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A BRANCH-AND-BOUND METHOD FOR SOLVING
MULTI-SKILL PROJECT SCHEDULING PROBLEM

ODILE BELLENGUEZ-MORINEAU! AND EMMANUEL NERON!

Abstract. This paper deals with a special case of Project Scheduling
problem: there is a project to schedule, which is made up of activities
linked by precedence relations. Each activity requires specific skills
to be done. Moreover, resources are staff members who master fixed
skill(s). Thus, each resource requirement of an activity corresponds
to the number of persons doing the corresponding skill that must be
assigned to the activity during its whole processing time. We search
for an exact solution that minimizes the makespan, using a Branch-
and-Bound method.
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1. PROBLEM DEFINITION

The problem we tackle is Multi-Skill Project Scheduling Problem. This model
can be applied to different cases of project scheduling problem, where resources
have more than one skill. This section defines the problem and presents an exam-
ple. Then a link with classical project scheduling problem is presented.

In Multi-Skill Project Scheduling Problem, the project to schedule is made up
of a set of activities A4;, i € {0,...,n}, linked by classical end-to-start precedence
relations. So an activity-on-node graph G = (A, E,d) is built, where Ag and 4,
are two dummy activities that correspond respectively to the beginning and the
end of the project. An arc (A4;,A;) € E if and only if A; is a direct predecessor
of A;. Each arc (A;, A;) has a valuation p; € d, which is equal to the processing
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time of A;. Each activity of the project has specific requirements of renewable
resources to be processed.

The resources are staff members. Each member P,,, m € {0,..., M}, masters
one or more specific skill(s) among all the skills Sy, k € {0, ..., K} existing in the
project, so M Sy, = 1 if and only if P,, masters S, 0 otherwise. Thus, each unit
of skill required by an activity corresponds to a person that has to be assigned
to do the required skill for this activity. For each activity A; and each skill Sk,
bi.r; is the number of persons that we have to assign to A; to do Sj during the
whole processing time of A;. A person can be assigned to a need only if he/she
masters the required skill. Moreover, for those staff members we consider a finite
number of unavailability periods. If a person P,, is available between [t; ¢+ 1] then
Avail(P,,,t) = 1, 0 otherwise. So, a person P, can be chosen to do Sy for A; iff
MSpm =1 and Avail(Py,,t) = 1, Vt € [t;;t; + pi[, where ¢; is the starting time of
the activity. We are interested in the computation of a solution that minimize the
makespan of the project. We recall main notations in Table 1.

The notion of skill have already been studied in workforce planning
field [10,21,26], but to the best of our knowledge, contributions proposed for
project scheduling problem are very few: there are two different ways to take
into account skills of employees, either the problem is to find a solution where the
assignments match the skills of employees [3,4,6,19] and eventually their level of
abilities [5], or the problem is to compute a solution at a minimum cost under
different constraints [23]. In the latter case, every assignment of an employee has
a cost that grows up if the employee is not well skilled for the activity to do,
moreover the global project has a due date, and there is a penalty if the project
is delayed after this due date.

The model of MSPSP was inspired from a problem appeared in the software
development industry, where employees have several skills among programming,
analysis, design, and so on. But it also arises to schedule training operators in
a call center, when trainers master different types of training tasks [2]. More
generally it can be used to model any problem where the resources have specific
skills among those needed by the activities.

Here is a small example of MSPSP: the project is presented in Figure 1, and
Tables 2 and 3 present respectively needs of activities and skills of staff members.
In this example, there are 4 different skills, 6 activities, including the dummy
source and sink that have no need, and 6 staff members. The goal is to minimize
the makespan. Figure 2 presents one optimal schedule.

