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This paper studies the CBP, a model-theoretic property first discovered by Pillay and
Ziegler. We first show a general decomposition result of the types of canonical bases,
which one can think of as a sort of primary decomposition. This decomposition is then
used to show that existentially closed difference fields of any characteristic have the
CBP. We also derive consequences of the CBP, and use these results for applications to
differential and difference varieties, and algebraic dynamics.
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0. Introduction

In [16], Pillay gives a model-theoretic translation of a property enjoyed by compact

complex manifolds (and proved by Campana and by Fujiki). With Ziegler, he then

shows in [17] that various algebraic structures enjoy this property (differentially

closed fields of characteristic 0; existentially closed difference fields of characteristic

0). As with compact complex manifolds, their proof has as immediate consequence

the dichotomy for types of rank 1 in these algebraic structures. This property will

later be called the Canonical Base Property (CBP for short) by Moosa and Pillay

[14]. We will state the precise definition of the CBP later (see Definition 1.5), as

it requires several model-theoretic definitions, but here is a rough idea. Let us

assume that we have good notions of independence, genericity and dimension, and

let S ⊂ X × Y be definable. Viewing S as a family of definable subsets Sx of Y ,

assume that for x �= x′ in X , Sx and Sx′ do not have the same generics, and have

finite dimension. Fix some a ∈ X , a generic b of Sa. The CBP then gives strong

restrictions on the set Sb = {x ∈ X | b ∈ Sx}: for instance in the complex manifold

case, it is Moishezon, and in the differential case it is isoconstant.

The aim of this paper is threefold: give reductions to prove the CBP; derive

consequences of the CBP; show that existentially closed difference fields of positive
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characteristic have the CBP. We then give some applications of these results to

differential and difference varieties.

We postpone a detailed description of the model-theoretic results of this paper

to the middle of Sec. 1 and to the beginning of Sec. 2, but we will now describe two of

the algebraic applications. First, an algebraic consequence of Theorems 3.5 and 2.1.

We work in some large existentially closed difference field (U , σ), of characteristic
p; if p > 0, Frob denotes the map x �→ xp and if p = 0, the identity map.

Theorem 3.5′. Let A,B be difference subfields of U intersecting in C, with algebraic

closures intersecting in Calg, and with tr.deg(A/C) < ∞. Let D ⊂ B be generated

over C by all tuples d such that there exist an algebraically closed difference field F

containing C and free from B over C, and integers n > 0 and m such that d ∈ F (e)

for some tuple e of elements satisfying σnFrobm(x) = x. Then A and B are free

over D.

The purely model theoretic result, Proposition 2.10, yields descent results for

differential and difference varieties (Proposition 4.3 and Theorem 4.10). We state

here a consequence in terms of algebraic dynamics:

Theorem 4.11. Let K1,K2 be fields intersecting in k and with algebraic closures

intersecting in kalg; for i = 1, 2, let Vi be an absolutely irreducible variety and

φi : Vi → Vi a dominant rational map defined over Ki. Assume that K2 is a regular

extension of k and that there are an integer r ≥ 1 and a dominant rational map

f : V1 → V2 such that f ◦ φ1 = φ
(r)
2 ◦ f (where φ

(r)
2 denotes the map obtained

by iterating r times φ2). Then there is a variety V0 and a dominant rational map

φ0 : V0 → V0, all defined over k, a dominant map g : V2 → V0 such that g ◦ φ2 =

φ0 ◦ g and deg(φ0) = deg(φ2).

The particular way this result is stated is motivated by a question of Szpiro

and Tucker concerning descent for algebraic dynamics, arising out of Northcott’s

theorem for dynamics over function fields. Assume that K2 is a function field over

k, and that some limited a subset S of V2(K2) satisfies that
⋂n

j=0 φ
(j)(S) is Zariski

dense in V2 for every n > 0. One can then find (V1, φ1), r and f as above, so that

our result applies to give a quotient (V0, φ0) of (V2, φ2) defined over the smaller

field k and with deg(φ0) = deg(φ2). Under certain hypotheses, one can even have

this g be birational, see [5, 6].

This note originally contained a proof that a type analyzable in terms of one-

based types is one-based. However, Wagner [19] found a much nicer proof, working

in a more general context, so that this part of the note disappeared. A result of

independent interest, Proposition A.3, obtained as a by-product of the study of one-

based types and appearing in the Appendix, tells us that if p is a type of SU-rank

ωα for some ordinal α and with algebraically closed base of finite SU-rank, then

aSee [5] for a definition.
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there is a smallest algebraically closed set over which there is a type of SU-rank ωα

non-orthogonal to p. The condition of finite rank of the base is necessary.

The paper is organized as follows. Section 1 contains all definitions and prelimi-

nary results on supersimple theories, as well as the proof of the decomposition result

Theorem 1.16. Section 2 contains various results which are consequences of the CBP.

Section 3 shows that if K is an existentially closed difference field of any character-

istic, then Th(K) has the CBP. Section 4 contains some applications of the CBP

to differential and difference varieties. The paper concludes with the Appendix.

Some words on the chronology of the paper and results on the CBP. It all

started with the result of Pillay and Ziegler [17], a result inspired by a result of

Campana on compact complex spaces (see [16]), and which prompted me to look at

the general case. The first version of this paper, which contained only Theorem 3.5,

an old version of Theorem 2.1 and Proposition A.3, as well as the proof that a

type analyzable in one-based types was one-based, was written in 2002. Almost

instantly the result on analyzable one-based types was generalized by Wagner. The

paper was submitted, but not accepted for several years. In the meantime, Moosa

and Pillay, having read and believed the preprint, further investigated the CBP in

[14]. Reading their preprint alerted me to the fact that the CBP might imply other

stronger properties, as suggested by the fact that compact complex analytic spaces

had the UCBP. Thus the material in Sec. 2 starting from Lemma 2.3, came later

(end of 2008, and 2011). Independently, Prerna Juhlin ([11]) has obtained several

results on theories with the CBP in her doctoral thesis (2010). Moosa studies in

[13] variants of internality in the presence of the CBP. Palaćın and Wagner continue

and generalize the study of the CBP in [15]. Hrushovski ([9]) gives an example of

an ℵ1-categorical theory which does not have the CBP. This example now appears

in a paper by Hrushovski, Palaćın and Pillay [10].

1. Results on Supersimple Theories

Setting. We work in a model M (sufficiently saturated) of a complete theory T ,

which is supersimple and eliminates imaginaries. The results given below generalize

easily to a simple theory eliminating hyperimaginaries, provided that some of the

sets considered are ranked by the SU-rank.

Given (maybe infinite) tuples a, b ∈ M , we denote by Cb(a/b) the smallest

algebraically closed subset of M over which tp(a/b) does not fork. Since our theory

is supersimple, it coincides with the algebraic closure (inMeq) of the usual canonical

basis Cb(a/b) of tp(a/b), and is contained in acl(b). For classical results on canonical

bases and supersimple theories see e.g. Sec. 3.3 and Secs. 5.1–5.3 of [18].

Remark 1.1. We will use repeatedly the following consequences of our hypotheses

on T :

(1) Let B ⊂ M , a ∈ M , and (an)n∈N a sequence of B-independent realizations of

tp(a/B). Then for some m, Cb(a/B) is contained in acl(a1 · · · am); for any n,

acl(a1 · · · an) ∩B ⊆ Cb(a/B).
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(2) Let B ⊂ M , a ∈ M , and (an)n∈N a sequence of B-independent realizations

of tp(a/B). Let m be minimal such that C = Cb(a/B) ⊆ acl(a1 · · · am).

Then SU(a1/a2 · · ·am) > SU(a/B): otherwise a1 |�a2···am
C would imply C ⊆

acl(a2 · · · am), and contradict the minimality of m.

(3) If A and B are algebraically closed subsets of M intersecting in C, and D

is independent from AB over C, then acl(DA) ∩ acl(DB) = acl(DC) (if e ∈
acl(DA) ∩ acl(DB), then Cb(De/AB) ⊆ A ∩B = C).

Internality and analyzability. In what follows, we will assume that S is a set of

types with algebraically closed base and which is closed under Aut(M/acl(∅))-
conjugation. Then non-orthogonality generates an equivalence relation on the reg-

ular types in S. For more details, see Sec. 3.4 of [18].

Recall that if a ∈ M and A ⊆ M , then tp(a/A) is S-internal [respectively,
almost-S-internal ] if there is some set B = acl(B) containing A and independent

from a over A, and a tuple b1, . . . , bn such that a ∈ dcl(Bb1 · · · bn) [respectively,

a ∈ acl(Bb1 · · · bn)], and each bi realizes a type which is in S and has base contained

in B.

tp(a/A) is S-analyzable if there are a1, . . . , an such that acl(Aa1 · · · an) =

acl(Aa) and each tp(ai/Aa1 · · · ai−1) is S-internal (or equivalently, each

tp(ai/Aa1 · · · ai−1) is almost-S-internal).

Observation 1.2. Let A = acl(A) ⊂ M .

(1) If tp(ai/A) is almost-S-internal for i = 1, . . . , n, then so is tp(a1 · · · an/A).
(2) If tp(a/A) is almost-S-internal, and b ∈ acl(Aa), then tp(b/A) is almost-S-

internal.

(3) If S′ is a set of types which are almost-S-internal, and if p is almost-S′-internal,
then p is almost-S-internal.

(4) Similarly for S-analyzability.
(5) Let S1, S2 ⊂ S be sets of types of SU-rank 1 which are closed under Aut(M)-

conjugation. If all types in S1 are orthogonal to all types in S2 (denoted by

S1 ⊥ S2) and qi is Si-analyzable for i = 1, 2, then all extensions of q1 are

orthogonal to all extensions of q2.

One-basedness . Let S ⊆ Mk be A-invariant. Then S is one-based (over A) if when-

ever b is a tuple of elements of S, and B ⊇ A then b is independent from B over

acl(Ab) ∩ acl(B). A type p (over A) is one-based if the set of its realizations is

one-based over A.

Fact 1.3. (see [19]) (1) Let p be a type, and q a non-forking extension of p. Then p

is one-based if and only if q is one-based. One-basedness is preserved under Aut(M)-

conjugation.

(2) A union of one-based sets is one-based.

(3) A type analyzable by one-based types is one-based.
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Non-orthogonality and internality. Let A = acl(A) ⊂ M , and a a tuple in M , with

SU(a/A) = β + ωα for some α, β. Then there is B = acl(B) containing A and

independent from a over A, and b such that SU(b/B) = ωα and b |�/Ba (see [18],

5.1.12). Then C = Cb(Bb/Aa) is contained in the algebraic closure of independent

realizations of tp(Bb/acl(Aa)), and therefore its type over A is almost internal to

the set of conjugates of tp(b/B) over A.

If tp(b/B) is one-based, then tp(C/A) is one-based (by Fact 1.3(3)), so that

acl(Bb) and C are independent over their intersection D, and therefore C = D.

Since SU(b/B) = ωα, a standard computation gives SU(C/A) = ωα.

Fact 1.4. Every type of finite SU-rank has a semi-minimal analysis, i.e. given

A = acl(A) and a of finite SU-rank over A, there are tuples a1, . . . , an such that

acl(Aa1 · · · an) = acl(Aa), and for every i, either tp(ai/Aa1 · · ·ai−1) is one-based of

SU-rank 1, or it is internal to the set of conjugates of some non-one-based type of

SU-rank 1.

Definition 1.5. Let T be a simple theory, which eliminates imaginaries and hyper-

imaginaries. The theory T has the CBP if whenever A and B are algebraically closed

sets of finite SU-rank over their intersection, and A = Cb(B/A), then tp(A/B) is

almost-S-internal, where S is the set of types of SU-rank 1 with algebraically closed

base. (Actually, as we will see in Theorem 1.16, it suffices to take for S the set of

non-one-based types of SU-rank 1 with algebraically closed base.)

One can also restrict this definition to smaller families of types: let P be a

family of types of finite SU-rank and with algebraically closed base. We say that

P has the CBP if whenever D is algebraically closed, b is a tuple of realizations of

types in P with base contained in D, and A = Cb(Db/AD), then tp(A/acl(Db)) is

almost-S-internal, for the family S ⊂ P of types in P of SU-rank 1 [and which are

not one-based]. Thus Pillay and Ziegler show in [17] that the family of very thin

types in separably closed fields of finite degree of imperfection has the CBP. See

the concluding remarks at the end of Sec. 2 for a discussion.

Definition 1.6. Let p and q be types. We say that p is hereditarily orthogonal to

q if every extension of p is orthogonal to q.

Lemma 1.7. Let E,B ⊂ M be algebraically closed sets, b ∈ M a tuple. Assume that

tp(b/B) is almost-S-internal, E = Cb(Bb/E), and S is closed under Aut(M/E)-

conjugation. If A = Cb(B/E), then tp(E/A) is almost-S-internal.

