
RAIRO Operations Research
RAIRO Oper. Res. 41 (2007) 95–103

DOI: 10.1051/ro:2007008

1.0957-APPROXIMATION ALGORITHM FOR RANDOM
MAX-3SAT

Wenceslas Fernandez de la Vega
1

and Marek Karpinski
2

Abstract. We prove that MAX-3SAT can be approximated in poly-
nomial time within a factor 1.0957 on random instances.

Keywords. Random satisfiability, approximate algorithms.

Mathematics Subject Classification. 68W25, 03B70

1. Introduction

Random 3 SAT formulas have been widely studied in the context of struc-
tural properties of the general satisfiability problem, cf. [1, 3, 4, 6, 9, 10, 15] and
the surveys [5] and [11]. Randomly chosen 3SAT-formulas are empirically difficult
for deciding satisfiability and are used often as a benchmark for various testing
algorithms.

In this paper we study the problem of approximability (rather than just satis-
fiability) of random MAX-3SAT. We were originally motivated by a recent paper
of Feige [7] connecting the hardness of approximation of certain combinatorial
problems, like MIN-BISECTION, to the problem of efficient approximability of
random 3SAT and the problem of refutation of its instances. In particular, we
investigate the problem of the possible improvements of the approximation ra-
tio of polynomial algorithms for random MAX-3SAT over H̊astad lower bound of
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8/7 [12]. We prove in this paper that there are polynomial time algorithms ap-
proximating random MAX-3SAT (formula by formula) to within a factor 1.0957 (a
considerable improvement over H̊astad’s bound). We note that a previous version
of this paper appeared in ECCC [8]. Our approximation ratio was later improved
to 10

9.5 ∼ 1.0526 by Inderian [14].

2. Approximation algorithms on random instances

We consider a standard model of generation of random 3SAT formulas (R3SAT-
formulas). Given parameters n for the number of variables and m for the number
of clauses, each clause is generated independently at random by chosing three
literals independently and uniformly at random. We denote ρ = m/n and define
a parameter λ = 3ρ

2 . There are several other models for generating R3SAT-
formulas, such as fixing beforehand the probability of each possible clause (whence
the number of clauses is then a random variable) but they lead to similar results.

For a given (generated) R3SAT- formula F , let m(F ) denote the maximum
number of clauses of F which can be satisfied. For an assignment X , mX(F )
denotes the number of clauses of F satisfied by X .

We call a polynomial time (randomized) algorithm Q an approximation algo-
rithm for the MAX-R3SAT problem with approximation ratio α if Q outputs an
assignment X such that the probability resulting from the input and the inner
algorithm’s distributions satisfies

lim
n→∞ Pr

(
m(F )

mX(F )
≤ α

)
= 1 (1)

for any fixed ρ.
We call a polynomial time (randomized) algorithm Q a value approximation

algorithm with approximation ratio α for the MAX-R3SAT problem if for every
(generated) formula F , Q outputs a number m∗(F ) such that the probability
resulting from the input and the inner algorithm’s distributions satisfies

Pr
(

m(F )
m∗(F )

≤ α

)
≥ 3/4 (2)

and

lim
n→∞Pr

(
m(F )
m∗(F )

≤ α

)
= 1

for any fixed ρ > 0.

3. Main result

We prove the following main result on the approximability of the MAX-R3SAT
problem.
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Theorem. There exists a polynomial time algorithm for approximating MAX-
R3SAT to within ratio 1.0957.

An approximation algorithm and a proof of its correctness are given in the next
section.

4. A 1.0957-approximation algorithm for R3SAT

Recall that ρ = m/n. In our analysis, we assume that n (and m) are arbitrarily
large with ρ fixed. We describe an algorithm which, when applied to an F returns a
value m∗(F ) (together with an assignment X) for which we have that the theorem
is true for α = 1.0957 and any fixed ρ > 0.

Notice that there is no guarantee here as it happens elsewhere that satisfiable
formulae are detected with zero error probability.

We consider separately the case of “high” values and the case of “small” values
of ρ. For values ρ ≥ 16.554, the algorithm outputs the everywhere true assignment
for every formula. For smaller values of ρ and for each variable the algorithm
assigns greedily this variable to true if the positive literal appears at least as many
times as the negative literal. Otherwise the variable is assigned to false. Thus
the algorithm is deterministic in both cases. We describe now the behavior of this
algorithm in detail.

