
RAIRO Operations Research
RAIRO Oper. Res. 41 (2007) 141–154

DOI: 10.1051/ro:2007016

SCHEDULING WITH PERIODIC AVAILABILITY
CONSTRAINTS AND IRREGULAR COST FUNCTIONS

Francis Sourd
1

Abstract. This paper addresses a one-machine scheduling problem in
which the efficiency of the machine is not constant, that is the duration
of a task is longer in badly efficient time periods. Each task has an
irregular completion cost. Under the assumption that the efficiency
constraints are time-periodic, we show that the special case where the
sequence is fixed can be solved in polynomial time. The general case
is NP-complete so that we propose a two-phase heuristic to find good
solutions. Our approach is tested on problems with earliness-tardiness
costs.

Keywords. Scheduling, earliness-tardiness, availability, break.

Mathematics Subject Classification. 90B35

1. Introduction

A library or a software to solve scheduling problems must offer the two following
features: a language or an interface to describe the problem and a solver that finds
a good feasible – ideally optimal – solution. The modelling facilities are the “visible
part of the iceberg” for the user. In this way, a scheduling piece of software can be
used by a person who does not know the whole scheduling theory. However, as the
user does not usually know – and, often, does not want to know – the intractability
of scheduling, he or she is mainly interested in modelling the problem as faithfully
as possible. Therefore, someone who wants to buy a scheduling software will reject
any product that is not able to model his or her problem even before comparing
the solving performances. As a consequence, scheduling libraries must offer the
ability to model a large variety of constraints even those that have been neglected

Received September 30, 2005. Accepted June 10, 2006.

1 CNRS-LIP6. 4, place Jussieu 75252 Paris Cedex 05, France; Francis.Sourd@lip6.fr

c© EDP Sciences, ROADEF, SMAI 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/ro or http://dx.doi.org/10.1051/ro:2007016

http://www.edpsciences.org/ro
http://dx.doi.org/10.1051/ro:2007016

142 F. SOURD

by theorists because they either make the problems much too complex or are
considered as non-fondamental.

This work is motivated by solving some of the instances of MascLib [10]. This li-
brary, proposed by ILOG researchers, contains instances that are close to some real
problems. More precisely, we are interested in instances with periodic efficiency
constraints and/or break constraints. These families of constraints, implemented
in ILOG Scheduler 6.0 [8], model that the duration of activities may be longer
when some resources are – totally or partially – unavailable. For any task Ji, the
efficiency constraint can be formulated as follows:

∫ Ci

Si

effi(t)dt = pi (1)

where
• Si and Ci are respectively the start time and the completion time of Ji.

Both are decision variables of the problem;
• pi is the given processing time of the problem;
• effi(t) is the efficiency level of Ji at time t. It is a given piecewise constant

function from R
+ to [0, 1].

Let us first observe that this definition slightly differs from the definition of ILOG
Scheduler because ILOG Scheduler requires that these variables are integer in
order to conform to the constraint programming engine. Because of the integrity
of Si and Ci, Equation (1) must be approximated.

As effi(t) ≤ 1, we have Ci − Si ≥ pi, which means that we make a clear
distinction between the duration of the task equal to Ci − Si and its processing
time pi, which relates to the normalized quantity of work necessary to complete
the task. Indeed, when the efficiency is equal to 1, we have Ci − Si = pi. We also
note that two tasks can be given two different efficiency levels.

When effi(t) = 0 for all t in a time interval (s, e), we say that (s, e) is a break
period for Ji. In scheduling theory, break periods are also known as unavailability
periods [9]. Note that the unavailability periods are usually associated to a machine
while, in our model, they are attached to the tasks. Attaching the unavailability
periods to the tasks is useful, for example when some tasks must be interrupted
during the night while others can be processed without any control. We also
observe that when the efficiency levels are all equal (effi = eff) and eff(t) ∈ {0, 1}
for all t, the problem corresponds to the problem with unavailability periods and
resumable tasks.