Proof. Let (B1b1), . . . , (Bnbn) be realizations of tp(Bb/E) which are independent

over E and such that E ⊆ acl(B1b1 · · ·Bnbn). Since B |�AE, we get B1 · · ·Bn |�AE;

Observation 1.2(3) then gives the result.

Lemma 1.8. Let E,F ⊂ M be algebraically closed sets, with Cb(E/F ) = F . If

E0 = Cb(F/E), then F = Cb(E0/F ).
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Proof. Let F0 = Cb(E0/F ). Then E0 |�F0
F and E |�E0

F , which imply E |�E0F0
F

(since F0 ⊆ F ) and E |�F0
F by transitivity. Hence F0 = F .

Lemma 1.9. Let S1 and S2 be sets of types of SU-rank 1 closed under Aut(M)-

conjugation, with S1 ⊥ S2. Assume that tp(Ei) is Si-analyzable for i = 1, 2, and that

D = acl(D) ⊆ acl(E1E2). Let Di = D ∩ acl(Ei) for i = 1, 2. Then D = acl(D1D2).

Proof. Without loss of generality, each Ei is algebraically closed. Since Cb(E1/D)

realizes an S1-analyzable type, it equalsD1 and henceD |�D1
E1. AsD ⊆ acl(E1E2),

this implies that tp(D/D1) is S2-analyzable. Hence so is tp(D/D1D2). Similarly,

D |�D2
E2 and tp(D/D1D2) is S1-analyzable. Our hypothesis on the orthogonality

of the members of S1 and those of S2 then implies D ⊆ acl(D1D2): a type which is

S1-analyzable and S2-analyzable must be algebraic.

Lemma 1.10. Let S be a set of types of SU-rank 1, which is closed under Aut(M)-

conjugation. Let B ⊂ F and A be algebraically closed sets such that tp(A) and tp(B)

are almost-S-internal (respectively, S-analyzable), and B is maximal contained in

F with this property.

(1) Then acl(AB) is the maximal subset of acl(AF ) whose type is almost-S-internal
(respectively, S-analyzable).

(2) Let G be independent from F . Then acl(GB) is the maximal subset of acl(GF )

whose type over G is almost-S-internal (respectively, S-analyzable).

Proof. (1) Let d ∈ acl(AF ) be such that tp(d) is almost-S-internal. Then so is

the type of Cb(Ad/F ); hence Cb(Ad/F ) ⊆ B and d ∈ acl(AB). Same proof for

S-analyzable.
(2) Let e ∈ acl(GF ) realize an almost-S-internal type over G. As G |�F , Cb(Ge/F )

realizes an almost-S-internal type, hence is contained in B. Hence Ge |�BF , which

implies e ∈ acl(GB). Same proof for S-analyzable.

The following result is well known, but for lack of a reference, we will give the

proof.

Lemma 1.11. Let p and q be types over sets A and B respectively, and assume

that p �⊥ q. Then for some integer � there are realizations a0, . . . , a� of p, b0, . . . , b�
of q, such that the tuples ai are independent over A, the tuples bj are independent

over B,

a0 · · · a� |�AB, b0 · · · b� |�BA and a0 · · ·a� |�/AB b0 · · · b�.

Proof. By assumption there are some C containing A and B, and realizations a of

p, b of q such that a |�AC, b |�BC and a |�/C b. Let D = Cb(a, b/C). Then for some

� there are independent realizations (ai, bi), i = 1, . . . , �, of tp(a, b/C) such that
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D ⊂ acl(ABa1 · · · a�b1 · · · b�) (by Remark 1.1(1)); we may choose these realizations

to be independent from (a, b) := (a0, b0) over C. Then

a0 |�/ABa1···a�b1···b� b0.

As a |�AC, b |�BC and C contains AB, the tuples ai and bj also satisfy the required

first four conditions. Transitivity of independence then implies

a0 · · · a� |�/AB b0 · · · b�.

Notation 1.12. Let p be a type of SU-rank 1 over some algebraically closed set,

and let C = acl(C). We denote by S(p, C) the smallest set of types of SU-rank 1

with algebraically closed base, which contains p and is closed under Aut(M/C)-

conjugation. We write S(p) for S(p, ∅).

Remark 1.13. Let p and q be types of SU-rank 1, with algebraically closed base A

and B respectively. Certainly if q is almost-{p}-internal, then p �⊥ q. If A = B, then

the converse holds: p �⊥ q iff q is almost-{p}-internal (iff p is almost-{q}-internal).
If A �= B, then p �⊥ q implies that q is almost-S(p,B)-internal, since any two

realizations of q are in the same Aut(M/B)-orbit; but in general, q will not be

almost-{p}-internal.
In particular, if q �⊥ p, then q is almost-S(p)-internal. Hence,

either S(p) ⊥ S(q), or every member of S(p) is S(q)-internal
(and every member of S(q) is S(p)-internal).

In the rest of the first two sections of the paper, the letters S, S ′, S1, etc. will

always denote sets of SU-rank 1 types with algebraically closed base.

We now start towards a proof of Theorem 1.16. It will reduce the problem of

showing the CBP to showing it for {p}-analyzable types when p is a type of SU-

rank 1 with algebraically closed base. This reduction is essential in the proof that

existentially closed difference fields of positive characteristic have the CBP. We

conclude the section with small partial results.

Proposition 1.14. Let F and E be algebraically closed sets such that F ∩ E =

C, SU(E/C) and SU(F/C) are finite, Cb(E/F ) = F and Cb(F/E) = E.

There are non one-based types p1, . . . , pm of SU-rank 1, algebraically closed sets

E1, . . . , Em, F1, . . . , Fm such that for i = 1, . . . ,m and letting Si = S(pi, C),

(i) tp(Ei/C) and tp(Fi/C) are Si-analyzable, Cb(Ei/Fi) = Fi and Cb(Fi/Ei) =

Ei,

(ii) acl(E1 · · ·Em) = E and acl(F1 · · ·Fm) = F .

(iii) The sets Ei are independent over C, as well as the sets Fi.

Proof. Assume the result is false, and take a counterexample with SU(EF/C)

minimal among all possible (E,F,C), and among those, with SU(F/C)+SU(E/C)

minimal.
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Let p1, . . . , pm be types of SU-rank 1 with algebraically closed base, which are

pairwise orthogonal, such that each pi is non-orthogonal to tp(E/C) or to tp(F/C),

and such that any SU-rank 1 type which is non-orthogonal to one of tp(E/C),

tp(F/C), is non-orthogonal to one of the types pi (see Sec. 5.2 in [18]). We let

Si = S(pi, C), and Ei and Fi the maximal subsets of E and F respectively such

that tp(Ei/C) and tp(Fi/C) are Si-analyzable. We need to show that no pi is one-

based, the second part of item (i), and item (ii) (item (iii) is immediate since the

types pi are pairwise orthogonal by Observation 1.2(5)).

Adding to the language constants symbols for the elements of C, we will assume

that C = ∅.
We say that a set D satisfies (∗) over a set H if D = acl(HD1 · · ·Dm), where

tp(Di/H) is Si-analyzable for each i. If H = acl(∅), we will simply say that D

satisfies (∗). Note that by Lemma 1.9, any subset of acl(HD) whose type over H is

Si-analyzable will be contained in acl(HD i).

By Lemma 1.9, an algebraically closed subset of a set satisfying (∗) over H also

satisfies (∗) over H , and the algebraic closure of a union of sets satisfying (∗) over
H satisfies (∗) over H . Hence, if D satisfies (∗) over H , J ⊇ H , and Cb(D/J) = J ,

then J satisfies (∗) over H , as J is contained in the algebraic closure of finitely

many realizations of tp(D/H).

Assume that E satisfies (∗); then F = Cb(E/F ) satisfies (∗), and therefore

can be written as acl(F ′
1, . . . , F

′
m), where each tp(F ′

i ) is Si-analyzable. Each F ′
i is

contained in Fi, and therefore acl(F1 · · ·Fm) = F and Fi = F ′
i . We know that

F is contained in the algebraic closure of F -independent realizations of tp(E/F ).

Lemma 1.9 then gives us that necessarily Fi is contained in the algebraic clo-

sure of F -independent realizations of tp(Ei/F ). Then Remark 1.1(1) implies that

Cb(Ei/F ) ⊇ Fi; the reverse inclusion holds since tp(Cb(Ei/F )) is Si-analyzable.

By symmetry, Ei = Cb(Fi/E). Furthermore, no pi is one-based: otherwise, by

Fact 1.3(3) tp(Ei) would be one-based, whence E ∩F = acl(∅) would yield Ei |�F ,

and therefore Ei = Fi = acl(∅). This shows that if E satisfies (∗), then the conclu-

sion of the lemma holds. By symmetry neither E nor F satisfies (∗).
Using the semi-minimal analysis of tp(F ), there is B = acl(B) ⊂ F , B �= F , and

a type p of SU-rank 1, such that tp(F/B) is almost-S(p)-internal. Note that B �=
acl(∅): otherwise tp(F/C) would be S(p)-internal, contradicting our assumption

that F does not satisfy (∗). Let A = Cb(B/E). Then tp(E/A) is almost-S(p)-
internal by Lemma 1.7, so that A �= acl(∅).

Step 1. A satisfies (∗).
Let B0 = Cb(A/B). Then B0 �= acl(∅) (because otherwise B and A would

be independent), and Cb(B0/A) = A by Lemma 1.8. As SU(B0) < SU(F ) and

acl(AB0) ⊆ acl(EF ), by induction hypothesis A satisfies (∗).
Thus A �= E. Since tp(E/A) is almost-S(p)-internal, if B1 = Cb(A/F ), then

tp(F/B1) is almost-S(p)-internal by Lemma 1.7, B1 satisfies (∗), and acl(∅) �=
B1 �= F . Let Ep be the largest subset of E realizing an S(p)-analyzable type. If p
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is orthogonal to every pi, then Ep = acl(∅), by definition of the set {p1, . . . , pm}.
Otherwise, by Remark 1.13, S(p) = Si for some i, and therefore Ep = Ei; we will

first show in the next two steps that this case is impossible.

Step 2. acl(FEp) ∩ E = Ep.

Let D = acl(FEp) ∩ E. If D �= Ep, then, using the semi-minimal analysis of

tp(D/Ep), there is d ∈ D\Ep with tp(d/Ep) almost-S(q)-internal for some type

q of SU-rank 1. By maximality of Ep, we have S(q)⊥S(p). Since tp(F/B1) is

almost-S(p)-internal, we obtain d ∈ acl(B1Ep). Because B1 and Ep satisfy (∗),
and tp(d/Ep) ⊥ p, using Lemma 1.9 we may write acl(Epd) as acl(EpD1), where

tp(D1) is S(q)-analyzable and hereditarily orthogonal to p. Thus D1 |�Ep; because

D1 ⊆ acl(B1Ep), we obtain D1 ⊆ B1; as D1 ⊆ E, this implies D1 = acl(∅), a
contradiction.

Step 3. Ep = acl(∅).
Let D = Cb(E/FEp). Then Cb(E/D) = D. Then D ∩ E = Ep by Step 2.

Moreover, Cb(D/E) = E: let E0 = Cb(D/E); from E |�DF we deduce E |�DE0
F ;

since E |�E0
D, transitivity gives E |�E0

F , and therefore E = E0. Thus, if Ep �=
acl(∅), then SU(ED/Ep) < SU(EF ) and by induction hypothesis (applied to D

and E), E satisfies (∗) over Ep. Write E = acl(E′
p, E

′′
p ), where E′

p satisfies (∗) over
Ep, tp(E

′
p/Ep) is hereditarily orthogonal to all types in S(p), and tp(E′′

p /Ep) is S(p)-
analyzable. Then tp(E′′

p ) is S(p)-analyzable, so that E′′
p = Ep. On the other hand,

tp(E/A) is S(p)-analyzable, and therefore E′
p ⊆ acl(AEp) (because tp(E′

p/Ep) is

hereditarily orthogonal to all members of S(p)). Hence E = acl(AEp) satisfies (∗),
a contradiction.

By symmetry, if Fp is a subset of F whose type is S(p)-analyzable, then Fp ⊆
acl(∅).

Step 4. F ⊆ acl(B1E).

Let D = Cb(F/B1E). Then B1 ⊆ D, and tp(D/B1) is almost-S(p)-internal,
because it is contained in the algebraic closure of B1-conjugates of F . Furthermore,

we have Cb(D/E) = E: let E0 = Cb(D/E); from E |�DF we deduce E |�DE0
F ;

then E |�E0
D yields E |�E0

F , whence E0 = E. We now let D1 = Cb(E/D); then

D1 ⊆ D ⊆ acl(B1E), tp(D1/B1) is almost-S(p)-internal, and Cb(D1/E) = E (by

Lemma 1.8). Since E does not satisfy (∗), our induction hypothesis implies that

either E ∩D1 �= acl(∅) or acl(D1E) = acl(EF ).