This kind of problem can be modelled as a Multi-Skill Project Scheduling
Problem but it can also be seen as a particular case of Multi-Mode Resource-
Constrained Project Scheduling Problem (MM-RCPSP) [24]. In this last one,
activities have to be scheduled respecting resource and precedence constraints,
but an activity has different ways of consuming resources: for every activity, there
exist different modes. A mode is defined by a processing time and a given amount
for each resource. So, once a mode is chosen for the execution of an activity,
we exactly know which resource(s) will be required, in which quantity, and the
duration of the activity.
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TABLE 1. Input data and auxiliary notations.

Notation Definition

Activity data

number of activities.

the set of activities of the project.

Ap is the dummy

start node and

A, the dummy end of the project.
the processing time of the activity A;.
the precedence graph.

if there exists a precedence

relation between A; and A;.

n+1
Ai; 1€ {O, ,7’7,}
Di
G = (A E,d)
(Aza Aj) S
Resource data
K
M
Tmaa:

Sk, k€{0,...,K}

P, me{0,.., M}
M Sy, k

Avail (P, t), m € {0,.... M },

te {07 ---aTmaa;}
bi,ka i€ {07 "'777’};

number of skills.

number of staff members.
Maximum time horizon considered
for the project scheduling.

the set of skills. k is the number
of the skill.

the staff members.

equals to 1 if P, is able to do Sy,
0 otherwise.

equals to 1 if P, is available

at time ¢, 0 otherwise.

the number of employees, able to do Sy

ked0,.., K} required to execute A;.
Auziliary notation
r; the earliest starting time of the activity
A; according to precedence constraints.
t; the starting time of the activity A;.
Avail(Pp, t1,t2) = ?":;11 Avail(Pp,,t), the total time P, is available between
m € {0,..., M} t; and ts.

There is a link between these two different models because MM-RCPSP formu-
lation can be used to describe a MSPSP instance. In fact, a mode corresponds
to a given subset of staff members that matches the requirements of the activ-
ity. Every mode has the same processing time, and there exist as many different
modes as feasible subsets of staff members satisfying needs of the activity. The
main difference between MM-RCPSP and MSPSP lies in the number of modes
usually proposed for each activity: in classical instances of Multi-Mode RCPSP
[14,15], there are at most 10 modes per activity, but if we want to enumerate the
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FiGURE 1. Example of precedence graph of the project.

TABLE 2. Example of needs of activities.

bik | So|S1] 52| Ss
A 2 0 1 1
Ao 0 1 0 1
As | 0 1 210
As | 1 0 1 0

TABLE 3. Example of skills of employees.

Sk | So | S1| Sz | S3 | Unav. periode
Po [1[1]0]0 2:3]
P 0 1 1 0 -
P 0O|1]0]1 [2;6]
P3 1 1 1 0 _
P10l [6:8]
Ps 1 0 1 0 -

number of possible subsets of staff members in an instance of MSPSP, it will be
very much larger. In some small instances with 3 skills and 10 persons, the number
of modes per activity can exceed 1000. In the example presented there exist 13
different feasible subsets of staff members that can be assigned to the activity A;.
Moreover, most of the exact methods proposed for solving exactly MM-RCPSP
[9,11,14,20,22] have a branching scheme based on an explicit enumeration of the
modes for each activity. Thus, these methods cannot be used for solving exactly
the MSPSP.

Next section introduces the branching scheme chosen for the branch-and-bound
method, then Section 3 presents how a leaf node is treated. Section 4 describes
upper and lower bounds used during the exploration of the search tree. Section 5
introduces the two different branching strategies tested and finally Section 6 in-
troduces data sets and experimental results.
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FIGURE 2. Example of one optimal solution.

2. BRANCHING SCHEME

In order not to use a branching scheme based on the explicit enumeration of
all the feasible subsets of resources for activities, we propose to use a branching
scheme inspired from the one introduced by [7,8], and based on the reduction of
the slack of one activity at each node.

