RATRO Operations Research
RATRO Oper. Res. 41 (2007) 427-454
DOI: 10.1051/r0:2007036

RESERVATION TABLE SCHEDULING:
BRANCH-AND-BOUND BASED OPTIMIZATION VS.
INTEGER LINEAR PROGRAMMING TECHNIQUES

HADDA CHERROUN!, ALAIN DARTE? AND PAUL FEAUTRIER?

Abstract. The recourse to operation research solutions has strongly
increased the performances of scheduling task in the High-Level Syn-
thesis (called hardware compilation). Scheduling a whole program is
not possible as too many constraints and objectives interact. We de-
compose high-level scheduling in three steps. Step 1: Coarse-grain
scheduling tries to exploit parallelism and locality of the whole program
(in particular in loops, possibly imperfectly nested) with a rough view
of the target architecture. This produces a sequence of logical steps,
each of which contains a pool of macro-tasks. Step 2: Micro-scheduling
maps and schedules each macro-task independently taking into account
all peculiarities of the target architecture. This produces a reservation
table for each macro-task. Step 3: Fine-grain scheduling refines each
logical step by scheduling all its macro-tasks. This paper focuses on the
third step. As tasks are modeled as reservation tables, we can express
resource constraints using dis-equations (i.e., negations of equations).
As most scheduling problems, scheduling tasks with reservation tables
to minimize the total duration is NP-complete. Our goal here is to
design different strategies and to evaluate them, on practical examples,
to see if it is possible to find optimal solution in reasonable time. The
first algorithm is based on integer linear programming techniques for
scheduling, which we adapt to our specific problem. Our main algorith-
mic contribution is an exact branch-and-bound algorithm, where each
evaluation is accelerated by variant of Dijkstra’s algorithm. A simple
greedy heuristic is also proposed for comparisons. The evaluation and
comparison are done on pieces of scientific applications from the Per-
fectClub and the HLSynth95 benchmarks. The results demonstrate the
suitability of these solutions for high-level synthesis scheduling.

Received November 7, 2006. Accepted May 15, 2007.
L Amar Telidji University, BP. 37G, 03000 Laghouat, Algeria;
hadda_cherroun@mail.lagh-univ.dz

2 LIP, ENS-Lyon (INRIA, CNRS, UCBL), 46 Allée d’Italie, 69007 Lyon, France;
alain.darte@ens-lyon.fr
© EDP Sciences, ROADEF, SMAI 2007

Article published by EDP Sciences and available at http://www.rairo-ro.org or http://dx.doi.org/10.1051/r0:2007036

http://www.edpsciences.org
http://www.rairo-ro.org
http://dx.doi.org/10.1051/ro:2007036

428

Keywords. Scheduling, resource constraints, reservation tables, dis-
equations, branch-and-bound, Dijkstra, integer linear programming,
high-level synthesis.

Mathematics Subject Classification. 90C57, 90C10, 68N20.

1. INTRODUCTION

Both VLSI technology and embedded systems have advanced to such a state
that it would be extremely complex to design circuits by hand. There has been an
ever increasing need for design automation on more abstract levels where function-
ality and tradeoffs can be clearly stated. At this point in time, high-level synthesis
(HLS) is on the verge of becoming more cost effective and less time consuming
than full hand design [4]. However, the challenge of embedded system design is
twofold: one must pack compute-intensive algorithms in small platforms; further-
more, the design must be completed as fast as possible, to meet the demands of a
highly volatile market. In the long run, this will be possible only if computer-aided
design tools are developed far beyond their present status.

An artifact such as a cell phone or a digital TV set must behave according to
given specifications; however, its hardware parts can only be built from a structural
description. The goal of high-level synthesis (HLS) is to convert a behavioral spec-
ification into a structural description, while optimizing several objective functions:
performance, size, power consumption among others.

One of the key tools in this transformation process from a “program” to a
“circuit” is scheduling. A schedule is a precise description of the operations to be
executed at each clock cycle. The importance of scheduling stems from the fact
that two tasks scheduled at the same time must be executed on different resources.
Hence, the “bill of material” of a design can be deduced in a straightforward
way from its schedule. However, scheduling is a difficult problem; first, for HLS,
defining the problem in a formal way is just impossible due to the large number of
constraints, design choices, and objectives. But even for simplified abstractions,
most scheduling variants are NP-complete, and some are undecidable.

To reduce the problem to manageable size, scheduling is usually performed
in several hierarchical levels. going from time measured in logical steps to time
measured in real clock cycles. The purpose of this hierarchical decomposition is to
avoid dealing with problems exceeding the capacity of scheduling tools and to make
heuristics or exact algorithms — sometimes based on integer linear programming
(ILP) — feasible. We currently explore a high-level scheduling strategy in which
going from a C-like specification to register-transfer level (RTL) is done in three-
steps.

The scheduler we describe in this paper is part of the SYNTOL tool we currently
develop, whose aim is HLS in the field of compute-intensive embedded systems
where parallelism through nested loops is widely present.

RESERVATION TABLE SCHEDULING 429

A finite state machine with a data path (FSMD) is the most popular model
for the description of digital systems [12]. Earlier work starts by building the
control data flow graph (CDFG), which is simply the sequential flow diagram of
the input description. The nodes of the CFG are the basic blocks of the original
program. Most synthesis tools exploit only parallelism inside basic blocks; the
FSMD is usually obtained by scheduling the tasks of each basic block of the CDFG
independently. Some parallelism is exploited in loops, but mostly through loop
unrolling. Our approach is quite different because we first construct a FSMD
from an equivalent parallel code that exhibits all the inherent parallelism in the
input description and takes into account the loops in the program. Afterwards,
according to the resource constraints, we exploit a part or all of this parallelism.

Indeed, to extract parallelism from the loops of the input description, we use
a scheduling strategy previously used for automatic loop parallelization [9,10]. It
assigns a symbolic “date” to each high-level statement of the program and allows
us to rewrite the code into a form with explicit parallelism. However, this symbolic
scheduling technique is quite complex and cannot take into account all the micro-
operations (and the architectural resources they need) that are implied in the
execution of one high-level statement. To find a compromise between complexity
and precision of the model, we apply node splitting.

This is still too coarse a description for hardware generation; we must provide
separate micro-operations for subscript calculations, memory management, and
functional units use. Including all these operations at the first scheduling level
(extraction of parallelism in loops) would greatly increase its complexity.

Besides, a tight packing of micro-operations also has the desirable result of
minimizing the number of intermediate values to be stored in registers and such
a property is hard to ensure with loop parallelization techniques. These consid-
erations lead to the idea of a three-step approach to scheduling C programs with
loops down to RTL.

e Each statement of the program is split — if necessary — until it fits the
target data path in the number of simultaneous operations, memory, and
register accesses. For example, a high-level statement that reads three dif-
ferent memory locations while the target architecture can only perform two
reads simultaneously is decomposed into intermediate operations. Then,
symbolic loop scheduling is applied to the resulting program. The result of
this pass is the definition of a sequence of fronts, i.e., a sequence of logical
steps where each step (a front) is a group of operations to be executed in
this logical step. Typically, a front is a pool of a few data-independent (i.e.,
parallel) loop iterations, each iteration consisting of several statements (in
general parallel too, but not necessarily). Classical loop parallelization al-
gorithms [9] generate maximal parallelism expressed as parallel loops (i.e.,
large parallel fronts with no resource constraints).

e After symbolic scheduling, it remains to schedule all statements (that we
call macro-tasks) of a given logical step on the target data path. Each
macro-task is a complex sequence of micro-instructions. We first schedule
each macro-task independently, taking into account all peculiarities of the

430 HADDA CHERROUN ET AL.

data path and resources, like pipelined units, bypassing, and other com-
munication constraints. The schedule of each macro-task is summarized
with a reservation table that states which resources at which cycle (rela-
tive to the starting time of the macro-task) are used by this macro-task.
We call this second step micro-scheduling. For this step, we use classical
scheduling techniques for tasks represented by directed acyclic dependence
graphs [6] Chapter 1.

e Due to our particular construction, the macro-tasks in a front are most of
the time data independent but they may still interfere in their use of re-
sources. The front (logical step) must then be split into as few elementary
steps as necessary to satisfy detailed resource constraints. We call this
third step fine-grain scheduling. In the general case of data-dependent
tasks, it is a scheduling problem for a directed acyclic graph of tasks de-
scribed by reservation tables.

One could argue that it would be better to consider, for scheduling, all the micro-
instructions of a front simultaneously, in other words to perform micro- and fine-
grain scheduling at the same time. This is of course true in theory. In practice, the
size of the problem would increase dramatically. Beside, it is difficult to prevent the
scheduler to introduce delays between micro-operations, and hence to imply more
registers for holding temporary results. Of course, a globally-optimal solution can
be missed this way but this decoupling reduces the overall complexity.