4.1. The case of “high” values of ρ

We treat first the case where ρ = m/n ≥ 16.554. (This separation gives near
optimal results in our method of proof.) In this case we shall show that m(F ) is
near to 7m

8 , so that a random assignment will give the claimed ratio. Let val(A, F )
be the number of clauses of the random formula F true under the assignment A.
Let B(n, p) denote a binomial random variable with parameters n and p and let
q = 1 − p. The following inequality is implied immediately by a large deviations
bound of Hoeffding (see [13], Th. 1 (2.1), p. 15):

Pr(B(n, p) ≥ n(p + t)) ≤
((

p

p + t

)p+t(
q

q − t

)q−t
)n

.

We take p = 0.875, q = 0.125 and t = 0.0957 in the above inequality to get

Pr(val(A, F ) ≥ (7m/8)1.0957) ≤ 0.95899m.

This gives

E(#{A : val(A, F ) ≥ (7m/8)1.0957)}) ≤ 0.95899m2n.

This is o(1) for ρ ≥ 16.554. Thus for ρ satisfying ρ ≥ 16.554, using Markov
inequality we have that, with probability 1−o(1), there is no assignment satisfying
more than (7m/8)1.0957 clauses. This clearly gives us the claimed approximation
ratio for ρ ≥ 16.554.



98 W. FERNANDEZ DE LA VEGA AND M. KARPINSKI

4.2. The case of “small” values of ρ

We consider now the case ρ = m/n ≤ 16.554. We assume for convenience
that the clauses of F are ordered. We are going to construct the following greedy
algorithm.

For each variable which appears strictly more often in positive than in negative
form, we assign it to true and we call the corresponding positive literal “major”.
We call the corresponding negative literal “minor”. Similarly, we assign to false
every variable which appears stricly more often in negative than in positive form
and we call the corresponding negative literal “major”. We call the corresponding
positive literal “minor”. We call neutral all the variables which appears as many
times (possibly none) in positive or in negative form and we assign these variables
to true. We denote by NEUTRAL the set of literals corresponding to neutral
variables. We let MAJOR (resp. MINOR) denote the set of major (respectively
minor) literals. We will make use of the following two propositions.

Proposition 1. Let C be a fixed clause. Given that � ∈ C, the distribution of
the number of occurrences of � and ¬� out of C are both asymptotically Poisson
with parameter λ.

Proposition 2. Let k and h be fixed natural integers and assume that u1, u2,...uk,
v1, v2,...vh are pairwise distinct literals. Assume that for 1 ≤ j ≤ k the literal
�j has a total of nj occurrences in the clauses with nj ∈ o(n). Then the num-
bers of occurrences of the literals v1, v2, ...vh are asymptotically independent and
asymptotically Poisson with parameter λ, as n → ∞.

Let q denote the probability that a fixed literal in a fixed clause is true in the
assignment A. We will derive the asymptotic (as n → ∞) value of q by two distinct
methods. It will be convenient to introduce two independent random variables Pλ

and Rλ and having both this Poisson distribution.

Lemma 1. We have that

q ∼ E(max Pλ, Rλ)
2λ

· (3)

First proof. Let M = max(Pλ, Rλ) so that the assertion of the lemma is that
q ∼ EM

2λ . Put T� = 1 if the literal � is true in the assignment A. Otherwise
T� = 0. Let T =

∑
�∈L T� be the total number of occurences of true literals in F .

T concentrates around its expectation. (For a proof, observe that Var(T�) = O(1),
check that Cov(T�, Tk) = O(1/n) for any pair of literals with distinct underlying
variables, T� and Tk and Cov(T�, T¬�) = O(1). Then apply Tchebichev’s inequal-
ity.)
Since the literals within any fixed clause are random within the set of occuring
literals, we get that the probability q that a fixed literal in a fixed clause is true
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conditionnaly on T satisfies

q =
T

3m

∼ EM

3m

∼ EM

2λ
·

The probability that a fixed clause is true satisfies thus

Pr(C satisfied) ∼ 1 − (1 − q)3

∼ 1 −
(

1 − EM

2λ

)3

.