Let us assume that D1∩E �= acl(∅). Using the semi-minimal analysis of tp(D1∩
E), there is d ∈ D1 ∩ E with tp(d) almost-Si-internal for some i. Since Ep = Fp =

acl(∅), we know that S(p) ⊥ Si. But tp(D1/B1) is almost-S(p)-internal, so that

tp(d/B1) is almost-S(p)-internal, whence d ∈ B1. Hence D1 ∩E ⊆ B1 ∩E = acl(∅).
Hence acl(D1E) = acl(EF ), which implies F ⊆ acl(B1E).

The proof only used the S(p)-internality of tp(F/B1), and we reason in the same

manner with Cb(E/AF ) to get E ⊆ acl(AF ). Since Ep = Fp = acl(∅), we know
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that S(p) ⊥ S1 ∪ · · · ∪ Sm. The final contradiction will come from the following

lemma, taking S = S1 ∪ · · · ∪ Sm:

Lemma 1.15. Let A ⊆ E and B ⊆ F be algebraically closed sets of finite SU-

rank with E ∩ F = acl(∅), such that E and F are equi-algebraic over AB. Assume

that for some set S of types of SU-rank 1, which is closed under Aut(M/acl(∅))-
conjugation, tp(A) and tp(B) are S-analyzable. Then tp(E/acl(∅)) and tp(F/acl(∅))
are S-analyzable.

Proof. We may assume that A and B are maximal subsets of E and F respectively

whose type are S-analyzable. If E = A, then F ⊆ acl(AB), and we are done;

similarly if F = B. Assume E �= A, and let p be a type of SU-rank 1 which is

non-orthogonal to tp(E/A); we then let E0 ⊆ E and F0 ⊆ F be maximal such that

tp(E0/A) and tp(F0/B) are almost S(p)-internal. Then E0 �= A (see the discussion

in Fact 1.4) and p ⊥ S. If F1 = Cb(E0/F ) and B1 = Cb(A/F ), then tp(F1/B1) is

almost S(p)-internal by Lemma 1.7, so that F1 ⊆ F0 and E0 ⊆ acl(AF0). Similarly,

F0 ⊆ acl(BE0).

We have therefore shown that if the conclusion of the lemma does not hold, then

there is a counterexample (E,F,A,B) where tp(E/A) and tp(F/B) are almost S(p)-
internal for some type p of SU-rank 1 which is orthogonal to all members of S. We

choose such a counterexample with r = SU(B)− SU(B/A) minimal.

Let E0 = Cb(F/E), and A0 = A ∩ E0. Then F ⊆ acl(BE0) and E0 ⊆ acl(AF ).

Also, A0 is the maximal subset of E0 with an S-analyzable type (by Lemma 1.10),

whence A |�A0
E0, and by transitivity A |�A0

E0F , so that E0 ⊆ acl(A0F ). Since

F �= B, we have E0 �= A0, so that tp(E0) is not S-analyzable. Replacing E by E0

and A by A0, we may therefore assume that E = Cb(F/E). (Note that SU(B/A0) ≥
SU(B/A), so that SU(B) − SU(B/A0) ≤ SU(B) − SU(B/A), and in fact equality

holds by minimality of r).

If r = 0, then B |�A; because tp(E/A) is orthogonal to all types in S, we obtain
B |�E; since tp(F/B) is almost-S(p)-internal and E = Cb(F/E), we get that tp(E)

is almost-S(p)-internal, a contradiction. Hence r > 0.

Since E = Cb(F/E), there are E-independent realizations F1, . . . , Fs of tp(F/E)

such that E ⊆ acl(F1, . . . , Fs). Let Bi ⊂ Fi correspond to B ⊂ F . Since

tp(F1, . . . , Fs/B1, . . . , Bs) is orthogonal to all types in S, we necessarily have

A ⊂ acl(B1, . . . , Bs). Furthermore, from B |�AE, the sets B1, . . . , Bs are indepen-

dent over A. This implies that Cb(B/A) = A by Remark 1.1(1).

Letm ≤ s be minimal such that A ⊂ acl(B1 · · ·Bm). Thenm > 1 and SU(Bm)−
SU

(
Bm/B1 · · ·Bm−1

)
< r by Remark 1.1(2). We also have Fm∩acl(F1 · · ·Fm−1) ⊆

F ∩ E = acl(∅), and E ⊆ acl(B1 · · ·BmFi) for every 1 ≤ i ≤ m. Hence F1 and

Fm are equi-algebraic over acl(B1 · · ·Bm). The induction hypothesis applied to

the quadruple (acl(F1B2 . . . Bm−1), Fm, acl(B1 · · ·Bm−1), Bm) gives that tp(F ) is

S-analyzable, a contradiction.

This concludes the proof of Proposition 1.14.
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Proposition 1.14 has the following immediate consequence:

Theorem 1.16. Let E,F be algebraically closed sets, and assume that

SU(E/E ∩ F ) is finite and F = Cb(E/F ). Then there are F1, . . . , Fm indepen-

dent over E ∩ F, types p1, . . . , pm of SU-rank 1, such that each tp(Fi/E ∩ F ) is

S(pi, E ∩ F )-analyzable, and acl(F1 · · ·Fm) = F .

Proof. By Remark 1.1, we know that SU(F/E ∩ F ) is also finite. Replace E by

E′ = Cb(F/E); by Lemma 1.8, F = Cb(E′/F ). Then apply Proposition 1.14 to

E′, F to get the types pi (which are pairwise orthogonal), and the sets Fi.

Remark 1.17. Let E, F be as above. Using the semi-minimal analysis of

tp(F/E ∩ F ), there is some G = acl(G) independent from EF over C = E ∩ F ,

and a tuple a ∈ acl(GF ) of realizations of types of SU-rank 1 over G, such that

for any tuple b, whenever b |�/G F then b |�/Ga (in other words: tp(a/G) dominates

tp(F/G), see Sec. 5.2 in [18]). Then working over G, the types pi of Theorem 1.16

can be taken to be types over G (see the proof of Proposition 1.14), and the subsets

Fi of acl(GF ) will then realize {pi}-analyzable types over acl(GC). This is slightly

stronger than just saying that the sets Fi realize S(pi)-analyzable types.

The following result is similar to Proposition 2.2. See also Theorem 1.3 in [14].

Proposition 1.18. Let S be a set of types of SU-rank 1, which is closed under

Aut(M/acl(∅))-conjugation, let B and E be algebraically closed sets of finite SU-

rank, and assume that tp(E/B) is S-analyzable. Then so is tp(E/E ∩B).

Proof. Without loss of generality, B = Cb(E/B). Let C = E ∩ B, and assume

that tp(E/C) is not S-analyzable. Let D ⊆ E be maximal such that tp(D/C) is

S-analyzable. As B = Cb(E/B), Theorem 1.16 gives us two algebraically closed

sets B1 and B2 with acl(B1B2) = B, tp(B1/C) S-analyzable, and tp(B2/C) S′-
analyzable for some set S′ of SU-rank 1 types with algebraically closed base and

such that S ⊥ S′. Then Cb(D/B) ⊆ B1 and E |�DB1 because tp(E/D) ⊥ S and

tp(B1/C) is S-analyzable. If B2 = C, then E |�DB, and the S-analyzability of

tp(E/DB) implies the S-analyzability of tp(E/D), a contradiction.

Hence B2 �= C, and if E2 = Cb(B2/E), then E2 �= C and E2 realizes an S′-
analyzable type over C. As E2 �= C and E ∩ B = C, we have that tp(E2/B) is

non-algebraic and S′-analyzable. On the other hand, tp(E2/B) is also S-analyzable
because E2 ⊆ E, which gives the final contradiction.

Corollary 1.19. Let S be a set of types of rank 1 closed under Aut(M/acl(∅))-
conjugation and let E = acl(E) have finite SU-rank. Then there is A = acl(A) ⊆
acl(E) such that tp(E/A) is S-analyzable, and whenever B = acl(B) is such that

tp(E/B) is S-analyzable, then A ⊆ B.
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Proof. It is enough to show that if A1, A2 are algebraically closed subsets of E

such that tp(E/Ai) is S-analyzable, then so is tp(E/A1 ∩A2): but this is obvious,

as tp(A1/A1 ∩A2) is S-analyzable, by Proposition 1.18.

Remark 1.20. Let S be a set of types of rank 1 closed under Aut(M/acl(∅))-
conjugation, and let E = acl(E) have finite SU-rank. Then one can find S′ ⊥
S, closed under Aut(M/acl(∅))-conjugation and such that tp(E/acl(∅)) is (S ∪
S′)-analyzable. It follows that for a set B = acl(B), tp(E/B) will be hereditarily

orthogonal to S′ if and only if it is S-analyzable. Thus the above two results can

be stated in terms of hereditary orthogonality to S′ instead of S-analyzability.

We now state an easy lemma reducing further the problem of showing the CBP:

Lemma 1.21. Let S be a set of types of SU-rank 1, which is closed under

Aut(M/acl(∅))-conjugation. Assume that there are algebraically closed sets E and F

whose types over C = E∩F are S-analyzable, such that Cb(F/E) = E and tp(E/C)

is not almost S-internal. Then there are such sets E and F whose types over C are

S-analyzable in at most two steps, i.e. there is A ⊂ E such that tp(A/C) and

tp(E/A) are almost-S-internal, and similarly for F . Furthermore, Cb(E/F ) = F .

Proof. We take such a triple (E,F,C) with r = SU(E/C) + SU(F/C) minimal,

whence F = Cb(E/F ).

By the semi-minimal analysis of tp(F/C), there is a proper algebraically

closed subset B of F such that tp(F/B) is almost-S-internal. By Lemma 1.7, if

A = Cb(B/E) then tp(E/A) is almost-S-internal. As SU(B/C) < SU(F/C), the

minimality of r implies that tp(A/C) is almost-S-internal. Hence, A �= C,E because

tp(E/C) is not almost-S-internal, and tp(E/C) is S-analyzable in two steps. Since

F is contained in the algebraic closure of realizations of tp(E/C), tp(F/C) will also

be S-analyzable in two steps.

We conclude this section with a partial internality result:

Lemma 1.22. Let A ⊆ E and B ⊆ F be algebraically closed sets of finite

SU-rank with E ∩ F = acl(∅), such that E and F are equi-algebraic over

AB. Assume that for some set S of types of SU-rank 1, which is closed under

Aut(M/acl(∅))-conjugation, tp(A/acl(∅)) and tp(B/acl(∅)) are almost-S-internal.
Then tp(E/acl(∅)) and tp(F/acl(∅)) are almost-S-internal.

Proof. We work over acl(∅). By Lemma 1.15, we already know that tp(E) and

tp(F ) are S-analyzable. Hence, reasoning as in the first paragraph of the proof of

Lemma 1.15, we may assume that A, B are maximal subsets of E and F respectively

which realize almost-S-internal-types, and that tp(E/A) and tp(F/B) are almost-

S-internal, but neither tp(E) nor tp(F ) is almost-S-internal. The maximality of A

and B implies that A |�BF and E |�AB.
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Working over some C = acl(C), independent from EF , and using Remark 1.1(3)

and Lemma 1.10, we may assume that A is the algebraic closure of a tuple

of realizations of types in S. We choose a counterexample (E,F,A,B) with

r = SU(A) − SU(A/B) minimal. If r = 0, then A |�B so that A |�F . Letting

F0 = Cb(E/F ), this implies that F0 realizes an almost-S-internal-type, hence is

contained in B. But E |�F0
F then implies F ⊆ B, which is absurd. So we may

assume that r > 0.

Let (FiBi)i>0 be a sequence of E-independent realizations of tp(FB/E). If A0 =

Cb(B/A), then for some s > 1, we have acl(B1 · · ·Bs) ⊇ A0, and we take a minimal

such s. As A is the algebraic closure of realizations of types of SU-rank 1, there

is a finite tuple a ⊂ A such that a |�A0 and acl(A0a) = A. Then a |�A0B, which

implies a |�A0F (by transitivity and because A |�BF ).

Let A′ = acl(aB1), B
′ = acl(B2 · · ·Bs), E

′ = acl(A′F1) and F ′ = acl(B′Fs).

