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We address the early universe reconstruction (EUR) problem (as considered by Frisch
and coauthors in [26]), and the related Zeldovich approximate model [46]. By substi-
tuting the fully nonlinear Monge–Ampère equation for the linear Poisson equation to
model gravitation, we introduce a modified mathematical model (“Monge-Ampère gravi-
tation/MAG”), for which the Zeldovich approximation becomes exact. The MAG model
enjoys a least action principle in which we can input mass concentration effects in a
canonical way, based on the theory of gradient flows with convex potentials and some-
what related to the concept of self-dual Lagrangians developed by Ghoussoub [29]. A
fully discrete algorithm is introduced for the EUR problem in one space dimension.

0. Introduction

This paper addresses the early universe reconstruction (EUR) problem discussed

by Frisch and coauthors in [26, 18], following Peebles’ seminal paper [38]. In these

references, gravitation is not modeled according to the full Einstein equations, but

rather to a semi-Newtonian approximation, where classical Newtonian interactions

just take place in an Einstein–de Sitter space, corresponding to a big bang scenario.

In suitable coordinates, the model can be described as follows. Let us denote, for

each gravitating body, its label by a and its position at time t by X(t, a) ∈ R3. The

density field ρ is defined by

ρ(t, x) =

∫

a

δ(x −X(t, a)) (0.1)

and the gravitational potential ϕ(t, x) satisfies

ρ = 1 + t∆ϕ. (0.2)
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The Newton law for each gravitating bodies is just

∂t(α(t)
2∂tX(t, a)) = −t−1β(t)2(∇ϕ)(t,X(t, a)), (0.3)

where α and β are time-dependent scaling parameters provided by general relativity

(GR). Following [26, 18] (case of an Einstein–de Sitter universe), we set:

α(t) = t3/4, β(t) = t3/4
√
3/2. (0.4)

In the case of coefficients (0.4), we find

2t

3
∂2ttX(t, a) + ∂tX(t, a) = −(∇ϕ)(t,X(t, a)). (0.5)

Notice that, in this model, which we call SNS (as semi-Newtonian system), friction

dominates at early times. (In some sense, Newton modified by Einstein returns to

Aristoteles.) Remarkably enough, at t = 0, the density field must be uniformly

equal to 1 (otherwise solutions get unbounded) and the velocity is enslaved by the

gravity potential term. Thus, we can write

ρ(0, x) = 1, X(0, a) = a, ∂tX(0, a) = −∇ϕ0(a), ∆ϕ0 = lim
t↓0

ρ(t, x)− 1

t
.

(0.6)

So, at time t = 0, the gravitational matter behaves as a continuum, with a definite

(and potential) velocity field. Consistently with the SNS, such a continuum may

keep, at least for a while, a potential velocity field v = v(t, x) = ∇θ(t, x) such that

∂tX(t, a) = v(t,X(t, a)),

for all labels a. Then, Newton’s law (0.3) can be expressed in terms of θ and ϕ as:

∂t(α
2θ) + α2 |∇θ|2

2
+ t−1β2ϕ = 0, ∂tX(t, a) = (∇θ)(t,X(t, a)). (0.7)

There is no room for a discrete repartition of gravitational matter at this early stage

and only the time evolution is able to progressively produce discrete structures such

as isolated particles (or, more generally, concentrated matter on sheets or filaments),

as the density field ρ becomes singular with respect to the Lebesgue measure. As a

matter of fact, the SNS (0.1), (0.2), (0.7) may (and usually does) produce collisions

in finite time, as will be seen later on, which generate such concentrations. Another

remarkable feature of the SNS is that, at time t = 0, the only possible initial

condition is the density fluctuation field ρ′0 (or, equivalently, the initial gravitational
potential ϕ0) defined by

ρ′0(x) = lim
t↓0

ρ(t, x)− 1

t
= ∆ϕ0(x). (0.8)

This fluctuation field is of paramount importance in the study of the very early

universe [30], which is of great interest in high energy physics and quantum gravity

theory. Since the evolution in time of the model depends only on ρ′0, it is plausible
that one could recover this field from the simple observation of a comparable scalar
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field at our present time, say t = T . A natural candidate is obviously the present

density field ρT = ρ(t = T, ·). This is precisely the early universe reconstruction

(EUR) problem. To solve the EUR, a remarkable fact can be used. The SNS enjoys

a least action principle, with a strictly convex action! (This is a very exceptional

situation, in physics and mechanics, where action principles generally correspond

to saddle points of functionals of indefinite type [22].) More precisely:

Proposition 0.1. Any smooth solution (ρ, v = ∇θ, ϕ) of the SNS (0.1), (0.2),

(0.7), on some time interval 0 < t0 < t < t1, is characterized by the following least

action principle: as ρ is fixed at time t = t0 and t = t1, (ρ, ρv) is the unique mini-

mizer (with respect to compactly supported perturbations) of the strictly CONVEX

action
∫ t1

t0

dt

∫
(α(t)2ρ(t, x)|v(t, x)|2 + β(t)2|∇ϕ(t, x)|2)dx, (0.9)

under the linear constraimts

∂tρ+∇ · (ρv) = 0, t∆ϕ = ρ− 1. (0.10)

This result extends to the limit case t0 = 0, t1 = T , with ρ given at time

T and ρ(t = 0, ·) = 1. Thus, the reconstruction of the early universe looks easy:

knowing ρT we just have to minimize a strictly convex action and we recover the

whole solution of the SNS for t ∈ [0, T ]! (Mathematically speaking, this problem

has been addressed by Loeper in [33].) Unfortunately, this reasoning does not take

into account that smooth solutions to the SNS may break down in finite time, due

to the concentration of the density field which may become singular with respect

to the Lebesgue measure. The goal of this paper is to investigate how the action

can be modified so that its minimizers are not necessarily concentration-free. A

similar problem, in the framework of adhesion-fragmentation processes, has been

recently solved by Wolansky [45]. (See also the pioneering work of Shnirelman

[41] for sticky particles and adhesion dynamics.) Our approach is different and

more reminiscent of the recent theory of self-dual Lagrangians by Ghoussoub [29].