For every activity in the project, a release date r; is computed according to the
precedence graph. So, r; = L£(Ay, 4;), the length of a longest path from Aj to A;
in the precedence graph. In the same way, once an upper bound is computed, it is
used to compute a deadline for each activity according to the precedence relations:
d; =UB — (L(A;, Ay) — p;), where UB is the best known upper bound. Notice
that d; has to be updated each time that a new best known solution is found.
Thus, every activity has its own time-windows that allows to compute a slack m;,
equal to CZZ — 1y — Pi.

At each node an activity is chosen, and the slack m; of the activity A; is
updated. Each node has two children N1 and N2: in the first (V1) the deadline
d; of the activity is decreased to d; — (%W , and in the second (IN2) the release date
r; is increased to r; + [5t]. By this way, the two children define disjoint sets of
schedules. We reach a leaf node when every activity has a slack equal to 0. That
means we exactly know that it has to start at its release date in order to finish at
its deadline (r; + p; = d;)

But the main difference with exact methods known for RCPSP or MM-RCPSP
lies on the fact that it is not enough to define a solution. In fact, when every
starting time is fixed, it possibly corresponds to several solutions or no solution,
because resources are not yet affected. The corresponding assignment problem we
have to solve is introduced in Section 3.
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The rule chosen to select the activity on which the branching scheme is applied
is really important, because each time a release date or a deadline is updated,
this has to be propagated on its successors or predecessors, so it may increase the
speed to reach a leaf node. Different strategies are presented in Section 5.

3. LEAF NODE TREATMENT

To know if a leaf node corresponds or not to at least one valid solution, an
assignment problem has to be solved. This problem can be seen as a Fixed job
Scheduling Problem (FSP): for a set of activities, resources have to be assigned to
match the requirements. For every activity, the starting time and the processing
time are fixed. The resources can be split up into disjoint machine classes, and
there exists a matrix which defines for each activity and each classe of resource
if those resources are allowed to do the activity or not. This problem has been
proved to be NP — Hard in the strong sense [13]. It is solved using an integer
linear programming formulation. But before calling this method to solve a leaf
node of the MSPSP, decomposition rules introduced below are applied.

3.1. DECOMPOSITION METHODS

Once a leaf node is reached, a Fixed job Scheduling Problem must be solved in
order to know if there is a solution respecting fixed starting time of activities. But
the corresponding FSP contains as many activities as the MSPSP instance, so it
can be quite large. Therefore, we want to have a solution as quickly as possible.
This is the reason why decomposition rules are called: it is easier to solve several
small-size sub-problems instead of solving the global assignment problem.

The first decomposition rule is a temporal one. For a given instance of FSP,
if we can find a cutting time-point ¢, that means a time ¢ where no activity is
in progress, the instance can be separated in two sub-parts. The first sub-part is
made of all the activities that end before or at ¢, and the second one is made of
all the activities that begin after or at t. And if at least one of these sub-parts has
no solution, the original instance of FSP does not have any solution.

Property 1. ¢ is a cutting time-point if and only if: Vi € {0,..,n+ 1}, d; <t or
T >t.

Finding a cutting time-point leads to decomposition because a cutting time-
point t is defined by the fact that no activity is in progress at ¢. So, whatever are
the choice of assignment which are made before t, the corresponding persons are
occupied until ¢ in the worst case. It will have no consequence after ¢. By the
same way, no assignment chosen after ¢t have a consequence before ¢t. So, the two
sub-problem are independant.

The second decomposition rule is based on skill requirements. Any instance of
Fixed job Scheduling Problem can be decomposed in sub-parts if there are some
independant sets of skills. Two sets of skills are said to be independant if there
does not exist a person who masters a skill of the first set and a skill of the second
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one, and if there is no activity that requires a skill from the first set and a skill
from the second one. A sub-part of the problem is built for each independant set
of skills. Once again, if at least one sub-part does not have any solution, the global
instance of FSP has no solution.

