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CONVEX QUADRATIC UNDERESTIMATION AND
BRANCH AND BOUND FOR UNIVARIATE GLOBAL
OPTIMIZATION WITH ONE NONCONVEX
CONSTRAINT *

Hoar AN LE THI! AND MOHAND OUANES?! 2

Abstract. The purpose of this paper is to demonstrate that, for glob-
ally minimize one dimensional nonconvex problems with both twice
differentiable function and constraint, we can propose an efficient al-
gorithm based on Branch and Bound techniques. The method is first
displayed in the simple case with an interval constraint. The extension
is displayed afterwards to the general case with an additional nonconvex
twice differentiable constraint. A quadratic bounding function which
is better than the well known linear underestimator is proposed while
w—subdivision is added to support the branching procedure. Com-
putational results on several and various types of functions show the
efficiency of our algorithms and their superiority with respect to the
existing methods.

Keywords. Global optimization, branch and bound, quadratic
underestimation, w—subdivision.

1. INTRODUCTION

In recent years there has been a very active research in global optimization
whose main tools and solution methods are developed via four basic approaches:
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outer approximation, cutting plane, branch and bound and interval analysis (see
e.g. [2,8,13,14,19,20,24,25,28,30,33] and references therein) in combining with, in
some cases, the reformulation techniques. Extensive surveys on global optimiza-
tion exist in the literature (see e.g, [33] and recently [25]). In this work we focus
on the univariate global optimization. Univariate global optimization problems
attract attention of researchers not only because they arise in many real-life ap-
plications but also the methods for these problems are useful for the extension to
the multivariable case.

The univariate global optimization problem with simple constraint is written in

the form
o :=min [ (s)
(P) { s €S,
where S := [a, b] is a bounded closed interval and f is a continuous function on S.

Only the case where f is not concave function will be considered, because when f
is concave the problem is trivial: min{f(s) : s € [a,b]} = min{f(a), f(b)}.

With an additional nonconvex constraint, Problem (P) becomes the univariate
nonconvex constrained global optimization problem which takes the form

oy :=min f ()
(PC) ses
9(s) <0,

where g is a nonconvex function on S.

Several methods have been studied in the literature for univariate global op-
timization problems. Let us mention the works for the Polynomial and Rational
functions [15,34], the Holder functions [12], the Lipschitz functions [18], and those
in [4,7,16,22,29,31-37]. As we know, the most part of existing algorithms solve
Problem (P) while Problem (PC) is still difficult. In [34] Floudas and Visweswaran
specialized their GOP algorithm developed in [8] (a decomposition based global
optimization algorithm for solving constrained nonconvex non linear programming
problems) to find efficiently the global minimum of univariate polynomial func-
tions over an interval. In [15] the authors showed that the specialized version of
GOP in [34] is equivalent to a version of an interval arithmetic algorithm which
uses natural extension of the cord-slope form of Taylor’s expansion for univari-
ate polynomial functions, and studied other versions of the interval arithmetic
algorithm corresponding to different ways to evaluate the bounds on the cord-
slope. In [12] a piecewise convex lower-bounding function is used for solving (P)
when f is a Holder function. In [35] a class of differentiable functions with a
Lipschitz constant for the first derivative is considered where the lower bounding
function is constructed from smooth auxiliary functions and connecting points.
In [36] a three-phase algorithm using an improved linear lower bounding function
is investigated for Problem (P). The authors improved the linear lower bounding
function (LLBF) introduced in their previous work and developed three phases:
a basic way to remove a subregion not containing an e-global solution by LLBF
for the global phase, a local minimization algorithm in the local phase, and the
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phase of checking the global solution. Numerical results reported there show that
this is a promising approach, it is more efficient than several existing methods.
In [7], Lipschitz univariate constrained global optimization problems where both
the objective function and constraints can be multi-extremal are considered with
Pijavskii’s method [26].

The aim of this paper is to study branch and bound approaches for solving
both Problems (P) and (PC). Throughout the paper we suppose that f and g are
twice differentiable on S on which their second derivatives are bounded, i.e. there
are positive numbers K and K, such that |f7(s)] < K and |¢g"(s)| < K, for all
s €S. Such a K and a K can be defined by several ways in practice: either it is
possible to know a priori these values, or they are estimated in a way during the
algorithm. In our approaches, K and K, are assumed to be known.

Problems of this type have many applications in various fields [19] and par-
ticularly in the economy and finance. We introduce a quadratic lower bounding
function which is better than the well known linear underestimator of f by the
theory of approximation [3]. This bounding procedure suggests us an efficient
w—subdivision in the branching. The algorithm has a finite convergence for ob-
taining an e-solution.