Then a |�A0F , and a |�B1F
′. Hence in particular, A′ ∩ F ′ = acl(∅) (use

Remark 1.1(3) and the fact that B1 ∩B′ = acl(∅)). Moreover,

SU(A′)− SU(A′/B′) = SU(B1)− SU(B1/B2 · · ·Bs) < r

by Remark 1.1(2), and E′ and F ′ are equi-algebraic over A′B′. In order to reach

a contradiction, it therefore suffices to show that E′ ∩ F ′ = acl(∅): our induc-

tion hypothesis gives that tp(E/acl(∅)) is almost-S-internal, which implies that

tp(F1/acl(∅)) = tp(F/acl(∅)) is also almost-S-internal.
By Lemma 1.10, A′ and B′ are maximal subsets of E′, F ′ respectively which

realize almost-S-internal-types. Assume E′ ∩ F ′ �= acl(∅); by the semi-minimal

analysis of tp((E′ ∩ F ′)/acl(∅)), there is d ∈ E′ ∩F ′ realizing an almost-S-internal-
type. Then

d ∈ B′ ∩A′ ⊆ F ′ ∩A′ = acl(∅),
which gives us the desired contradiction.

2. Further Properties of Theories with the CBP

Description of the results of this section. Assumptions on M and T are as in the

previous section: T is supersimple and eliminates imaginaries, M is sufficiently

saturated. Most results are proved under the additional hypothesis of the CBP. We

start by proving one of the main results of the paper:

Theorem 2.1. (CBP) If E and F are algebraically closed sets of finite SU-rank

over their intersection C and are such that E = Cb(F/E), then tp(E/C) is almost-

S-internal for some family S of types of SU-rank 1.

Note that under the same hypotheses, if tp(E/F ) is S′-analyzable for some set

S′ of types of SU-rank 1 with algebraically closed base, then tp(E/C) is almost-S′-
internal. We then show

Theorem 2.4. (CBP) Assume that E = acl(E) has finite SU-rank, and let S be

a collection of types of SU-rank 1, closed under conjugation. Then there is A =
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acl(A) ⊆ E such that tp(E/A) is almost-S-internal, and whenever B = acl(B) is

such that tp(E/B) is almost-S-internal, then B ⊇ A.

An immediate consequence of Theorem 2.4 is that the CBP implies the Uniform

CBP (UCBP); this answers a question of Moosa and Pillay [14]. We end the section

with three results, which were proved with an eye towards geometric applications.

The first result is valid in a general setting (as will be clear from the proof), and

can be viewed as showing the existence of a “largest internal quotient”; the second

can be viewed as showing the existence of a “maximal internal fiber”, and the third

one as a descent result.

Theorem 2.1. (CBP) If E and F are algebraically closed sets of finite SU-rank

over their intersection C and are such that E = Cb(F/E), then tp(E/C) is almost-

S-internal for some family S of types of SU-rank 1.

Proof. We assume the result false. By Lemma 1.21, there is a counterexample

(E,F,C) with tp(E/C) and tp(F/C) S-analyzable in two steps, and which also

satisfies Cb(E/F ) = F . By Theorem 1.16 (see also Remarks 1.17 and 1.1(3)),

working over a larger set G = acl(G), we can write E as acl(E1 · · ·Em) for some

sets Ei which are independent over G, realize {pi}-analyzable types over G, and

some Ei will not realize an almost-{pi}-internal type over G.

Hence, we may assume that S = {p} for some type p of SU-rank 1. For ease

of notation we will assume that the language contains constant symbols for the

elements of G.

Let A0 ⊂ E and B ⊂ F be maximal realizing almost-S-internal types, so that

tp(E/A0) and tp(F/B) are almost-S-internal. Then E |�A0
B since Cb(B/E) is

almost-S-internal and therefore contained in A0, and similarly A0 |�BF . Enlarg-

ing G (and using Remark 1.1(3)), we may assume that A0 and B are the algebraic

closures of tuples of realizations of p. Let A = Cb(B/E). Then A ⊆ A0, and tp(E/A)

is almost-S-internal (by Lemma 1.7).

The proof is by induction on r = SU(B)−SU(B/A0) (= SU(A0)−SU(A0/B)).

If r = 0, then A0 |�B and from tp(F/B) almost-S-internal and Cb(F/E) = E we

deduce that tp(E) is almost-S-internal, a contradiction. Hence r > 0.

Step 1. We may assume A0 = A.

We know that A0 = acl(a0) for some tuple a0 of realizations of p; take a ⊆ a0
maximal independent over A and such that a |�A. Then

acl(Aa) = A0, a |�AF and SU(B/a)− SU(B/A0) = r.

Furthermore, tp(E/a) is not almost-S-internal: otherwise, Cb(E/Fa) would also

be almost-S-internal, hence contained in acl(Ba) by maximality of B (see

Lemma 1.10(1)); from E |�BaF and F |�BA0 we would then deduce E |�BF , i.e.

F = B, which is absurd. We will now show that E ∩ acl(Fa) = acl(a). Enlarging

G, this will allow us to assume A = A0.

Let D = E ∩ acl(Fa). Since a |�AF , A0 ∩ acl(Fa) = acl(a) by Remark 1.1(3).

The set Cb(B/D) is almost-S-internal, hence contained in A0 ∩ acl(Fa) = acl(a),
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so that B |�D because F |�a. From D ⊂ acl(Fa) and the almost-S-internality of

tp(Fa/B) we obtain that tp(D/B) is almost-S-internal, and therefore also tp(D),

so that D ⊆ A0 ∩ acl(Fa) = acl(a).

Step 2. We may assume E ⊆ acl(AF ).

By assumption, there is an algebraically closed set J containing F , such that

J |�FE, and a tuple g of realizations of p such that E ⊆ acl(Jg). Then there is a

subset e of g, consisting of independent tuples over AJ , and such that E ⊆ acl(AJe)

and e |�AJ . Since J ⊇ F and e |�J , we then have Cb(Je/Ee) = acl(Ee) and

Cb(Be/Ae) = Cb(Be/Ee) = acl(Ae) (use Cb(J/E) = E and Remark 1.1(1)).

Claim. acl(Ee) ∩ acl(Je) = acl(e).

Let D = acl(Ee) ∩ acl(Je). Since e |�AJ , we obtain acl(Ae) ∩ acl(Je) = acl(e)

by Remark 1.1(3).

We know that if D0 = Cb(A/D), then tp(D0) is almost-S-internal; the maximal

almost-S-internal subset of acl(Ee) is acl(Ae) by Lemma 1.10(1), and therefore

D0 ⊆ acl(Ae) ∩ acl(Je) = acl(e). Hence A |�D, and tp(D) is almost-S-internal
(because D ⊂ acl(Ee) and tp(Ee/A) is almost-S-internal). Reasoning as we did for

D0, we obtain D ⊆ acl(Ae) ∩ acl(Je) = acl(e).

From E |�FJ , e |�AJ and A |�BF we deduce

SU(A/e) = SU(A) and SU(A/Je) = SU(A/J) = SU(A/F ) = SU(A/B),

so that

SU(A/e)− SU(A/Je) = SU(A)− SU(A/B) = SU(B)− SU(B/A) = r.

Because e |�A and by maximality of A, we get e |�E; thus tp(E/e) is not almost-

S-internal. As we saw above, we have Cb(Je/Ee) = acl(Ee). Hence, working over

acl(e) and replacing F by J , we may assume E ⊆ acl(AF ).

Step 3. The final contradiction.

Let (FnBn)n∈N be a sequence of E-independent realizations of tp(FB/E). From

B |�AE, it follows that the sets Bn are independent over A. By Remark 1.1(1), and

because A = Cb(B/A), there is m such that A ⊂ acl(B1 · · ·Bm); take the minimal

such m. Then E ⊂ acl(B1 · · ·BmFi) for every i, so that in particular F1 |�/B1···BmFm.

On the other hand, we know that

F1 ∩ acl(B2 · · ·Bm−1Fm) ⊆ F ∩ E = acl(∅),

and SU(B1) − SU(B1/(B2 · · ·Bm)) < r by minimality of m. We apply the

induction hypothesis to (F1, B1) and (acl(B2 · · ·Bm−1Fm), acl(B2 · · ·Bm)): if J =

Cb((B2 · · ·Bm−1Fm)/F1), then J �⊆ B1 and tp(J) is almost-S-internal. This con-

tradicts the maximality of B, and finishes the proof.
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We will now prove some more results for supersimple theories with the CBP.

Note that Proposition 2.2 below implies Theorem 2.1 and is therefore equivalent to

it. It was first proved by Moosa and Pillay in the stable context, see [14].

Proposition 2.2. (CBP) Let B and E be algebraically closed sets, with SU(E) <

∞ and assume that tp(E/B) is almost-S-internal, for some collection S of types of

SU-rank 1, which is closed under Aut(M/acl(∅))-conjugation. Then tp(E/(E ∩B))

is almost-S-internal.

Proof. Let C = B ∩ E, and let A ⊆ E be maximal such that tp(A/C) is almost-

S-internal. If B0 = Cb(E/B), then tp(E/B0) is also almost-S-internal, and we

may therefore assume that B = Cb(E/B). By Proposition 1.18, we know that

tp(E/C) is S-analyzable, and this implies that tp(B/C) is also S-analyzable. On

the other hand, by Theorem 2.1, tp(B/C) is almost-S′-internal, for some collection

S′ of types of SU-rank 1 containing S, and these two facts imply that tp(B/C) is

almost-S-internal.
Assume E �= A. By assumption, there is some F = acl(F ), independent from

E over B, and such that E is equi-algebraic over F with some finite tuple of

realizations of types in S.
Claim. acl(AF ) �= acl(EF ).

Otherwise,A ⊆ E and E |�BF would imply E ⊆ acl(AB). As tp(B/C) is almost-

S-internal, this would imply that also tp(E/C) is almost-S-internal, a contradiction.
We may therefore choose some e ∈ acl(EF )\acl(AF ) which realizes a type in

S. Then E0 = Cb(Fe/E) �⊆ A, since e ∈ acl(FE0)\acl(FA). Note that E ∩ F =

E ∩B = C.

Let D = acl(Fe) ∩ E. Then D ∩ F = C, and by Theorem 2.1 tp(E0/D) is

almost-S-internal (because E0 ⊆ E and tp(E/C) is S-analyzable). If D = C, this

gives us the desired contradiction, as E0 �⊆ A, and A was maximal contained in E

with tp(A/C) almost-S-internal.
Assume therefore that D �= C. Then SU(D/F ) = 1, because SU(e/F ) = 1

and D ⊂ acl(Fe). If D |�CF , then SU(D/C) = 1, which implies that tp(D/C) is

almost-S-internal. In that case we let D0 = D. If D |�/CF , we define D0 = Cb(F/D);

then tp(D0/(D ∩ F )) is almost-S-internal by Theorem 2.1. Hence, as D0 ⊆ acl(Fe),

and D0 �⊆ F , we have that e ∈ acl(FD0), and tp(D0/C) is almost-S-internal. As
D0 ⊆ D ⊆ E, we obtain D0 ⊆ A, whence e ∈ acl(FA), which gives us the desired

contradiction and finishes the proof.

Lemma 2.3. (CBP) Let E = acl(E) be of finite SU-rank over some C = acl(C),

and let S be a collection of types of SU-rank 1, closed under Aut(M/acl(∅))-
conjugation. Assume that Ai = acl(Ai) ⊂ E, i = 1, 2, are such that A1 ∩ A2 = C,

and tp(E/Ai) is almost-S-internal for i = 1, 2. Then tp(E/C) is almost-S-internal.

Proof. Let A ⊆ E be maximal such that tp(A/C) is almost-S-internal. Then A1 ⊆
A: by hypothesis, tp(A1/A2) is almost-S-internal, and by Proposition 2.2, tp(A1/C)
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is almost-S-internal. Reasoning similarly with A2, we obtain that A1A2 ⊆ A. If

F = acl(F ) ⊃ C is independent from E over C, and tp(E/F ) is almost-S-internal,
then so is tp(E/C), and we may therefore extend C, to a larger set over which A is

equi-algebraic with a tuple of realizations of types in S (by Lemma 1.10(2), we will

not lose the maximality of A). Hence, we may assume that in A there is a tuple a

of realizations of types in S such that a |�CA1A2, and A = acl(CA1A2a). Note that

we still have acl(A1a) ∩A2 = C: since a |�CA1A2, we know by Remark 1.1(3) that

acl(A1a) ∩ acl(A2a) = acl(Ca); hence acl(A1a) ∩ A2 ⊆ acl(Ca) ∩ A2 = C. Thus,

replacing A1 by acl(A1a) we may assume that acl(A1A2) = A.