Second proof. Let C = (�1, �2, �3) be a fixed clause of F (say, the first one). What
is the probability that this clause is satisfied in our assignment? Note first that
the number of appearances in our formula of each fixed literal is asymptotically
(as n → ∞) Poisson with parameter λ = 3ρ

2 .
Fix attention on �1. �1 is true in our assignment either if (i) it is major, which

has probability asymptotic to

q1 = Pr(Pλ ≥ Rλ), (4)

or (ii) it is neutral and positive, which has probability asymptotic to

q2 = (1/2)Pr(Pλ = Rλ − 1). (5)

(Note that in (4) and (5) the computation is done for �1 given.) Thus, the proba-
bility q that �1 is true satisfies

q = q1 + q2 ∼ Pr(Pλ ≥ Rλ) + Pr(Pλ = Rλ − 1).

(We use ∼ for asymptotic equivalence, as n → ∞.) We proceed now to derive an
explicit formula for q. We have that

Pr(Pλ ≥ Rλ) = 1/2 + (1/2)Pr(Pλ = Rλ)

= 1/2 + (1/2)
∞∑

j=0

e−2λ λ2j

(j!)2

and

Pr(Pλ = Rλ − 1) =
∞∑

j=0

e−2λ λ2j+1

j!(j + 1)!
·



100 W. FERNANDEZ DE LA VEGA AND M. KARPINSKI

Thus

q ∼ 1/2 + (1/2)
∞∑

j=0

e−2λ λ2j

(j!)2
+

∞∑
j=0

e−2λ λ2j+1

j!(j + 1)!
· (6)

Note that we have

E(maxPλ, Rλ)
2λ

=
1
2λ

⎛
⎝ ∞∑

j=1

je−2λ λ2j

(j!)2
+ 2

∞∑
j=1

je−λ λj

j!

(
j−1∑
k=0

e−λ λk

k!

)⎞⎠ . (7)

Thus, by using (3), we get that the right-hand sides of (7) and (6) are identical. �

Now we can finish the proof concerning the case ρ = m/n ≤ 16.554. Fix
ρ = 16.554 which gives λ = 24.831. Then, from (6), we get using computer
assisted analysis, q ∼ 0.55642 implying q ≥ 0.55641 for sufficiently large n. The
probability of satisfaction of any fixed clause is thus at least, for sufficiently large n,

1 − (1 − 0.55641)3 = 0.91271.

This proves that, for ρ = 16.554, the expectation of the number of clauses sat-
isfied in our assignment is asymptotic to 0.91271m = m

1.09564 and yields that the
approximation ratio 1.0957 holds for ρ = 16.554. In the next section, we prove
that q is non-increasing as a function of λ, implying that the approximation ratio
is at least 1.0957 for every ρ ≤ 16.554. Putting this together with the result of
Section 4.1, the proof will be completed by the concentration result of Section 5.

4.3. lim q is non-increasing

We have to prove that q, given according to Lemma 1 by

q ∼ E(max Pλ, Rλ)
2λ

,

does not increase with λ.
Aside from Pλ and Rλ we introduce additional Poisson random variables Pδ

with parameter δ where δ is an arbitrarily small positive real, Pλ+δ and Rλ+δ

both with parameter λ + δ and similarly for Rλ, Rδ, Rλ+δ. From the fact that the
distribution Pλ+δ is the convolution of the distributions of Pλ and Pδ it follows
that the pair (Pλ+δ, Rλ+δ) is the mixture, with coefficients e−2δ, 1 − e−2δ of the
pairs (Pλ, Rλ) and (Pλ, Rλ+δ) or (Pλ+δ, Rλ). Let Q(X, Y ) denote the expectation
of max(X, Y ) for two random variables X and Y . The above mixture argument
gives,

Q(Pλ+δ, Rλ+δ) = e−2δ(Q(Pλ, Rλ) + 2(1 − e−δ)e−δQ(Pλ + 1, Rλ) + O(δ2)
= (1 − 2δ)Q(Pλ, Rλ) + 2δQ(Pλ + 1, Rλ) + O(δ2)
= Q(Pλ, Rλ) + 2δ∆ + O(δ2),
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where

∆ = Q(Pλ + 1, Rλ) − Q(Pλ, Rλ).

In order to estimate ∆, we simply consider aside with each pair of values i, j the
corresponding pair i + 1, j and observe:

– if i < j, then the max does not change;
– if i ≥ j, then the max increases by 1.