In practice, several types of constraints can be related to the presence of a break:
either a task can be interrupted by the break and resumed at the end of the break
or, conversely, it must be entirely scheduled in between a pair of consecutive break
periods. Moreover, in some situations, a task can complete but cannot start during
a break because a human operator is required to setup the task. It can even be
required that a task starts at least x hours before a break. ILOG Scheduler API
offers all the modelling facilities. In Section 2, we will show how all these efficiency
and break constraints can be represented by a simple and unified data structure.

SCHEDULING WITH PERIODIC AVAILABILITY 143

In this paper, we address the one-machine problem, which means that for any
pair of tasks Ji �= Jj , we must have either Ci ≤ Sj or Cj ≤ Si (disjunctive
constraints). The problem is to minimize the weighted sum of earliness and tardi-
ness, which is the most general optimization criterion proposed in MascLib. The
problem is clearly NP-hard, even if there is neither efficiency nor availability con-
straints. It is also in NP (we can check in polynomial time whether (1) is satisfied
or not) so that the problem is NP-complete.

Our study is motivated by the fact that, in the instances of MascLib, the effi-
ciency and breaks are usually periodic: the period is typically the day or the week.
Therefore, the breaks and efficiency levels are compactly encoded: the input gives
the information on a single period. From a theoretical point of view, problems
with a compactly encoded input are often very difficult because they generate a
pseudopolynomial number of constraints or variables (in our case, we will see that
the efficiency curves have a pseudopolynomial number of levels). Therefore, find-
ing a polynomial algorithm is usually difficult. Other problems with compactly
encoded input typically appear in cyclic scheduling [5] and in high multiplicity
scheduling [1, 2, 7].

The theoretical contribution of this article is related to the timing subproblem,
which consists of finding the optimal start and completion times once the tasks are
sequenced. We show that the problem can be solved in polynomial time by adapt-
ing an algorithm proposed by Sourd [11]. To this end, specific data structures are
introduced in order to keep a compact representation of the dynamic programming
states. Our second contribution is a local search algorithm to find good solutions
for the general problem. This algorithm emphasizes the importance of having an
efficient timing procedure since it is called for each candidate sequence. However,
we show that an even more efficient algorithm can be derived by a two-phase al-
gorithm that first solves a simplified approximate model and then works with the
exact model.

In Section 2, the problem is formally defined and some modelling issues are
addressed. Section 3 is devoted to the timing problem and we prove that it can be
solved in polynomial time when the efficiency is periodic. This theoretical result
is then applied in Section 4 to tackle the sequencing problem with a local search
procedure and the benefits of our new approach are illustrated by experimental
tests.

2. Definitions and model

2.1. Problem definition

A set of n tasks J1, . . . , Jn is to be scheduled on a single machine. Each task is
given a processing time pi, an efficiency level effi and a cost function fi(Ci) which
is a continuous piecewise linear function. For example, in the earliness-tardiness
case, we have fi(Ci) = max(αi(di−Ci), βi(Ci−di)). A feasible schedule is defined
by its start and completion times (Si, Ci)1≤i≤n which must satisfy the efficiency

144 F. SOURD

constraints (1) and the disjunctive constraints formulated in the introduction. The
problem is to minimize the total cost

∑
i fi(Ci).

In a first step, we do not consider the specific constraints about break periods
(that is breaks are resumable). They will be addressed at the end of this subsection.
In order to ensure there exists a feasible schedule, we assume that

∫ ∞
0

effi = ∞
and, to avoid that a task should be scheduled infinitely late, we assume that the
slope of the latest segment of each cost function fi is strictly positive (in fact, we
can assume that they are non-negative but the proof of Lemma 1 would be longer).

For a given start time Si, the possible completion times subject to (1) are clearly
in an interval. If the function effi is strictly positive then we have only one possible
completion time denoted by Ci(Si). Clearly, the function Si �→ Ci(Si) is strictly
increasing. The reverse is denoted by Ci �→ Si(Ci). Both functions are piecewise
linear.

The rest of our study will intensively use this explicit relation between start and
completion times. In order to have simpler proofs in Section 3, we are going to
make the assumption that we have a bijection between start and end times, which
is not true when there are break periods. However, we show that this assumption
is not too restrictive.