There are several advantages of the proposed methods. Firstly, the lower bound
is computed by a very inexpensive way: the quadratic lower bounding function is
well determined from the constant K, and then all calculations are explicit. We
do not need more information as in other methods such as the connecting points
in [12] and [35]. Secondly, the minimizer of the quadratic underestimation can
be used efficiently for the branching procedure. Thirdly, the algorithm is simple
and easy to implement. It is composed of one phase, and not complicated as the
three- phase algorithm [36]. We have compared our method with standard existing
algorithms (Branch and Bound and/or Interval Arithmetic methods) for several
classes of problems: the Polynomial and Rational functions [15,34], the Holder
functions [12], the multi-extremal functions, [36,37], and the Lipschitz functions
with multi-extremal constraint [7,26]. As it will be seen in the last section con-
cerning numerical results, our algorithm is more efficient than the related standard
methods. Both algorithms for solving (P) and (PC) work very well on a collection
of test problems for univariate global optimization [7,9,12,15,35-37].

The structure of the paper is as follows. Section 2 discusses the branch and
bound algorithm for (P). The algorithm for solving (PC) is developed in Section 3.
Numerical examples and comparative computational results with several existing
algorithms are presented in Section 4.

2. SOLVING SIMPLE CONSTRAINED GLOBAL OPTIMIZATION
PROBLEMS

We develop in this section a branch and bound algorithm for solving Problem
(P). Before describing the algorithm and proving its convergence we have to specify
the bounding and branching operations.
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2.1. BOUNDING PROCEDURES

2.1.1. An affine underestimating function

Let {s1, 82, ..., $m} be a uniform discretization with mesh size h of S = [a,b]
where s = a and s, = b. Let {wy,wa,...,w,} be a finite sequence of functions
defined as [3,5] (m > 2)

if 51 <5<y,
w; (s) = :7:1—1,; if s <s< s, (1)
0 otherwise,

where sg = s1 and $;;,41 = . We have [3,5]

i=m
Z w; (8) =1,Vs € S and w;(s;) = 0 if i # j, 1, otherwise.

i=1
Let Ly f be the piecewise linear interpolant to f at points sq, ..., $m [3,5]

m

Luf(s) =Y f(si)wi(s). (2)

i=1

The following well known error estimate whose proof is based on divided differences
is necessary in the following.

Theorem 1. [3] We have |Lnf (s)— f(s)| < 2Kh®, Vse€S.
Proof. See [3]. O

Remark 1. From this theorem we see that Ly f (s) is an e-piecewise linear es-

timation of f when fKh? < & that holds when h = =2 < /8 or m >
8 m—1 K

(b —a) g + 1. In other words, with an uniform discretization like above we

need m = |(b—a)y/£] + 1 function evaluations at m discretize points (|z] de-
notes the integer part of x) for determining an e-piecewise linear estimation of f.

At the current step k of the branch and bound algorithms we have to compute
a lower bound of f on the interval T := [ak,br] . Using Theorem 1 we get an affine
minorization [y, of f on [ax bg] that is defined as, for any s € [ax,bg] (h = bx — ax)

s—ap 1 9
— ZK(bn —
bk—ak 8 (k ak)

W(s): = Laf(9)— KR = flan) = + )

= L7 — Flan))(s — be) + Fbn) - SEH
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2.1.2. A convex quadratic underestimating function

We can introduce another convex minorization of f on [ag, by] which is better
than Iy :

Theorem 2. We have:

Lpf(s)— %Kh2 < qr(s) := Luf (s) — %K(s —ag) (b —s) < f(s), Vsé€ [ag,by].
3)
Proof.

E(s) :=Lpf(s) — éKh2 —qr(s) = _g(bk —ay)? + %(s —ax)(by — 9)

K 1
= ? —52 + (ak + bk)s —apbr — Z(bk — ak) .

The function E is concave on [ag, bg], and its derivative is equal to zero at s* =
1 (ak + bi). Therefore, for any s € [ay, by] we have

E(s) <max{E(s): s € [ar,bi]} = E(s") =0,

and the first inequality of (3) is verified.
To justify the second inequality, consider now the function ¢ defined on S by

8(5) 1= 1(5) ~ ax(s) = 1) ~ Lnf (5) + 5K (5~ ax) (b — 9).

Clearly that ¢”(s) = f"(s) — K < 0 for all s € S. Hence ¢ is concave function,
and therefore for all s € [ag, bi] we have

¢(s) > min{@(s) : s € [ar, bi]} = d(ax) = d(bx) = 0.
The second inequality of (3) is also proved. |

Remark 2. For each interval T* = [ay, by] we can use the above results with
Ky instead of K, where Kj is a positive number such that |f(s)| < Kj for all
s € [ag,bx]. From numerical point of view, if such a Kj, can be easily computed,
then it is interesting to replace K by Ky, on T*, since the smaller K} is, the better
lower bound ¢ will be.