Thus, ∆ is just the probability that Pλ ≥ Qλ. By symmetry we have that

Pr(Pλ ≥ Qλ) = 1/2 + (1/2)Pr(Pλ = Qλ)

implying

∆ = 1/2 + (1/2)f(λ)

where f(λ) =
∑∞

k=0 e−2λ λ2k

k!2 . In other words the derivative of Q is 1 + f(λ). This
gives

q(λ) = 1/2 +
∫ λ

0

f(µ)
2λ

whence it follows that q is non-increasing (as we wish to prove) if f is non-
increasing. Using again the decomposition above, we have that

f(µ + δ) = f(µ) − 2δ(f(µ) − g(µ)) + O(δ2)

with

g(µ) =
∞∑

k=0

e−µ µk

k!
e−µ µk+1

(k + 1)!
·

Thus it suffices to prove that f(µ) ≥ g(µ), µ > 0. We will use the following Lemma.
Lemma 2. Let S = (a0, a1, ...am) be a finite sequence of numbers. For any
permutation Π of the set {0, 1, ...m}, let q(S) =

∑m
j=0 ajaΠ(j). The sum q(S) is

maximum when Π is the identity.

Proof. The following simple proof was suggested to us by Yves Verhoeven. We
have by the Cauchy-Schwarz inequality that 〈S, ΠS〉 ≤ ||S||.||ΠS||, where 〈, 〉 de-
notes the scalar product. Also ||ΠS|| = ||S||. Therefore 〈S, ΠS〉 ≤ ||S||2 which is
what we want. �

We use this Lemma with ak = e−µ µk

k! . We fix some m, and let S = (a0, a1, ...am).
We define the permutation Π on the set {0, 1, ...m} by Π(j) = j+1 for 0 ≤ j ≤ m−1
and Π(m) = 0. Then we have that q(S) tends to g(µ) and f(µ) is at least q(S)
because of the Lemma. Thus, for any ε > 0, we get, choosing m sufficiently large,
the inequality g(µ) ≤ f(µ) + ε and this implies of course g(µ) ≤ f(µ).
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5. Proof of concentration

We now turn to the proof of concentration needed for the case of small values
of ρ, ρ ≤ 16.554.

The set of clauses is clearly symmetric. Thus, by a remark of [2] (see [2],
Sect. 4.3) it suffices to prove that for two distinct clauses C and C′ we have that

Pr(C FALSE and C′ FALSE) = Pr(C FALSE)2(1 + o(1))

where FALSE means false in the assignment which we defined. Thus we have
that Pr(C FALSE) = (1 − q)3 with q defined by (6). Let us say that a literal
� in a clause is good if it does not satisfy the clause (that is, � either belongs to
MINOR or is negative and belongs to NEUTRAL). Let u, v, w, resp. u′, v′, w′ be
the (random) literals in C (resp. C′). We have to check that

Pr(u′, v′, w′ are good|u, v, w are good) = (1 − q)3(1 + o(1)). (8)

With probability at least 1 − O(1/n) it is the case that all the literals u, v, w
or their complements are disjoint from u′, v′, w′ and their complements. We can
thus apply Proposition 2 which implies that the conditional distributions of the
occurences of each of u′, v′, w′ and their complements are asymptotically Poisson
and pairwise independent and we can derive (8) just in the same way as we derived
it’s unconditional analogue.

6. Value approximation algorithms

We notice that if we are interested only in approximating the values of m∗(F )
and not in constructing an actual approximating assignment we can use the fol-
lowing value approximation algorithm:

1. compute ρ = m/n;
2. if ρ ≤ 16.554 then output 0.91271 m;
3. if ρ > 16.554 then output 7/8 m.

An interesting question arises whether there exist value approximation algorithms
for MAX-R3SAT with still better approximation ratios than that of [14], or even
whether there exist a polynomial time value approximation schemes (VPTAS)
approximating MAX-R3SAT within arbitrary approximation ratios α > 1.

A possible proof of existence of a VPTAS for MAX-R3SAT would require though
stronger concentration results than the result of this paper.

7. Further research

We already mentioned the open problem of improving substancially the approx-
imation ratio. Another intriguing question is whether approximation ratio for the
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measurement of values of MAX-R3SAT can be considerably improved (existence
of a VPTAS for that problem?).

Acknowledgements. We are indebted to Béla Bollobás, Mark Jerrum, Alex Scott, and
Yves Verhoeven for interesting remarks and discussions.
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