Definition 1. For an instance I of the problem, we define the ε-positive instance
Iε by changing each efficiency level effi into the function t �→ max(ε, effi(t)).

Let us denote by OPT(I) the optimal cost for the instance I. The following
lemma shows that for small ε, Iε is usually a good approximation of I.

Lemma 1. For any instance I, we have

lim
ε→0+

OPT(Iε) = OPT(I)

Proof. Let us consider a sequence (εk)k≥0 that converges to 0. We are going to
prove that the sequence OPT(Iεk

) converges to OPT(I). For each instance Iεk
,

let us consider an optimal solution (Sk
i , Ck

i)1≤i≤n. Clearly, we have for any i
and k that fi(Ck

i) ≤ OPT(Iεk
) ≤ OPT(I) so that there exists a time horizon H

(independent of k) such that Ck
i ≤ H . For each k, the vector (Sk

i , Ck
i)1≤i≤n is in

[0, H]2n which is a compact. Therefore, we can extract a sequence of schedules
that converge to a schedule denoted by (S�

i , C�
i)1≤i≤n. Since OPT(Iεk

) ≤ OPT(I)
for all k, the cost of this schedule is less than or equal to OPT(I). Furthermore,
by continuity, the schedule (S�

i , C�
i)1≤i≤n satisfies all the constraints so that it is

feasible and therefore optimal. �
This lemma justifies that we can work with an ε-positive instance and there-

fore with bijective Si(Ci) and Ci(Si) functions. But what happens if there are
additional constraints related to the break periods?

• A task cannot end during a break. Clearly, in the proof of Lemma 1,
the completion time C�

i of some task Ji can be inside a break period (s, e).
Therefore Iε is no more a good approximation. However, if there is no
strict local minimum of fi inside the interval (s, e), we can easily adapt

SCHEDULING WITH PERIODIC AVAILABILITY 145

the schedule (S�
i , C�

i) so that no task starts or ends during a break. In
practice, this assumption is not restrictive: it simply means that no due
date must be planned during the nights or the week-ends.

• A task cannot be interrupted by a break. If the task Ji must be
wholly processed before or after a break (s, e), then it cannot start in
the interval (Si(s), s). Therefore, we can modify the function Ci(Si) such
that, for any t ∈ (Si(s), e), we set Ci(t) to be equal to the value Ci(e).
Consequently, the task can be processed just after the break in the time
interval [e, Ci(e)). However, we observe that the modified function t �→
Ci(t) is no more strictly increasing but we can transform the constant
segment on the interval (Si(s), e) into a segment with a very small slope.
Similarly to Lemma 1, we can then prove that this approximation is good
when the slope tends to zero.

Following these observations, we will consider in the rest of this paper that we
are given the two functions Ci(Si) and Si(Ci) instead of the efficiency levels effi

(and the eventual additional constraints). From an algorithmic point of view, both
functions Ci(Si) and Si(Ci) can be easily derived from the function effi in linear
time of the number of different efficiency levels in effi. Before going further, we
introduce the issue of the periodic efficiency.

2.2. Periodic efficiency

From now on, we consider that for each task the efficiency levels are periodic of
period T . The breaks are then also periodic. Therefore, we clearly have Ci(t+T) =
Ci(t) + T for any t. According to the following definition, Ci(t) will be said to be
(T, T)-periodic.

Definition 2. A function f : Df → R (Df is an interval of R) is (T, δ)-periodic if
and only if f(t + T) = f(t) + δ for all t such that t and t + T are in Df . In other
words, the function t �→ f(t) − (δ/T)t is T -periodic.

We have mentioned in the introduction that a periodic efficiency level can be
compactly encoded since we only need it to be represented over [0, T). Similarly,
Si(Ci) and Ci(Si) can also be compactly encoded.

3. Timing problem

In this section, we consider the timing problem for a given sequence, that is
we add to our problem the constraints Ci ≤ Si+1 for all i ∈ {1, . . . , n − 1}. We
immediately note that this problem can be solved by the dynamic programming
approach of Sourd [11] but it requires to have an explicit representation of the
function Si(Ci) so that the resulting time complexity, which depends on the num-
ber of segments of Si(Ci), is pseudopolynomial. Therefore, our work is to adapt
the algorithm so that it becomes polynomial. We also note that none of the many
approaches derived from the algorithm of Garey et al. [3] can be adapted because

146 F. SOURD

they rely on a linear programming formulation which would require Si(Ci) to be
convex — it is not generally the case unless effi is constant.

