αk)

] D�⇒ N
(
0, s2

αk

)
, s2

αk
= σ 2

αk

y

(αk − 1)2
.
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Fig. 1. Empirical density estimates (in solid lines) from the largest (top: f̂n,1 ) and the smallest (bottom: f̂n,6) sample eigenvalue from 1000
independent replications, compared to their Gaussian limits (dashed lines). Gaussian entries with p = 500 and n = 1000.

Fig. 2. Limiting bivariate distribution from the second and the third sample eigenvalues. Top: Contour lines of the empirical kernel density estimates
f̂n,23 from 1000 independent replications with p = 500, n = 1000 and Gaussian entries. Bottom: Contour lines of their limiting distribution given
by the eigenvalues of a 2 × 2 Gaussian–Wigner matrix.
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Fig. 3. Limiting bivariate distribution from the second and the third smallest sample eigenvalues. Top: Contour lines of the empirical kernel
density estimates f̂n,45 from 1000 independent replications with p = 500, n = 1000 and Gaussian entries. Bottom: Contour lines of their limiting
distribution given by the eigenvalues of a 2 × 2 Gaussian–Wigner matrix.

Compared to the previous Gaussian case, as the factor y/(αk − 1)2 < 1, the limiting Gaussian distributions of the
largest and the smallest eigenvalue are less dispersed;

• for j = (2,3) or j = (4,5), the two-dimensional vector δn,j = √
n[λn,j − φ(αk)] converges weakly to the distribu-

tion of (ordered) eigenvalues of the random matrix

G = σαk

(
W11 W12
W12 W22

)
. (4.4)

Here, because the initial variables (ξ(i))’s are binary, hence βi = −2 (which is zero for Gaussian variables), by
Eqs (3.11) and (3.12), we have var(W12) = 1

2 but var(W11) = var(W22) = y/(αk − 1)2. Therefore, the matrix W =
(Wij ) is no more a real Gaussian–Wigner matrix. Again, the variance parameter σ 2

αk
is defined as previously but

with k = 2 for j = (2,3) and k = 3 for j = (4,5), respectively. Unfortunately and unlike the previous Gaussian
case, the joint distribution of eigenvalues of W is unknown analytically. We then compute empirically by simulation
this joint density using 10000 independent replications. Again, as y/(αk − 1)2 < 1, these limiting distributions are
less dispersed than previously.

The kernel density estimates f̂n,1, f̂n,6, f̂n,23 and f̂n,45 are computed as in the previous case using p = 500,
n = 1000 and 1000 independent replications.

Figure 4 compares the two univariate density estimates f̂n,1 and f̂n,6 to their Gaussian limits. Again, we see that
simulations confirm well the found formula. However, we remark a slower convergence rate than in the Gaussian case.

The bivariate density estimates f̂n,23 and f̂n,45 are then compared to their limiting densities in Figs 5 and 6,
respectively. Again we see that the theoretical result is well confirmed. We remark that the shape of these bivariate
limiting distributions is rather different from the previous Gaussian case. We remind the reader that the limiting
bivariate densities are obtained by simulations of 10000 independent G matrices given in (4.4).
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Fig. 4. Empirical density estimates (in solid lines) from the largest (top: f̂n,1) and the smallest (bottom: f̂n,6) sample eigenvalue from 1000
independent replications, compared to their Gaussian limits (dashed lines). Binary entries with p = 500 and n = 1000.

Fig. 5. Limiting bivariate distribution from the second and the third sample eigenvalues. Top: Contour lines of the empirical kernel density estimates
f̂n,23 from 1000 independent replications with p = 500, n = 1000 and binary entries. Bottom: Contour lines of their limiting distribution given by
the eigenvalues of a 2 × 2 random matrix (computed by simulations).
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Fig. 6. Limiting bivariate distribution from the second and the third smallest sample eigenvalues. Top: Contour lines of the empirical kernel density
estimates f̂n,45 from 1000 independent replications with p = 500, n = 1000 and binary entries. Bottom: Contour lines of their limiting distribution
given by the eigenvalues of a 2 × 2 random matrix (computed by simulations).

5. Some extensions

It is possible to extend the spiked population model introduced in Section 2 to a much greater generality. Let us
consider a population p × p covariance matrix

V = cov(x) =
(

Σ 0
0 Tp

)
,

where Σ is as previously while Tp is now an arbitrary Hermitian matrix. As M will be fixed and p → ∞, the limit
F of the ESD of the sample covariance matrix depends on the sequence of (Tp) only. With some ambiguity, we again
call the eigenvalues αk’s of Σ spike eigenvalues in the sense that they do not contribute to this limit.

In the following, we assume for simplicity that Σ as well as Tp are diagonal, and when p → ∞, the empirical
distribution of the eigenvalues of Tp converges weakly to a probability measure H(dt) on the real line. Therefore, the
limit F of the ESD is characterized by an explicit formula for its Stieltjies transform, see [5].

The previous model of Section 2 corresponds to the situation where H(dt) is the Dirac measure at the point 1.
A more involved example which will be analyzed later by numerical computations is the following. The core spectrum
of V is made with two eigenvalues ω1 > ω2 > 0, nearly p/2 times for each, and V has a fixed number M of spiked
eigenvalues distinct from the ωj ’s. In this case, the limiting distribution H is 1

2 (δ{ω1}(dt) + δ{ω2}(dt)), a mixture of
two Dirac masses.

The sample eigenvalues {λn,j } are defined as previously. Assume that a spiked eigenvalue αk is “sufficiently sep-
arated” from the core spectrum of V , so that for some function ψ to be determined, there is a point ψ(αk) outside
the support of F to which converge almost surely nk packed sample eigenvalues {λn,j , j ∈ Jk}. In such a case, the
analysis we have proposed is also valid yielding a CLT analogous to Theorem 3.1: the nk-dimensional real vector

√
n
{
λn,j − ψ(αk), j ∈ Jk

}
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converges weakly to the distribution of the nk eigenvalues of some Gaussian random matrix. In particular, if nk = 1,
this limiting distribution is Gaussian.