In this paper, we explain how we address the third scheduling step: how to
schedule tasks whose resource usage is described by reservation tables.

In the following Section 2, we present some related work, both for HLS sched-
uling in general and for scheduling with reservation tables in particular. Our
problem of scheduling tasks with reservation tables is formulated in Section 3.
Section 4 gives a simple greedy heuristic that will be compared with two exact
algorithms. This heuristic is also used as an initial solution for these algorithms.
Section 5 presents several ILP formulations of the problem. Our main contribu-
tion, described in Section 6, is an exact branch-and-bound algorithm, where the
evaluation of each potential solution is accelerated thanks to variants of Dijkstra’s
algorithm. In each of these sections, we report experimental results. Lastly, in
Section 7, we compare and analyze these experimental results and demonstrate the
effectiveness of the proposed methods. In fact, no method is uniformly better (even
if the ILP formulation appears in general a bit slower than our branch-and-bound
approach, at least for our benchmarks); we give some guidelines for selecting the
most effective one according to the context. We conclude in Section 8.

2. SOME RELATED WORK

Scheduling in HLS has been a subject for research for more than two decades
now [13]. We just mention a few related work here and we refer to [30,31] for a
survey of HLS scheduling techniques.

RESERVATION TABLE SCHEDULING 431

It is well-known that most variants of the scheduling problem have a very high
complexity, hence the popularity of list-scheduling heuristics. Indeed, it is used
in many first HLS systems: MAHA [25], Slicer [3], GAUT [20] as well as in re-
cently developed ones. For instance, it is used in the SPARK tool of Gupta
et al. [15]. Indeed they use parallelizing compiler technology, as we do, developed
previously to enhance instruction-level parallelism and re-instrument it for HLS
for mixed control-flow designs. Among these techniques they use loop transfor-
mations, speculative code motion and dynamic renaming. Their list-scheduling
takes into account the results of these techniques to compute the priorities of
operations. One of the conclusions of this study is that any improvement of the
schedule results in improved design. However, as many tools, SPARK tool exploits
the parallelism into and through basic blocks, but it don’t consider the inherent
parallelism through nested loops while such parallelism is widely present in many
high-throughput digital signal processor applications.

Donnet [8], in his user-guided HLS tool UGH, introduces more interactions
between the tool and the user. For using and sharing resources, the user has to
provide a draft data path (DDP), which is used to guide a scheduler based on list-
scheduling. If the synthesized cycle time does not respect all desired constraints,
the user modifies the DDP and resumes the process until an acceptable solution
is found.

The model used by Ly et al. [19] is similar to ours. They organize CDFG nodes
into behavioral templates (as we do with reservation tables) and schedule them
using a hierarchical scheduling, which is based on a list-scheduling algorithm in
which tasks priorities are deduced from resource-free ASAP (as-soon-as-possible)
and ALAP (as-late-as-possible) schedules.

For modeling constraints a more general formalism has been proposed by Kuch-
cinski [18]. In this work, all kinds of constraints are modeled uniformly by finite
domain constraints, which are solved using constraint satisfaction/propagation
techniques. When power consumption is to be taken into account, the problem
becomes a multiple criteria optimization and necessitates the use of Pareto dia-
grams (Yang et al. [33]).

List-scheduling algorithms are the only way to schedule large programs within
a bareable space of time. Nevertheless they don’t give any guarantee on the
quality of the solution. Thus the popularity of integer linear programming (ILP)
techniques to get exact solutions and approximate solutions. Indeed according
to HLS system contexts and the aimed objectives, many ILP formulations are
proposed in literature [14,17,29]. For resource constrained scheduling, Verhaegh
et al. [29], for high-throughput DSPs, use stepwise scheduling. In their two-stages
periodic scheduling, they deal with nested loops which contain operations using
multi-dimensional arrays. In the first stage, they start by assigning periods to
the multidimensional periodic operations with the objective of minimizing storage
costs. For the second stage, they use an iterative algorithm to assign start times
to operations and to assign operations to resources based on graph coloring. For
both stages, they use ILP techniques. A detailed study of the different types of
ILP constraints that can be used for scheduling problems with dependences and

432 HADDA CHERROUN ET AL.

resources is given by Gebotys et al. [14] and Késtner et al. [17]. We will adapt
these formulations to our problem in Section 5.

General ILPs may be difficult to solve due to weekness of bounds, speed of the
algorithm of resolution and how the constraints are formulated. Zhang [34] have
studied these facts and shows that ILP-formulation can be tightened considerably
by more understanding the polyhedra theory [28].

Recently Késtner et al. [17] have also investigated approximations based on
relaxation of the integrality constraint principle [22]. Indeed for large input pro-
grams, they done the relaxation in hierarchical way to guarantee the sub-optimality
of the solution.

One of our goals in this paper is to present a new scheduling method in which
ILP is replaced by longest path calculations as tools for a branch-and-bound meta-
algorithm. ILP and greedy scheduling algorithms are used as yardsticks for mea-
suring the efficiency and robustness of our algorithm.

3. TASK AND RESOURCE CONSTRAINTS FORMALISM

In this section, we explain what is our task model — basically a set of (possibly
dependent) tasks, each being a complex sequence of elementary pre-scheduled
operations — and how we represent resource constraints for such tasks.

3.1. RESERVATION TABLES

Basically, a macro-task is a statement in some high-level language (C in our
case). At the hardware generation level, it must be split into simpler operations,
like address calculations, memory accesses, arithmetic operations and the like. The
elementary operations in each high-level statement are pre-scheduled, leading to
a reservation table in which the start time of each elementary operation is fixed,
once and for all, relative to the start time of the macro-task. In other words, each
statement can be viewed as a macro-task whose resource usage is fixed and can be
arbitrarily complex.

Reservation tables are classical when scheduling assembly code for complex ar-
chitectures (see for example [27] for a description of reservation tables for software
pipelining). A reservation table is also sometimes called a template [19]. The
macro-tasks can be independent in which case we just need to fix the relative
starting dates t; of macro-tasks, while respecting resource constraints and mini-
mizing the total execution time. The method can be extended, if necessary, to
handle data dependences among macro-tasks. For sake of simplicity we use task
instead of macro-task.

We denote by T the set of tasks, R the set of resources, and p; > 0 the latency
of task 4 (the unit is the clock cycle), i.e., the difference between the ending time
of the last elementary operation it contains and the starting time of the first one.
For the reservation table of task i is thus of size p; x |R|. Quite paradoxically, it
will be seen that the case of independent tasks is the most difficult one for our
branch-and-bound formulation (Sect. 6); indeed, adding dependences is easy to do

RESERVATION TABLE SCHEDULING 433

Task 7

,,,,,,,,,,,L,i ,,,,,,,,,,,,,,,,,, I di,j Taskj

FIGURE 1. Forbidden distance.

and it reduces the size of the solution space. We will occasionally describe the
required extensions.

3.2. FORBIDDEN DISTANCES

Consider two tasks ¢ and j, with respective starting dates ¢; and ¢;. In a valid
schedule, if the tasks ¢ and j are data independent, they can start at any dates
except those which put them into resource conflict. The intuitive idea is to express
the resource constraints as a set of forbidden distances. Assume that a resource
r € R is used at micro-step d; in the reservation table of task ¢ and at micro-
step d; in the reservation table of task j. (A given resource r can be used more
than once in a given reservation table, so we should use a notation such as d; , 1,
but we dropped the indices r and k for clarity.) This means that in a schedule,
the resource r is used at time step t; + d; by task ¢ and at step ¢; + d; by task j.
To satisfy the resource constraint for r, it is necessary that:

ti-i-di#tj-i-dj, i.e., t; — 1t #di,j :dj—di.

Note that the values d; and d; are problem inputs as the reservation tables are
given, whereas ¢; and t; are unknowns. This dis-equation eliminates, from the
solution space of ¢; and t;, only the forbidden distance d; ;. In this way, all
resource constraints for a pair of tasks i, j can be expressed as dis-equations by a
systematic examination of their respective reservation table. Figure 1 illustrates
the notion of forbidden distance.

If there are no data dependences between tasks, finding a schedule entails solving
the following system of dis-equations on integer values:

ti—t; #df; i,jeT 1)
t; > 0.

434 HADDA CHERROUN ET AL.

For a given pair of tasks i, j, there can be several forbidden distances d; ;, hence
the index k. The set of inequalities ¢; > 0 is added into the system just to fix
the origin of the schedule. The goal is to minimize the total time max;(t; + p;)
(a schedule with minimal execution time or latency). If necessary, dependences
between tasks are expressed as additional inequalities of the form ¢; —¢; > 9; ;.
When, ;5 > 0, such a constraint means that task j must start at least J; ; steps
after task ¢ (a typical data dependence); when §; ; < 0, it means that task ¢ can
start at most —d; ; steps after task j.