By assumption, for i = 1, 2, there are Fi = acl(Fi) containing Ai, independent

from E over Ai, and such that E is equi-algebraic over Fi with some tuple bi of

realizations of types in S. We may choose F2 independent from EF1 over A2; then

F1 |�EF2, whence also F1 is independent from EF2 over A1, and

C = A1 ∩A2 = F1 ∩ F2; acl(F1b1) ∩ F2 = A2; F1 ∩ acl(F2b2) = A1

(use acl(Fibi) = acl(FiE), E ∩ Fj = Aj). For i = 1, 2, choose ei ⊂ bi maximal

independent over FiA. Then E ⊆ acl(FiAei), and A ∩ acl(Fiei) = Ai. Furthermore

acl(F1e1) ∩ F2 = F1 ∩ acl(F2e2) = A1 ∩A2 = C.

Let D0 = acl(F1e1) ∩ acl(F2e2). As D0 ⊆ acl(F1e1), tp(D0/F1) is almost-S-
internal; by Proposition 2.2, tp(D0/(D0 ∩ F1)) is almost-S-internal; hence tp(D0/C)

is almost-S-internal because acl(F2e2)∩F1 = C, and this implies that D0∩E ⊆ A.

Therefore

D0 ∩E = D0 ∩A = acl(F1e1) ∩ acl(F2e2) ∩A = A1 ∩A2 = C.

Let D1 = Cb(F1e1/F2e2). Then tp(D1/D0) is almost-S-internal, by Theorem 2.1.

We know that F1e1 and F2e2 are independent over D1, and therefore

F1e1 |�D1A1A2
F2e2.

Since acl(A1A2) = A and E ⊆ acl(FiAei), we get E ⊆ acl(D1A). Hence tp(E/D0)

is almost-S-internal, and so is tp(E/D0 ∩ E) (by Theorem 2.2). As D0 ∩ E = C,

we get the result.

Theorem 2.4. (CBP) Assume that E = acl(E) has finite SU-rank, and let S be

a collection of types of SU-rank 1, closed under Aut(M/acl(∅))-conjugation. Then
there is A = acl(A) ⊆ E such that tp(E/A) is almost-S-internal, and whenever

B = acl(B) is such that tp(E/B) is almost-S-internal, then B ⊇ A.

Proof. This follows immediately from Proposition 2.2 and Lemma 2.3.

Theorem 2.5. (CBP) Let B = Cb(A/B), where A = acl(A) has finite SU-rank,

and let S be a collection of types of SU-rank 1, closed under Aut(M/acl(∅))-
conjugation, and such that tp(B/A) is almost-S-internal. If C = acl(C) is such

that tp(A/C) is almost-S-internal, then so is tp(AB/C). That is, T has the UCBP.
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Proof. Let D = Cb(B/A). Then tp(D/B) is almost-S-internal, and B = Cb(D/B)

(by Lemma 1.8). As D ⊆ A, tp(D/C) is almost-S-internal, and by Lemma 2.3,

so is tp(D/(B ∩ C)); this implies that tp(B/C) is also almost-S-internal, since B

is contained in the algebraic closure of realizations of the almost-S-internal-type
tp(D/(B ∩C)) (see Remark 1.1(1)).

Proposition 2.6. (CBP) Let G be a group of finite SU-rank, let p be a type (over

∅) realized by a ∈ G, and let H = Stab(p) be the left stabilizer of p. If d is the

code of H ·a, then tp(d) is almost-S-internal, where S is the collection of nonlocally

modular types of SU-rank 1 and with algebraically closed base.

Proof. The proof is essentially identical to the one given in [17], Corollary 3.11,

where it was done in the stable case. Let c ∈ G be a generic of G over a, and let

D = Cb(c/e), where e = a · c.
We will first show that d ∈ acl(Dc). By genericity of c, we know that e |�a, and

therefore a |�De. The set D has the following property: if e1, e2 are D-independent

realizations of tp(e/D), then there is c′ independent from e1e2 over D, and such

that tp(c′ei/D) = tp(ce/D) for i = 1, 2. If ai = ei · c′−1
, then e1 · e−1

2 = a1 · a−1
2 ,

and a1, a2 realize p. We then deduce successively the following relations:

c′ |�D e1e2; c′ |�D (e1 · e−1
2 )e2; c′ |�De2

e1 · e−1
2 ; a2 |�De2

e1 · e−1
2 ;

since a2 |�De2, transitivity implies a2 |�De1 · e−1
2 . As both a1 and a2 realize p, and

a1 = e1 · e−1
2 · a2, we get that e1 · e−1

2 ∈ H . So we have shown that if e1, e2 are

any D-independent realizations of tp(e/D), then e1 · e−1
2 ∈ H . Hence, if e1 and e2

realize tp(e/D), then e1 · e−1
2 ∈ H .

If τ ∈ Aut(M/Dc), then τ(e) · e−1 ∈ H , and τ(a) = τ(e) · e−1 · a ∈ H · a. This
shows that d ∈ acl(Dc).

By the CBP, we know that tp(D/acl(c)) is almost-S-internal, and therefore so

is tp(d/acl(c)). But on the other hand, we know that d ∈ acl(a) and a |�c: hence

d |�c and tp(d) is almost-S-internal.

Corollary 2.7. (CBP) Let G be a group of finite SU-rank, and p a type over ∅,
realized by a ∈ G. Let b ∈ dcl(a) be maximal realizing an almost-S-internal-type,
let S = {g ∈ G | tp((g · a)/b) = tp(a/b)}, and let N be the subgroup of G generated

by S. Then N ⊆ H, where H is the left stabiliser of p.

Proof. If π : G → H\G is the natural projection, then we know that H · a is

coded by π(a). By Proposition 2.6, tp(π(a)) is almost-S-internal, and therefore

π(a) ∈ dcl(b). By definition of b, tp(a′/b) = tp(a/b) implies a′ ∈ H ·a and a′·a−1 ∈ S,

which gives the result.

The next results allow us in many cases to pass from the algebraic closure of a set

to the set itself. In geometric situations, it will allow us to replace correspondences
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by rational maps. The delicate point is that in general, if B = acl(B) ⊂ acl(A) and

B0 = B ∩ A, it may happen that B �= acl(B0). The first result, Observation 2.8,

does not need the CBP hypothesis.

In what follows, we work over ∅, and have a set S of SU-rank 1 types with

algebraically closed base, and which is closed under Aut(M)-conjugation.

Observation 2.8. Let a a tuple, let B = acl(B) be maximal contained in acl(a)

and such that tp(B) is almost-S-internal. Let B0 = dcl(a) ∩B; then acl(B0) = B.

Proof. Let b ∈ B be such that B = acl(B), and let b′ be a conjugate of b over

dcl(a). Then tp(b′) = tp(b), and therefore tp(b′) is almost-S-internal. Hence, if c is

a tuple encoding the set of conjugates of b over dcl(a), then c ∈ dcl(a), and tp(c) is

almost-S-internal, so that c ∈ B0. As b ∈ acl(c), we get acl(c) = B.

Proposition 2.9. (CBP) Let a be a tuple of finite SU-rank, let B = acl(B) be such

that tp(a/B) is almost-S-internal. If B0 = B ∩ dcl(a), then tp(a/B0) is almost-S-
internal.

Proof. We may assume that B is minimal algebraically closed such that tp(a/B)

is almost-S-internal. Choose a tuple b ∈ B such that B = acl(b). If b′ is a conjugate

of b over dcl(a), then tp(a, b) = tp(a, b′), and therefore tp(a/b′) is also almost-S-
internal. The minimality of B (and Lemma 2.3) implies that acl(b′) = acl(b). Hence,

if c is a tuple encoding the set of conjugates of b over dcl(a), then acl(c) = acl(b);

as c ∈ B ∩ dcl(a) = B0, we get B = acl(B0).

Proposition 2.10. (CBP) Let a1, a2, b1, b2 be tuples of finite SU-rank and assume

that

• tp(b2) is almost-S-internal,
• acl(b1) ∩ acl(b2) = acl(∅),
• a1 |�b1b2 and a2 |�b2b1,

• a2 ∈ acl(a1b1b2).

Then there is e ⊂ dcl(a2b2) such that tp(a2/e) is almost-S-internal and e |�b2.

In particular, if tp(a2/b2) is hereditarily orthogonal to all types in S, then a2 ∈
acl(eb2).

Proof. If C = Cb(a1b1/a2b2), then a2 ∈ acl(Cb2). LetD = acl(a1b1)∩acl(a2b2). As
D ⊂ acl(aibi) for i = 1, 2, we have D |�b1b2 and D |�b2b1. Hence D |�b1b2 because

acl(b1) ∩ acl(b2) = acl(∅). Furthermore, we know by Theorem 1.16 that there is a

set S′ of SU-rank 1 types orthogonal to all members of S and such that tp(C/D) is

almost-(S ∪S′)-internal. We may write C as acl(c1c2) where tp(c1/D) is almost-S-
internal, and tp(c2/D) is almost-S′-internal. Then acl(c2D) |�b2 because tp(c2/D)

is hereditarily orthogonal to all members of S and tp(b2) is almost-S-internal. Fur-
thermore, as a2 ∈ acl(Dc1c2b2), it follows that tp(a2/acl(Dc2)) is almost-S-internal.
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Now, Dc2 ⊆ acl(a2b2), and Proposition 2.9 implies that if e = acl(Dc2)∩dcl(a2b2),

then tp(a2/e) is almost-S-internal.
The last assertion is clear: tp(a2/e) almost-S-internal implies tp(a2/eb2) almost-

S-internal, and our assumption of hereditary orthogonality implies that a2 ∈
acl(eb2).

Concluding remarks. Inspection of the proofs shows that our assumption of

supersimplicity on the ambient theory is unnecessary, as long as one restricts one’s

attention to types ranked by the SU-rank, and the relevant hyperimaginaries and

imaginaries are eliminated. Thus, the results of Sec. 1 do apply to types of finite U-

rank in separably closed fields of finite degree of imperfection. It is unknown whether

this family of types enjoys the CBP, we will explain now what one needs to prove.

Let K be a separably closed field of characteristic p > 0 and finite (positive) degree

of imperfection. It follows from results of Messmer, Hrushovski and Delon (see e.g.

[2]), that a type of finite U-rank which is not one-based is non-orthogonal to the

generic type q of
⋂

n K
pn

. By Theorem 1.16, it is therefore enough to show that the

family of all {q}-analyzable types has the CBP. A partial result in this direction is

obtained by Pillay and Ziegler in [17]: they show that the family of very thin types

has the CBP. Thus, the results of Sec. 2 apply for the family P of very thin types.

Unfortunately, Pillay and Ziegler also give an example of a {q}-analyzable type (of

U-rank 2) which is not very thin.

The result of Pillay and Ziegler on types in differentially closed fields of charac-

teristic 0 is stronger than the CBP: indeed, if Cb denotes the usual canonical base,

then they show that given two tuples a and b of finite rank such that b = Cb(a/b),

then tp(b/a) is internal to the constants. It would be interesting to know whether

this implies that tp(b/C) is also internal to the constants (as opposed to almost-

internal to the constants), under some reasonable conditions on a, b, and with

C = acl(a) ∩ acl(b), or even C = dcl(a) ∩ dcl(b).

3. Existentially Closed Difference Fields Have the CBP

Recall that a difference field is a field with a distinguished endomorphism (usually

denoted by σ), which we study in the language of rings augmented by a symbol

for σ. A difference field K is inversive if σ(K) = K. We refer to [8] for basic alge-

braic results on difference fields, and to [4] for basic model-theoretic results. Any

completion of the theory ACFA of existentially closed difference fields is supersim-

ple and eliminates imaginaries. Moreover, if K is an existentially closed difference

field, and A ⊆ K, then acl(A) is the smallest algebraically closed subfield B of K

satisfying σ(B) = B and containing A. Independence of algebraically closed sets

coincides with independence in the sense of the theory of algebraically closed fields,

i.e. if C ⊆ A,B are algebraically closed difference subfields of K, then A and B are

independent over C if and only if A and B are linearly disjoint over C.
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As an immediate corollary of the results of Pillay and Ziegler and of Proposi-

tion 2.1, we then obtain

Proposition 3.1. Let (K,D) [respectively, (K,σ)] be a differentially closed field

(respectively, an existentially closed difference field) of characteristic 0. Let C ⊆
A,B be algebraically closed differential (respectively, difference) subfields of K, with

SU(B/C) < ω. Assume that A = Cb(B/A). Then tp(A/A ∩B) is almost internal

to Dx = 0 [respectively, σ(x) = x].