3.1. Dynamic programming scheme

The dynamic programming approach is based on the following equation

Σk(t) =

{
f1(t) for k = 1
minθ≤Sk(t) Σk−1(θ) + fk(t) for k > 1

(2)

where Σk(t) is the minimal cost to schedule the tasks J1, . . . , Jk in the time interval
[0, t] subject to the constraint Ck = t and fk(t) is the cost of Jk when it completes
at t. The idea in [11] is to prove that all the states of the dynamic program
can be compactly encoded by piecewise linear functions: indeed, the number of
segments of these functions stays polynomially bounded. Due to the periodicity,
it is no more the case but, as observed at the end of Section 2.2, functions Sk(t)
can be compactly encoded and we are going to extend this compact encoding to
the functions Σk — which are not (T, δ)-periodic.

3.2. Polynomial algorithm

We will say that the encoding of Sk(t) is a T -metasegment (or simply a metaseg-
ment as T is a constant). More precisely, this data structure contains the definition
domain [s, e) (with s ∈ R

+, e ∈ R
+∪{∞}) and the description of the function over

the support interval [s, min(e, s + T)), this description is called the support of the
metasegment. Since the function is piecewise linear, the support is the (x-ordered)
list of the coordinates of the breakpoints of the piecewise linear function over the
support interval. If s − e > T , the metasegment if said to be periodic, otherwise
it is non-periodic.

We will say that a function is meta-piecewise linear if it can be decomposed
into a list of metasegments, that is its domain definition can be partitioned into
a finite number of intervals such that the restriction of the function over each
interval is a metasegment. Clearly, there may be many different ways to represent
a piecewise linear function f as a meta-piecewise linear function. In the worst
case, each segment of f could be represented by a metasegment, which would mean
that period patterns are all ignored. However, in this algorithm, we will focus on
keeping the size of the data structure polynomial. Indeed, the space complexity
of the representation of a meta-piecewise linear function f depends not only on
the number of metasegments but also on the complexity of each metasegment.
For simplicity, we will only consider the number N(f) of metasegments and the
maximal number of segments in all the metasegment supports, denoted by M(f).
For the proof, we will separate the non-periodic and periodic metasegments, the
number of which is respectively denoted by N1(f) and N2(f). Clearly N(f) =
N1(f) + N2(f). The space complexity of a meta-piecewise linear function f is
then in O(N(f)M(f)).

SCHEDULING WITH PERIODIC AVAILABILITY 147

Figure 1. T1(f) for a (T, δ)-periodic function.

We have seen that any piecewise linear function is also meta-piecewise linear,
thus all the functions Σk(t) are meta-piecewise linear. The difficulty is to show that
N(Σk) and M(Σk) are polynomial. In order to derive Σk from Σk−1, Equation (2)
indicates that the three following operations must be performed, that is Σk =
T fk

3 (T Sk
2 (T1(Σk−1))) with

(1) T1(f) : f �→ (t �→ minθ≤t f(θ));
(2) the composition T Sk

2 (f) = f ◦ Sk;
(3) the addition T fk

3 (f) = f + fk.

We will denote by ‖fk‖ the number of segments of the piecewise linear function
fk and by ‖Sk‖T the number of segments of Sk over its support interval. We first
give three lemmas that indicate how the complexity of a meta-piecewise linear
function is modified by applying each of the three transformation. The proofs
are quite technical but intuitive so that we deliberately give informal proofs. The
reference to the non-periodic case [11] is also very useful.

Lemma 2. For any meta-piecewise linear function f , T1(f) is meta-piecewise lin-
ear and we have the three following inequalities: N2(T1(f)) ≤ N2(f), N1(T1(f)) ≤
N1(f) + N2(f) and M(T1(f)) ≤ M(f).