We do not intend to provide here all details in this extended situation. However, let us indicate how we can
determine the almost sure limit ψ(αk) of the packed eigenvalues. From the almost sure convergence and since
ψ(αk) is outside the support of F , with probability tending to one, λn,j solve the determinant equation (3.3). With
An = X∗

2(λI − X2X
∗
2)−1X2, we have

Kn(λ) = S11 + X1AnX
∗
1 = 1

n
ξ1:n(I + An)ξ

∗
1:n,

which tends almost surely to [1 + ym1(λ)]Σ . Therefore, any limit λ of a λn,j fulfills the relation

λ − [
1 + ym1(λ)

]
α = 0, (5.1)

for some eigenvalue α of Σ .
Let m(λ) be the Stieltjies transform of the limiting distribution F and m(λ) the one of yF(dt) + (1 − y)δ{0}(dt).

Clearly, λm(λ) = −1 + y + yλm(λ). Moreover, it is known that, see e.g. [5],

λ = − 1

m(λ)
+ y

∫
t

1 + tm(λ)
H(dt). (5.2)

As m1(λ) = −1 − λm(λ) by definition, Eq. (5.1) reads as

λ = [
1 − y − yλm(λ)

]
α = −λm(λ)α.

It follows then 1 + αm(λ) = 0 (generally, λ 	= 0). Combining with (5.2), we get finally

λ = ψ(α) = α

[
1 + y

∫
t

α − t
H(dt)

]
. (5.3)

In particular, for the original spiked population model with H(dt) = δ{1}(dt), we recover the relation given in (2.3).
We conclude the section by giving some numerical results of the above mentioned example of an extended spiked

population model. Then, we consider (ω1,ω2) = (1,10), (α1, α2, α3) = (5,4,3) with respective multiplicity (1,2,1),
and the limit ratio y = 0.2. Note that these spiked eigenvalues are now between the dominating eigenvalues (1 and 10).
On the other hand, the support of the limiting distribution of the ESD can be determined following the method given
in [5], and we get two disjointed intervals: suppF = [0.395,1.579] ∪ [4.784,17.441].

For simulation, we use p = 500, n = 2500 and the eigenvalues of the population covariance matrix V are 1 (248),
3 (1), 4 (2), 5 (1) and 10 (248). We simulate 500 independent replications of the sample covariance matrix with
Gaussian variables. An example of these 500 replications is displayed in Fig. 7.

For each replication, the four eigenvalues at the middle (of indexes 249, 250, 251, 252) are extracted. Let us denote
these 4 eigenvalues by λn,1, λn,2, λn,3, λn,4. By (5.3), we know that the almost sure limits of these sample eigenvalues
are respectively

ψ(αk) = αk

[
1 + 1

10(αk − 1)
+ 1

αk − 10

]
= (4.125,3.467,2.721).

The next Fig. 8 displays the empirical densities of

δn,j = √
n
(
λn,j − ψ(αk)

)
, 1 ≤ j ≤ 4,

from the 500 independent replications. The graphs of δn,1 and δn,4 confirm a limiting zero-mean Gaussian distribution
corresponding to single spike eigenvalues 5 and 3. On the contrary, the limiting distributions of δn,2 and δn,3, related to
the double spike eigenvalue 4, are not zero-mean Gaussian. We note that δn,2 and −δn,3 have approximately the same
distribution. Indeed, their joint distribution converges to that of the eigenvalues of 2 × 2 Gaussian–Wigner matrix.
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Fig. 7. An example of p = 500 sample eigenvalues (top) and a zoomed view on [0,5] (bottom). The limiting distribution of the ESD has support
[0.395,1.579] ∪ [4.784,17.441]. The four eigenvalues {λn,j ,1 ≤ λ ≤ 4} in the middle, related to spiked eigenvalues, are marked with a point.
Gaussian entries with n = 2500.

Fig. 8. Empirical densities of the normalized sample eigenvalues {δn,j ,1 ≤ j ≤ 4} from 500 independent replications. Gaussian entries with
p = 500 and n = 2500.
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6. Proofs of Propositions 3.1, 3.2 and Theorem 3.1

Before giving the proofs, some preliminary results and useful lemmas are introduced. Note that these proofs are based
on a CLT for random sesquilinear forms which is itself introduced and proved in Section 7.

6.1. Preliminary results and useful lemmas

For λ /∈ [ay, by], we define

m1(λ) =
∫

x

λ − x
Fy(dx), (6.1)

m2(λ) =
∫

x2

(λ − x)2
Fy(dx), (6.2)

m3(λ) =
∫

x

(λ − x)2
Fy(dx). (6.3)

It is easily seen that∫
λ

λ − x
Fy(dx) = 1 + m1(λ),

∫
λ2

(λ − x)2
= 1 + 2m1(λ) + m2(λ).

If a real constant α /∈ [1 − √
y,1 + √

y], then φ(α) /∈ [ay, by] and we have

m1 ◦ φ(α) = 1

α − 1
, (6.4)

m2 ◦ φ(α) = (α − 1) + y(α + 1)

(α − 1)[(α − 1)2 − y] , (6.5)

m3 ◦ φ(α) = 1

(α − 1)2 − y
. (6.6)

Let us mention that all these formulas can be obtained by derivation of the Stieltjies transform of the Marčenko–Pastur
law Fy(dx)

m(z) =
∫

1

x − z
Fy(dx) = 1

2yz

{
1 − y − z +

√
(y + 1 − z)2 − 4y

}
, z /∈ [ay, by].

Here,
√

u denotes the square root with positive imaginary part for u ∈ C.
The following lemma gives the law of large numbers for some useful statistics related to the random matrix An

introduced in Eq. (3.4).