Property 2. Two sets of skills Q1 and Qs are said to be independant if and only
if Vk € Q1,VE' € Qo, (/HAi|bi,k b g #* 0) AN (/HPm|Sm7k - Sm,k’ =1)

A sub-part corresponding to an independant set of skill can be solved indepen-
dantly from other sub-parts of the problem because it corresponds to a part of
the global problem that takes into account skills not needed by activities in other
sub-parts and not mastered by persons in other sub-parts. Moreover, activities of
this sub-part do not need skills of an other independant set and persons of this
sub-part do not master skill of an other independant set. So, choices of assignment
made on activities and persons of this sub-part have no consequence on an other
sub-part.

According to those decomposition rules, an instance of FSP get in a leaf node
of the B&B method can be splitted into different small-size sub-parts, and if one
of those sub-parts can be proved to be unfeasible, the leaf node can be pruned, or
if all the sub-parts are feasible, we have a complete solution for the instance. In
order to know if the sub-parts of an instance are feasible or not, the method used
for FSP is applied.

3.2. FIXED JOB SCHEDULING PROBLEM TREATMENT

In order to solve the FSP, we used an integer linear program, inspired from
those existing for the Fixed Job Scheduling Problem [13,16]. In the model below,
Zim,k = 1 if P, is assigned to do Sy, for the activity A;, 0 otherwise.

K-1
Vi € {0.n},¥m € {0.M — 1}, > Timp <1 (1)
k=0
V(’L,j) € {0n}2 s.tt; <t; <t;+pi,

K-1 K—-1
Vme{0.M =1}, > Zimp+ Y Timr<1 (2)
k=0 k=0

M
Vi € {0..n},Vk € {0..K — 1}, > Tk = ik (3)
m=1
Vi € {0..n},Vk € {0.K —1},Vm € {0.M — 1}, Timk < Sk (4)
Vi € {0..n},Vk € {0.K —1},¥Ym € {0..M — 1},
Jdte [ti,ti +pi[ s.t. A(Pm, t) =0, Timk =0 (5)

If there exists a solution to this model then there is a solution for the corresponding
Fixed Job Scheduling Problem. Constraint (1) ensures that a person does at
most one skill for a given activity; (2) forces one person not to be assigned to
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two activities that overlap; (3) implies that all skill requirements of activities are
satisfied; (4) ensures that a person can be assigned to a need if and only if he/she
masters the corresponding skill. Finally, (5) ensures that a person can be assigned
to an activity if and only if he/she is available all along the processing time of the
activity. This model is solved using Cplex 8.0.

4. LOWER AND UPPER BOUNDS

The number of nodes that has to be treated may be very large, and even when
a leaf node is reached, the assignment problem to solve may be time-consuming.
Thus, efficient bounds have to be used. This part is devoted to the description of
a heuristic indicator needed by the upper bound, the upper bound and the two
lower bounds used to prune the search tree.

4.1. CRITICITY INDICATOR

Due to the fact that for a given instance the number of different feasible subsets
of persons for one activity can be very large, we need to evaluate the ones that
should be better than others, in order to build as quickly as possible a solution as
good as possible. For this reason, we compute a heuristic indicator: the criticity.
This indicator is based on the way skills are needed by the project, in order to
distinguish which ones will be critical for the project. So, each time we try to
schedule an activity A; at time ¢;, the criticity is computed by the following way:

For a skill Sy:

oSt — Total time Sy, will be required by activities during [t;;t; + pi[ ‘e
k Total time persons can do Sk during [t;;t; + pi] ’

CSj = s ZA:JZCIE?J;ZTZI;M Sh where C(Sk, t;,t; + p;) is the set of activities
that require S, between t; and t; + p;.

Then, for a person P,,:

CPli = sum of the criticity of all the skill(s) he/she masters, i.e.

CPh = S (S-S

This indicator is computed a priori (see [3] for further details). It will be used in
the computation of the upper bound in order to discriminate different assignments
on an activity.