As defined, the problem of solving such a system of dis-equations while mini-
mizing max; t;, with ¢; > 0, is an NP-complete problem. This is easily seen since
the graph coloring problem [32] is the particular case of the problem (1) where all
di’fj are equal to 0 and all p; are equal. Nevertheless, there are many methods for
solving the system defined in (1):

e One can be satisfied with a greedy heuristic.
e For optimality, some solutions from operation research are available based
on:
— Branch and bound (BAB) techniques [16];
— Integer linear programming (ILP) techniques [21,28].
e Since there is an obvious bound for the ¢; (¢; < ZZ pi), we can also use
finite domain constraint satisfaction programming [1].

3.3. EXAMPLE

Consider the following excerpt from the PerfectClub Benchmark SPICE! from
line 16 to 19. This example illustrates what a logical step may contain after the
first scheduling level.

Task 1: GSPR = VALUE(LOCM+2)*AREA
Task 2: GEQ = VALUE(LOCT+2)
Task 3: XCEQ = VALUE(LOCT+4)*0MEGA

Task 4: LOCY = LYNL+NODPLC(LOC+13)

The four tasks are independent tasks. Assume that the available resources
are one adder, one multiplier, and two memory blocks: Val (where the VALUE
array is mapped) and Ndp (where the NODPLC array is mapped). Assume also
that a memory access and the multiplication take 2 cycles and that both can
be pipelined. Scalar variables like AREA or LOCY are assumed to be allocated to
registers, where they can be accessed in no time. Figure 2 diagrams one possible
binding, where the label RM Val (resp. RM Ndp) means to read the memory block
Val (resp. Ndp). Here we chose the binding that greedily allocate all the available
resources to tasks, i.e., we assign the whole resources to the functional operations
of each task.

ISPICE is a widely used circuit simulation program developed at UC Berkeley.

RESERVATION TABLE SCHEDULING 435

Task 1 Task 2 Task 3 Task 4

FIGURE 2. Binding for the example.

For this example, the system of constraints is composed of 9 constraints defined

as follows:

t1—ta£0 ty—t3 A0 t1—14#0

t3—ty A0 to—t3 A0 ty—14#0

ta—toF =2 ty—t1 £ —2 ty—t3# 2
For instance, the constraint t; —t3 # 0 expresses the fact that tasks 1 and 3 cannot
start at the same time because (among other reasons) both use the adder in their
first step.

4. A GREEDY HEURISTIC

We first recall a classical greedy heuristic, which can be used for data-independent
tasks. It is easy to adapt this heuristic to the case where dependences such as
tj;—1t; > ;5 give rise to a directed acyclic graph. However, such a greedy heuristic
cannot handle cyclic dependence graphs.

4.1. ALGORITHM

We use a classical greedy-scheduling (GS) heuristic. Without any data depen-
dences, all the tasks are ready at time zero. Tasks are scheduled one after the other.
At each step, given a subset T}, of already-scheduled tasks, we check whether the
next task ¢ can be scheduled at time 0, i.e., if all forbidden distances between @
and all tasks in T}, are respected. If not, the start time is incremented, and the
process is reiterated.

The algorithm constructs a reservation table for the schedule. After each sched-
uling step, this reservation table is updated. Thus, it is important to emphasize
that this algorithm can be used before resource allocation, as for any classical
list-scheduling algorithm. Indeed, we can use the information on the number of
available resources and take into account forbidden distances when there remains
only one resource to share. Freedom to place binding after or before scheduling
gives this heuristic an advantage.

Our algorithm is a pseudo-polynomial heuristic, as its time complexity is O(n|R)|
> Pi), where n is the number of tasks. It is important to note that the order in
which tasks are considered in the list influences the latency of the schedule. In
this first version of the algorithm, we did not take this fact into account.

436 HADDA CHERROUN ET AL.

v/ () ©

A \/ o) (o) @
V) W/ o) @) fe) @
Task 1 m Ny m ® m Nap
. v ® \ ®
Task 3 Task 4 Task 2 Task 3 Task 4

FIGURE 3. Greedy solution and optimal solution for the example
of Section 3.3.

When the dependence constraints ¢; — ¢; > d; ; form an acyclic graph, one can
develop a similar heuristic: consider tasks according to some topological order
of the graph and place them in a greedy fashion as early as possible while re-
specting dependence and resource constraints. This is the standard list-scheduling
approach. Much work has been devoted to the construction of good priority rules,
i.e., in the search for a good task ordering.

Let us return to the example of Section 3.3. An optimal solution (found for
example by our algorithm in Sect. 6) is t1 = 0, to = 3, t3 = 1, {4 = 2 with a latency
of 5 cycles. The GS heuristic gives the solution t; =0, t5 = 1, t3 = 2, t4 = 3 with
a latency of 6 cycles. Figure 3 diagrams both solutions. The GS algorithm reaches
the optimum only for the ordered list Task 1, Task 3, Task 4, Task 2. Note that,
in the general case, there may be no order in which the optimum is reached by
the greedy scheduling. However, here a deviation of 1 cycle from the optimum is
acceptable, in particular if one needs a fast compilation.

4.2. EXPERIMENTS

We have implemented this heuristic and tested it on groups of independent tasks
from real-life applications. They consist of 22 tests from the PerfectClub [2] and
HLSynth95 [24] benchmarks. The PerfectClub benchmarks represent applications
in a number of areas of engineering and scientific computing and the HLSynth95
benchmarks, more specifically, represent a repository of applications in embedded
systems. The runtime is computed in user seconds on a 1.73 GHz Intel Pentium M
running Linux. Results are reported in Table 1.

The test programs are fairly small, they contain between 3 and 9 independent
(possibly complex) tasks, each one containing between 1 and 15 micro-operations
(or micro-tasks). All kind of resources are considered: sequential resources like
memory ports, and combinatorial ones such as adders, multipliers, comparators,
and dividers.

The first three columns of Table 1 are the test names, the number n of tasks
(Col. T), and the total number of micro-tasks (Col. uT) that compose them. For
such small instances, this heuristic is very fast, so we did not report its runtime
in the table, which is about 0.0032 s in average, a value obtained by timing one
million repetitions of the algorithm. To evaluate the stability of the algorithm,
we have repeated it on a sample of n? random permutations of the tasks. The

RESERVATION TABLE SCHEDULING 437

TABLE 1. Greedy scheduling results.

Test T | puT Greedy scheduling
Schedule latency | Deviation
cssl 4 15 6 1
cssll 4 15 5 2
cssl2 4 17 6 2
css2 9 32 7 1
css3 7 27 10 3
cssH 3 9 5 0
css6 8 12 4 0
acl 6 19 [§ 0
ac2 6 82 23 0
ac3 7 97 20 1
rasml 3 9 5 0
wss3 5 11 4 0
wss31 5 11 6 1
wss32 5 11 4 0
wocl 4 13 5 0
woc2 7 9 4 1
wssl 4 44 21 5
wssll 4 44 19 3
wss2 3 23 11 1
wss12 4 44 17 4
wmt22 4 31 13 0
css21 9 32 11 1

“Deviation” column gives the difference between the best and the worst schedule
in the sample.

5. INTEGER LINEAR PROGRAM APPROACHES

The scheduling problem with reservation tables can be formalized as an integer
linear programming problem (ILP) using standard techniques for scheduling with
dependence and resource constraints. We propose two ILP-formulations: one using
a standard 0/1 encoding that we optimize for our problem, and another one using
a “Big-M” encoding.

We use the following notations: z; ; is a binary variable associated with task ¢
where z; ; = 1 if and only if task 7 is scheduled at the jth clock cycle. The indices
j go from 0 to H, a maximal “horizon” for the schedule. The variable ¢; is the
starting date of task ¢, R the set of available resources, R, the set of tasks that
use the resource r, and d; , the time step? (relative to the beginning of the task)
at which task 7 uses resource 7.

5.1. STANDARD 0/1 ENCODING

A standard way of expressing our scheduling problem is the following. Fix
H, the maximal schedule horizon, to an upper bound for the optimal latency.
For example, fix H to) . p; or, better, to the latency of the solution found by

21t is possible that, in the same task i, a resource r is used in more than one micro-task.
Again, for simplicity, we assume that each task uses each resource at most once, but this may
be easily generalized.

438 HADDA CHERROUN ET AL.

the greedy heuristic GS. Then, minimize the schedule latency L subject to the
following constraints (in addition to the fact that all variables are integers and the
x;,; are 0/1 variables):

H—p;
ti= Y jxwi; Vie[l...n] (2)
§j=0
0<t;<L—p; Viell...n (3)
H—p;
Y wig=1 Vie[l..n] (4)
j=0
> wig-q) <1 VreRVte[0... H] (5)

i€R,

The n equalities in (2) define the starting dates t; as functions of the z; ; binary
variables. The inequalities (3) express the latency to be minimized. For each
task 7, the equality (4) guarantees that i is executed exactly once. Finally, the
inequalities (5) express resource constraints for each resource r € R. Once the
variables t; are available — through the constraints (2) — the dependence constraints
(if any) are naturally expressed as inequalities t; —t; > 0; ;.