Proof. Let us first consider the piecewise linear representation of f . From [11],
T1(f) has less segments than f because each segment is either left unchanged
or transformed into a horizontal segment. However, as illustrated by Figure 1,
a difficulty arises when dealing with a metasegment: a (T, δ)-periodic function
g is not transformed into a (T, δ)-periodic function. However, if [s, e) denotes
the definition demain of g, T1(g) is clearly (T, δ)-periodic over [θ, e) for some
θ ∈ [s, s+T). Therefore, T1(g) can be represented by a non-periodic metasegment
over (s, θ) and a metasegment over [θ, e). From [11], we can prove that the support
of each of the two metasegments is no more complex than the support of g (if θ

148 F. SOURD

is well chosen, in order to correspond to a breakpoint) and the number of non-
periodic segments over [s, θ) is clearly less than M(g). Finally, we prove the lemma
by applying a similar upper bounding to each metasegment of f . �

Lemma 3. For any meta-piecewise linear function f and a (T, T)-periodic func-
tion Sk, T Sk

2 (f) is a meta-piecewise linear function such that N1(T Sk
2 (f)) ≤ N1(f),

N2(T Sk
2 (f)) ≤ N2(f) and M(T Sk

2 (f)) ≤ M(f) + ‖Sk‖T .

Proof. Let us consider a – periodic or non-periodic – metasegment over the interval
[s, e). T Sk

2 transforms this metasegment into a metasegment over [S−1
k (s), S−1

k (e)).
From [11] and since the length of the support is less than a period, we know that
at most ‖Sk‖T breakpoints are added to the support of the metasegment, whether
it is periodic or not. �

Lemma 4. For any meta-piecewise linear function f and a piecewise linear func-
tion fk, T fk

3 (f) is a meta-piecewise linear function such that N(T fk

3 (f)) ≤ N(f)+
‖fk‖ and M(T fk

3 (f)) ≤ M(f).

Proof. We cut the metasegments of f at each breakpoint of fk, which increases
the number of metasegments by at most ‖fk‖. A linear function is added to the
support of each metasegment, which means that the complexity of the supports is
unchanged. �

Let us now combine these three lemmas. Since the complexity of the support is
only changed by the operators T Sk

2 , we clearly have that M(Σk) = O(
∑

i ‖Si‖T).
The periodic metasegments are only created by T fk

3 so that N2(Σk) = O(
∑

i ‖fi‖).
Since T1 is applied n times, we have N1(Σk) = O(n

∑
i ‖fi‖). We have then proved

the complexity of the representation of the functions Σk and the corollary regarding
the complexity of the dynamic programming algorithm.

Theorem 5. For any k, Σk is a meta-piecewise linear function with N(Σk) =
O(n

∑
i ‖fi‖) and M(Σk) = O(

∑
i ‖Si‖T).

Corollary 6. The timing problem is polynomial and it can be solved in O(n2
∑

i

‖fi‖ + n
∑

i ‖Si‖T) time.

3.3. Experimental tests

Table 1 compares two implementations in C++ of the timing algorithm to
solve instances from MascLib. In the “pseudopolynomial implementation”, the
cost functions of the dynamic programming scheme are explicitely encoded, which
means that they have a pseudopolynomial number of segments: it is a direct im-
plementation of [11]. The “improved implementation” is based on the polynomial
algorithm presented in this section.

As the timing procedure is very fast, CPU times presented in the table do not
correspond to a single timing but to a complete local search descent which calls
the timing algorithm for each candidate neighbor (the neighborhood is defined in
Sect. 4). Of course, we compare two descents from the same initial sequence in

SCHEDULING WITH PERIODIC AVAILABILITY 149

Table 1. Improvement of the timing algorithm with the metasegments.

Instance Number Pseudopolynomial Improved
of tasks implementation implementation

BROS-15 30 1.35s 0.13s
BROS-15a 30 0.80s 0.25s
BROS-41 90 1304s 88.2s
BROS-41a 90 531s 91.9s

STC-BROS-15 30 9.01s 0.26s
STC-BROS-15a 30 11.3s 0.29s
STC-BROS-41 90 1011s 197s
STC-BROS-41a 90 1020s 202s

order to have the same number of call to the timing procedure. The improvement
of our new algorithm is clear. However, we observe that a descent is quite time
consuming for instances with 90 tasks, even with the improved timing procedure.