Lemma 6.1. We have

1

n
trAn

P−→ ym1(λ), (6.7)

1

n
trAnA

∗
n

P−→ ym2(λ), (6.8)

1

n

n∑
i=1

a2
ii

P−→
(

y[1 + m1(λ)]
λ − y[1 + m1(λ)]

)2

. (6.9)
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Proof. Let βn,j , j = 1, . . . , p be the eigenvalues of S22 = X2X
∗
2 . The first equality is easy. For the second one, we

have

1

n
trAnA

∗
n = 1

n
tr
(
λI − X2X

∗
2

)−1
X2X

∗
2

(
λI − X2X

∗
2

)−1
X2X

∗
2

= p

n

p∑
j=1

β2
n,j

(λ − βn,j )2
P−→ y

∫
x2

(λ − x)2
Fy(dx).

For (6.9), let ei ∈ C
n be the column vector whose ith element is 1 and others are 0 and X2i denote the matrix

obtained from X2 by deleting the ith column of X2. We have X2 = X2i + 1
n
ηiη

∗
i . Therefore,

aii = e∗
i X

∗
2

(
λI − X2X

∗
2

)−1
X2ei = 1

n
η∗

i

(
λI − X2X

∗
2

)−1
ηi = −

1
n
η∗

i (X2iX
∗
2i − λI)−1ηi

1 + 1
n
η∗

i (X2iX
∗
2i − λI)−1ηi

.

Using Lemma 2.7 of [5],

E

∣∣∣∣1

n
η∗

i

(
X2iX

∗
2i − λI

)−1
ηi − 1

n
tr
(
X2iX

∗
2i − λI

)−1
∣∣∣∣2 ≤ K

n2
E
∣∣η(1)

∣∣4E tr
(
X2iX

∗
2i − λI

)−2
,

which gives that

aii
P−→ − y

∫
1/(x − λ)Fy(dx)

1 + y
∫

1/(x − λ)Fy(dx)
= y[1 + m1(λ)]

λ − y[1 + m1(λ)] . (6.10)

Further, it is easy to verify that

lim
n→∞ E

tr(X∗
2(λI − X2X

∗
2)−1X2)

4

n
< ∞,

which implies, together with inequality 3.3.41 of [8] that

sup
n

Ea4
11 = sup

n

1

n

n∑
i=1

Ea4
ii ≤ sup

n
E

tr(X∗
2(λI − X2X

∗
2)−1X2)

4

n
< ∞.

Therefore, the family of the random variables {a2
11} indexed by n is uniformly integrable. Combining with (6.10), we

get

E

∣∣∣∣∣1

n

n∑
i=1

a2
ii −

(
y[1 + m1(λ)]

λ − y[1 + m1(λ)]
)2
∣∣∣∣∣≤ E

∣∣∣∣a2
11 −

(
y[1 + m1(λ)]

λ − y[1 + m1(λ)]
)2∣∣∣∣→ 0.

Thus (6.9) follows. �

6.2. Proof of Proposition 3.1

We apply Theorem 7.1 by considering K = 1
2M(M + 1) bilinear forms

u(i)(I + An)u(j)T, 1 ≤ i ≤ j ≤ M,

with

u(i) = (
ξ1(i), . . . , ξn(i)

)
.
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More precisely, with � = (i, j), we are substituting u(i)T for X(�), and u(j)T for Y(�), respectively. Consequently,
x�1 = ξ1(i) and y�1 = ξ1(j) for the application of Theorem 7.1.

We have, by Lemma 6.1,

θ = τ = lim
n

1

n
tr(I + An)

2 = 1 + 2ym1(λ) + ym2(λ),

ω = lim
n

1

n

n∑
i=1

[
(I + An)ii

]2 = 1 + 2ym1(λ) +
(

y[1 + m1(λ)]
λ − y[1 + m1(λ)]

)2

.

Following Theorem 7.1, Rn converges weakly to a symmetric random matrix with zero-mean Gaussian variables
R = (Rij ) with the following covariance function, assuming 1 ≤ i ≤ j ≤ M ,

cov(Rij ,Ri′j ′) = ω
{
E
[
ξ(i)ξ(j)ξ

(
i′
)
ξ
(
j ′)]− ΣijΣi′j ′

}+ (θ − ω)
{
E
[
ξ(i)ξ

(
j ′)]

E
[
ξ
(
i′
)
ξ(j)

]}
+ (θ − ω)

{
E
[
ξ(i)ξ

(
i′
)]

E
[
ξ(j)ξ

(
j ′)]}. (6.11)

6.3. Proof of Proposition 3.2

The aim is to apply Theorem 7.3 to K = 1
2M(M + 1) sesquilinear forms

u(i)(I + An)u(j)∗, 1 ≤ i ≤ j ≤ M,

with

u(i) = (
ξ1(i), . . . , ξn(i)

)
.

More precisely, with � = (i, j), we are substituting u(i)∗ for X(�), and u(j)∗ for Y(�), respectively. Consequently,
x�1 = ξ̄1(i) and y�1 = ξ̄1(j) for the application of Theorem 7.3.

Again by Lemma 6.1,

θ = lim
n

1

n
tr(I + An)

2 = 1 + 2ym1(λ) + ym2(λ),

ω = lim
n

1

n

n∑
i=1

[
(I + An)ii

]2 = 1 + 2ym1(λ) +
(

y[1 + m1(λ)]
λ − y[1 + m1(λ)]

)2

.

Here we need an additional condition which is specific to the complex case. Assume therefore,

τ = lim
n

1

n
tr(I + An)(I + An)

T = 1 + 2ym1(λ) + m4(λ).