Notation 3.2. We denote by Aalg the field-theoretic algebraic closure of a field

A, and by As its separable closure. If σ(E) = E is a difference subfield of the

inversive difference field K, and a is a tuple of elements of K, then E(a)σ denotes

the (inversive) difference subfield E(σi(a) | i ∈ Z) of K. If τ is an automorphism

of K, we denote by Fix(τ) the subfield of K consisting of elements fixed by τ . We

denote by Frob the Frobenius map x �→ xp.

p-bases and degree of imperfection. For details and proofs, see [1, §13]. Let E ⊆
K ⊆ L ⊆ Kalg be fields of characteristic p > 0, with E perfect and tr.deg(K/E) =

d < ∞. Then [K : Kp] = pe for some e ≤ d, and there is an e-tuple c of elements

of K such that K = Kp[c]. Such a tuple is called a p-basis of K and its elements

are algebraically independent over E. Moreover, if e = d, then c is a separating

transcendence basis of K over E, i.e. K ⊆ E(c)s. The integer e is called the degree

of imperfection of K.

We also have: [L : Lp] divides pe, and [L : Lp] = pe if L ⊆ Ks or if [L : K] < ∞.

Lemma 3.3. Let (K,σ) be an existentially closed difference field of characteristic

p > 0, let E = acl(E) ⊂ K, a finite tuple in K, and assume that tp(a/E) is

Fix(σ)-analyzable. Then there is a finite tuple b such that E(a)σ = E(b)σ, and

σ(b), σ−1(b) ∈ E(b)s.

Proof. We will show that if d = tr.deg(E(a)σ/E), then [E(a)σ : E(ap)σ] = pd and

d < ∞. This will yield the result: let c be a p-basis of E(a)σ. Then E(a)σ ⊆ E(c)s,

and therefore E(a)σ = E(c, a)σ ⊆ E(c, a)s.

The proof is by induction on the length of a semi-minimal analysis in Fix(σ)

of tp(a/E). Assume first that tp(a/E) is almost-Fix(σ)-internal. Let F = acl(F )

be independent from a over E, and such that a is equi-algebraic over F with some

finite tuple b of Fix(σ). We may assume that a ∈ F (b)s (we replace b by b1/p
n

if

necessary). From σ(b) = b, we deduce that F (a)σ ⊆ F (b)s, and therefore

pd ≥ [F (a)σ : F (ap)σ] ≥ [F (b) : F (bp)] = pd.

As F was linearly disjoint from E(a)σ over E, this shows [E(a)σ : E(ap)σ] = pd,

with d < ∞.

For the general case, choose a1, . . . , an ∈ acl(Ea) such that a ∈ E(a1, . . . , an)σ,

and for every i, tp(ai/acl(Ea1, . . . , ai−1)) is almost-Fix(σ)-internal. Let Fi =
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acl(Ea1 · · · ai) for i = 1, . . . , n. By reverse induction, we may enlarge an, . . . , a1
so that for every i < n:

(a) ai+1 contains a p-basis of Fi(ai+1)σ and a transcendence basis of Fi(ai+1)σ over

Fi.

(b) The σ-ideal of difference equations satisfied by ai+1 over Fi is generated by the

difference equations satisfied by ai+1 over Ei = E(a1, . . . , ai)σ (this is possible,

since this σ-ideal is finitely generated as a σ-ideal, see e.g. [8]).

Condition (b) then implies that for every i < n, Ei(ai+1)σ and Fi are linearly

disjoint over Ei. By the first case and (a), Fi(ai+1)σ ⊆ Fi(ai+1)
s, and the linear

disjointness of Fi and Ei(ai+1)σ over Ei then implies that Ei(ai+1)σ ⊆ Ei(ai+1)
s,

so that

E(a)σ ⊆ E(a1, . . . , an)σ ⊆ E(a1, . . . , an)
s.

Then [E(a1, . . . , an) : E(ap1, · · ·apn)] = pd where d = tr.deg(E(a1, . . . , an)/E) < ∞.

Reasoning as in the first case, we deduce [E(a)σ : E(ap)σ] = pd.

Remark 3.4. Let (K,σ) be an existentially closed difference field of characteristic

p > 0. We give a description of the classes S(q), for q a non-one-based type of

SU-rank 1.

Let I be the set of pairs (n,m) ∈ N>0 × Z, with (n,m) = 1 if m �= 0 and n = 1

if m = 0. For each pair (n,m) ∈ I, choose a non-algebraic type qn,m (over Falg
p )

containing the formula σn(xpm

) = x, and let Sn,m = S(qn,m). Then qn,m is not

one-based.

By [7, (7.1)(1)], SU(σn(xpm

) = x) = 1; as the formula σn(xpm

) = x defines a

subfield of K, this implies that any two non-algebraic types containing this formula

are non-orthogonal. This observation, together with the main result of [7] (see the

theorem in Sec. 6), shows that any type of SU-rank 1 which is not one-based is

non-orthogonal to some qn,m. We define S =
⋃Sn,m.

We will now show that if (n,m) �= (n′,m′) are in I, then Sm,n ∩ Sm′,n′ = ∅.
Indeed, let F = acl(F ), and a, b ∈ K\F with σn(ap

m

) = a, σn′
(bp

m′
) = b, and

assume that a, b are equi-algebraic over F . Then clearly

n = n′ = tr.deg(F (a)σ/F ) = tr.deg(F (b)σ/F ).

Taking a p�-power of b, we may assume that b ∈ F (a, . . . , σn−1(a))s. Let τ =

σnFrobm. Then F (a, . . . , σn−1(a))s is closed under τ and τ−1 (because τσi = σiτ

and τ(a) = a), and has degree of imperfection n. On the other hand, if m �= m′,

then the closure under τ and τ−1 of F (b) is perfect because τ(b) = bp
m−m′

. This

contradicts b ∈ F (a, . . . , σn−1(a))s.

Theorem 3.5. Let (K,σ) be an existentially closed difference field of characteristic

p > 0, let C ⊆ A,B be algebraically closed difference fields, with SU(B/C) < ω.

Assume that Cb(B/A) = A. Then tp(A/A ∩B) is almost-S-internal.
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Proof. By Theorem 2.1, it suffices to show that whenever A and B satisfy the

hypotheses of the theorem, then tp(A/B) is almost-S-internal. Fix such A, B, with

C = A ∩ B. We may assume B = Cb(A/B); observe that by Remark 1.1(1), A =

Cb(B/A) implies SU(A/C) < ω.

By Proposition 1.14 and the discussion in Remark 3.4, we already know that

A = acl(A1 · · ·Aj), where each tp(Ai/C) is Sn,m-analyzable for some (n,m) ∈ I,

and B = acl(B1 · · ·Bj), where Bi = Cb(Ai/B), Ai = Cb(Bi/A). If there is a

counterexample to our assertion, then there is one where tp(A/C) and tp(B/C) are

Sn,m-analyzable for some (n,m) ∈ I, and this is what we will assume. We will also

assume that K is sufficiently saturated.

Let τ = σnFrobm. Let b be a (finite) tuple of elements of B such that B =

C(b)alg. Then A is the smallest algebraically closed field containing C and the field

of definition of the algebraic locus of b over A.

We now work in the difference field (K, τ), which is a reduct of (K,σ), and

is also a model of ACFA by Corollary 1.12(1) in [4]. In the reduct (K, τ) we also

have A = Cb(Cb/A). By Lemma 3.3, we may assume that τ(b) and τ−1(b) are in

C(b)s. Hence, there are varieties V,W defined over C, with generics b and (b, τ(b))

respectively, and with W ⊆ V × τ(V ), and such that the projection maps W → V

and W → τ(V ) are separable and generically finite. These maps therefore induce

isomorphisms between the jet spaces Jk
(b,τ(b))(W ) and Jk

b (V ), Jk
τ(b)(τ(V )) for every

k > 0. The proof of Pillay and Ziegler then goes through (see Chap. 3 of [17]),

and shows that tp(A/B) is almost-Fix(τ)-internal (in (K, τ)). Hence there is M =

τ(M)alg ⊇ B, linearly disjoint from AB over B, and some tuple a ∈ Fix(τ) such

that A ⊆ M(a)alg. Since the elements of a have SU-rank 1 in the difference field

(K, τ), we may assume that a and A are equi-algebraic over M .

If n = 1, then M = σ(M)alg, and we are done. Assume that n > 1; then M

is closed under σn and σ−n, but not necessarily under σ, σ−1. We need to show

that there is a difference field (N, σ) extending (B, σ), containing M and linearly

disjoint from AM over M , and such that (N, σn) extends (M, τFrob−m). This is

done as in [4], Lemma 1.12. The saturation of (K,σ) then implies that K contains

(a copy of) (N, σ), and shows that tp(A/B) is almost-Fix(τ)-internal.

Theorem 3.5′. Let A,B be difference subfields of U intersecting in C, such that

Aalg ∩ Balg = Calg and tr.deg(A/C) < ∞. Let D ⊂ B be generated over C by all

tuples d such that there exist an algebraically closed difference field F containing C

and free from B over C, and integers n > 0 and m such that d ∈ F (e) for some

tuple e of elements satisfying σnFrobm(x) = x. Then A and B are free over D.

Proof. When A and B are algebraically closed, this is a direct consequence of

Theorems 3.5 and 2.1: we know that Cb(A/B) realizes a type over A ∩ B which

is almost-S-internal, where S is the family of SU-rank 1 types realized in some

Fix(τ). Hence Cb(A/B) is contained in Dalg, which implies that A and B are free

over D.
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Assume now that A and B are not algebraically closed, and work over their

intersection C. Again, we know that Cb(A/B) realizes a type over Calg which

is almost-S-internal. Hence Cb(A/B) is contained in the maximal subset D0 of

acl(A) which realizes an almost-S-internal-type over Calg. By Remark 4.7, we have

D0 = Dalg, which gives the result.

4. Applications of the CBP to Differential and Difference Varieties

Differential fields. We will now apply some of the results of Sec. 2 to the study of

(affine) differential varieties. For an introduction to the model theory of differential

fields of characteristic 0, see e.g. [12].

Known facts . We work in some large differentially closed field (U , δ) of characteris-
tic 0. In analogy with the Zariski topology, we define the Kolchin topology on each

Cartesian power Un, as the topology with basic closed sets the zero-sets of differen-

tial polynomials, which are called Kolchin closed sets. This topology is Noetherian.

A differential (affine) variety V is an irreducible Kolchin closed set.

If A ⊂ U is a differential field, then A = dcl(A) and acl(A) = Aalg. The theory of

differentially closed fields of characteristic 0 eliminates quantifiers and imaginaries.

Since our results concern differential fields, we first define the analogues of func-

tion fields and birational morphisms. The definitions are straightforward.

If a differential variety V is defined over the differential field K, we define the

coordinate ring K[V ]D and function field K(V )D of V as follows: let K[X̄]D be the

ring of differential polynomials in X̄ = (X1, . . . , Xn), and I the ideal of differential

polynomials vanishing on V . Then

K[V ]D = K[X̄]D/I and K(V )D = Frac(K[V ]D).

A differential variety V has finite order if the transcendence degree of K(V )D over

K is finite. If V,W are differential varieties, a differential-rational map f : V → W

is simply a map whose coordinate functions are given by elements of K(V )D; it

is therefore defined on some Kolchin-open subset U of V . If f(U) is dense in W

for the Kolchin topology, then we will say that f is dominant, and the map f

induces a K-embedding of K(W )D into K(V )D. Conversely, any K-embedding of

K(W )D into K(V )D is induced by some dominant differential-rational f : V → W .

A finite cover of V is a dominant differential-rational map f : W → V such that

the generic fiber of f is finite. It corresponds to a finite algebraic extension K(W )D
of K(V )D.

The constant field is C = {x ∈ U |Dx = 0}. Any non-one-based type is non-

orthogonal to the generic type of C. We let S be this generic type (over acl(∅)).
If A ⊂ U , then K(A)D denotes the differential field generated by A over K. If

a is a finite tuple, then a is a generic of the differential variety V over K if a ∈ V

and the specialization map K[V ]D → K(a)D is injective.
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We say that a differential variety V is C-internalb if there is a birational f :

V → W̄ (C) for some algebraic variety W̄ . We say that V is almost-C-internal if it
is a finite cover of a C-internal differential variety. This is equivalent to: if a is a

generic of V over K, then tp(a/K) is almost-S-internal.

Proposition 4.1. Let V be a differential variety of finite order defined over the

differential subfield K of U . Then V has a maximal almost-C-internal quotient V #,

i.e. V # is almost-C-internal, and if π is a dominant differential-rational map from

V to an almost-C-internal variety V1, then π factors through V #. Furthermore, if

f : W → V is a finite cover of V, then there is a generically finite map W# → V #.

Proof. Let K be a differential field over which everything is defined. Translated

into terms of elements, this becomes: let a be a generic of V over K, let A = acl(A)

be the maximal subfield of acl(Ka) whose type over K is almost-S-internal, and
let A0 = A∩K(a)D. Then A0 is finitely generated over K (as a differential field or

as a field), say by a tuple b, and we let V # be the differential variety with generic

b over K, and V → V # the birational map dual to the inclusion K(b)D → K(a)D.