Unfortunately, our method does not apply to the desired SNS, but rather to the

modified system obtained by substituting the fully nonlinear Monge–Ampère equa-

tion ρ = det(I + tD2
xϕ), for the Poisson equation ρ = 1 + t∆ϕ. We call this new

model “Monge–Ampère gravitation” (MAG). There is no difference between SNS

and MAG for solutions depending only on one spatial coordinate (i.e. with sheet

structure) and they are formally asymptotically close for t→ 0. Of course, changing

the model is not a satisfactory approach, without further justification. Our main

argument is the following remarkable property of the MAG system: it admits as

exact solutions some approximate solutions to the SNS, suggested by Zeldovich [46]

(and (1.11) below). As a secondary justification, let us recall that the SNS is, after

all, itself an approximation of the full Einstein equations and it might be, from

this viewpoint, equally good to use the Monge–Ampère equation and the Poisson
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equation. (A similar situation occurs in fluid mechanics when comparing the quasi-

geostrophic and the semi-geostrophic approximations of the Euler equations for

ocean and atmosphere dynamics, as discussed in [23]. See also [19].) However, there

will be no attempt in this paper to justify this last statement.

The structure of the paper is as follows: In Sec. 1, we review Zeldovich’ approx-

imation to the SNS. Then, in Sec. 2, we introduce the MAG action and the

corresponding MAG equations.

In Sec. 3, we observe that the potential part of the MAG action has the very spe-

cial property to be a squared distance function. This allows a rewriting of the action

as an exact square and we find as special minimizers all the solutions of the gradi-

ent flow equation associated to the potential, with, among them, all the Zeldovich

solutions. (These special solutions play more or less the same role as “instantons”

in Yang–Mills theory [29].) It turns out that this gradient flow belongs to a very

well-studied class of evolution equations with “maximal monotone operators” [20].

This suggests a somewhat canonical modification of the action.

In Sec. 4, we introduce a fully discrete algorithm for the numerical minimization

of the MAG action.

In Sec. 5, we introduce a numerical scheme for the initial value problem and,

finally, in Sec. 6, we provide numerical results in the very special case of one space

variable.

1. Zeldovich Approximations to the SNS

An amazingly simple approximate formula was proposed for solutions of the SNS

(0.1), (0.2), (0.7) by Zeldovich [46]:

X(t, a) = a− t∇ϕ0(a), (1.11)

with

ρ(0, x) = 1, ∆ϕ0 = ρ′0(x) = lim
t↓0

ρ(t, x)− 1

t
.

This formula turns out to be exact for small time and initial conditions depending

only on one space coordinate (this will be seen below). The Zeldovich approximate

formula predicts mass concentrations in finite time. Indeed, denoting by Λ the

largest eigenvalue of the Hessian matrix D2ϕ0(a), for all a, we see that, whenever

Λ > 0, the map a → X(t, a) is no longer invertible at t = Λ−1. Beyond the

concentration time, there are many possibilities of extending the formula and this

is still a controversial issue from the physical viewpoint. It depends very much on

whether or not we want to prevent interpenetration of particles. If we do so, we

are naturally led to the model of adhesion dynamics, where particles merge after

collisions, which is the most possible dissipative behavior beyond concentrations.

(See [40, 43, 8, 5, 25, 42, 17, 39].) This issue can simply be addressed in terms of

nonlinear hyperbolic PDEs [24]. Indeed, given a Zeldovich solution X defined by
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(1.11), let us introduce the field u(t, x) implicitly defined by:

u(t,X(t, a)) =
a−X(t, a)

t
= ∇ϕ0(a), (1.12)

as long as a→ X(t, a) stays smooth and invertible. Then, we see that u solves the

multidimensional “invisicid Burgers” equation

∂tu+ (u · ∇)u = 0. (1.13)

In one space dimension, if we want a global solution for all times, the monotonicity

condition ∂aX(t, a) ≥ 0 exactly corresponds to “Oleinik’s entropy condition” ∂xu ≤
1/t, which guarantees both global existence and uniqueness for solutions of the

inviscid Burgers equation (1.13), written in “conservation form”

∂tu+ ∂x

(
u2

2

)
= 0. (1.14)

2. Monge–Ampère Gravitation

2.1. An abstract framework for Monge–Ampère gravitation

Let H be a (separable) Hilbert space H equipped with its norm denoted ‖ · ‖ and

the corresponding inner product ((·, ·)). We first consider the general dynamical

system

d2X

dt2
= (∇HΦ)[X ], (2.15)

where t → X(t) is valued in H , ∇H denotes the gradient operator in H , and Φ is

a given “potential” defined on H . (Observe that we do not follow the usual sign

convention for the potential, for notational convenience.) As is well known, such a

system admits a least action principle, at least at a formal level. Indeed, for a curve

t→ X(t) valued in the Hilbert space H , we may define its action between times t0
and t1, t1 > t0 by:

A[t0,t1][X ] =

∫ t1

t0

1

2

∥∥∥∥
dX

dt

∥∥∥∥
2

+Φ[X(t)]dt. (2.16)

Then, the dynamical equation (2.15) can be seen as the formal optimality equation

obtained by minimizing the action (2.16) as the endpoints X(t0) and X(t1) are

fixed.

Next, we crucially assume the potential to be of the form:

Φ[X ] = inf

{‖X − s‖2
2

; s ∈ S

}
, (2.17)

where S is a given bounded subset ofH . Then, when it makes sense, X−∇HΦ[X ] is

just the closest point π[X ] to X in the set S. (Clearly this definition is ambiguous

whenever X has several distinct closest points, which may happen unless S is a
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convex set. In some cases, X may have no closest point in S!) As a consequence,

(2.15) formally means:

d2X

dt2
= X − π[X ], (2.18)

where π[X ] is the closest point to X on S. With this formulation, we can guess a

large class of explicit solutions. Indeed, let us assume that X(0) = X0 has a unique

closest point π[X0] = π0 on S. Then the linear (but not convex) combination of X0

and π0 given by:

X(t) = π0 + et(X0 − π0) (2.19)

solves (2.18) as long as π0 stays the unique projection of X(t). Intuitively, X(t) gets

repelled from its initial position in the opposite direction of its closest point on S,

keeping for a while π0 as its closest point on S until a new point in S gets even closer.