Consequently by Theorem 7.3, Rn converges weakly to a zero-mean Hermitian random matrix R = (Rij ). More-
over, the joint distribution of the real and imaginary parts of the upper-triangular bloc {Rij ,1 ≤ i ≤ j ≤ M} is a
2K-dimensional Gaussian vector with covariance matrix

Γ =
(

Γ11 Γ12
Γ21 Γ22

)
, (6.12)

where

Γ11 = 1

4

3∑
j=1

{
2�(Bj ) + Bja + Bjb

}
,

Γ22 = 1

4

3∑
j=1

{−2�(Bj ) + Bja + Bjb

}
,
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Γ12 = 1

2

3∑
j=1

�(Bj ),

and for 1 ≤ i ≤ j ≤ M and 1 ≤ i′ ≤ j ′ ≤ M , with the B-matrices defined in the proposition.

6.4. Proof of Theorem 3.1

Let αk /∈ [1 − √
y,1 + √

y] be fixed. Following Section 3.1, we can assume that the nk packed sample eigenvalues
{λn,j , j ∈ Jk} are solutions of the equation |λ − Kn(λ)| = 0. As λn,j → λk almost surely, we define

δn,j = √
n(λn,j − λk).

We have

λnj I − Kn(λn,j ) = λkI + 1√
n
δn,j I − Kn(λk) − [

Kn(λn,j ) − Kn(λk)
]
.

Furthermore, using A−1 − B−1 = A−1(B − A)B−1, we have

Kn(λn,j ) − Kn(λk) = 1

n
ξ1:nX∗

2

{([
λk + 1√

n
δn,j

]
I − S22

)−1

− (λkI − S22)
−1
}
X2ξ

∗
1:n

= − 1√
n
δn,j

1

n
ξ1:nX∗

2

([
λk + 1√

n
δn,j

]
I − S22

)−1

(λkI − S22)
−1X2ξ

∗
1:n

= − 1√
n
δn,j

[
ym3(λk)Σ + oP (1)

]
.

Combining these estimations and (3.5), (3.6), we have

λnj I − Kn(λn,j ) = λkI − [
1 + ym1(λk)

]
Σ − 1√

n
Rn(λk) + 1√

n
δn,j

[
I + ym3(λk)Σ

]+ oP

(
1√
n

)
. (6.13)

By Section 3.1, Rn(λk) converges in distribution to a M × M random matrix R(λk) with Gaussian entries with a
fully identified covariance matrix. We now follow a method devised in [1] and [2] for limiting distributions of eigen-
values or eigenvectors from random matrices. First, we use Skorokhod strong representation so that on an appropriate
probability space, the convergence Rn(λk) → R(λk) as well as (6.13) take place almost surely. Multiplying both sides
of (6.13) by U from the left and by U∗ from the right yields

U
[
λnj I − Kn(λn,j )

]
U∗ =

⎛⎜⎝
. . . 0 0
0 (λk − [1 + ym1(λk)]αu)Inu 0

0 0
. . .

⎞⎟⎠− 1√
n
URn(λk)U

∗

+ 1√
n

⎛⎜⎝
. . . 0 0
0 δn,j (1 + ym3(λk)αu)Inu 0

0 0
. . .

⎞⎟⎠+ o

(
1√
n

)
.

First, in the right-hand side of the equation and using a bloc decomposition induced by (3.17), we see that all the
non diagonal blocs tend to zero. Next, for a diagonal bloc with index u 	= k, by definition λk − [1 + ym1(λk)]αu 	= 0,
and this is the limit of that diagonal bloc since the contributions from the remaining three terms tend to zero. As
λk − [1 + ym1(λk)]αk = 0 by definition, the kth diagonal bloc reduces to

− 1√
n

[
URn(λk)U

∗]
kk

+ 1√
n
δn,j

(
1 + ym3(λk)αk

)
Ink

+ o

(
1√
n

)
.
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For n sufficiently large, its determinant must be equal to zero,∣∣∣∣− 1√
n

[
URn(λk)U

∗]
kk

+ 1√
n
δn,j

(
1 + ym3(λk)αk

)
Ink

+ o

(
1√
n

)∣∣∣∣= 0,

or equivalently,∣∣−[URn(λk)U
∗]

kk
+ δn,j

(
1 + ym3(λk)αk

)
Ink

+ o(1)
∣∣= 0.

Therefore, δn,j tends to a solution of∣∣−[URn(λk)U
∗]

kk
+ λ

(
1 + ym3(λk)αk

)
Ink

∣∣= 0,

that is, an eigenvalue of the matrix (1 + ym3(λk)αk)
−1R̃kk(λk). Finally, as the index j is arbitrary, all the Jk random

variables
√

n{λn,j − λk, j ≤ Jk} converge almost surely to the set of eigenvalues of the above matrix. Of course, this
convergence also holds in distribution on the new probability space, hence on the original one.

7. A CLT for random sesquilinear forms

The aim of this section is to establish a CLT for random sesquilinear forms as one of the central tools used in the
paper. These results are independent from the previous sections and should have their own interest.

Consider a sequence {(xi, yi)i∈N } of i.i.d. complex-valued, zero-mean random vectors belonging to C
K ×C

K with
a finite moment of the fourth-order. We write

xi = (x�i) =
⎛⎝ x1i

...

xKi

⎞⎠ , X(�) = (x�1, . . . , x�n)
T, 1 ≤ � ≤ K, (7.1)

with a similar definition for the vectors {Y(�)}1≤�≤K . Set ρ(�) = E[ x̄�1y�1].

Theorem 7.1. Let {An = [aij (n)]}n be a sequence of n × n Hermitian matrices and the vectors {X(�),Y (�)}1≤�≤K

are as defined in (7.1). Assume that the following limits exist

ω = lim
n→∞

1

n

n∑
u=1

a2
uu(n),

θ = lim
n→∞

1

n
trA2

n = lim
n→∞

1

n

n∑
u,v=1

∣∣auv(n)
∣∣2,

τ = lim
n→∞

1

n
trAnA

T
n = lim

n→∞
1

n

n∑
u,v=1

a2
uv(n).