One reason for an ILP solver to be slow here is the presence of the constraints (2)
which have large coefficients, especially when the horizon H is large. In the case
of independent tasks, the variables ¢; are needed only to express the objective
function in the constraints (3), and we can get rid of these variables as well as the
constraints (2) and (3) by the following trick. Instead of using the ILP solver as
an optimization tool, we use it to test the feasibility of the system of inequalities.
If the problem is feasible, it means that there is a schedule of latency H or less
while, if the problem is unfeasible, H is too small. One can adjust H by decreasing
it from some upper bound until a feasible problem is found, or using binary search
on H. The smallest H for which there is a solution is the optimal latency L. This
multiplies the number of calls to the ILP solver, but each call may be faster. We
will show this effect in the experiments.

Note that if there are dependences, we still need the constraints (2) to express
the dependences constraints, unless we use the technique of Gebotys et al. [14],
which has the drawback of greatly increasing the number of constraints.

5.2. BiG-M ENCODING

If we use the standard 0/1 encoding, the number of binary variables is the
product of the number of tasks and the number of cycles needed for the whole
schedule. However, one can use a more economical encoding: the Big-M method.

RESERVATION TABLE SCHEDULING 439

In this formulation we replace each dis-equation by the four inequalities:

ti—ti+(1—X;5).M>1-4df;
ti—t; #df; & ti—ty+ M.X; ;> df; +1
0<X;;<1

where M is a large number (larger than the sum of the p;, where p; is the latency
of task 7). In this formulation, the number of variables is equal to the sum of
the number of dis-equations and the number of tasks, which is independent of the
latency of the schedule. However, the coefficients in the inequalities (such as M)
are large.

5.3. EXPERIMENTS

We have implemented these ILP methods on the same benchmarks described
previously. The ILP problems are solved using the CPLEX tool [23].

The results are presented in Table 2. The third column reports the latency
of the optimal schedule. The runtime for the original ILP formulation given by
the constraints (2) to (5) is reported in the columns “0/1 Standard Encoding”,
with the schedule horizon H fixed to an upper bound for the optimal latency,
either), p; or the latency given by the greedy heuristic GS, which reduces the
number of variables. The column “0/1 Simplified Encoding” gives the runtime
when the latency L and the variables t; are not expressed in the constraints so the
constraints (2) and (3) are removed. The latency is optimized by decrementing
H from the latency obtained by the greedy heuristic GS, in our case, GS gives
solutions that are very close to optimal, so decrementing H is more efficient than
a binary search. The last column gives the results for the Big-M method.

These results show that the first 0/1 Standard Encoding method is the slowest.
This is due to the large number of unknowns. The Big-M method is the fastest
for small problem, when the solver time is dominated by the time to set up the
constraints. However it gives running times of the same order of magnitude as the
second 0/1 standard encoding method.

For some paradoxical cases, increasing the horizon (and hence the number of
unknowns) actually reduces the running time. This is probably due to the well-
known fact that ILP solvers are sensitive to the variables and constraints ordering.
These variations are particularly visible for small runtimes only.

The remaining version (0/1 Simplified Encoding column) gives better running
times. It is essential due to the fact that it uses only binary variables. In the
remainder of this paper, we will use this algorithm as a yardstick for evaluating
the performance of the BAB approach.

6. AN EXACT BRANCH-AND-BOUND SOLUTION

As is well known, Branch-And-Bound (BAB) is a meta-algorithm for guiding a
search into the solution space. Its strategy of resolution depends strongly on the

440

HADDA CHERROUN ET AL.

TABLE 2. Scheduling results with the different ILP formulations.

Test puT | Opt. Sched. ILP formulations

0/1 Standard Encoding 0/1 Simplified Encoding Big-M

H set to) p; | H set by GS H set by GS

cssl 15 5 0.19s 0.13s 0.2s 0.06s
cssll 15 4 0.21s 0.14s 0.22s 0.08s
cssl2 17 5 0.24s 0.22s 0.21s 0.07s
css2 32 6 0.91s 0.95s 0.77s 0.27s
css3 27 9 1.09s 0.67s 0.3s 2.6s
cssbH 9 5 0.13s 0.29s 0.17s 0.09s
css6 12 4 0.26s 0.13s 0.18s 0.1s
acl 19 6 0.36s 0.14s 0.13s 0.07s
ac2 82 22 4 42s 7,32s 1.83s 5.52s
ac3 97 19 2’ 02s 3,47s 2.57s 6.2s
rasml 9 5 0.1s 0.09s 0.15s 0.06s
wss3 11 4 0.21s 0.15s 0.18s 0.08s
wss31 11 6 0.26s 0.13s 0.19s 0.1s
wss32 11 4 0.24s 0.13s 0.16s 0.12s
wocl 13 5 0.18s 0.12s 0.14s 0.07s
woc2 9 4 0.21s 0.13s 0.16s 0.1s
wssl 44 17 1.3s 0.8s 1.26s 0.5s
wssll 44 16 1.1s 0.54s 0.75s 0.3s
wss2 23 9 0.25s 0.42s 0.62s 0.07s
wss12 44 16 1.13s 2.75s 0.83s 0,23s
wmt22 31 13 0.6s 0.33s 0.25s 0.12s
css21 32 10 1’ 34s 4.64 0.48s 1’ 57s

features of the problem at hand. In our case, the BAB algorithm progressively
builds a tree of subproblems as follows:

e At the root, we start with the empty system (for data-independent tasks).
e At each node N of the tree structure, we deal with a new constraint (dis-

equation e of the given system). This dis-equation e can be seen as the
disjunction of two inequalities®:

k
. k elzti—ﬁjgdij—lor
ity 7 dij < {eQ:ti—zﬁjzdfj+1

hence we perform a separation by introducing the inequality e; (resp. es)
into the left child (resp. right child) of N. The inequalities e; and ey form
two disjoint sets e; M ey = () and their union is e; U e3 = e, which means
that we are neither losing nor duplicating any solution in branching. Each
leaf of the tree corresponds to a system of inequalities whose solutions are
solutions to the system (1) of dis-equations. Conversely, any solution to
the system (1) is solution to the system defined at a leaf, for one and only
one leaf.

During the resolution process, we maintain the latency of the best schedule
computed so far. At the beginning, we can set this value Lyest to Zipi
(sequential schedule).

3Note that our framework will work the same if instead of a forbidden distance (i-e., a single
value) we express a forbidden interval, e.g., when a resource is used in both tasks for several
consecutive cycles.

RESERVATION TABLE SCHEDULING 441

e At each node N, we treat the system defined by the inequalities introduced
by all nodes belonging to the branch from the root to this node N. Except
for the leaves, a schedule for this system is not a schedule for the whole
system (1) as it respects only part of the constraints. However, the latency
Liocal of an optimal schedule for this partial system is a lower bound for
the latency of any schedule for the system defined at any leaf of the subtree
below N. If Ligcal = Lpest, the subtree below N is not constructed as it
will not lead to a better complete solution. Also, the system may not be
feasible; in this case, the subtree below N is not constructed either.

e At aleaf, we have exhausted all the constraints, so we can now compute an
actual solution. If its latency is better than Lyest, then Lyes is updated.

e The algorithm stops when all the branches are explored. The whole space
of solutions has been explored and Ly, is returned as the optimum solu-
tion.

Note. It is important to note that this strategy can be applied even if, at the root,
the system is not empty but contains some other constraints such as dependence
between tasks of the form ¢; —t; > §; ; (classical precedence constraints). There-
fore, our branch-and-bound method can deal with data-dependent tasks too, even
though we do not primarily need it in our context (our tasks are independent by
construction of the first-level coarse-grain schedule).

The core of the algorithm is the evaluation and eventual pruning of a node. We
now explain this operation in details.

6.1. LOCAL BOUND: DIJKSTRA-BASED INCREMENTAL ALGORITHM

When the “branch” operation is done (i.e., once e; or ey is selected), at each
node of the tree structure, we have to examine and resolve a system of [inequalities
where [is the level of the node. This system can be normalized as follows:

tj —ti 2 wij (6)

where w; ; € Z is the maximal value of the right-hand sides of all inequalities of
type t; —t; > ... introduced sofar. The values w; ; are integers of arbitrary sign.
This problem can be modeled by a weighted directed graph G = (V, E, w), with
one vertex for each 7 and an edge from ¢ to j with weight w; ; for each inequality.
Note that G may have circuits.