A lower bound of f on T*, denoted LB(T*), is then computed by solving the
next convex program

LB(T*) := min {qi(s) : ar, < s < by}. (4)
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Since g is a quadratic function in the form

J(ar)br, — f(br)ar

br — ag

K br) — K K
:—82+ M* karak) s+5akbk+

ar(s) : 2 b — ag 5(

)

()

the optimal solution s} of (4) is explicitly defined as follows:

=g (an+be) = 2 (F () = f () i p € [an, byl
st = ak if p<ag, (6)
by if g > by.

Remark 3. If s} ¢]ag, bi[, then
min {gx(s) : ax < s < bk} =min{f(s) : ar < s < bx} =min{f(ar), f(br)}.

In such a case we have an exact evaluation on the interval T% (see Fig. 2). Con-
sequently T is deleted from the list of intervals which will be considered in the
next steps of the branch and bound algorithms.

2.1.3. Branching procedure: w—subdivision

For dividing the interval 7% one can use its middle point (the normal subdivi-
sion). However the efficiency of the w—subdivision in [21,27] suggests us to use
it in this work. w—subdivision is a rectangular bisection procedure introduced
by Falk-Soland [6] for separable nonconvex programming problems that can be
summarized as follows. Let g(x) := Y i, ¢i(x;) be the separable lower bounding
function of the separable objective function f(z) := Y, fi(2;), and let T* be
the rectangle that is to be divided at iteration k. Choose an index iy satisfying

i € argm?x{fi(m;‘) —qi(z})}
and subdivide T* into two subrectangles
Tf={veT" ay <o}, T8 ={veTr o >a}},
where z* is a minimizer of ¢ on T*.
Using this idea for our algorithm we divide T via sy, 1.e. TF = TFUTE, where
TF = [ak, s;], Ty = [s}, bi] ;and s, is the point given in (6). This procedure seems

to be very efficient: we often obtain the exact evaluation when computing lower
bound.
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FIGURE 1. The lower bounding function of f, case 1.

FIGURE 2. The lower bounding function of f, case 2.

2.2. THE DESCRIPTION OF THE BRANCH AND BOUND ALGORITHM AND ITS
CONVERGENCE

We can now describe the branch and bound algorithm for solving (P). Denote
by, respectively, LB, UB;, and s* the best lower bound, the best upper bound of
a and the best solution to (P) at iteration k.

Algorithm BB

1. Initialization:
a) Let € be a given sufficiently small number, and let K be
a constant verifying K> |f”(s)| for all s in [a,b].
b) Set k:=0,7° = [a,b],M := {T°}, hg =a—b,s; = 1(a+b)—
= () — £(@).
c) Set UBy = min{f(a), f(b)a f(Sa)}
d) Set LBy:= LB(T°) := qo(s}) = 5552+ [W —Eb+a)|si+
K fla)b=f(b)a
Kb+ ( )b—a() .
2. While UBy — LBy, > ¢ do
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3. Let T* = [ak,bx] € M be the interval such that LB, = LB(T*).

Let K be a constant verifying K > |f”(s)| for all s in [ag,bk].
4. Bisect T" into two intervals by w—subdivision procedure:

TF = lag, sp) = [a}, 0], T9 = [s},bi] := [a},b7] .
5. For 1 =1,2 do

1 (i i) F)=f(e)
5.1. set Sz,i—? (fl%%‘b%)*m-
5.2. If s, ¢lap,by[, then update LB(TF) = UB(TF)
= min {f(a},), f(b;)}-

else set
LB(T;) =" spi+ {7’52_% k — 5 (b, +ai)| si;
Kk ;. f(ai)bi *f(bi)ai
+_ak k+ k fi 7 k k. (7)
2 by, — aj,

5.3. To fit into M the intervals TF : M « M U {TF : UB* —
LB(TF) > e,i = 1,2}\{T*}.

5.4. Update UBj = min {UBk,f(a};),f(b};),f(s,*m)}.

Update LBy =min{LB(T):T € M}.

Delete from M all interval T such that LB(T) > UBj —e.

Set k—k+1.

9. End while

10. STOP: s* is an ¢ - optimal solution to (P).

®© N>

Theorem 3 (convergence of the algorithm).

(i) For a given € > 0, the algorithm terminates after a finite number of iterations
and it provides an e—optimal solution to problem (P).

(ii) With e = 0 either the algorithm is finite or it generates a bounded sequence
{s*}, every accumulation point of which is a global optimal solution of (P), and

UBp\,a, LBy ~«.