Then, the M-dimensional complex-valued random vectors

Zn = (Zn,�), Zn,� = 1√
n

[
X(�)∗AnY(�) − ρ(�) trAn

]
, 1 ≤ � ≤ K, (7.2)

converge weakly to a zero-mean complex-valued vector W whose real and imaginary parts are Gaussian. Moreover,
the Laplace transform of W is given by

EecTW = exp

[
1

2
cTBc

]
, c ∈ C

K, (7.3)
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where the matrix B = B1 + B2 + B3 with

B1 = ω
(
E[x̄�1y�1x̄�′1y�′1] − ρ(�)ρ(�′)

)
, 1 ≤ �, �′ ≤ K,

B2 = (θ − ω)
(
E[x̄�1y�′1]E[x̄�′1y�1]

)
, 1 ≤ �, �′ ≤ K, (7.4)

B3 = (τ − ω)
(
E[x̄�1x̄�′1]E[y�1y�′1]

)
, 1 ≤ �, �′ ≤ K.

The proof of the theorem is postponed to the end of the section. First, we describe some specific applications of the
theorem with their own interest. Note that by definition, the three matrices Bj ’s are symmetrical (complex-valued).

Consider first the real variables case with i.i.d. random vectors {(xi, yi)i∈N } from R
K × R

K , and a sequence of
symmetric matrices {An = [aij (n)]}n. We are then considering K random bilinear forms and consequently, θ = τ .
The matrix B given above is then exactly the limiting covariance matrix of the Gaussian vector W .

Corollary 7.1. Under the same conditions as in Theorem 7.1 but with real random vectors {(xi, yi)i∈N } and symmet-
ric matrices {An}n, the sequence of vectors (Zn)n converges weakly to a zero-mean K-dimensional Gaussian vector
with covariance matrix B .

An interesting application to the case (xi) = (yi) gives the following CLT for random quadratic forms in a straight-
forward way.

Theorem 7.2. Let {An = [aij (n)]}n be a sequence of n × n real symmetric matrices, (xi)i∈N a sequence of i.i.d.
K-dimensional real random vectors, with E[xi] = 0, E[x1x

T
1 ] = (γij ), 1 ≤ i, j ≤ K , and E[‖x1‖4] < ∞. Let the

vectors {X(�)}1≤�≤K be as defined in (7.1). Assume the following limits exist

ω = lim
n→∞

1

n

n∑
u=1

a2
uu(n),

θ = lim
n→∞

1

n
trA2

n.

Then, the M-dimensional random vectors

Zn = (Zn,�), Zn,� = 1√
n

[
X(�)TAnX(�) − γ�� trAn

]
, 1 ≤ � ≤ K, (7.5)

converge weakly to a zero-mean Gaussian vector with covariance matrix D = D1 + D2 where

D1 = ω
(
E
[
x2
�1x

2
�′1
]− γ��γ�′�′

)
, 1 ≤ �, �′ ≤ K,

(7.6)
D2 = (θ − ω)

(
γ��′γ�′� + γ 2

��′
)
, 1 ≤ �, �′ ≤ K.

If all the diagonal elements of the matrices (An) are null, then ω = 0. The limiting covariance matrix D takes a
much simpler form:

D = θ
(
γ��′γ�′� + γ 2

��′
)
, 1 ≤ �, �′ ≤ K.

For the general complex case, we need a special device. Write Zn = Un + iVn. Following Theorem 7.1, (Un,Vn)

converges weakly to a 2K-dimensional Gaussian vector with some covariance matrix Γ . The aim is to identify Γ . We
have

E exp
[
tTUn + sTVn

]→ exp

[
1

2

(
tT, sT)Γ (

t

s

)]
, t ∈ R

K, s ∈ R
K. (7.7)
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On the other hand, from Un = 1
2 (Zn + Z̄n) and Vn = 1

2i (Zn − Z̄n), we have a second expression

E exp
[
tTUn + sTVn

]= E exp

[(
t

2
+ s

2i

)T

Zn +
(

t

2
− s

2i

)T

Z̄n

]
.

Interestingly enough, the last transform can be found by application of Theorem 7.1 to the random sesquilinear forms

Z̃n =
(

Zn�Zn

)
. (7.8)

For ease of the presentation, we need to define more limiting quantities. For 1 ≤ � ≤ K , let σ 2
X,� = E[|x�1|2], σ 2

Y,� =
E[|y�1|2]. We introduce the following matrices

B1a = ω
(
E
[|x�1|2|x�′1|2

]− σ 2
X,�σ

2
X,�′

)
,

B1b = ω
(
E
[|y�1|2|y�′1|2

]− σ 2
Y,�σ

2
Y,�′

)
,

B2a = (θ − ω)
(∣∣E[x̄�1x�′1]

∣∣2),
(7.9)

B2b = (θ − ω)
(∣∣E[ȳ�1y�′1]

∣∣2),
B3a = (τ − ω)

(∣∣E[x�1x�′1]
∣∣2),

B3b = (τ − ω)
(∣∣E[y�1y�′1]

∣∣2).
Here, the indices are 1 ≤ �, �′ ≤ K . By definition, all these matrices are real and symmetrical. Let us also define the
2K × 2K matrices

B̃j =
(

Bj Bja

Bjb
�Bj

)
, j = 1,2,3. (7.10)

Theorem 7.3. Consider the M-dimensional complex-valued random vectors Zn = (Zn,�) defined in Theorem 7.1.
Under the the same conditions as in that theorem, the real and the imaginary parts (Un,Vn) of Zn converge weakly
to a 2K-dimensional Gaussian vector with covariance matrix

Γ =
(

Γ11 Γ12
Γ21 Γ22

)
, (7.11)

with

Γ11 = 1

4

3∑
j=1

{
2�(Bj ) + Bja + Bjb

}
,

Γ22 = 1

4

3∑
j=1

{−2�(Bj ) + Bja + Bjb

}
,

Γ12 = 1

2

3∑
j=1

�(Bj ).