4. Local search

This section is devoted to solving the general scheduling (sequencing and timing)
problem. The approach is an iterated local search procedure, where, at each itera-
tion, the local search procedure starts from a random sequence. This method was
shown to be very efficient for the basic problem without efficiency constraints [12]
since the mean deviation is about 0.1% when the local search is run n times (n
is the number of tasks in the instance). In particular, the choice of starting each
descent with a random sequence comes from the fact that there is no good and
fast heuristic for the earliness-tardiness problems.

The main drawback illustrated by the experimental results presented in Sec-
tion 3.3 is that the CPU time for a single descent may be large. In a practical
approach, the CPU time is usually limited so that only a small number of descents
can be run. Therefore, the heuristic search may return a bad local optimum —
we will indicate in Section 4.2 how bad the local optima may be.

4.1. Using an approximate instance

Figure 2 shows a metasegment of a function Σk obtained when solving the
timing problem for a typical instance. On the one hand, we observe that the
metasegment is indeed (T, δ)-periodic, which means that the data structure de-
scribed in the previous section is appropriate. On the other hand, the breakpoints
of the metasegment are nearly aligned so that we would like to approximate the
metasegment by a single segment. Indeed, in the instances we have to solve, we
observe that the due dates are distant by several dozens of days while the variance
of the task duration is about a couple of days.

150 F. SOURD

Figure 2. The meta-piecewise linear function Σk.

Based on this observation, the idea for a faster local search algorithm is to
define a simpler, approximate instance and to search for good sequences for the
approximate instance. Then, these good sequences are used as input for a local
search algorithm for the initial exact problem. Using a simpler model helps to
quickly find good sequences and, since the second phase is initialized with good
solutions the number of calls to the complex timing procedure of Section 3 is
greatly reduced.

The approximate model is defined by removing the efficiency constraint and
by replacing each processing time by the mean duration of the task in the initial
model, that is

papx
i = pi

T∫ T

0 effi(t)dt
· (3)

Clearly, the approximate instance is an instance of the basic single machine prob-
lem with earliness and tardiness penalties. As mentioned in the beginning of the
section, local search finds good solutions for this problem and the neighborhood
search can even be accelerated using ad hoc data structures [6].

The local search is identical for both the approximate and the exact models. A
solution is represented by the task sequence. The neighborhood of a solution σ
is the set of sequences obtained by applying the generalized pairwise interchange
operator (see e.g. [4]) which is the combination of the two following operators:

• swap two tasks in the sequence;
• extract a task and reinsert it to another position in the sequence.

The cost of each candidate sequence is evaluated by calling the timing algorithm
(the classic one for the approximate model or the one presented in Section 3 for
the exact model).

We now give a more precise description of the two phases of the algorithm.
1. A collection C of good sequences for the approximate instance is built by

running the local search procedure with different random initial sequences.

SCHEDULING WITH PERIODIC AVAILABILITY 151

Approximate model

 240000

 245000

 250000

 255000

 260000

 230000 235000 240000 245000 250000 255000

E
xa

ct
 m

od
el

 235000

Figure 3. Correlation between the exact and approximate models.

This collection is a subset of the set of the local optima for the approximate
instance.

2. For each sequence of C (sorted in the order of their exact costs), run the
local search in the exact model. Finally return the best solution found.

A natural question is to decide when the first step must be stopped. Several
strategies can be considered according to the context in which the algorithm must
be run. However, according to recent experiments [12], we know that after n
descents are run for the approximate model (n is the number of tasks), several
very good local optima are likely to be found. Therefore, n is a good estimate
for the size of C. Moreover, if a given number (let us say ten) of descents are run
without finding new local optimum, we can also stop the first phase, assuming that
most local optima have been found. Finally, in a context in which the algorithm
has an imperative time limit, phase 1 can be stopped when half time is passed.