4.2. UPPER BOUND

The upper bound used to evaluate the makespan of the project is based on a
heuristic method introduced in [3]. This greedy method inspired from the Serial
Schedule Scheme for RCPSP [12] is based on a priority rule to sort activities and
a dispatching rule to assign activities to person. Then activities are scheduled at
their minimum feasible starting time on the set of available staff members that is
"less useful” for other activities. That means we choose the set of persons with the
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minimum sum of staff members criticity indicators. At the beginning the upper
bound is the best value of the makespan we get with eight different usual priority
rules to order activities (Minimum Slack Time, Latest Starting Time, ...). We call
this procedure at the root node, and each a nodes in order to decrease the gap
between lower bound and upper bound if possible, with « a parameter between 10
and 500. The upper bound is also updated every time a better solution is found
at a leaf node.

4.3. TWO LOWER BOUNDS

The two lower bounds introduced here have been presented in [19]. Both are
destructive, that means once a value D is fixed, either we are able to detect an
unfeasibility, so D cannot be respected as a deadline for the project and D+1 is a
valid lower bound, or we cannot detect unfeasibility and have no conclusion on D.

In practice, at the root node, we use binary search between the first value of
D, given by the critical path lower bound and a valid upper bound given by the
greedy algorithm (see Sect. 4.2). For other nodes, we only have to test the current
value of the upper bound U Bjes; minus 1: if it cannot be respected, i.e. if at least
one of the two lower bounds detects an unfeasibility, the node is pruned because
we know that for this node U Byt is a valid lower bound so this node cannot lead
to a solution better than the best one already known.

4.3.1. Lower bound based on blocks

The first lower bound used is inspired from one existing for the RCPSP [18].
It is based on the notion of block. A block, or anti-chain, is a feasible subset
of activities that can be processed simultaneously, i.e., without violating neither
the resource constraints nor the precedence constraints. So, for each couple of
activities (A;, A;), tests are made in order to know if it is possible for them to be
in progress at the same time. Lack of precedence relations is first checked, then
overlapping of their time-windows, and finally the resource constraint is checked
by solving the corresponding assignment problem using a max-flow formulation.

The graph G1 = (X1, F,¢), X1 = {A:;, A; } U{Sk|Vk € {0. K — 1} } U{Pn|Vm €
{0..M —1}} in which we search for a maximum flow is presented in Figure 3. The
first layer is made up of the activities A; and A;, the second one is made up of
the skills needed by at least one of the two activities, and the third is made up of
staff members available during the time interval considered. There exists an edge
eq € F between the source and an activity A;, with a maximum capacity ¢, € ¢
which is equal to the sum of the needs of the activity considered. There is also
an edge e, € F between an activity and a skill, its maximum capacity ¢, € c is
equal to the number of persons needed by the activity for the corresponding skill.
An edge e, € F exists between a skill and a person only if the person masters this
skill and its maximum capacity ¢, € c is then equal to 1. Finally, there exists an
edge e, € F between a staff member and the sink, with a maximum capacity ¢,
€ c equal to 1.
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FIGURE 3. Graph (G used to check resource constraint on two
activities A; and A;.

Edges have maximum capacity: from the source to an activity it is equal to the
sum of the needs of the activity we consider, from an activity to a skill it is equal
to the number of persons needed by the activity for the corresponding skill and
from a staff member to the sink it is equal to 1, because a person cannot do more
than one skill for one activity at a time. An edge between a skill and a person
exists only if the person masters this skill and its maximum capacity is then equal
to 1.

The maximum flow is computed on this graph and it is compared to the sum of
the needs of the two activities we are testing. If they are equal we conclude that
the two activities can be in progress at the same time, but if the maximum flow
found is strictly lower than the sum of the needs, we know that there is a resource
conflict between the two activities.