Whenever S is a convex set, this repulsion mechanism provides an obvious global

solution. Indeed, all points contained in the infinite segment {π0+r(X0−π0), r ≥ 0}
admits π0 as their unique closest point on S. In the case of a non-convex set S,

this is not true in general and formula (2.19) is able to provide no more than a

local solution. The situation is very clear in the elementary case when S is the unit

sphere in H . Then, 0 is the unique point where Φ is not differentiable. We get as

special solution

X(t) = r−1
0 (1 + (r0 − 1)et)X0,

where X0 �= 0 and r0 = ‖X0‖. We see that, if r0 < 1, then the solution reaches 0

at time T = − log(1− r0) and its continuation beyond T gets ambiguous.

Miscellaneous mathematical remarks. (1) The potential Φ given by (2.17) is

a smooth perturbation of a Lipschitz concave function; indeed:

Φ[X ] =
‖X‖2
2

−Π[X ], (2.20)

where Π is the Lipschitz convex functional defined by:

Π[X ] = sup

{
((X, s)) − ‖s‖2

2
; s ∈ S

}
. (2.21)

A classical result of convex analysis [4] asserts that, for every Lipschitz convex

function defined on a Hilbert space, the set H̃ where the function is differentiable

is always “fat” in the topological sense of Baire: namely H̃ is dense and contains a

countable intersection of dense open subsets of H [4]. In the particular case of Π,

the set of differentiability H̃ is contained in the set of all points X in H for which

there is a unique closest point s = π[X ] on S. Thus, the potential Φ defined by

(2.17) is everywhere differentiable on H̃ and its gradient in H is given by:

∇HΦ[X ] = X − π[X ], ∀X ∈ H̃. (2.22)
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(2) In the case when H is the finite-dimensional Hilbert space Rn, for such a poten-

tial (namely a smooth perturbation of a concave Lipschitz function), the dynamical

system (2.15) has a unique global solution for Lebesgue almost every initial condi-

tion (X(0), X ′(0)) ∈ R2n and is, therefore, well-posed in the sense of Bouchut and

Ambrosio [9, 1]. To the best of our knowledge, there is no similar theory in infinite

dimension and the well-posedness of (2.15) is then a challenging open. (A somewhat

related attempt is the theory developed by Ambrosio and Gangbo for some infinite

dimensional Hamiltonian systems [2]. See also [19, 27, 28].)

2.2. Monge–Ampère gravitation

Definition. Since the dimension 3 does not matter in the definition of the MAG

model, we consider a smooth bounded closed domain D ⊂ Rd. We assume D to

be of unit Lebesgue measure. The MAG model is defined by choosing for H the

Hilbert space of all Lebesgue square-integrable maps from D to Rd,

H = L2(D,Rd), (2.23)

and for S the subset of all Lebesgue measure-preserving maps s of D:

S =

{
s ∈ H,

∫

D

f(s(a))da =

∫

D

f(a)da, ∀ f ∈ C(Rd)

}
. (2.24)

In addition, with respect to the abstract framework, we input coefficients α, β given

by (0.4) and substitute

∫ t1

t0

1

2
α2(t)

∥∥∥∥
dX

dt

∥∥∥∥
2

+ t−2β2(t)Φ[X(t)]dt (2.25)

for (2.16) and get as optimality equations:

t2β−2(t)
d

dt

(
α2(t)

dX

dt

)
= (∇HΦ)[X ] = X − π[X ]. (2.26)

Using tools of optimal transport theory (see the Appendix), the right-hand side of

this equation can be more concretely written

X(t, a)− π[X(t, ·)](a) = −t∇ϕ(t,X(t, a)), (2.27)

where ϕ = ϕ(t, x) solves a Monge–Ampère equation

det(I + tD2
xϕ(t, x)) = ρ(t, x), (2.28)

where ρ is the density field

ρ(t, x) =

∫

D

δ(x−X(t, a))da. (2.29)



September 29, 2011 14:14 WSPC/S1793-7442 251-CM S1793744211000400

368 Y. Brenier

Thus, we have obtained the MAG system with

tβ−2(t)
d

dt

(
α2(t)

dX

dt

)
= −(∇ϕ)(t,X(t, a)). (2.30)

3. A Modified Action Taking into Account Concentrations

3.1. Modified action in the abstract framework

In this section, we go back to the abstract framework of a potential Φ defined as

the squared distance to a bounded subset S of a general Hilbert space H , according

to (2.18), (2.20), (2.21). Since potential Φ is a squared distance to some subset S

inside H , it solves, at least formally, the stationary Hamilton–Jacobi equation:

Φ =
‖∇HΦ‖2

2
, (3.31)

where ∇H denotes the gradient operator in H . This suggests to rewrite, at least

formally, the action (2.25) as

∫ t1

t0

1

2

∥∥∥∥
dX

dt

∥∥∥∥
2

+
‖∇HΦ[X(t)]‖2

2
dt

=

∫ t1

t0

1

2

∥∥∥∥
dX

dt
−∇HΦ[X(t)]

∥∥∥∥
2

+

((
dX

dt
,∇HΦ[X(t)]

))
dt

= Φ[X(t1)]− Φ[X(t0)] +

∫ t1

t0

1

2

∥∥∥∥
dX

dt
−∇HΦ[X(t)]

∥∥∥∥
2

dt. (3.32)

Under this “self-dual” form (see [29] for a systematic study of “self-dual

Lagrangians”), it is obvious that any solution of

dX

dt
= (∇HΦ)[X ] = X − (∇HΠ)[X ] (3.33)

is always a minimizer of the action asX(t0) and X(t1) are fixed (just like instantons

in Euclidean Yang–Mills theory, cf. [29]).