In this formalism, the key point is that an optimal schedule is obtained by
computing the simple paths of maximal weight in G. Let us see why. First note
that if we sum the inequalities t; —t; > w; ; along a circuit, we obtain an inequality
of the form 0 > W where W is the weight of the circuit. Hence, if G has a circuit of
positive weight, the problem has no solution. Conversely, if G has only nonpositive
circuits, we can define, for each vertex ¢, the maximal weight a; of a path leading
to i (an empty path has weight 0). This is due to the fact that following a circuit
cannot increase the weight of a path, hence all maximal weight paths are simple
and each a; is finite. As the maximal weight of a path leading to j is at least the

442 HADDA CHERROUN ET AL.

weight of any path going first through ¢, we have a; > a; +w; ;. Therefore, the a;
are a solution of the problem. Furthermore, any non-decreasing objective function
of the ¢; (for example the latency max;(¢; + p;)) is minimized by the a;. Indeed,
for any solution ¢;, it is easy to see that ¢; is at least the weight of any path leading
to i (make an induction on the path length), thus ¢; > a;. This formulation can
be simplified by introducing an initial task, with an edge of weight 0 from it to all
other tasks, and a terminal task, with an edge of weight p; from any task ¢ to the
terminal task. The latency is now given by the maximal weight of a simple path
from the initial to the terminal task.

There are many algorithms for finding paths of maximal* weights in a graph [5].
We could use the Bellman-Ford algorithm, Floyd’s algorithm directly at each node
of the BAB tree or Dijkstra’s algorithm if all edge weights are nonpositive. But
we can do better: we can reduce the complexity of the method by noticing that,
at each stage of the BAB algorithm, we add a new edge to a graph in which some
information on paths of maximal weights has already been computed. What we
need then is a dynamic algorithm which updates the maximal-weight paths using
these informations. In the following, according to our context, we propose an
algorithm based on Dijkstra’s algorithm [7], which is the best known solution to
the maximal-weight paths problem. Indeed, we use an idea similar to Johnson’s
algorithm [5] to be able to use Dijkstra’s algorithm by finding an equivalent system
of nonpositive weights (reweighting).

In Algorithm 1, we compute, for a node of the branch-and-bound tree, the
values ¢, in the graph G' = (V, EU {e}, w) where G = (V, E,w) is the graph at its
parent node and e = (z,y), with weight w,_, = wo, represents the constraint to be
added. We assume that the ¢; for G are available from the parent node. We need
to solve two problems. First, we need to check the feasibility of the problem, i.e.,
to check that no positive circuit is created when adding e. Second, if the problem
is feasible, we need to compute the new solution ;.

Let us first explain the general mechanism we use in this algorithm to be able
to use Dijkstra’s algorithm. When all edge weights w in a graph G = (V, E, w) are
nonpositive, we can find a path of maximal weight from a source s to each vertex
© € V by running Dijkstra’s algorithm. If G has a positive weight, we will first
modify the edge weights w into nonpositive weights w”, thanks to a well-chosen
reweighting function r (a function that assigns an integer r; to each vertex) such
that wy ; = w; j +7; —r; < 0. It is easy to see that G = (V, E,w) has a circuit
of positive weight if and only if G" = (V, E,w") has a circuit of positive weight
because circuit weights are not changed by reweighting. Furthermore, the weight
w”(P) in G” of a path P from i to j is equal to w(P) +r; — r;.

Using this reweighting mechanism, we get an incremental algorithm (Algo-
rithm 1) in which we first check that the problem is feasible and then, if it is,
we compute the new solution ¢/:

4In the literature, these algorithms are often presented as finding paths of minimal weight.
This is the same, one just have to change the weight signs. Our explanations are based on
maximal weight paths.

RESERVATION TABLE SCHEDULING 443

Feasibility

The graph G = (V,E U {e},w), where the weight of e is wy, has a circuit of
positive weight if and only if it has a circuit of positive weight that goes through e
since G = (V, E,w) has no circuit of positive weight. As already mentioned, this
is equivalent to the fact that wy + ay . > 0 where a, , is the maximal weight of a
path in G from y to x.

To compute ay ., thanks to Dijkstra’s algorithm, we proceed as follows. Re-
member that we are given t;, for all ¢ € V, the maximal weight of a path in G
leading to i. These values are such that, for each edge (i,j) € E, t; —t; > w; j,
i.e., they satisfy the system of constraints for G. Let us define G" with r = —t.
We have wf,j =w;+r;—1 = w; —t; +t; < 0. We can therefore compute
in G", using Dijkstra’s algorithm, the maximal weight a;, , of a path from y to any
reachable vertex z. We then obtain a, . thanks to the relation:

— 47 - T
Ay =Qy, +Ty =Tz, L€, QAyz=0q +1,—1,.

We then conclude that the system of constraints defined by G’ is feasible if and
only if wg + Ay oy +tz =ty <0 (pick z = x in the previous relation) or z is not
reachable from y in G (i.e., ay,. = aj, , = —00).

New solution t}

If the problem is feasible, we still have to compute ¢} the maximal weight of
a path leading to ¢ in G'. We can do this by adding a fictive source in V, i.e.,
a new vertex s in V' and for each ¢ in V a new edge (s,4) of weight 0. We can
then use Dijkstra’s algorithm in G’ if G’ has nonpositive weights. If not, we have
to perform a reweighting. Unfortunately, this time, —t may not be an adequate
reweighting function because of the new edge e of weight wq, if t; — ¢; < wo.
However it is possible to find a reweighting function r thanks to the values a, ; we
just computed during the feasibility test. Indeed, choose K such that K < a, j—t;
for all j reachable from y and, if x is not reachable, K < —t, —wy. We claim that
the function r defined by

b= may if 7 is reachable from y
"1 —t;— K otherwise

is a valid reweighting, i.e., is such that w;; +r; —r; < 0 for each edge (3, j),
including the new edge e = (x,y). (Note: for s, we let t; = 0. Then, for any
vertex ¢ in G, we have t; > ts + w,; since t; > 0 and w,; = 0. We also let
rs = —ts — K as for any vertex not reachable from y.)

Proof. Consider an edge (i,j) € E U {e}. Only three situations are possible:
neither 7 nor j are reachable from y, both ¢ and j are reachable from y, or j is
reachable from y but not .

e Inthe Ist case, (i,7) # e and wj ; = w; j—t;— K+t;+K = w; j+t;—t; <0.

444 HADDA CHERROUN ET AL.

e In the second case, w;; = w;j — ay,; + ay,; < 0 by definition of a,; and

ay ; as maximal path weights from y to ¢ and from y to j.
o In the last case, w}, = w;j —ay,; +t; + K. If (i,j) # e then w} . <

] ,J
—ay,; + K +t;, otherwise wy ; = wo +t; + K. In both cases, w; ; < 0 by
choice of K.
Therefore r is a valid reweighting. O

We can then compute, using Dijkstra’s algorithm, the maximal weight ¢'" of a
path from s to any vertex ¢ in the graph G'” and we finally go back to ¢ with the
relation t; = ¢/" —r; 4+ rs.

Note that we can add a preliminary test (¢, > t; + wo in Algorithm (1) to
minimize computations when we can determine that the new constraint is redun-
dant for the previously-computed solution (¢;);cy. However, the edge should be
nevertheless added to the graph as it may not be redundant for the constraints
themselves, but just for this particular solution).

Dijkstra’s static algorithm has a complexity O(n?), for n = |V| vertices and m =
O(n?) edges. However, if one implements its priority queue with a specific data
structure like a binary heap (resp. Fibonacci heap), the complexity is reduced to
O((n+m)lgn) (resp. O(nlgn+m)). Algorithm (1), whose core is Dijkstra’s static
algorithm, has the same complexity. Moreover, It can be spedup considerably by
replacing the second call to Dijkstra’s algorithm by one of its dynamic versions
recently published (the most important are the ones of Ramalingam and Reps [26]
and Frigioni et al. [11]). The first call to Dijkstra’s algorithm can’t be replaced by
a dynamic version as the source may change at each stage. In this first version of
the algorithm, we did not use a dynamic Dijkstra’s algorithm.

6.2. SPEEDING UP THE BAB ALGORITHM

In the following, as we will talk both about undirected graphs and directed
graphs, we use the following terminology: we use edge and cycle for undirected
graphs, and arc and circuit for directed graphs.

As mentioned earlier, the BAB algorithm uses two tests to avoid building a
subtree. The first is performed to check the feasibility of the problem, i.e., to
check that no positive circuit is created when adding a new constraint (this is
done by the test wg + ay, > 0 in the Dijkstra-based incremental algorithm as
seen previously). The second one intervenes when a high lower bound is found
(Liocal = Lpest). Thus, for improving the BAB runtime, we focus on these two
facts.

First, let us examine the second possibility. Recall, that at the initialization
of the BAB process, we set the Lpest value to >, p;. If one can have a better
bound than), p;, it will avoid building some subtrees until a better lower bound
is found. The GS heuristic (see Sect. 4) gives a schedule that seems quite close to
the optimum. Its quality is unfortunately without guarantee, but it can be used as
an initialization of the Lyt value. See Section 6.3 for an evaluation of the effect
of this initialization.