Note that this defines V # uniquely up to a differential birational correspondence,

and by definition, V # is almost-C-internal.
Assume that π : V → V1 is dominant differential-rational, and let c = π(a). The

almost-C-internality of V1 is equivalent to the almost-C-internality of tp(c/K), and

this implies that c ∈ A0 = K(b)D, and shows that the map π factors through V #.

For the last assertion, let g : W → V be a finite cover of V , let c be a generic

of W such that g(c) = a, and let A1 = A ∩K(c)D. As c ∈ K(a)algD , we know that

A1 is the maximal subfield of K(c)D which realizes an almost-C-internal type over

K, i.e. we can take W# to be the differential variety of which a generator of A1

over K is a generic. We clearly have A0 ⊆ A1 ⊆ A, and we need to show that this

extension is algebraic: but Observation 2.8 tells us that A = Aalg
0 .

Proposition 4.2. Let V be a differential variety of finite order defined over the

differential subfield K of U . Then V has a maximal almost-C-internal fiber, i.e. a
smallest quotient V � with generic fiber an almost-C-internal differential variety.c
Furthermore, if f : W → V is a finite cover of V, then there is a generically finite

map W � → V �.

Proof. The translation in terms of differential extensions is similar to the one done

in Proposition 4.1, and reduces the problem to the following:

Let B = acl(B) be minimal such that tp(a/B) is almost-S-internal (cf.

Theorem 2.4 for the existence), and let B0 = B ∩ K(a)D. Then Balg
0 = B and

bSome authors say that V is iso-constant.
cIn other words, if π : V → V1 is dominant with generic fiber almost-C-internal, then V � is a
quotient of V1.
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tp(a/B0) is almost-S-internal. But this last statement is given by (the proof of)

Proposition 2.9.

Proposition 4.3. (Descent) For i = 1, 2, let Vi be a differential variety of finite

order defined over the differential subfield Ki, of U , and let k = K1 ∩K2. Assume

that Kalg
1 ∩Kalg

2 = kalg, that K2 is a regular extension of k, that there is a differen-

tial rational dominant map f : V1 → V2 defined over (K1K2)
alg, and that tp(K2/k)

is almost-S-internal. Then there is a differential variety V3 defined over k, and a

dominant differential rational map g : V2 → V3 such that the generic fiber of g is

almost-C-internal.

Proof. Use Proposition 2.10 with dcl(∅) = k, bi = Ki, and ai a generic of Vi over

K1K2, a2 = f(a1) to get e ∈ K2(a2)D such that e |�kK2 and tp(a2/e) is almost-S-
internal. Since the property of almost-S-internality only depends on tp(a2/e), we

may take for e a finite tuple. Our hypothesis on the extension K2 of K implies

that k(e)D is a regular extension of k. If V3 is the differential locus of e over k, and

g : V2 → V3 is the dominant map induced by the inclusion K2(e)D ⊂ K2(a2)D, then

the generic fiber of g realizes an almost-S-internal-type (over K2(e)D or k(e)D).

Difference fields. In the same vein, we now apply the results of Sec. 2 to the study

of (affine) difference varieties. Again, we have to define the analogues of function

fields and birational morphisms. The definitions are straightforward.

We work in some large existentially closed difference field U . In analogy with

the Zariski topology, we define the σ-topology on each cartesian power Un, as the

topology with basic closed sets the zero-sets of difference polynomials, which are

called σ-closed sets. This topology is Noetherian. A difference (affine) variety is

an irreducible σ-closed set, and if this variety is defined over the difference field

K, we define its coordinate ring K[V ]σ+ and function field K(V )σ+ as follows: let

K[X̄]σ be the ring of difference polynomials in X̄ = (X1, . . . , Xn), and I the ideal

of difference polynomials vanishing on V . Then

K[V ]σ+ = K[X̄]σ/I, K(V )σ+ = Frac(K[V ]σ+).

The order of a difference variety V is the transcendence degree of K(V )σ+ over

K. If V,W are difference varieties, a σ-rational map f : V → W is simply a map

whose coordinate functions are given by elements of K(V )σ+; it is therefore defined

on some σ-open subset U of V . If f(U) is dense in W for the σ-topology, then we

will say that f is dominant, and the map f induces a K-embedding of K(W )σ+
into K(V )σ+. Conversely, any K-embedding of K(W )σ+ into K(V )σ+ is induced

by some dominant σ-rational map f : V → W . A finite cover of V is a dominant

σ-rational map f : W → V such that the generic fiber of f is finite. It corresponds

to a finite algebraic extension K(W )σ+ of K(V )σ+.

If a is a tuple in U , we let K(a)σ+ = K(σi(a) | i ≥ 0); if σ(K) = K, then

K(a)σ = K(σi(a) | i ∈ Z) as in Sec. 3. We say that a tuple a is a generic of the

1250004-26



3rd Reading

December 21, 2012 13:35 WSPC/S1793-7442 251-CM 1250004 27–34

A Note on Canonical Bases and One-Based Types in Supersimple Theories

difference variety V over K if a ∈ V and the natural specialisation map K[V ]σ+ →
K(a)σ+ is injective.

We will often use the following result (see [8], 5.23.18): If K ⊂ L ⊂ M are

difference fields, with M finitely generated over K (as a difference field), then L is

finitely generated over K.

Internality. The definable closure of a difference field K, dcl(K), is usually much

larger than the perfect closure of K. The notion of internality to Fix(σ) therefore

does not have a natural geometric interpretation. The right notion to consider is

the one of qf-internality: one replaces dcl by “difference field generated by”.

Definition 4.4. Let K be a difference field, a a tuple in U , such that K(a)σ/K

is regular, let V be the difference locus of a over K (i.e. the smallest σ-closed set

containing a and defined over K), and let S be a set of types with algebraically

closed base, which is closed under conjugation by Aut(U/K). We say that tp(a/K)

is qf-internal to S, or qf-S-internal, if for some L = acl(L) containing K and free

from K(a)σ over K, and some tuple b of realizations of types in S, a ∈ L(b)σ. In

that case, we also say that the extension K(a)σ/K, and the difference variety V

are qf-internal to S, or qf-S-internal. (For the difference variety, we should really

speak of “generic” qf-internality.) And similarly we will speak of almost-S-internal
extensions, and almost-S-internal difference varieties. Let τ = σnFrobm for some

(m,n) ∈ I (see Remark 3.4). If S consists of all types realized in Fix(τ), then we

will also speak of qf-Fix(τ)-internality, or qf-internality to Fix(τ).

Internality to fixed fields. Let τ = σnFrobm for some (m,n) ∈ I, and assume that

tp(a/K) is qf-internal to Fix(τ). Then one can find L and b as above, such that

L(a)σ = L(b)σ: take b such that L(a)σ ∩ Fix(τ) = (Fix(τ) ∩ L)(b)σ; since L(a)σ
and Fix(τ) are linearly disjoint over their intersection, it follows that L(a)σ and

LFix(τ) are linearly disjoint over L(b)σ, and therefore L(a)σ = L(b)σ. Note that

if m ≥ 0, then L(b)σ = L(b)σ+ and therefore also L(a)σ+ = L(a)σ. If m < 0,

then L(b)σ is the perfect hull of L(b)σ+, and this implies that, choosing b so that

(L ∩ Fix(τ))(b)σ+ = L(a)σ+ ∩ Fix(τ), we have L(a)σ+ ⊇ L(b)σ+ ⊇ L(σj(a))σ+ for

some j ≥ 0. If W̄ is the algebraic locus of b over L, then there is a purely inseparable

map π such that π(V ) is σ-birationally isomorphic (over L) to W̄ (Fix(τ)), the

difference variety defined by x ∈ W̄ ∧ τ(x) = x.d

Fact 4.5. Let τ = σmFrobn for some (m,n) ∈ I, let � ≥ 1 be an integer. Let K be a

difference subfield of U , andK ′ a difference field isomorphic toK by an isomorphism

ϕ0, and U ′ an existentially closed difference field containing K ′. We will work in

the σ�-difference field U [�] = (U , σ�), and denote by qftp(−)[�], tp(−)[�], aclσ� the

dBecause Fix(τ) is stably embedded (see [7, Sec. 7.1]), it follows that W̄ is defined over L∩Fix(τ).
If m ≥ 0 then j = 0 and one does not need the map π.
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quantifier-free types, types, and algebraic closure respectively, with superscript U
or U ′ if necessary. We will use the following results:

(1) ([7, 1.12]) Assume that a ∈ Kalg, and let a′ be a field-conjugate of a over K.

Then qftp(a/K)[m] = qftp(a′/K)[m] for some m ≥ 1.

(2) ([6, 2.9]) Let a ∈ U , a′ ∈ U , and assume that there is an isomorphism of

σ�-difference fields between K(a)σ� and K ′(a′)σ� which extends ϕ0 and sends

a to a′. Then tpU (a/K) is qf-Fix(τ)-internal if and only if tpU
′
(a′/K ′)[�] is

qf-Fix(τ �)-internal.

(3) ([6, 2.11]). Let a and a′ be as in (2). Then tpU(a/K) is one-based if and only if

tpU
′
(a′/K ′)[�] is one-based.

Conditions on the set S. We fix a set S of types of SU-rank 1 with algebraically

closed base, which is closed under Aut(U)-conjugation. If p ∈ S is not one-based,

then for some τ as above, p is non-orthogonal to any non-algebraic type realized

in Fix(τ). If S consists only of non-one-based types, then we do not impose any

additional condition.

If S contains some one-based type, for convenience we will impose that S con-

tains all one-based types of SU-rank 1. By abuse of language, we will speak about

almost-S-internality even when working in U [�].

Proposition 4.6. Let V be a difference variety of finite order defined over the

difference subfield K of U , and S as above. Then V has a maximal almost-S-internal
quotient V #. Furthermore, if W is a finite cover of V, then W# is a finite cover of

V # via a map σ−nf for some integer n and tuple f of rational difference functions

on W#.

Proof. Let a be a generic of V over K, and let A = acl(A) ⊆ acl(Ka) be maximal

realizing an almost-S-internal-type over K. Let A0 = A ∩ K(a)σ+ and let b be

a finite tuple such that A0 = K(b)σ+. Then tp(b/K) is almost-S-internal, which
translates into: if V # is the difference variety of which b is a generic, then V # is

almost-S-internal, is a quotient of V by a difference rational map, and is maximal

such (up to birational difference equivalence). This is immediate observing that

K(a)σ+ = K(V )σ+, and K(b)σ+ = K(V #)σ+.

As in the proof of Proposition 4.1, the statement about W and W# reduces to

showing that A = Aalg
0 . First note that because b realizes an almost-S-internal type

over K, we have K(b)σ ⊂ Aalg
0 .

As in Proposition 4.1, we argue that if c ∈ A and c′ is a field conjugate of c

over K(b)σ, then tp(c′/K) is almost-S-internal because c′ ∈ A. Hence if c is such

that A = K(c)alg, then c and c′ are equi-algebraic over K; it then follows that the

code d of the set of field conjugates of c over K(b)σ is equi-algebraic with c over K,

and therefore that A = Aalg
0 : if the characteristic is 0, then d ∈ K(b)σ, and if the

characteristic is p > 0, some pm-power of d is in K(b)σ.
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Remark 4.7. A similar statement could be obtained with maximal qf-S-internal
quotients instead: Replace A0 by its maximal subset A1 realizing a qf-S-internal
type over K; then A0/A1 is algebraic.

Observe also the following direct consequence of the proof of Proposition 4.6:

Let a be a tuple in U , K a difference subfield of U and A the maximal subset of

acl(Ka) realizing an almost-S-internal type over Kalg. If A = A0 ∩K(a)σ+, then

A = Aalg
0 .

Proposition 4.8. Let V be a difference variety of finite order defined over the

difference field K. Then, up to composition with a power of Frobenius, V has a

maximal almost-S-internal fiber, i.e. a unique minimal σ-rational quotient V � with

the property that the generic fiber of the quotient map is irreducible and almost-S-
internal. Furthermore, if W is a finite cover of V, then W � is a finite cover of V �

via a map f, for some tuple f of rational difference functions on W �.

Proof. Let a be a generic of V over K, and A = acl(A) ⊂ acl(Ka) be minimal

such that tp(a/A) is almost-S-internal, let A0 = A ∩K(a)σ+, and let c be a finite

tuple such that A0 = K(c)σ+. We now let V � be the difference variety defined

over K of which c is a generic and f : V → V � the map induced by the inclusion

K(c)σ+ ⊆ K(a)σ+.