Proof. For the vector of sesquilinear forms Z̃n in (7.8), one can check that the limiting matrix B in Theorem 7.1 is to
be replaced by

B̃ =
( ∑3

j=1 Bj

∑3
j=1 Bja∑3

j=1 Bjb

∑3
j=1

�Bj .

)
.
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Then following this theorem, for c̃ = ( tT

2 + sT

2i ,
tT

2 − sT

2i )
T,

E exp
[̃
cTZ̃n

]→ exp

{
1

2

(
tT

2
+ sT

2i
,
tT

2
− sT

2i

)
B̃

(
t/2 + s/(2i)
t/2 − s/(2i)

)}
.

By identifying this formula to Eq. (7.7), we get the required form of Γ . �

7.1. Proof of Theorem 7.1

It is sufficient to establish the CLT for the sequence of linear combinations of random Hermitian forms

K∑
�=1

c�X(�)∗AnY(�),

where the coefficients (c�) ∈ C
K are arbitrary. Notice that E[X(�)∗AnY(�)] = ρ(�) tr(An), where ρ(�) = E[x̄�1y�1].

First, by a classical procedure of truncation and renormalization (see Section 7.2 for details), we can, without loss
of generality, assume that there is a sequence εn ↓ 0 such that

1 ≤ i ≤ n, ‖xi‖ ∨ ‖yi‖ ≤ εnn
1/4. (7.12)

We will use the method of moments. Define, while dropping the index n in the coefficients of An,

ξn = 1√
n

K∑
�=1

c�

[
X(�)∗AnY(�) − ρ(�) trAn

]= 1√
n

∑
e

aeψe,

where e = (u, v) ∈ {1, . . . , n}2 and

ψe =
{∑K

�=1 c�

[
x̄uyu − ρ(�)

]
, e = (u,u),∑K

�=1 c�x̄uyv, e = (u, v), u 	= v.

Let k ≥ 1 be a given integer. We have

nk/2ξk
n =

∑
e1,...,ek

ae1 · · ·aek
ψe1 · · ·ψek

.

To each term in the sum we associate a directed graph G by drawing an arrow u → v for each factor ej =
(u, v). The set of vertices is then a subset of {1, . . . , n}. Therefore, to a loop u → u corresponds the prod-
uct auuψu→u(�) = auu

∑K
�=1 c�[x̄u(�)yu(�) − ρ(�)] and to an edge u → v with u 	= v corresponds the product

auvψu→v = auv

∑K
�=1 c�x̄u(�)yv(�). In other words,

nk/2ξk
n =

∑
G

aGψG, aG =
∏
e∈G

ae,ψG =
∏
e∈G

ψe.

We now consider the collection of connected sub-graphs of G. These connected sub-graphs can be classified into
two types.

• Type-I sub-graphs. We call C a Type-I connected sub-graph of G if C contains loops only. In particular C has a
unique vertex. The set of all the m1 Type-I connected sub-graphs is denoted by F1, and the degrees of their vertexes
by μ1, . . . ,μm1 , respectively.

If μj = 2 for some vertex j in a sub-graph C, then EaGψG = 0 because of independence. Therefore we need
only consider those graphs G whose m1 Type-I sub-graphs have all their vertices with degrees μj ≥ 4. The contri-
butions from all these sub-graphs to the moment part ψG are then bounded by∣∣∣∣E ∏

C∈F1

ψC

∣∣∣∣≤ K
(
εnn

1/4)∑m1
i=1(μi−4)

. (7.13)
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• Type-II sub-graphs. A connected sub-graph containing at least one arrow u → v with u 	= v is called a Type-II
sub-graph. The set of all these m2 components is denoted by F2. For each Cs ∈ F2, let us be the number of its
vertices whose degrees are denoted by γjs , j = 1, . . . , us . As in Type-I, we can also omit the case where γjs = 1
for some vertex j . Contributions from all the m2 Type-II components to ψG are then bounded by∣∣∣∣E ∏

Cs∈F2

ψCs

∣∣∣∣≤ K
(
εnn

1/4)∑m2
s=1

∑us
j=1(γjs−2)

. (7.14)

Combining (7.13) and (7.14) by noticing the relation
∑

i μi +∑
j,s γjs = 2k, the overall contribution from random

variables has a bound

|EψG| ≤ K
(
εnn

1/4)∑m1
i=1(μi−4)+∑m2

s=1
∑us

j=1(γjs−2) = K
(
εnn

1/4)2k−4m1−2
∑m2

s=1 us . (7.15)

Next the estimation of the weight part aG will be established. Since
∑n

j=1 |ajj |w = O(n) holds for any positive
integer w, thus

∑
s1,...,sm1

∏
C∈F1

|aC | =
∑

s1,...,sm1

m1∏
i=1

|asisi |μi/2 ≤
m1∏
i=1

(
n∑

k=1

|akk|μi/2

)
≤ Knm1 . (7.16)

For a given Type-II component Cs with ts edges, e1, . . . , ets and us vertices, v1, . . . , vus , we extract a spanning tree
from Cs and assume its edges are e1, . . . , eus−1, without loss of generality. However, we need to distinguish two
situations for the remaining sub-graph after extraction of the spanning tree. Let ρ(An) be the spectral norm of the
matrix An.

Case 1. The remaining sub-graph has at least one edge u → v with u 	= v. Note that∑
v1

|av1v2 |2 ≤ ρ(An)
2. (7.17)

This, via induction, implies that we have for the tree part

∑
v1,...,vus

us−1∏
j=1

|aej
|2 ≤ ρ(An)

2us−2n,

and for the remaining sub-graph

∑
v1,...,vus

ts∏
j=us

|aej
|2 ≤ ρ(An)

2ts−2us+2nus−1.