Once we know exactly which couples of activities can be in progress at the same
time, the graph of *‘compatibility” is built. In this graph G’ = (A, E’), there exists
an arc between two activities A4; € A and A; € A only if there is no unfeasibility
for them to be in progress at the same time. Each node has an associated weight
p; that is equal to the processing time of the activity. In order to determine the
longest set of activities that cannot be in progress at the same time, which is a
lower bound of the project duration, we search for a stable set with the maximum
weight in this graph. This resolution is based on a MIP, solved by Cplex 8.0:

max » , u; - P

u; € {0, ].}

u; = 1 if A; is in the stable set, 0 otherwise

s.t. (Ai,Aj) e G = u; +u; <1

4.3.2. Lower bound based on energetic reasoning

The second lower bound used is based on energetic reasoning used to get sat-
isfiability tests for the classical RCPSP in [1] and [17]. This is based on the fact
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FIGURE 4. Solving the assignment problem for energetic lower bound.

that on a given time-interval [t1,t2], where we assume t; < to without any loss of
generality, we are able to detect if all the mandatory parts of the activities that
have to be processed in this time-interval can be done or not. Time points ¢; and
to are taken in T = {r;,r; + p;, d; — pi,d;, Vi € {1..n}} and the mandatory part
w(i, t1,t2) of an activity A; that has to be scheduled between ¢; and t9 is computed
either by left-shifting or right-shifting the activity in its time-window [r;, d~1] So
the left-work of A; is equal to max(0,r; + p; — t1) and its right-work is equal to
max (0, ty — ((L —p;)). The mandatory part of A; is equal to min(left-work,right-
work, p;, t2 — t1).

Once all the mandatory parts are computed, we check if there is enough available
resources on this interval to execute at least all of them. As previously, this
problem can be modelled as an assignment problem that can be solved using a
max-flow formulation presented in Figure 4. This graph G2, where we search for
the maximum flow in order to verify if there are enough resources is made of a
first layer of nodes that represent each skill Si and of a second layer of nodes
that correspond to the staff members. Each edge from s to a level of a skill
Sy has a maximum capacity equal to the mandatory parts times the number of
persons needed for this skill (7, ZkK:O(w(i,tl, t2) - bix)). An edge between a
skill Sk and a staff member P, exists if the staff member masters the skill, i.e.
Sm,kx = 1, and has a maximum capacity equal to the length of the time-interval
[t1,t2], and finally the edge between a person P,, and p has a maximum capacity
equal to the total time this person is available between ¢; and t5. Then we are
sure that if there exists at least one time-interval where those mandatory parts
cannot be satisfied, the node can be pruned. The complexity of this lower bound
is (K + M)3 but in practice, it is well-solved. As mentionned in [19], this lower
bound is complementary with the first one so both are used in the search tree, in
order to evaluate nodes.
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4.4. TIME-BOUND ADJUSTMENT

Another interesting way to improve the search speed is based on time-bound
adjustments: if time-windows of activities can be decreased, either we can prune
a node earlier if an unfeasibility is detected, or it possibly reduces the number of
nodes needed to reach a leaf node.

The first way to do it is close to the second lower bound, based on energetic
reasoning. (It is an extension of time-bound adjustments proposed for RCPSP
[1].) On a time-interval [t1, 2], where ¢; and ty are generated by the same way
as in Section 4.3.2, we use all the mandatory parts w(i,1,t2) of activities A;
except the one of an activity A;. Then, a binary search is applied with max-flow
tests in order to determine the maximum part of activity A; that can be done on
this time-interval, respecting ressource constraint. If this maximum part Wy, 4, is
smaller than the left-work of A;, r; is updated to to — Wi,qe, or if it is smaller
than the right-work of A;, d} is updated to t; + Wiyae. Once this is done for
every activity, the new time-windows are propagated according to the precedence
graph, and time-bound adjustment are applied again, until we cannot find any new
adjustments. This had been proved to be efficient for RCPSP, but it is solved in a
pseudo-polynomial time so it can be time-consuming. This is the reason why these
adjustments will be done only at the root node, until there is no time-window to
update.