RESERVATION TABLE SCHEDULING 445

Algorithm 1: Dijkstra-based incremental Algorithm.

Data: ¢;, the maximal weight of a path leading to ¢ in G = (V, E,w), e = (z,y, wo)
edge to add
Result: t}, the maximal weight of a path leading to i in G’ = (V,EU{e},w).
begin
if ty > t, + wo then
| Return {t;}icv; /* add e but no update needed */
else
r; = —t; for all i € V;
{ay . }zev — DIJKSTRA(G",y) ;
Qy> =0y, +1: —t, forall z € V;
if wo + ay, > 0 then
| Exit; /* Elimination, no solution below */
end
add sin V, t, =0, Vi, add (s,i) in F, ws,; = 0;
define K such that K < ay,; —t; for all j with ay ; < 400 and
K < —ty —wo if ay,o = +00;
i = —ay,; for all ¢ € V reachable from y; r; = —t; — K otherwise;
{a” }iev — DIJKSTRA(G”,) ;
Return {¢; = ay;, — i + 75 }iev;
end
end

Let us now consider the possibility which makes positive circuits appear as soon
as possible. We did some experiments that show that the BAB runtime highly
depends on the order in which constraints are examined. With some random
permutations on the constraints, we observed that the runtime, in some cases,
decreased by a factor of 20. For this reason, we designed several heuristics, whose
goal is to arrange the constraints to improve the BAB runtime. This reordering
task is done statically (before the BAB algorithm). Indeed, at this level, we deal
with dis-equations (i.e., edges), thus it is difficult to guess all existing paths, and
therefore all circuits. However, we can allow more time to reorder because we do
it only once. We now describe three reordering heuristics.

6.2.1. Heuristic 1

This heuristic, based on probabilities, is a greedy one. Our goal is to try to keep
the subgraph defined by the constraints as connected as possible so that circuits
(and maybe circuits of positive weights) appear. This algorithm builds the list
of constraints by selecting constraints successively as follows: at each step, we
maintain a list £ of vertices that are visited, the criterion of selection favors the
constraint ¢ : t; — t; # d; ; according to the following order: (a) ¢ and j belong to
L, (b) either i or j belongs to £, (c¢) ¢ and j are involved in as many not-yet-treated
constraints as possible, (d) w; ; is maximal.

446 HADDA CHERROUN ET AL.

The first criterion guarantees that at least one circuit will appear soon during
the BAB process. The second and the third ones may promote an earlier appear-
ance of circuits in the following steps. The last one may increase the lower bound
in one of the BAB branch below.

6.2.2. Heuristic 2

In this heuristic, we model the problem by an undirected graph G. This graph
is obtained by representing each dis-equation t; —t; # d; ; by an edge (i,7). At
start, edges are not weighted.

We build a basis of cycles of G using a standard spanning tree algorithm. A
spanning tree classifies edges in two categories: tree edges and non-tree edges.
Each non-tree edge defines, with the tree edges, a unique cycle. For each such
cycle C' = (v1, v, ...,vp, v1), we compute its weight in both directions vy, vy ~» v;
and v1,v, ~» v1, giving to the edge (v;,vi41) the weight 1 4+ d; ;41 or 1 — d; 41
depending whether the edge is traversed from v; 11 to v; or in the opposite direction.
If at least one of these cycle weights is positive, the cycle is chosen.

These positive weight cycles are sorted in order of increasing length (number
of edges). Then the constraint list is built as follows: the first constraints are the
constraints of the first cycle, then the constraints of the second cycle, except those
already treated in the first cycle, etc. The list is completed by the constraints that
do not belong to any of these positive weight cycle.

6.2.3. Heuristic 3

Another possibility is to represent each dis-equation by one of its two exclusive
arcs. During the BAB algorithm each dis-equation leads to two arcs, one with
weight d; ; + 1, one with weight 1 —d; ;. We choose to represent each dis-equation
by its nonnegative arc. Thus, in the resulting directed graph, all eventual circuits
are positive. Then, as in heuristic 2, we enumerate circuits. Here, the non-tree
edges are classified into forward, across, and back arcs. Only the back arcs are part
of circuits. Hence the constraint list is built by the list of constraints composing
each circuit followed by the remained constraints.

It can happen that both edges of a particular dis-equation (those whose weight
is 0, 1, or —1) are nonnegative. In this case, the problem is to choose one of them.
For this, we delay dealing with this kind of dis-equations after building the graph
of all others constraints. Once the graph is built, for each particular dis-equation,
we add the arc that may create a circuit, if not we choose arbitrarily one of them.
The Roy-Warshall’s algorithm, which computes the accessibility relation, is used
for circuit detection.

Notice that this heuristic considers circuits that are exclusively composed of
nonnegative arcs, hence, some positive circuits are ignored.

RESERVATION TABLE SCHEDULING 447

TABLE 3. Scheduling results for the various tests on the BAB algorithms.

Test Card(T) | nbC | Opt BAB With Reordering Constraints With L goaq set to GS
H1 T2 T3 BAB | HI T2 T3
cssl 4 9 5 < 0,015 0.04 s 0.04 s 0.05 s - - - -
cssll 4 6 4 0.04 s < 00ls | 0045 0.04 s - 10% | 1% -
css12 4 9 5 0.06 s 0.04 s 0.04 s 0.06 s 15% | 13% | 8% | 16%
css2 9 23 6 5.01 s 9.23 s 0.90 s 2.74 s 16% | 22% | 16% -
css3 7 36 9 3.51 s 3.14 s 2.49 s 6.59 s - B B 15%
cssh 3 7 5 0.05 s 0.03 s 0.04 s 0.04 s 0% | 16% B -
css6 8 7 4 0.14 s 0.11 s 0.11 s 0.14 s — - - -
jacl 6 7 6 0.07 s 0.05 s 0.04 s 0.04 s - - 18% | 15%
jac2 6 75 22 9.76 s 18.23 s 10.70 s 110 s - B B B
jac3 7 85 19 8.5 s 742 s 9.04 s 2 41 s - 27% B 12%
rasml 3 1 5 0.03 s 0.03 s 0.03 s 0.03 s - B B -
wss3 5 7 1 <0,01 s 0.04 s <0,0ls | 005s 23% | 36% | 20% | 23%
wss31 5 12 6 0.25 s 0.14 s 0.1s 0.16 s 10% 2% 3% | 14%
wss32 5 6 1 0.05 s 0.03 s 0.04 s 0.05 s 12% | 13% | 14% | 11%
wocl 4 5 5 0.04 s 0.02 s <0,0ls | 004s - - 5% 6%
woc2 7 10 4 0.2s 0.26 s 0.13 s 0.26 s - 9% 0% -
wss1 4 54 17 0.46 s 0.46 s 0.43 s 1.13 s - B B -
wss11 4 49 16 0.46 s 0.32 s 0.62 s 0.99 s - B 50% | 5%
wss2 3 9 9 0.04 s 0.02 s 0.04 s 0.03 s - - 18% -
wss12 4 49 16 0.48 s 0.24 s 0.75 s 1.47 s - B 5% | 22%
wmt22 4 24 13 0.19 s 0.23 s 0.1s 0.34 s - % B -
css21] 44 10 15° 50 s 8 22 s 2 435 | 13 165 - B B -

6.3. EXPERIMENTS

We have implemented the BAB algorithm and heuristics of reordering con-
straints on the same benchmarks. Results are reported in Table 3. The third col-
umn (nbC) gives the size of the system of constraints (number of dis-equations),
the fourth column (Opt.) gives the latency of an optimal schedule, the fifth col-
umn (BAB) gives the scheduling runtime without reordering constraints. H1, H2
and H3 columns present the effect of the reordering constraints respectively by
heuristic 1, heuristic 2 and heuristic 3.

The analysis of the runtime of the BAB algorithm shows that its runtimes
are sufficiently acceptable in contrast to its high exponential theoretic complexity
(except for one pathological case, program css21, presented hereafter).

Concerning the reordering heuristics, the results show that heuristic 1 and
heuristic 2 do improve the runtime. But it is difficult to choose one among them
because there are some compromises; when one improves runtime for part of the
cases, it increases the runtime for other cases. Heuristic 3 has the worst runtime;
this result can be explained by the fact that only positive circuits composed ex-
clusively of positive arcs are taken into account while some positive circuits, which
are composed by a mixture of positive and negative edges, are not taken into ac-
count. For the pathological case, the constraints reordering heuristic 2 gives the
best runtime.

The last four columns present results for the BAB algorithm and heuristics
when we initialize Lpcst, the best global lower bound during the BAB process, to
the length of the schedule obtained by the GS heuristic described so far. For each
algorithm, the results represent the percentage of improvement due to this better
initialization. Only improvements more than 5% are given. The results clearly
depend on the application.