As already mentioned, in spite of the rather nice structure (2.20) of Φ, as a

quadratic perturbation of a convex Lipschitz function, the corresponding second-

order equation (2.18) is not so well understood. In sharp contrast, the first-order

equation (3.33) is a standard “gradient flow” equation (GF), that can be solved by

classical “maximal monotone operator” theory [20].

In the framework of maximal monotone operator theory, Eq. (3.33) is usually

written as a sub-differential inclusion:

−dX
dt

+X ∈ ∂Π[X ], (3.34)
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which is well-posed in H since Π is Lipschitz and convex. Here, we use standard

notations of convex analysis, for which ∂ denotes the sub-differential of a convex

function [20]:

∂Π[X ] = {Z ∈ H ; Π[Y ] ≥ Π[X ] + ((Z, Y −X)), ∀Y ∈ H}. (3.35)

A remarkable property [20] of each solution X(t) ∈ H is to be not only a Lipschitz

continuous function of t but also right-differentiable at each t with

−dX(t+ 0)

dt
+X(t) = d0Π[X(t)], ∀ t, (3.36)

where d0Π[X ], following [3], denotes the element of ∂Π[X ] with minimal norm

(which is uniquely defined):

‖d0Π[X ]‖ = min{‖s‖; s ∈ ∂Π[X ]}. (3.37)

Finally, notice that X(t) is a locally Lipschitz function of t with values in the

separable Hilbert space H , X(t) is therefore almost everywhere differentiable in t

by Rademacher theorem. Since X(t) is right-differentiable everywhere, we conclude

that:

−dX
dt

+X(t) = d0Π[X(t)], (3.38)

holds true both in the almost everywhere sense and in the sense of distributions.

Our main point is now to introduce a modified action. There are two possible

ways to do it. First, we may introduce the modified potential Φ̃:

Φ̃[X ] =
1

2
‖X − d0Π[X ]‖2 (3.39)

and the corresponding modified action

Ã[t0,t1][X ] =

∫ t1

t0

1

2

∥∥∥∥
dX

dt

∥∥∥∥
2

+ Φ̃[X(t)]dt

=

∫ t1

t0

1

2

∥∥∥∥
dX

dt

∥∥∥∥
2

+
1

2
‖X − d0Π[X ]‖2dt. (3.40)

Alternately, sticking more closely to the self-dual formulation, we may directly

modify the action by setting

Â[t0,t1][X ] =

∫ t1

t0

1

2

∥∥∥∥
dX

dt
−X + d0Π[X ]

∥∥∥∥
2

dt. (3.41)

It is not clear to us that these modified actions coincide (up to boundary terms).

Nevertheless, we will take the second option, mostly for numerical purposes, because

it leads to simpler algorithms.
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3.2. Modified action for the MAG model

We now consider the MAG model. This means, with respect to the abstract frame-

work, that H and S are now defined by (2.23), (2.24) and (2.30) substitutes

for (2.15).

In order to take into account coefficients (α, β) (given by (0.4)), we first rewrite

the action as:

A =

∫ t1

t0

α(t)2
∥∥∥∥
dX

dt

∥∥∥∥
2

+ t−2β(t)2‖∇HΦ[X(t)]‖2dt. (3.42)

As in the homogeneous case α = β = 1, we keep in mind that

1

2
‖∇HΦ[X(t)]‖2 = Φ[X(t)]

and look at the cross-term:

J =

∫ t1

t0

α(t)t−1β(t)

((
dX

dt
,∇HΦ[X(t)]

))
dt =

∫ t1

t0

α(t)t−1β(t)
d

dt
(Φ[X(t)])dt.

By integration by part, we get

J − α(t1)t
−1
1 β(t1)Φ[X(t1)] + α(t0)t

−1
0 β(t0)Φ[X(t0)]

= −
∫ t1

t0

Φ[X(t)]
d

dt
(α(t)t−1β(t))dt

= −1

2

∫ t1

t0

‖∇HΦ[X(t)]‖2 d
dt
(α(t)t−1β(t))dt

= −λ
2

∫ t1

t0

t−2β(t)2‖∇HΦ[X(t)]‖2,

provided we assume

d

dt
(α(t)t−1β(t)) = λt−2β(t)2, (3.43)

for some constant λ, which is consistent with data (0.4) if we choose λ = 1/
√
6.

From this calculation of the cross-term J , we deduce that the action A defined by

(3.42) can be written:

A = BT +

∫ t1

t0

∥∥∥∥α(t)
dX

dt
− µt−1β(t)∇HΦ[X(t)]

∥∥∥∥
2

dt,

where BT is a boundary term depending only on X(t1) and X(t0), provided µ
2 +

µλ = 1. For data (0.4), we get λ = 1/
√
6 and µ =

√
2/3. Therefore, all solutions of

the gradient-flow equation

α(t)
dX

dt
= µt−1β(t)∇HΦ[X(t)] (3.44)



September 29, 2011 14:14 WSPC/S1793-7442 251-CM S1793744211000400

A Modified Least Action Principle Allowing Mass Concentrations 371

automatically are minimizers of the action (3.42). For data (0.4), this gradient-flow

equation reduces to:

t
dX

dt
= ∇HΦ[X(t)] = X(t)−∇HΠ[X(t)]. (3.45)

The gradient-flow equation should be understood in the more precise sense:

t
dX(t+ 0)

dt
= X(t)− d0Π[X(t)], (3.46)

which takes concentration into account, globally in time. In some sense, formulation

(3.46) not only allows concentrations but guarantees the largest possible dissipation

of kinetic energy during the concentration process (which is of course questionable

from the physical viewpoint.) Accordingly, we suggest, for the MAG model, the

following modified action:

Â =

∫ t1

t0

t−1/2

∥∥∥∥t
dX

dt
−X + d0Π[X ]