In order to adjust time-windows of activities if possible all along the search tree,
some obvious tests are done. At each node, for every activity A;, on every time
interval [t1,t2], we have to compute:

o MazPart = (Zm A(Pm, tl, tQ)_Zk Zi:,éj ’LU(i, tl, t2)'bi,k)/(zk bj,k), which
is the maximum part of A; that can be done according to the global
available staff members, and the sum of the needs of other activities. It is
equivalent to relax the skill matching constraint.

[ Vk’, MaxPartk = (ZmeEk A(Pm, tl, tg)fzi;ﬁj w(i, tl, t2)~bi7k)/(bjyk)), with
E the set of staff members that master Si. This is the maximum part of
A; we can schedule on this time-interval according to the available staff
members that master the skill S and the global need of this skill. This
is equivalent not to take into account that a person cannot do more than
one skill at a time.

Then the minimum of all those values is computed, it is called CapaMax:
CapaMax = min (MazPart, ming MazParty). If the left-work of A; is bigger
than CapaMaz then r; is updated to to — CapaMaz, or if the right-work is bigger
than CapaMarz, Jj is updated to t; + CapaMazx.

The last way that can be used in order to limit the search is to well-choose the
way we explore this tree, according to the branching strategy, trying to decrease
the number of level that are necessary to reach a leaf node.
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5. BRANCHING STRATEGY

Due to the size of the search tree that may be important, we choose a depth
first branching strategy. Add to this, the way we choose to build nodes is really
important to decrease the total number of nodes explored. First, a chosen activity
of which slack is decreased can make decrease several other activities slacks by
propagation on the precedence graph, and so increase the speed we reach a leaf
node. Then the way the search tree is explored can give quickly a good solution,
and decrease the number of node by updating the global upper bound. This is the
reason why we test different search strategies in order to compare them and keep
the best one.

The first one is based on the size of every slack. The activity chosen at each
level to be branched is the one with the maximum slack. This strategy makes the
biggest slack reduction possible, and the propagation may really decrease some
other slacks.

The second one is based on the first lower bound (cf. Sect. 4.3.1). In this lower
bound we have to build a maximum-weighted stable set, this set at least contains
a critical path, so updating those activities’ slack should disturb the makespan.
So at each level, once the stable set is computed, the activities that it contains are
stored, and we branch on one of those that do not have a slack equal to 0.

And last search strategy we use is based on the second lower bound
(cf. Sect. 4.3.2), where we test all time intervals [¢, 2] and verify if there is a
resource conflict or not. If this bound does not detect an unfeasibility we know
that for each interval the maximum flow found is equal to the sum of the needs of
the mandatory parts, but during all those intervals the amount of resources poten-
tially consumed is not the same. So, the activity we decide to branch on is from

an interval as loaded as possible, that means where requirements are maximum.
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So,we take first an activity from the interval where
to 1 as possible.

This two last ways of branching may increase the speed we detect an unfeasi-
bility, so the number of nodes created may be decreased too.

6. EXPERIMENTAL RESULTS

In order to test this method, lots of instances have been generated. MSPSP
is really close to other project scheduling problems like RCPSP or Multi-Mode
RCPSP [14,15,23,25], so we decide to keep precedence graph from existing data
sets of classical RCPSP and Multi-Mode RCPSP instances and add skill require-
ments in order to get MSPSP instances.

We take a set of instances from Multi-Mode RCPSP and Single-Mode RCPSP
with a number of activities equal to 12, 14, 16, 18, 20, 22, 25, or 32. We compute
by this way 1070 various instances. To generate resources and needs of activities
we used pseudo-randomly generation in order to have between 3 and 5 skills and
between 4 and 10 persons assigned to the project. All those persons do not have
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TABLE 4. Comparison between the deviation and execution time.