The number of descents of the second phase mainly depends on the running
time allowed to the algorithm. In a context where the algorithm must very quickly
return a good solution and can improve it if more CPU time is eventually allowed,
we can imagine a variant of the algorithm that loops between phase 1 and phase 2.

4.2. Experimental tests

The aim of this section is to experimentally validate the assumptions made in
the previous subsection and in particular the correlation between the exact and
approximate instances. Clearly, this correlation highly depends on the properties
of the breaks. We can build instances where the optimization mainly consists of
packing the tasks between the breaks. Since, we are interested in periodic breaks,
we consider here that the period T is significantly less than the total processing
time P =

∑
i pi, which is the case of ILOG instances.

Figure 3 shows the correlation of the costs of random sequences when they are
evaluated in the exact or in the approximate model. In the graph, each point is

152 F. SOURD

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 35000 40000 45000 50000 55000 60000

E
xa

ct
 m

od
el

Approximate model

Figure 4. Correlation of the local optima.

related to a random sequence: its abscissa is the cost in the approximate model
while the ordinate is the cost in the exact model. It clearly shows that the ap-
proximation is very good at the scale of the whole solution space.

Of course we are interested in near-optimal solutions, so we have to verify that
the correlation is still true for good solutions. Figure 4 illustrates the correlation
between the local optima. Each vertical segment represents a local optimum σ of
C, the abscissa xσ is the cost in the approximate model. The ordinate y+

σ of the
upper endpoint corresponds to the cost of the sequence σ in the exact model. The
lower endpoint corresponds to the value y−

σ of the solution found after the local
search descent starting from σ in the exact model. We observe that most local
optima for the approximate model are not local optima for the exact model so
that the phase 2 local search is indeed necessary: the mean improvement due to
phase 2 is 14%. More interestingly, the better local optima for the approximate
model lead to the better local optima in the exact model. In order to have a
better evaluation of this correlation, we ranked our solutions according to xσ and
y−

σ and we computed the correlation between the indices of the two rankings. For
our instances, the correlation is between 87.1% and 99.9%, which confirms the
appearance of Figure 4. This correlation explains why phase 2 of the algorithm
starts with the best sequences of the approximate model.

Figure 4 also shows that the deviation between the best and the worst local
optima is greater than 30%, which means that if few random local search are met,
they might be of bad quality.

Table 2 compares the mean computation time (over 40 runs) of the three possi-
ble types of descents: the two procedures called in each phase of our algorithm and
the basic descent of Section 3.3 which consists of a local search in the exact model
starting with a random sequence. Unsurprisingly, descent in phase 1 is an order of
magnitude faster than a descent in the exact model (a descent either from σ ∈ C

SCHEDULING WITH PERIODIC AVAILABILITY 153

Table 2. Mean computation time for each type of descent.

Instance Number Phase 1 Phase 2 From random
of tasks sequence

STC-BROS-15 30 0.03s 0.15s 0.30s
STC-BROS-15a 30 0.03s 0.17s 0.31s

FS-1 50 0.30s 4.81s 7.09s
FS-2 50 0.33s 4.68s 8.10s
FS-3 50 0.26s 2.14s 4.15s

STC-BROS-41 90 2.03s 30.6s 34.7s
STC-BROS-41a 90 1.89s 26.1s 33.8s

Table 3. Performance comparison.

Instance Number Phase 1 & From random Best
of tasks Phase 2 sequence known

STC-BROS-15 30 25696 2.06s 25696 1.20s 25696
STC-BROS-15a 30 6678 2.01s 6678 1.26s 6678

FS-1 50 12202 30.6s 13335 27.9s 12202
FS-2 50 14182 33.2s 14752 32.4s 14182
FS-3 50 107841 18.9s 107883 16.7s 107611

STC-BROS-41 90 71077 179s 73192 137s 70868
STC-BROS-41a 90 26322 156s 27475 133s 26322

or from a random sequence). Moreover, when starting with a sequence σ ∈ C, the
descent in the exact model is shorter (in the number of iterations) and thus faster
than a descent from a random sequence.