As in the proof of Proposition 4.2, the assertion about W and W � reduces to

showing that A = Aalg
0 . Let b ∈ As

0 be such that A = K(b)alg, and let b2, . . . , bm
be the field-conjugates of b = b1 over K(a)σ. By Fact 4.5, there is � ≥ 1 such that,

for each i ≥ 2, there is a σ�-K(a)σ-isomorphism fi : K(a)σ(b)σ� → K(a)σ(bi)σ�

sending b to bi. Since σ(b) ∈ K(b)alg, we know that qftp(a, . . . , σ�−1(a)/K(b)σ�)[�] is

almost-S-internal, and therefore so are the types tp(a, . . . , σ�−1(a)/K(σj(bi)σ�))[�]

for 0 ≤ j < � (it is clear for j = 0; then apply powers of σ to get the result

for the other values of j). Letting B =
⋂m

i=1

⋂�−1
j=0 aclσ�(Kσj(bi)) and noting that

B = σ(B), Fact 4.5 and Lemma 2.3 imply that tp(a/B) is almost-S-internal. The
minimality of A and the fact that b1 ∈ A now imply A = B. It follows that all

tuples bi belong to A, since tr.deg(K(bi)/K) = tr.deg(K(b)/K). Hence, if d is the

tuple encoding the set {b1, . . . , bm}, then K(d)alg = K(b)alg and tp(a/K(d)σ) is

almost-S-internal. For some n,m ≥ 0 we then have σn(dp
m

) ∈ K(a)σ+, which

shows A = Aalg
0 .

Remark 4.9. The proof gives the following: let a be a tuple in U , K a difference

subfield of U and A an algebraically closed difference subfield of acl(Ka) such

that tp(a/A) is almost-S-internal. If A0 = A ∩K(a)σ+ then tp(a/A0) is almost-S-
internal.

Descent of difference varieties. The main application of our results are given by

Theorems 4.10 and 4.11. Theorem 4.11 is an almost optimal generalization of The-

orem 3.3 of [6].
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Theorem 4.10. Let Ki, i = 1, 2, be difference subfields of U with intersection k,

and Vi difference varieties of finite order defined over Ki, and assume that kalg =

Kalg
1 ∩Kalg

2 . Assume that there is a σ-rational dominant f : V1 → V2 defined over

(K1K2)
alg, that tp(K2/k) is almost-S-internal and that K2 is a regular extension of

k. Then there is a dominant map g : V2 → V3, with V3 a difference variety defined

over k, such that the generic fiber of g is almost-S-internal.

Proof. Let a1 be a generic of V1 over K1K2, and a2 = f(a1). Letting b1 = K1

and b2 = K2, applying Proposition 2.10 and using Proposition 4.8, we obtain e ∈
K2(a2)σ such that k(e)σ and K2 are free over k, and tp(a2/k(e)σ) is almost-S-
internal. Moreover, k(e)σ, being a subfield of K2(a2)σ, is a regular extension of k

and is therefore linearly disjoint from K2 over k; we may assume that k(e)σ+ =

K2(a2)σ+ ∩ k(e)algσ . If V3 is the difference variety of which e is a generic (over K2),

then V3 is defined over k, and the inclusion K2(e)σ+ ⊂ K2(a2)σ+ gives a dominant

rational difference map g : V2 → V3 (defined over K2) such that g(a2) = e, and

with generic fiber almost-S-internal.

Theorem 4.11. Let K1,K2 be fields intersecting in k and with algebraic closures

intersecting in kalg; for i = 1, 2, let Vi be an absolutely irreducible variety and

φi : Vi → Vi a dominant rational map defined over Ki. Assume that K2 is a

regular extension of k and that there are an integer r ≥ 1 and a dominant rational

map f : V1 → V2 such that f ◦ φ1 = φ
(r)
2 ◦ f, where φ

(r)
2 denotes the function

obtained by iterating r times φ2. Then there is a variety V0 and a dominant rational

map φ0 : V0 → V0, all defined over k, a dominant map g : V2 → V0 such that

g ◦ φ2 = φ0 ◦ g, and deg(φ0) = deg(φ2).

Proof. Observe that the rational map f will be defined over (K1K2)
alg, because

this is a statement about algebraic varieties and rational morphisms.

Let a1 be a generic of V1 over K1K2, and let a2 = f(a1). Then a2 is a generic

of V2 over K1K2. We fix an existentially closed difference field (U , σ) containing

K2(a2) and such that σ is the identity on K2 and σ(a2) = φ2(a2). We fix another

existentially closed field (U ′, τ) containing K1K2(a1), such that τ is the identity on

K1K2, and τ(a1) = φ1(a1). Note that τ and σr agree on K2(a2). By abuse of nota-

tion, we let S denote the set of non-algebraic types of rank 1 realized in Fix(σ) when

working in U , in Fix(τ) when working in U ′, and in Fix(σr) when working in U [r].
Working in U ′, by Proposition 2.10, there is an algebraically closed τ -

difference field E contained in K2(a2)
alg and free from K2 over k, such that

tpU
′,τ (K2a2/E) is almost-S-internal. By Remark 4.9 and Fact 4.5, we obtain that

tpU (K2a2/E ∩K2(a2))[r] is almost-S-internal, and therefore so is tpU (K2a2/E)[r].

Applying σi for i ≥ 0, we get that tp(K2σ
i(a2)/σ

i(E))[r] is almost-S-internal, and
because a2 ∈ K2(σ

i(a2))
alg so is tp(a2/σ

i(E))[r].

Observe now that because E = (E∩K2(a2))
alg and τ agrees with σr on K2(a2),

we have σr(E) = E. Hence, by Lemma 2.3, we may replace E by
⋂

i σ
i(E) and
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assume that σ(E) = E. We now reason as in Proposition 4.8 to show that if a3 is

such that K2(a2) ∩ E = k(a3), then tp(a2/k(a3)σ) is almost-S-internal. Note that

as K2(a2) and E are closed under σ, so is k(a3). Hence, σ(a3) ∈ k(a3). As K2 is a

regular extension of k, and k(a3) ⊂ E, it follows that k(a3)σ and K2 are linearly

disjoint over k. Letting V0 be the algebraic locus of a3 over k, and φ0 the rational

endomorphism of V0 such that σ(a3) = φ0(a3), we get the desired (V0, φ0). The

rational map g is the one given by the inclusion K2(a3) ⊂ K2(a2).

It remains the assertion about the degrees of the maps. By Lemma 1.11 of [6],

we have 1 = ld(a2/K2(a3)σ) = ild(a2/K2(a3)σ), which implies deg(φ2) = deg(φ0)

and finishes the proof.

Remarks 4.12. (1) As stated, the theorem says nothing when deg(φ2) = 1, since

one can take V0 of dimension 0.

(2) The assertion on the degrees of the map φ2 and φ0 is weaker than the assertion

that tp(a2/k(a3)σ) is almost-S-internal. Note that for instance if c ∈ K2 is a finite

tuple which generates over k the field of definition of (V2, φ2), then c ∈ k(a2)σ, and

therefore tp(c, a2/k(a3)σ) is almost-S-internal. This should have consequences on

the data (V2, φ2).

(3) One can in fact show that the generic fiber of g is qf-Fix(σ)-internal. The proof

goes as follows: we know that there is some a4 ∈ K2(a2) such that tp(a4/k(a3)) is qf-

Fix(σ)-internal, and a2 ∈ K2(a4)
alg. Observe that because ld(a2/K2) = ld(a4/K2)

(=1), the field K2(a2)σ is a finite extension of K2(a4)σ. Let L be a difference

field containing k(a3)σ, linearly disjoint from K2(a2)σ over k(a3)σ, and such that

L(a4)σ = L(b) for some tuple b in Fix(σ). Enlarging L if necessary, we will assume

that L is algebraically closed and that Fix(σ) ∩ L has absolute Galois group iso-

morphic to Ẑ, so that Fix(σ)L contains the algebraic closure of Fix(σ). It then

follows by Lemma 4.2 of [3] that L(a2) ⊂ LFix(σ), which shows that tp(a2/k(a3))

is qf-Fix(σ)-internal.

Appendix

Proposition A.1. Let E and B be algebraically closed subsets of M, b a tuple in

M . Assume that SU(B/B ∩E) < ω, that tp(b/B) is one-based, and that B ∩ E =

acl(Bb) ∩ E. Then b is independent from E over B.

Proof. Assume the result is false, and take a counterexample with r =

SU(B/B ∩ E)− SU(B/E) minimal among all such (B,E, b). We may assume that

B ∩ E = acl(∅), and E = Cb(Bb/E). Since tp(b/B) is one-based, acl(Bb) ∩
acl(BE) �= B, and we may therefore assume that b ∈ acl(BE).

If r = 0, then B |�E, so that Cb(Bb/E) realizes a one-based type over B ∩ E

(by Lemma 1.7 with S the set of one-based types with algebraically closed base),

and therefore Bb |�E. This contradicts b ∈ acl(BE). Hence r > 0.

Let A = Cb(B/E). We may then assume that E and b are equi-algebraic

over AB: by Lemma 1.7 tp(E/A) is one-based, and if D = acl(ABb) ∩ E, then
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b ∈ acl(BD). Replace E by D. Reasoning as in Step 3 of Theorem 2.1, there

is m ≥ 2, and E-independent realizations (B1b1), . . . , (Bmbm) of tp(Bb/E) with

A ⊂ acl(B1 · · ·Bm) and SU(Bm/B1 · · ·Bm−1) > SU(B/A). The induction hypoth-

esis implies b1 |�B1
B2 · · ·Bm, since

acl(B1b1) ∩ acl(B2 · · ·Bm) ⊆ acl(Bb) ∩ E = acl(∅).

Similarly bm |�Bm
B1 · · ·Bm−1, and therefore B1 |�B2···Bm

bm.

If E = A, then b ∈ acl(AB), and b1 ∈ acl(B1 · · ·Bm); by the above we get

b1 ∈ B1 which is absurd.

If E �= A, then E �⊆ acl(B1 · · ·Bm) because E |�AB, and each bi is equi-algebraic

with E over B1 · · ·Bm. Hence b1 and bm are equialgebraic over B1 · · ·Bm. However,

SU(B1/B2 · · ·Bmbm) = SU(B1/B2 · · ·Bm) > SU(B/E).

The induction hypothesis, together with the fact that

acl(B1b1) ∩ acl(B2 · · ·Bmbm) ⊆ acl(B1b1) ∩E = acl(∅),

gives b1 |�B1
B2 · · ·Bmbm, a contradiction.

Remark A.2. This result does not hold when SU(B/B ∩E) is infinite. Here is

a counterexample for T a completion of ACFA in characteristic 0. Let a, b, c be

generics and independent over Qalg, and consider d = ac + b, and e = σ(b) − b2.

Then Cb(c, d/a, b) = acl(Q, a, b). Moreover, tp(b/e) is one-based (by Example 6.1

of [4]) and has SU-rank 1. One also has

acl(a, b) ∩ acl(c, d) = Qalg = acl(∅).

Take for (B, b, E) the triple (Q(a, e)algσ , b,Q(c, d)algσ ).

Proposition A.3. Let tp(a/A) be a one-based type of SU-rank ωα for some ordinal

α, with SU(A) < ω, A = acl(A), and consider the class P of all types of SU-rank

ωα with algebraically closed base, which are non-orthogonal to tp(a/A). Then P
contains a type q whose base C is contained in all bases of elements of P. If tp(a/A)

has SU-rank 1 and is trivial, then there is c such that SU(c/C) = 1 and a ∈ acl(Ac).

Proof. Assume that tp(b/B) ∈ P . Moving a, we may assume that a |�AB. By

Lemma 1.11, there are realizations a1, . . . , an of tp(a/A) which are independent

from Ba over A, and realizations b1, . . . , bm of tp(b/B) which are independent from
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A over B, such that

SU(a/ABa1 · · ·anb1 · · · bm) < ωα.

Choose such m,n minimal. Then

SU((a1, . . . , an, b1, . . . , bm)/AB) = ωα(n+m)

and

acl(Aa1 · · ·an) ∩ acl(Bb1 · · · bm) = A ∩B = C.

By Proposition A.1, we know that acl(Aaa1 · · · an)∩ acl(Bb1 · · · bm) contains some

element d /∈ C. The usual routine arguments then give tp(d/C) �⊥ tp(a/A) and

SU(d/C) = ωα.

Let p1, p2 ∈ P , with bases A1, A2 contained in A. Because SU(p) = ωα, the type

p has weight 1. Hence the inclusions A1, A2 ⊆ A and the non-orthogonality of p1, p2
to p imply p1 �⊥ p2.

Thus the set of bases of types in P is closed under intersection, and has a smallest

element, since one cannot have an infinite decreasing sequence of algebraically closed

sets of finite SU-rank.

The last assertion follows immediately from triviality, as non-orthogonality then

implies non-almost-orthogonality.
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