#Act. branching Av. time #Unreas. Av. dev. on
strat. (s) unreas. (%)
Max. slack 0.21 4 7.88
<14 Stable set 0.17 4 7.88
(346 instances) Load. time-int. 0.09 4 7.88
Max. slack 9.68 6 8.21
16 < #act. <18 Stable set 10.84 6 8.21
(344 instances) Load. time-int. 9.74 6 8.21
Max. slack 141.96 50 6.68
20 < #act. < 32 Stable set 146.18 54 6.93
(380 instances) Load. time-int.  142.53 51 6.64

the same number of skills mastered in order to have some persons that master
very few skills and others that are polyvalent. Add to this, in some instances each
skill has the same probability to be mastered, and in some others instances there
exist some skills very less often mastered and other mastered by a large part of the
staff. So, this global set of instances represents a wide range of instances. Some
of them are strongly constrained: there are very few sets of activities that can be
scheduled in parallel and other have lots of activities that can be in progress at
the same time.

For each generated instance, we exactly know the network complexity (which
is between 1.5 and 2.1), but it is not enough to caracterize the difficulty of an
instance. After lots of experimentations, it appears that neither the precedence
disjunction (percentage of couples of activities that cannot be in progress at the
same time due to their precedence relation) nor the resource disjunction (percent-
age of couples of activities that cannot be in progress at the same time due to the
resource constraint) [1] is directly linked to the difficulty to solve an instance.

In order to evaluate the efficency of the Branch-and-Bound method on this prob-
lem, different versions of this method have been tested on all the instances. The
maximum execution time is limited to 20 min, so there are some unresolved in-
stances. Add to this, as the instances cannot be characterized before execution,
some of them are easy to solve, so the B&B method reach the optimal solution at
the root node.

The three different versions shown in Table 4 are the three branching strategies
explained in Section 5: the ones based on maximum slack activities, stable set
activities, and loaded time-interval activities. The deviation is computed as follow:
dev = (bestUB — bestLB)/bestU B, where bestLB is the best value find by the
lower bounds at the root node. This table also shows the average time used to
solved an instance. According to this table, we can conclude that the three different
branching strategies are almost equivalent in terms of deviation and execution
time, but the number of nodes developped in each method is not exactly the same,
as it is shown in Table 5. The branching strategy based on the stable set activities
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TABLE 5. Comparison between the number of nodes needed.

Branching strat. | Min. #nodes | Av. #nodes | Max. #nodes
Max. slack 0 9358.34 362114
Stable set 0 6909.64 261104

Load. time-int. 0 9227.98 359384

clearly needs less nodes than other ones, but the treatment of each node is much
time-consumming than for other methods, because the choice of the activity to
branch on is not easily determined.

To conclude, the branching strategy do not have a significative impact on the
results: the number of unreasolved instances is comparable, and for those unrea-
solved instances the average deviation does not exceed 7%. So, we can say that
this Branch-and-Bound method reaches good results for small size instances up
to 32 activities. Some other tests have been made on 120 bigger instances (With
60 or 90 activities) and the number of instances not optimally solved grows up to
118, that means more than 98%. The average deviation got on those unreasolved
instances in 20 min of execution grows up to 9.30%.

7. CONCLUSION

In this paper, we propose a Branch-and-Bound method to solve the Multi-
Skill Project Scheduling Problem. We introduce different branching strategies and
define the way to treat the assignment problem in each leaf node. Results show
that it works on small and average size instances. Most of the big size instances
are not optimally solved in 20 minutes but the deviation is acceptable.

Nevertheless the size is not the only element to take into account to evaluate
the difficulty of an instance. So, it is one of our future research directions to find
out relevant elements to characterize instances, in order to know why for the same
size and the same network complexity, some of them are solved at the root node
and some other ones are not optimally solved in 20 minutes.
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