448 HADDA CHERROUN ET AL.

Pathological case

The pathological case we encountered (program css21) has only 9 tasks (but 32
micro-tasks). These independent tasks are taken from the SPICE program (from
line 765 to line 773) of the PerfectClub benchmarks. What happens in this test
is that all local lower bounds are close to the optimum so no early elimination is
possible, which causes the total scan of the solution space. The problem is typical
of the difficulties one may encounter when scheduling parallel loops. The code is
the following:

Task 1: GDPR=VALUE(LOCM+4)*AREA

Task 2: GSPR=VALUE(LOCM+5)*AREA

Task 3: GM=VALUE(LOCT+5)

Task 4: GDS=VALUE(LOCT+6)

Task 5: GGS=VALUE(LOCT+7)

Task 6: XGS=VALUE(LOCT+9)*0OMEGA

Task 7: GGD=VALUE(LOCT+8)

Task 8: XGD=VALUE(LOCT+11)*0MEGA
Task 9: LOCY=LYNL+NODPLC(LOC+20)

Assume that we have one adder, one multiplier, a memory block VAL (where
the VALUE array is mapped) and a memory block Mdp (where the NODPLC array
is mapped) with one port. Assume also that memory access takes 2 cycles and
is pipelined, while all the other resources take one cycle. Figure 4 diagrams the
reservation table for the tasks — type (a) for tasks 3, 4, 5, and 7, type (b) for
tasks 1, 2, 6, and 8, and type (c) for task 9 — and the optimal schedule, computed
by the BAB scheduler, whose latency is 10. It corresponds to t; = 0, to = 1,
t3 =2,t4 =3,1t5 =4, ts =5, t7 =8, tg = 6, tg = 7. It is never obtained by the
GS heuristic in a sample of n? permutations.

7. COMPARATIVE RESULTS AND DISCUSSION

To compare the three methods, the GS heuristic, the BAB scheduler, and the
ILP scheduler, we have chosen the best performances of each one. Comparative
results are reported in Table 4. For the BAB algorithm, we have reported its
runtime, coupled with the reordering heuristic 2, while setting the initial value
of Liest to the GS schedule latency (column BAB+H2). For the ILP techniques,
we have selected the method which uses the 0/1 simplified encoding. For the
GS heuristic, we have only presented its deviations from the optimum. Indeed,
knowing that the GS heuristic is sensitive to the order of the task list, we ran
the algorithm on a sample of permutation of tasks. The size of this sample is the
square of the number of tasks, and the permutation are random. The maximum
deviation (DevMax column) presents the difference between the worst schedule in
the sample and the optimum as given by the BAB algorithm. The DevMin column
presents the deviation of the best schedule, in the sample of permutations, from
the optimum.

RESERVATION TABLE SCHEDULING 449

a
®

OETD

©

az e
®

a>iC
®

o

®

D

®

Type (c)

FiGURrE 4. Pathological case css21.

Let us mention that we are using a slow implementation of our BAB algorithms
as we used MuPAD? language.

The results show that, despite its simplicity, the GS heuristic has a good be-
havior, at least for these examples: even the latency of the worst schedule (in
the sample) is not very far from the optimum. The result in the DevMin column
demonstrates that the schedule obtained is very close to the optimum. Hence one
can find a good schedule by applying only GS to a small sample of permutations.

In fact the difference between greedy and exact methods in terms of the quality
of the result appears to be small. However in our context as we compute a schedule
for each front, the gain in the whole schedule can be considerable which justified
the design of the exact methods.

At least for our benchmarks, the BAB algorithm is often faster than the ILP
technique. However, there are exceptions. Hence, both methods can be useful for
practical applications. We made some additional tests to analyze in more detail
the parameters that influence their runtimes.

As a rule of thumb, ILP works well whenever the task durations (the p;) are
small and especially when they are all equal to 1. But if one multiplies the duration
and resource occupation of each micro-task by a constant factor f (which means
the corresponding resource is non-pipelined and used longer during f steps), the
complexity of the ILP problem increases dramatically, both in terms of the number
of unknowns and of the size of the coefficients because the schedule horizon H
increases. In contrast, the BAB algorithm is not particularly sensitive to the size

S5MuPAD is a symbolic and algebraic language. http://research.mupad.de/

450 HADDA CHERROUN ET AL.

TABLE 4. Comparative results.

Test T | uT Greedy scheduling ILP Branch-and-Bound
DevMax | DevMin | ILP (0/1) | nbC BAB-+H2
cssl 4 15 2 1 0.2s 9 0.04 s
cssll 4 15 2 0 0.22 s 6 <0,01 s
cssl2 4 17 3 1 0.21 s 9 0.04 s
css2 9 32 2 1 0.77 s 23 0.75 s
css3 7 27 3 0 0.3 s 36 2.36 s
cssH 3 9 0 0 0.17 s 7 0.04 s
css6 8 12 0 0 0.18 s 7 0.11 s
jacl 6 19 0 0 0.13 s 7 0.03 s
jac2 6 82 1 1 2.83 s 75 10.70 s
jac3 7 97 1 0 2.57 s 85 9.0 s
rasml 3 9 0 0 0.15 s 1 0.03 s
wss3 5 11 0 0 0.18 s 7 <0,01 s
wss31 5 11 1 0 0.19 s 12 0.09 s
wss32 5 11 0 0 0.16 s 6 <0,01 s
wocl 4 13 0 0 0.14 s 5 0.03 s
woc2 7 9 1 0 0.16 s 10 0.12's
wss1 4 44 5 0 1.26 s 54 0.43 s
wssll 4 44 4 1 0.75 s 49 0.30 s
wss2 3 23 1 0 0.62 s 9 < 0,01 s
wss12 4 44 5 1 0.83 s 49 0.71 s
wmt22 4 31 0 0 0.25 s 24 0.1s
css21 9 32 2 1 0.48 s 44 2" 43 s

of the numbers involved but more to the number of dis-equations. If each micro-
task uses a resource during f steps, we can describe the corresponding resource
constraint by a dis-equation expressing a forbidden interval of length f (i.e., the
two corresponding inequalities t; —t; < d; j— f or t;—t; > d; j+ f). This extension
does not increase the complexity of the BAB algorithm.

Concerning data dependences, integrating them in the BAB algorithm is almost
for free as we just have to plug them as constraints at the root node of the BAB
tree. For the ILP approach however, we cannot use the 0/1 simplified formulation
anymore as we need the constraints (2) to express the dependences so, in general, it
takes more time than without dependences. This effect is demonstrated in Tables 5
and 6. To get the results of Table 5, we added a few artificial (i.e., they are not in
the initial program) data dependences between the tasks. The ILP approach gets
slower as we have to use the 0/1 standard encoding, while the BAB algorithm gets
usually faster. Indeed, at each node of the BAB process, more edges need to be
traversed (so this should be more costly), but the solution space gets smaller (some
task orders are now impossible) and also some subtrees are not searched anymore
because their new Liocal is now larger than the current best evaluation Ly cgt.

One can argue that this comparison is not fair as we should compare with
original programs containing actual data dependences. To get such programs,
we considered some of our benchmarks and we decomposed a few macro-tasks
into 2 or 3 data-dependent sub-tasks. The results are given in Table 6. The
ILP approach still slows down a bit, but now the BAB algorithm slows down too
although it remains in general faster than the ILP algorithm for these examples.
The reason of this slow-down is that by splitting a task 7" into two sub-tasks T}
and T, we sometimes increase the number of dis-equations. Indeed, if T" was

RESERVATION TABLE SCHEDULING 451

TABLE 5. Comparative results with artificial data dependances.

Test nb Dep. ILP BAB
Without dep. | With dep. | Without dep. | With dep.

css2 3 0.77 s 0.8 s 0.90 s 0.74 s
css3 5 0.3 s 0.86 s 2.56 s 0.18 s
cssb 3 0.17 s 0.33 s 0.04 s <0,01 s
css6 6 0.18 s 0.38 s 0.11 s 0.02 s
jacl 5 0.13 s 0.26 s 0.04 s <0,01 s
jac2 5 2.83 s 3.18 s 10.70 s 0.67 s
jac3 4 2.57 s 4.02 s 9.04 s 0.85 s
wss1 4 1.26 s 2.12s 0.43 s 0.07 s
wssll 4 0.75 s 1.14 s 0.62 s 0.09 s
wss12 4 0.83 s 1.44 s 0.75 s 0.06 s
rasml 2 0.15 s 0.36 s 0.03 s <0,01 s
css21 5 0.48 s 1.03 s 2" 43 s 1.59 s

TABLE 6. Comparative results when splitting a few macro-tasks.