In the second inequality above, we use the fact that ts > us as all degrees of vertex of Type-II are no less than 2. It
follows that

∑
v1,...,vus

ts∏
j=1

|aej
| ≤

( ∑
v1,...,vus

us−1∏
j=1

|aej
|2

∑
v1,...,vus

ts∏
j=us

|aej
|2
)1/2

≤ ρ(An)
ts nus/2, (7.18)

which gives, together with (7.16), that∑
G

|aG| =
∑
G

∏
C∈F1

|aC |
∏

Cs∈F2

|aCs | ≤ Knu1/2+···+um2 /2+m1 . (7.19)
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Combining (7.15) and (7.19), we obtain

n−k/2
∣∣∣∣E∑

G

aGψG

∣∣∣∣ ≤ n−k/2
∑
G

|aG||EψG| ≤ Kn−k/2(εnn
1/4)2k−4m1−2

∑m2
s=1 us

∑
G

|aG|

≤ Kε
2k−4m1−2

∑m2
s=1 us

n . (7.20)

Case 2. The remaining sub-graph does not contain any edge u → v with u 	= v, i.e., all remaining edges are loops.
Since the degree of each vertex of a Type-II component is no less than two, there must exist at least two vertices whose
degrees are more than two. Thus (7.14) turns into∣∣∣∣E ∏

Cs∈F2

ψCs

∣∣∣∣≤ K
(
εnn

1/4)∑m2
s=1

∑us
j=1(γjs−2)−2m2 . (7.21)

We now need to consider two possibilities.
(a) If all vertices of a connected sub-graph have a loop, then similar to (7.18), we have

∑
v1,...,vus

ts∏
j=1

|aej
| ≤

( ∑
v1,...,vus

us−1∏
j=1

|aej
|2

∑
v1,...,vus

ts∏
j=us

|aej
|2
)1/2

≤ ρ(An)
ts n(us+1)/2

and then (7.19) becomes∑
G

|aG| ≤ Kn(u1+1)/2+···+(um2 +1)/2+m1 . (7.22)

But, at this point, there must exist a vertex such that its degree exceeds three and so (7.21), correspondingly, changes
into ∣∣∣∣E ∏

C∈F2

ψC

∣∣∣∣≤ K
(
εnn

1/4)∑m2
s=1

∑us
j=1(γjs−2)−4m2 . (7.23)

By (7.22) and (7.23), similar to (7.20), we get

n−k/2
∣∣∣∣E∑

G

aGψG

∣∣∣∣≤ Kn−m2/2ε
2k−4m1−2

∑m2
s=1 us−4m2

n ≤ Kn−m2/2. (7.24)

The last inequality results from the fact that by construction, the exponent of εn is nonnegative. Consequently, the
contributions from such graphs can be neglected.

(b) If not all vertices of a connected sub-graph have a loop, then

∑
v1,...,vus

ts∏
j=1

|aej
| ≤ ρ(An)

ts nus/2,

and, correspondingly, (7.19) becomes∑
G

|aG| ≤ Knu1/2+···+um2 /2+m1 . (7.25)

To see it, as an example, we consider the following∣∣∣∣ ∑
v1,v2,v3

av1v2av1v3av2v2av3v3

∣∣∣∣ = ∣∣∣∣ ∑
v2,v3

bv2v3av2v2av3v3

∣∣∣∣≤ (∑
v2,v3

|bv2v3 |2
)1/2(∑

v3

a2
v3v3

)1/2(∑
v2

a2
v2v2

)1/2

= O
(
n3/2),
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where

bv2v3 =
∑
v1

av1v2av1v3 =
∑
v1

āv2v1av1v3 = ( �AnAn)v2v3 .

For general cases, we can verify the order by induction. Using (7.13), (7.21) and (7.25), similar to (7.20), we get

n−k/2
∣∣∣∣E∑

G

aGψG

∣∣∣∣≤ Kn−m2/2ε
2k−4m1−2

∑m2
s=1 us−2m2

n ≤ Kn−m2/2. (7.26)

So the contribution from this kind of graph can also be neglected. Here we remind the reader that (7.20) is obtained by
assuming all m2 Type-II components belonging to case 1 and that (7.24) or (7.26) holds if all m2 Type-II components
belong to case 2. If some Type-II components of the graph G belong to case 1 and the others pertain to case 2, by a
similar argument to the above, one can show that

n−k/2
∣∣∣∣E∑

G

aGψG

∣∣∣∣= o(1). (7.27)

Therefore, if some item involves the connected sub-graph of case 2, the contribution from this item can then be
omitted.

In summary, in conjunction with (7.20) and the meanings of 2k,4m1,2
∑m2

s=1 us , we know that the graphs leading
to a non negligible term are as follows: then degrees of vertices of all its Type-I components must be four; its Type-II
components all fall into case 1 such that all its vertices are of degree two. More precisely, we know that only the
following isomorphic classes give a dominating term:

• k1 double loops u → u with terms a2
uu[
∑K

�=1 c�(x̄�uy�u − ρ(�))]2;
• k2 simple cycles u → v, v → u with terms |auv|2[∑K

�=1 x̄�uy�v][∑K
�=1 x̄�vy�u];

• k3 double arrows u → v,u → v with terms a2
uv[
∑K

�=1 c�x̄�uy�v]2.

In addition, the degrees of vertices satisfy

4(k1 + k2 + k3) = 2k,

which implies that k must be even. Therefore, let k = 2p be an even integer. We notice that here, the relations on the
edges, namely 2(k1 + k2 + k3) = k, hold automatically. Thus, we can claim that

Eξ
2p
n = 1

np

∑
k1+k2+k3=k

(2p)!
k1!k2!k3! × C1 × C2 × C3 + o(1), (7.28)

where

C1 =
k1∏

j=1

E

[
a2
uj uj

{
K∑

�=1

c�

(
x̄�uj

y�uj
− ρ(�)

)}2]
, {uj } ⊂ {1,2, . . . , n},

C2 =
k2∏

j=1

E

[
|auj vj

|2
{

K∑
�=1

c�(x̄�uj
y�vj

)

}{
K∑

�=1

c�(x̄�vj
y�uj

)

}]
, {uj , vj } ⊂ {1,2, . . . , n},

C3 =
k3∏

j=1

E

[
a2
uj vj

{
K∑

�=1

c�x̄�uj
y�vj

}2]
, {uj , vj } ⊂ {1,2, . . . , n}.
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Let

α1 = E

[
K∑

�=1

c�

(
x̄�1y�1 − ρ(�)

)]2

, (7.29)

α2 = E

[{
K∑

�=1

c�(x̄�1y�2)

}{
K∑

�=1

c�(x̄�2y�1)

}]
, (7.30)

α3 = E

[
K∑

�=1

c�x̄�1y�2

]2

. (7.31)

By (7.20) or (7.27) again, along with inclusion-exclusion principle, (7.28) turns into

Eξ
2p
n = 1

np
(2p − 1)!!