∥∥∥∥
2

dt. (3.47)

3.3. Zeldovich solutions

Special solutions of (3.45) can be obtained, thanks to the concept of “rearrange-

ments with convex potential” as follows. By definition, the MAG model relies on the

set S of all Lebesgue measure-preserving maps (2.24). This set contains the identity

map Id as an obvious element. The set K ⊂ H of all points X which admits Id as

a closest point on S plays a crucial role. It can be characterized (cf. Appendix on

optimal transportation theory), as the convex cone of all mapsX ∈ H with a convex

potential, which means that there is a convex function ψ defined on Rd and valued

in ]−∞,+∞] which is almost everywhere differentiable on D with ∇ψ(a) = X(a),

a.e. on D. It turns out that any map X ∈ H has a unique rearrangement X� in K,

which means
∫

D

δ(x−X�(a))da =

∫

D

δ(x −X(a))da

(cf. the Appendix).

Therefore, special solutions of (3.45) can be obtained, by looking for solutions

X(t) valued in the convex cone K of all maps with convex potential. Indeed, for

such solutions, we have:

∇HΦ[X(t)] = X(t)−∇HΠ[X(t)] = X(t)− π[X(t)] = X(t)− Id

and (3.45) reduces to the linear ODE

t
dX

dt
= X − Id (3.48)
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as long as X(t) belongs to K, i.e. X(t, a) = ∇ψ(t, a), with ψ(t, a) convex in a. This

leads to the explicit formula:

X(t, a) = ∇ψ(t, a) = a+
t

t0
(∇ψ(t0, a)− a) = a+

t

t0
(X(t0, a)− a), (3.49)

as long as ψ stays convex in a. This exactly coincides with Zeldovich formula (1.11)

discussed in the Introduction. Remarkably enough, for Monge–Ampère gravitation,

Zeldovich approximation (1.11) is just exact!

3.4. Modified action in one space dimension

Let us focus on the one space dimension case when: D = [−1/2, 1/2]. Then, the

modified potential Φ̃ can be explicitly computed in the case of a piecewise smooth

map Y valued in K. Indeed, in one space dimension, maps in K, with convex

potential are just increasing maps. So, there is a finite number of plateaux [aj , bj ]

on which Y is constant with values Yj and outside of which Y is a piecewise smooth

strictly increasing function.

Notice that the corresponding image-measure ρ(dx) defined by

ρ(dx) =

∫

D

δ(x− Y (a))da

has a singular part ρs given by:

ρs(dx) =
∑

j

(bj − aj)δ(x − Yj).

Then d0Π[Y ] (the element of the sub-differential ∂Π[Y ] with minimal L2 norm)

coincides with the identity map outside of the plateaux and takes value (aj + bj)/2

inside [aj , bj].

After elementary calculations, we find

‖Y − d0Π[Y ]‖2 = ‖Y ‖2 − 2((Y, Id)) + ‖Id‖2 −
∑

j

∫ bj

aj

(
a− aj + bj

2

)2

da

= ‖Y − Id‖2 − 1

12

∑

j

(bj − aj)
3.

Here we very clearly see the discrepancy between the original potential Φ and the

modified potential Φ̃:

Φ̃[Y ] = Φ[Y ]− 1

24

∑

j

(bj − aj)
3. (3.50)

Remark 1. Specialists of nonlinear hyperbolic conservation laws will recognize

in the second term of this expression the very expression of the so-called “entropy

production” term for the inviscid Burgers equation (1.14), written in material

coordinates [7, 24].
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3.5. Eulerian version of the gradient flow equation

The gradient flow equation (3.44) has a Eulerian version. Indeed, the corresponding

measures (ρ, ρv), defined by

ρ(t, x) =

∫

D

δ(x−X(t, a))da, ρv(t, x) =

∫

D

∂tX(t, a)δ(x−X(t, a))da, (3.51)

are (formal) solutions of the following system of PDE:

∂tρ−∇ · (ρ∇ϕ) = 0, ρ = det(I + tD2
xϕ). (3.52)

This model can be seen as a fully nonlinear counterpart of various models popular

in biology (chemotaxis) or astronomy, involving the Poisson equation — or other

linear equations involving a singular Green function — rather than the Monge–

Ampère equation. A common feature of all these models is their ability at describing

concentration phenomena [32, 31, 36, 21].

4. A Discrete Action for the MAG Model

4.1. A time-discrete scheme for the gradient flow equation

In view of numerical calculations, our first step is to get a time-discrete version of

the modified action. Instead of directly getting a discrete version of (3.47), it seems

wiser to us to start from a time-discrete version of the gradient flow equation (3.45).

A natural candidate is:

Xn+1 = Xn + (Xn −∇HΠ[Xn])θn + ηn, (4.53)

where Xn is an approximation of X(t) at the nth time-step Tn, for n = 0, . . . , N ,

T0 = t0, TN = t1, with θn = Tn+1

Tn
− 1 ↓ 0. (In the special case t0 = 0, it is natural

to set X0 = Id and to provide X1 as the initial condition.) In formula (4.53), ηn
is a small perturbation added to the discrete solution so that, for every n, Xn is a

point of differentiability of Π. Thus, ∇HΠ[Xn] is well-defined and is also the closest

point π[Xn] to Xn in S. Indeed, as a smooth perturbation of a Lipschitz concave

function on H , Π is differentiable on a “fat” dense subset H̃ of H (i.e. containing

a countable intersection of dense open sets). Thus, we may choose a perturbation

term ηn, arbitrarily small, so that Xn falls in the “good” set H̃ where ∇HΠ is

well-defined. By doing so, we do not generate a big error. Indeed, we keep control

on the cumulated error, thanks to the following stability estimate for two distinct

solutions Xn, X̃n of (4.53) (where we neglect the perturbation terms ηn, η̃n for

notational simplicity),

‖Xn+1 − X̃n+1‖2 ≤ (1 + θn)
2‖Xn − X̃n‖2 + c0θ

2
n, (4.54)

where c0 is the squared diameter of S. [Indeed, we get from (4.53)

‖Xn+1 − X̃n+1‖2

= (1 + θn)
2‖Xn − X̃n‖2 − 2(1 + θn)θn((Xn − X̃n,∇HΠ[Xn]−∇HΠ[X̃n]))

+ θ2n‖π[Xn]− π[X̃n]‖2
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and observe that the second term on the right-hand side is less than zero since Π

is convex, and the third one is dominated by c0θ
2
n.]