Test T nb Dep. old nbC new nbC ILP BAB
Without dep. With dep. Without dep. With dep.

css2 12 3 23 26 0.77 s 0.90 s 0.75 s 0.47 s
css3 11 5 36 36 0.3 s 0.98 s 2.39 s 0.71 s
cssb 5 2 7 8 0.17 s 0.32 s 0.04 s <0,01 s
css6 10 2 7 10 0.18 s 0.36 s 0.11 s 0.12 s
jacl 8 2 7 9 0.13 s 0.28 s 0.03 s 0.14 s
jac2 9 3 75 93 2.83 s 3.28 s 10.70 s 1’16 s
jac3 10 4 85 107 2.57 s 4.02 s 9.0 s 11.03 s
wss12 7 3 49 71 0.83 s 2.26 s 0.71 s 1.68 s
css21 12 3 44 49 0.48 s 1.21 s 2’43 s 334 s

involved with another macro-task U with two dis-equations combined into one
because they have the same forbidden distance, we may now have two different
dis-equations to consider: one involving 7T} and U, one involving 75 and U. Table 6
gives, in addition to the runtimes, the number of corresponding dis-equations. To
summarize this study, the BAB algorithm seems more suitable when the number
of dis-equations is small and when the ILP solver may take too much time because
data dependences need to be expressed, for a large schedule horizon H.

It is true that embedded systems designers tolerate much longer compilation
times than high-performance programmers. A design is the result of many it-
erations in which different architectural options are evaluated. It is likely that
scheduling, even when using complex techniques like BAB or ILP, takes negligible
time in comparison with extensive simulation or place-and-route synthesis. GS is
well suited for the initial exploration. In the final phases, when one must meet
strict performance constraints, the use of an optimal method like the BAB or the
ILP algorithms may be warranted.

8. CONCLUSION AND FUTURE DIRECTIONS

This paper presents a formalism, for high-level synthesis, to accurately express
resource constraints for complex tasks represented as reservation tables. The re-
source constraints are modeled by dis-equations and finding an optimal schedule

452 HADDA CHERROUN ET AL.

entails resolving a system of dis-equations. The proposed formalism can be gen-
eralized to support problems of resource-constrained scheduling even when tasks
are dependent.

We have proposed some solutions for scheduling such tasks: a greedy heuristic
and two exact algorithms. The first use ILP techniques and the second is based
on the branch-and-bound meta-algorithm. Scheduling results show that, in effect,
the greedy heuristic has a suitable behavior, at least on our benchmarks. On the
other hand, the BAB algorithm has an acceptable runtime but can be vulnerable to
some rare pathological cases. For improving the runtime of the BAB algorithm, we
have designed three constraints ordering heuristics. The results have shown that,
in most cases, they give better runtime than the original solution. Compared
to the ILP technique, the BAB algorithm has shown better behavior when tasks
execution times are large.

In addition the results show that the BAB algorithm deserves more attention as
it can be used, in other contexts, as an algorithm of optimization where the system
of constraints contain dis-equations. Indeed using a fast implementation and a
dynamic version of Dijkstra’s algorithm may reduce considerably the runtimes in
many cases and makes the comparaison more significant.

Concerning the greedy algorithm, it might be interesting to design a priori
reordering heuristics, using ideas similar to those we applied to the BAB algorithm.
Branch-and-Bound itself is just a meta-algorithm, which can be applied in many
different directions. The one we have chosen here is the most obvious. One may
consider variants, in which a problem is divided in more than two subproblems, or
in which the lower bound is not computed for all the nodes, or in which the order
of elaboration of the nodes is breadth-first instead of depth-first. This is left for
future work.

REFERENCES

[1] F. Benhamou and A. Colmerauer, Constraint Logic Programming, Selected Research. MIT
Press (1993).

[2] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff,
A. Sameh, E. Clementi, S. Chin, D. Scheider, G. Fox, P. Messina, D. Walker, C. Hsiung,
J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum, and J. Martin, The
PERFECT club benchmarks: Effective performance evaluation of supercomputers. Int. J.
Supercomput. Appl. 3 (1989) 5-40.

[3] B.M. Pangrle and D.D. Gajski, Slicer: A state synthesizer for intelligent silicon compilation,
in Proc. IEEE Int. Conf. Computer Design: VLSI un Computers and Processors. (1987).

[4] R. Camposano, Behavioral synthesis, in 33rd Design Automation Conferences (1996).

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms. The MIT Press
and McGraw-Hill Book Company (1989).

[6] A. Darte, Y. Robert, and F. Vivien, Scheduling and Automatic Parallelization. Birkhauser
Boston (2000).

[7]

[16]
[17]
[18]

[19]

[29]

[30]

RESERVATION TABLE SCHEDULING 453

E.W. Dijkstra, A note on two problems in connexion with graphs. Numerische Monthly 91
(1959) 333-352.

F. Donnet, Synthése de haut niveau contréolée par l'utilisateur. Ph.D. thesis, Université Paris
VI, January 2004.

P. Feautrier, Some efficient solutions to the affine scheduling problem. part II: Multi-
dimensional time. Int. J. Parallel Prog. 21 (1992) 389-420.

P. Feautrier, Scalable and modular scheduling, in Computer Systems: Architectures, Mod-
eling and Simulation (SAMOS 2004), edited by A.D. Pimentel and Vassiliadis. Springer
Verlag, Lect. Notes Comput. Sci. 3133 (2004) 433-442.

D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, Incremental algorithms for the single-
source shortest path problem, in Proc. of the 14th Conference on Foundations of Software
Technology and Theoretical Computer Science, London, UK, Springer-Verlag (1994) 113—
124.

D.D. Gajski and L. Ramachandran, Introduction to high-level synthesis. IEEE Des. Test
Comput. 11 (1994) 44-54.

D.D. Gajski, Principle of Digital Design. Prentice Hall international edition (1997).

C.H. Gebotys and M. Elmasry, Simultaneous scheduling and allocation for cost constrained
optimal architectural synthesis, in 28th Annual ACM/IEEE Design Automation Conference
(DAC’91), San Francisco, CA, USA (1991) 2-7.

S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, SPARK: A high-level synthesis framework
for applying parallelizing compiler transformations. in VLSID’03: Proc. of the 16th Inter-
national Conference on VLSI Design (VLSI’08), IEEE Computer Society (2003).

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms. Computer Science Press
(1978).

D. Késtner and M. Langenbach, Integer linear programming vs. graph-based methods in code
generation. Technical Report A/01/98, Universitiat des Saarlandes, February 1998.

K. Kuchcinski, Constraints-driven scheduling and resource assignment. ACM Trans. Des.
Autom. Electron. Syst. 8 (2003) 355-383.

T. Ly, D. Knapp, R. Miller and D. MacMillen, Scheduling using behavioral templates, in
DAC’95: Proc. of the 82nd ACM/IEEE Conference on Design Automation, New York, NY,
USA, ACM Press (1995) 101-106.

E. Martin, O. Stentieys, H. Dubois, and J.L. Philippe, GAUT: An architectural synthesis
tool for dedicated signal processors, in EURO-DAC’93, Hambourg, Germany, Sep. 1993,
20-24.

M. Minoux, Programmation mathématique : théorie et algorithmes. Dunod, Paris (1983).
G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial optimization. John Wiley &
sons, New York (1988).

CPLEX Optimization, Using the CPLEX callable library (1995).

P.R. Panda and N.D. Dutt, 1995 high level synthesis design repository, in ISSS ’'95: Proc.
of the 8th international symposium on System synthesis. New York, NY, USA, ACM Press.
(1995) 170-174.

A.C. Parker, J.T. Pizarro and M. Mlinar. MAHA: a program for datapath synthesis, in
DAC ’86: Proc. of the 23rd ACM/IEEE conference on Design automation. Piscataway, NJ,
USA, IEEE Press (1986) 461-466.

G. Ramalingam and T. Reps, An incremental algorithm for a generalization of the shortest-
path problem. J. Algorithms, (1992).

B.R. Rau, Iterative modulo scheduling. Int. J. Parallel Prog. 24 (1996) 3-64.

A. Schrijver, Theory of Linear and Integer Programming. John Wiley & Sons, Inc., New
york (1986).

W.G.J. Verhaegh, E.H.L. Aarts, P.C.N. Van Gorp, and P.E.R. Lippens, A two-stage solution
approach to multidimensional periodic scheduling. IEEE Trans. Comput.-Aided Des. 20
(2001) 1185-1199.

J. Sile, Scheduling strategies in high-level synthesis. Informatica (Slovenia) 18 (1994).

454 HADDA CHERROUN ET AL.

[31] R.A. Walker and S. Chaudhuri, Introduction to the scheduling problem. IEEE Des. Test 12
(1995) 60-69.

[32] D.B. West, Introduction to Graph Theory. Prentice Hall (1996).

[33] P. Yang and F. Catthoor, Pareto-optimization-based run-time task scheduling for embedded
systems, in CODES+I1S55°03: Proc. of the 1st IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (1SS5°03), ACM Press (2003) 120—
125.

[34] L. Zhang, SILP: Scheduling and Allocating with Integer Linear Programming. Ph.D. thesis,
Technische Fakultét der Universitdt des Saarlandes (1996).

To access this journal online:
www.edpsciences.org