×
∑

k1+k2+k3=k

(p)!
k1!k2!k3!

(k1,k2,k3)∏
(j1,j2,j3)=(1,1,1)

α
k1
1 α

k2
2 α

k3
3 a2

uj1uj1
|auj2vj2

|2a2
uj3vj3

+ o(1)

= 1

np
(2p − 1)!!

(
α1

n∑
u=1

a2
uu + α2

∑
u 	=v

|auv|2 + α3

∑
u 	=v

a2
uv

)p

+ o(1).

7.2. Truncation

The truncation and renormalization under the fourth-moment condition is by now standard, see e.g. [3]. For our
purpose and for ease of presentation, we give full details in the case of K = 1. The general case goes through in a
same manner.

We aim to the replacement of the entries of x and y with truncated, centralized, normalized variables. Let x̂ =
(x̂1, . . . , x̂n)

T and x̃ = (x̃1, . . . , x̃n)
T, where

x̂j = xj I
(|xi | ≤ εnn

1/4), x̃j = x̂j − Ex̂j , j = 1, . . . , n.

Since E|x1|4 < ∞, for any ε > 0

nP
(|x1| ≥ εn1/4)→ 0,

and then, because of the arbitrariness of ε, there exists a positive sequence εn such that

nP
(|x1| ≥ εnn

1/4)→ 0 and εn → 0.

It follows that

P
(
x∗Any 	= x̂∗Any

)≤ nP
(|x1| ≥ εnn

1/4)= o(1). (7.32)

For h = 1,2, . . . , find nh(nh > nh−1), for all n > nh with

h12
∫

|x1|≥ 4√n/h

|x1|4 < 2−h.

Let ρn = 1
h

for all n ∈ [nh,nh+1], thus, as n → ∞, ρn → 0 and

ρ−12
n

∫
|x1|≥ 4√nρn

|x1|4 → 0. (7.33)
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Now, for each n, let γn be the larger of ρn and εn. However, in the following we still use the notation εn instead of γn.
By Markov inequality and Burkholder inequality

P
(∣∣x̂∗Any − x̃∗Any

∣∣≥ δ
) ≤ ∣∣E[x1I

(|x1| ≤ εnn
1/4)]∣∣4 E|∑n

i=1 yi(
∑n

j=1 aji)|4
δ4

≤ KE
[|x1|4I

(|x1| ≥ εnn
1/4)]n−2ε−12

n

[∑n
i=1 |∑n

j=1 aji |2]2

δ4

≤ KE|x1|4I
(|x1| ≥ εnn

1/4)ε−12
n , (7.34)

where we have used the inequality

n∑
i=1

∣∣∣∣∣
n∑

j=1

aji

∣∣∣∣∣
4

≤
[

n∑
i=1

∣∣∣∣∣
n∑

j=1

aji

∣∣∣∣∣
2]2

and the fact

n∑
i=1

∣∣∣∣∣
n∑

j=1

aji

∣∣∣∣∣
2

= O(n).

From (7.34) and (7.33) we have

x̂∗Any − x̃∗Any
i.p.−→ 0. (7.35)

Next, we need to normalize the truncated variables x̃i ’s. It is evident that limn→∞ E|x̃1|2 = 1 and that∣∣1 −
√

E|x̃1|2
∣∣ ≤ ∣∣1 − E|x̃1|2

∣∣≤ 2E
[|x1|2I

(|x1| ≥ εn
4
√

n
)]

≤ 2ε−2
n n−1/2

E
[|x1|4I

(|x1| ≥ εn
4
√

n
)]

, (7.36)

which, together with (7.33), gives that∣∣∣∣(1 −
√

E|x̃1|2
) trAn√

n

∣∣∣∣≤ 2ε−2
n E|x1|4I

(|x1| ≥ εn
4
√

n
)→ 0. (7.37)

Combining (7.32), (7.35) and (7.37), it is now sufficient to consider

1√
n

(
x̃∗Any√
E|x̃1|2

− ρ trAn

)

instead of 1√
n
(x∗Any − ρ trAn). Moreover, it is not difficult to see that we can substitute ρ′ = cov(x̃1/

√
E|x̃1|2, y1)

for ρ without alternating the weak limit.
The truncation, centralization and normalization of y can be completed with a similar argument as above.

In the sequel, for simplicity, we shall suppress all superscripts on the variables and suppose that |xi | ≤ εnn
1/4,

|yi | ≤ εnn
1/4,Exi = Eyi = 0, E|xi |2 = E|yi |2 = 1, E|x1|4 < ∞, E|y1|4 < ∞ and we still denote by ρ the covari-

ance between the transformed variables.
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[10] V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues for some sets of random matrices. Math. USSR-Sb 1 (1967) 457–483.
MR0208649

[11] M. L. Mehta. Random Matrices. Academic Press, New York, 1991. MR1083764
[12] D. Paul. Asymptotics of the leading sample eigenvalues for a spiked covariance model. Statistica Sinica 17 (2007) 1617–1642.
[13] S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Stat. Soc. Ser. B 53

(1991) 683–690. MR1125725