As a matter of fact, this stability estimate is also essentially sufficient to prove

the convergence of the scheme as θn ↓ 0 to the continuous model (3.46), for the

uniform convergence in time with respect to the strong topology of H . (See [14, 15]

for examples of similar results for various nonlinear hyperbolic conservation laws.)

Notice that concentration phenomena, which are present at the continuous level,

are correctly taken into account by the time-discrete scheme, in spite of the fact

that the discrete scheme never involves the computation of d0Π, which is a big

advantage in practice!

4.2. A time-discrete action for the MAG model

From the time-discrete scheme (4.53) for the gradient-flow equation, we define a

time discrete version of modified action (3.47) just by setting:

N−1∑

n=0

rn‖Xn+1 −Xn − (Xn − π[Xn])θn‖2, (4.55)

with rn =
T 3/2
n

Tn+1−Tn
. Nevertheless, in view of the EUR problem, it is more reasonable

to minimize the time-discrete action (4.55) when the data are not X0 and XN but

rather the corresponding probability measures ρ0 and ρN defined by:

ρ0(dx) =

∫

D

δ(x−X0(a))da, ρN (dx) =

∫

D

δ(x−XN (a))da.

So there is a big loss of information (since the same probability measure can be

generated by a continuum of maps). This problem can be addressed in terms of

rearrangements with convex potentials. As a matter of fact, fixing ρ0 and ρN is

equivalent to fixing the rearrangements with convex potentials X�
0 and X�

N , rather

than X0 and XN themselves. It is very fortunate that, one can rewrite the discrete

scheme (4.53) as a self-consistent scheme for the rearrangement Yn = X�
n with

convex potential. Indeed, let us assume, for simplicity, that, at each n, the solu-

tion of the scheme Xn has a polar factorization Xn = Yn ◦ sn (cf. the Appendix),

where Yn = X�
n ∈ K is the unique rearrangement with convex potential of Xn

and sn = π[Xn] ∈ S is the closest point in S to Xn. Then, we can rewrite

(4.53) as:

Yn+1 ◦ sn+1 = (Yn + (Yn − Id)θn) ◦ sn.

But, this implies that Yn+1 is the unique rearrangement of Yn +(Yn − Id)θn with a

convex potential. In other words, we have a well-defined self-consistent scheme for

Yn ∈ K, namely:

Yn+1 = (Yn + (Yn − Id)θn)
�. (4.56)
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Accordingly, the minimization of the time-discrete MAG action can be seen, in

“polar coordinates” (Yn, sn) ∈ K × S, as the minimization of

N−1∑

n=0

rn‖Yn+1 ◦ sn+1 − (Yn + (Yn − Id)θn) ◦ sn‖2, (4.57)

with rn =
T 3/2
n

Tn+1−Tn
, as Y0 and YN are fixed in K.

Following “optimal transport” theory, we may introduce on H the quadratic

Monge–Kantorovich (MK2) (or “Wasserstein”) distance,

dMK2(X, X̃) = inf{‖X ◦ s− X̃ ◦ s̃‖, s, s̃ ∈ S}, (4.58)

which is nothing but the quotient distance in H with respect to the action of the

semi-group S. Then the minimization of the time-discrete MAG action is just the

minimization in Yn ∈ K of

N−1∑

n=0

rn dMK2(Yn+1, Yn + (Yn − Id)θn)
2, (4.59)

with rn =
T 3/2
n

Tn+1−Tn
, as Y0 and YN are fixed in K.

(Equivalently, we could work on the so-called “Wasserstein” or “MK2” space

as, for instance, in [37, 3, 2].)

4.3. The fully discrete least action principle

Let us now introduce a fully discrete scheme, for which not only the time vari-

able but also the space variable is discrete. The domain is divided into L disjoints

subdomains Di of Lebesgue measure 1/L, for i = 1, . . . , L, with barycenter ai and

vanishing diameter as L → ∞. In our abstract framework, it is enough to sub-

stitute for the spatial domain D, the discrete set {ai, i = 1, . . . , L}. Accordingly,
H can be seen as the Euclidean space (Rd)L of all finite sequences of L points in

Rd {X = (Xi ∈ Rd)i=1,L} with the natural Euclidean norm ‖ · ‖ induced by Rd.

Meanwhile the set S can be viewed as the set of all permutations s of the L first

integers and K is the corresponding cone of all sequences Yi such that
∑

i

Yi · (ai − asi) ≥ 0,

for all permutations s. In one space dimension, K is just the convex cone of all

increasing sequences of L real numbers.

The time-discrete MAG action (4.57) makes sense at the fully discrete level

without modification. In this discrete setting, S is a group (which is untrue at the

continuous level) and each s can be inverted in S. Thanks to the group property of

S and the invariance of ‖ · ‖ with respect to S, the minimization problem can be

further reduced to the minimization of
N−1∑

n=0

rn‖Yn+1 − (Yn + (Yn − Id)θn) ◦ σn+1‖2, (4.60)
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in Yn ∈ K, σn ∈ S, as Y0 and YN are fixed in K (just by setting σn+1 =

sn ◦ s−1
n+1 ∈ S).