Table 3 compares the two approaches. The two-phase algorithm runs 40 de-
scents in phase 1 and 4 descents in phase 2. It is compared to the average best
solution found after 4 descents in the exact model and to the best solution known
for the instance. In each case, the two-phase approach finds better solutions, which
establishes the usefulness of the first step. Indeed, the first step is useful to have
an approximate idea of the solution space, which guides the second step to find
the more promising local optima. On the contrary, the approach that starts from
random sequences is more myopic so that more descents are on average required
to find equivalent solutions.

5. Conclusion

This paper illustrates how existing algorithms for a theoretical scheduling prob-
lem can be adapted in order to deal with practical constraints, namely efficiency
constraints. These constraints are somehow secondary in comparaison to dis-
junctive constraints but practitioners usually requires them to be satisfied in an
operational context. A theoretical issue is to efficiently manage a large amount of

154 F. SOURD

information: with specific data structure, we derive a polynomial algorithm while
there is a pseudopolynomial number of efficiency variations.

In a practical approach, we first approximate these moderately tractable con-
straints in order to have a fast approximate image of the solution space, which is
then used to find good solutions in the exact model. This two-step approach is
shown to be quite effective.

Interestingly, the lower bounds for the basic problems (e.g. [12]) can also be
adapted to deal with efficiency constraints. A further work could consists of im-
plementing a branch-and-bound algorithm for this problem. Other natural issues
are to extend the approach of this paper to solve more general problems, such like
the case where extra breaks may be added to the periodic efficiency curves.

From a theoretical point of view, we can also search for some performance
guarantee on the ratio between the local optima of the exact and approximate
models.

Acknowledgements.
This study stems from a consulting agreement between the author and ILOG Inc.

The author would like to thank the referees for their help to improve the presentation of
the paper.

References

[1] N. Brauner, Y. Crama, A. Grigoriev and van de Klundert, A framework for the complexity
of high-multiplicity scheduling problems. J. Combin. Optim. 9 (2005) 313–323.

[2] J.J. Clifford and M.E. Posner, High multiplicity in earliness-tardiness scheduling. Oper. Res.
48 (2000) 788–800.

[3] M.R. Garey, R.E. Tarjan and G.T. Wilfong, One-processor scheduling with symmetric ear-
liness and tardiness penalties. Math. Oper. Res. 13 (1988) 330–348.

[4] A. Grosso, F. Della Croce and R. Tadei, An enhanced dynasearch neighborhood for the
single-machine total weighted tardiness scheduling problem. Oper. Res. Lett. 32 (2004)
68–72.

[5] C. Hanen and A. Munier, Cyclic scheduling on parallel processors: an overview, Scheduling
Theory and its applications, edited by P. Chrétienne, E.G. Coffman, J.K. Lenstra and Z. Liu,
John Wiley & Sons (1995) 193–226.

[6] Y. Hendel and F. Sourd, Efficient neighborhood search for the one-machine ealiness-tardiness

scheduling problems. Eur. J. Oper. Res. 173 (2006) 108–119.
[7] D. S. Hochbaum and R. Shamir, Strongly polynomial algorithms for the high multiplicity

scheduling problem. Oper. Res. 39 (1991) 648–653.
[8] ILOG Inc., ILOG Scheduler 6.0 User’s Manual and Reference Manual (October 2003).
[9] C.-Y. Lee, Machine scheduling with availability constraints, Handbook of scheduling: Algo-

rithms, models and performance analysis, edited by J.Y.-T. Leung, Chapman & Hall/CRC
(2004).

[10] W. Nuijten, T. Bousonville, F. Focacci, D. Godard and C. Le Pape, Towards a
real-life manufacturing scheduling problem and test bed, in Proceedings of PMS’04,
http://www2.ilog.com/masclib (2004) 162–165.

[11] F. Sourd, Optimal timing of a sequence of tasks with general completion costs. Eur. J. Oper.
Res. 165 (2005) 82–96.

[12] F. Sourd and S. Kedad-Sidhoum, A new branch-and-bound algorithm for the minimization
of earliness and tardiness on a single machine, in 7th workshop on Models and Algorithms
for Planning and Scheduling Problems (2005) 258–261.