To solve this minimization problem, a crude strategy is to use Gauss–Seidel

type iterations. We denote by (Y k
n , σ

k
n) the approximation of (Yn, σn) at iteration

k and time step n. Let us fix k and n. To get the updated values σk+1
n and Y k+1

n ,

we inductively suppose that we already know (Y j
m, σ

j
m) for all m if j ≤ k and for

all m < n if j = k + 1. Then, we perform the following two steps:

(i) First step: we get s = σk+1
n by solving the combinatorial optimization problem

inf
s∈S

‖Y k
n+1 − (Y k

n + (Y k
n − Id)θn) ◦ s‖. (4.61)

This step is particularly simple in one space dimension and just amounts to

sorting in increasing order the finite sequence (Y k
n +(Y k

n − Id)θn)i, i = 1, . . . , L.

It is much more challenging in higher dimensions. The best known optimization

methods need O(L3) elementary operations, which is not satisfactory (see a

related discussion in [18]).

(ii) Second step: we get Y = Y k+1
n by minimizing in Y ∈ K:

rn‖Y k
n+1 − (Y + (Y − Id)θn) ◦ σk

n+1‖2 + rn−1‖Y
− (Y k+1

n−1 (1 + θn−1)− θn−1Id) ◦ σk+1
n ‖2,

where the first term can also be written

rn‖Y k
n+1 ◦ (σk

n+1)
−1 − (Y + (Y − Id)θn)‖2,

using the inverse permutation (σk
n+1)

−1 and the invariance of ‖ · ‖ with respect

to permutations. After reorganizing squares, we see that Y is just the least-

square projection H → K of:

V =
rn(1 + θn)W + rn−1Z

rn(1 + θn)2 + rn−1
,

W = Y k
n+1 ◦ (σk

n+1)
−1 + θnId, Z = (Y k+1

n−1 + (Y k+1
n−1 − Id)θn−1) ◦ σk+1

n .

So, we have obtained an effective algorithm. It is particularly simple in one space

dimension (and much more challenging in higher dimensions!). Let us observe that,

in one space dimension, computing the least-square projection Y = PK [V ] is differ-

ent from sorting the sequence V in increasing order. However, still in one space

dimension, this projection can be approximately computed after a sequence of

sorting steps, according to the asymptotic formula (which is a by-product of the

“transport-collapse method” [11]):

PK [V ] = lim
M→∞

VM
M , VM

m =

(
VM
m−1 +

1

M
V

)�

, VM
0 = 0, m = 1, . . . ,M.

(4.62)

In practice, we already get a good accuracy for moderate values ofM (sayM = 10).
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5. Solution of the Initial Value Problem

In order to validate the reconstruction scheme, we would like to solve the initial

value problem (IVP) consistently with the modified least action problem, and get a

discrete scheme for the IVP. Ideally, such a scheme should be derived directly from

the modified discrete least action principle. Unfortunately, we have not been able

to do so, and we are just going to suggest a simple scheme for the IVP which seems,

in practice, consistent with the modified action, at least in one space dimension.

5.1. A time-discrete scheme for the IVP

Our suggestion to get a time-discrete solution of the IVP is to alternate the solution

of the linear ODE

d

dt
(α2(t)V ) = t−2β2(t)(Y − Id),

dY

dt
= V, Y (Tn) = Yn, V (Tn) = Vn,

(5.63)

with coefficients (α, β) given by (0.4), on each time interval [Tn, Tn+1[ and the

rearrangement of the result at time step Tn+1:

Yn+1 = Y (Tn+1)
�, Vn+1 = V (Tn+1).

Using a plain explicit discretization of (5.63), we get:

Yn+1 = (Yn + (Tn+1 − Tn)Vn)
�,

α2(Tn+1)Vn+1 = α2(Tn)Vn + T−2
n β2(Tn)(Tn+1 − Tn)(Yn − Id).

(5.64)

The convergence analysis of this time-discrete scheme can be done in two different

ways.

5.2. The multidimensional case

In the multidimensional case, our strategy for the convergence analysis of scheme

(5.64) is inspired by our recent work [16], where a similar scheme is analyzed. We

essentially use the fact that all maps with convex potential are of locally bounded

variations, which provides enough compactness with respect to space variables.

Time compactness is, as usual, directly obtained from the evolution scheme. We

notice that V can be easily integrated out from Y by ODE (5.63).

Theorem 5.1. For every fixed initial condition (Y0, V0) ∈ K×H, the approximate

solution (Yn) admits at least a limit t → Y (t) ∈ K valued in C0([t0,+∞[, H) as

the time step goes to zero. This limit satisfies:

V (t, a)α2(t) = V0(a)α
2(t0) +

∫ t

t0

τ−2β2(τ)(Y (τ, a)− a)dτ,

d

dt

∫

D

f(Y (t, a))da =

∫

D

(∇f)(Y (t, a)) · V (t, a)da,

(5.65)

for all C1 function f on Rd (with |∇f | growing at most linearly at infinity).
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Notice that, since Y is valued in K, the knowledge of “observables”∫
D
f(Y (t, a))da for all test-functions f is enough to determine Y (t) which makes

formulation (5.65) self-consistent. (However, this does not guarantee uniqueness of

solutions to the IVP.) So, we have a proposal to solve the IVP, and a corresponding

discrete scheme, but we are not able to prove that formulation (5.65) is actually

consistent with our modified least action principle.

5.3. The one-dimensional case

In the special case of one space variable, we get a much more precise information,

following the analysis developed in [14] for similar problems (see also [15]):

Theorem 5.2. For every fixed initial condition (Y0, V0) ∈ K × H, as the time

step goes to zero, the approximate solution (Yn) converges to the unique solution

t → Y (t) ∈ K, valued in C0([t0,+∞, H), of the mixed integral-sub-differential

system:

−∂tY + V ∈ ∂Θ[Y ],

V (t, a)α2(t) = V0(a)α
2(t0) +

∫ t

t0

τ−2β2(τ)(Y (τ, a)− a)dτ,
(5.66)

where Θ[Y ] = 0 whenever Y = Y (t, a) is monotonically increasing in a and Θ[Y ] =

+∞ otherwise.

System (5.66) is well-posed in the L2 sense and can be shown (as in [14]) to be the

limit (in the sense of maximal monotone operator theory) as ε ↓ 0 of the perturbed

system

−∂tY + V = −ε∂a(log(∂aY )), ∂t(α
2(t)V ) = t−2β2(t)(Y − Id), (5.67)

which, in Eulerian variables (2.29), reduces to:

∂tρ+ ∂x(ρv) = 0,

∂t(α
2(t)ρv) + ∂x(α

2(t)ρv2) = −t−1β2(t)ρ∂xϕ+ ε∂xxv,

ρ = 1 + t∂2xϕ,

(5.68)

and is just a pressure-less Navier–Stokes–Poisson system with vanishing viscosity

(as in [10, 42]). As mentioned above, an interesting open question is to show that this

approach (vanishing viscosity (5.68), subdifferential formulation (5.66) or scheme

(5.64)) is actually consistent with the modified least action principle!

6. Numerical Simulations in One Space Dimension

Our data are

t0 = 1/2, t1 = 5/2, N = 60, L = 51, ai = −1 + (2i− 1)/L, i = 1, . . . , L,

Y0 = X�
0, (X0)i = aiωi,

where ωi is a random number uniformly distributed between 1 and 2. Thus, Y0
looks like a devil’s staircase.
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Concerning the final data YN ∈ K, either:

(Case 1) the associate probability ρN is the barycenter of four Dirac’s measures:

ρN (dx) =
δ(x+ 0.7) + 4 δ(x− 0.2) + 3 δ(x− 0.9) + δ(x − 1.1)

9

or (Case 2) YN is the solution at time t1 of the initial value problem generated by

the discrete gradient flow equation starting from Y0 = X�
0 at time t0.

In our plots, we draw the trajectories of the 51 particles during the 60 time steps

of the time interval (the vertical axis corresponding to time and the horizontal one

to space).

Case 1. We first plot the reconstructed solution (Fig. 1). Then, with the recon-

structed initial velocity, we solve the initial value problem for the MAG equations

with scheme (5.64) and plot the result (Fig. 2). We observe a nearly perfect match

between Figs. 1 and 2.

Case 2. We first solve the IVP for the gradient flow equation with scheme (5.64)

(Fig. 3). Then, we reconstruct the solution from the initial and final data of the

gradient flow solution (Fig. 4). (Here we observe some limited discrepancy.) Finally,

with the reconstructed initial velocity we solve the initial value problem for the

MAG equations (Fig. 5), again with scheme (5.64) and get a nearly perfect match.
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Fig. 1. Case 1/reconstruction.
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Fig. 2. Case 1/initial value problem (IVP) after reconstruction.

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0  0.5 1  1.5

Fig. 3. Case 2/gradient flow solution, IVP before reconstruction.
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Fig. 4. Case 2/gradient flow solution, reconstruction.
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Fig. 5. Case 2/gradient flow solution, IVP after reconstruction.
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7. Discussion

We have revisited the early universe reconstruction problem and suggested a mod-

ification of classical Newton gravitation by what we called Monge–Ampère gravi-

tation. The main drawback of our approach is the lack of physical justification for

such a modification. The main mathematical advantage is the obtention of a modi-

fied least action principle in which we can easily include mass concentration effects

in an almost canonical way, using ideas from gradient flow theory. In addition, the

well-known Zeldovich approximate solutions turn out to be exact solutions of the

modified model, which provides an indirect validation of the model as a reasonable

approximation for the early universe reconstruction (EUR) problem. According to

these ideas, an algorithm has been designed in the 1D case. Our plan for the future

includes: (i) analysis of the initial value problem, consistently with the modified least

action principle; (ii) design of an efficient multidimensional algorithm; (iii) study of

the relative accuracy of the Newton and Monge–Ampère gravitation models with

respect to general relativity.
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Appendix

A.1. Some useful results from optimal transport theory

The set S defined by (2.24) has a semigroup structure for the composition rule and

has the identity map Id as neutral element. It is, in some sense, in duality with its

“polar cone” K ⊂ H :

K = {Y ∈ H ; ((Y, Id− s)) ≥ 0, ∀ s ∈ S}. (A.69)

Let us recall a few basic results of optimal transport theory [12, 13, 44] concerning

S and K. First, the set K can be characterized as the closed convex cone of all

maps Y with a convex potential, which means that there is a convex function ψ

defined on Rd and valued in ]−∞,+∞] which is almost everywhere differentiable

on D with ∇ψ(x) = Y (x), a.e. on D.

Next, every map admits a unique rearrangement in K. More precisely:

Theorem A.1. ([12]) Every X ∈ H admits a unique “rearrangement ” X� in K,

which means :∫

D

f(X�(a))da =

∫

D

f(X(a))da, ∀ f ∈ C(Rd), sup
x

|f(x)|(1 + |x|2)−1 < +∞.

In addition, X → X� is continuous in H (for the strong topology).
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Moreover, there is a “polar factorization” of the Hilbert space H by S and K.

More precisely:

Theorem A.2. ([12]) Let X ∈ H be a nondegenerate map, in the sense that the

measure ρ(dx) =
∫
D
δ(x−X(a))da has no singular part with respect to the Lebesgue

measure.

Then X admits a unique “polar factorization ”

X = Y ◦ s, Y ∈ K, s ∈ S. (A.70)

In addition, the second factor s is characterized as the unique closest point π[X ] to

X in S and can be written

π[X ] = ∇ψ ◦X, (A.71)

where ∇ψ is the unique map T :Rd → D with convex Lipschitz potential such that

the Lebesgue measure restricted to D is the image of ρ by T :
∫

Rd

f(∇ψ(x))ρ(dx) =
∫

D

f(a)da, ∀ f ∈ C(Rd). (A.72)

Let us finally observe as in [12, 13] that (A.72) can be seen as a “weak formula-

tion” (not in the sense of distributions!) of the Monge–Ampère problem on Rd with

range condition:

ρ = det(D2
xψ), (∇ψ)(Rd) = D. (A.73)
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