Proof. From Remark 1 we see that the maximal number k of iterations at which
UBy — LBy <eism=[(b—a)\/£]+ 1. Thus the part (i) holds.

Assume now that the algorithm is infinite, then it must generate an infinite se-
quence {T*} of intervals whose lengths h decrease to zero, then the whole sequence

{T*} shrinks to a singleton. First, from the description of the algorithm we see
that, at each iteration k,

LB(TF) > LB(T").

Indeed, if s, ; ¢lai,bi[, then LB(TF)=UB(TF)=min{ f(a}), f(b)} > LB(T*) :=
min { f(s) : s € T"}, and so T* is deleted from the set M (see Rem. 3).
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If s; ; €laj, by [ (i = 1,2), then from (5) it follows that

qr(s) — qri(s) = Bis+ (! (8)

with B* and C? being constants given by

i fbk) = flaw) 75 _ f(by) — f(ap) E i i
B = T et ) - TR S b ),
L K f(ak)bk — f(bk)ak K i1 f(afg)b; — f(b;)a;
¢ = 2 akbk + bk — Qg 2 akbk + b}c — a}c

Hence

max {qx(s) — qr,i(s) : s € [}, bﬂ}:max {Qk(ai) — qr.i(at,), ar(by) — Qk,z‘(bi)} :(0)
9
because

ak(ar) = qra(ar), ar(b%) = qr.2(b3), g1 (bg)
= f(br) < ar(by), ar.2(az) = f((a) < qrlaf).

It means that g (s) — qr.i(s) < 0, or qe(s) < qri(s) for all s € [a},b;]. Conse-
quently, LB(TF) > LB(T*) and the sequence {LBy} is therfore non-decreasing
and bounded from above by a.

In combining with the facts that the sequence {UB}} is non-increasing and
bounded from below by «, and the whole sequence {T’“ } shrinks to a singleton we
obtain

UkaLBk\O,UBk\OL, LBk/a.

Moreover, since s* € T and UBy, = f(s*), any cluster point of the sequence {s*}
belongs to 7° and has the function value a, i.e., solves problem (P). The theorem
is proved.

3. SOLVING NONCONVEX CONSTRAINED GLOBAL OPTIMIZATION
PROBLEMS

Based on Algorithm BB for (P), we develop in this section a branch and bound
algorithm for solving Problem (PC) whose feasible domain is denoted D,.. We
assume that the nonconvex constraint is essential, i.e. there exists s € [a, b] such
that g(s) > 0 because if g(s) < 0 for all s € [a,b], then problems (PC) and (P)
have the same feasible and so they are identical.

We compute a lower bound of the objective function of (PC) by relaxing both
feasible set and objective function in order to get a problem of the type (4). More
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precisely, on each sub-interval [ay,bx] we consider the following problem (h
by — ax)
Br = min g (s)
(PCp){ Lng(s) — 4Ky(s —ag)(bp —s) <0
ap < s < by
whose feasible set is denoted by D;}c. Clearly, with hg = b—a we have D{;g D Dy,
and for any k and h, D}, D Dy, := {s € [ax,b;] : g(s) < 0}. Moreover

lim of _ I _
lim g5 (s) = g(s), lim qn(s) = f(s)
that ensures the convergence of our algorithm.

We first remark that D’;C is a union of intervals while D;}C
(if they are not empty), because

is exactly one interval

a3 (s) == Lng(s) — %Kg(s —ay)(b— si)

is a convex function. Hence Problem (PC}) takes the form (4), that is to say the
minimization of a convex quadratic function on an interval.

The extremities aj, and b}, of the interval D, := {s € [ax, by] : gj(s) < 0} can
easily be computed as follows:

aj, := max{ag, s}, by, := min {by, s}
with s{ < s§ solutions of the equation ¢j(s) = 0. (10)

The emptiness of DZC N Dy can be detected by observing that: if the minimizer
of ¢j(s) on [ak,by], denoted S}g» 18 MOt in [ak, bk], then

min {g(s) : s € [ak, br]} = min{g}(s) : s € [ax, br]} = min{g(ar),g(br)}.
Therefore,
if s, ¢ [ak, br] and min{g(ax),g(bx)} > 0, then D;}c N Dpe = 0. (11)

The algorithm for solving (PC) differ Algorithm BB mainly from the branching
procedure:

1 2
e Subdivide the interval T% := [ay , b into Dgé and DZJ; via Sy, 7 as follows

1 2
D;,% = {s € [ak ,szf} : qu(S) < O} ,Dgé = {5 € [s,*ff,bk} : qu(S) < O}. (12)

e Discard the subinterval Dzz? (i = 1,2) if its intersection with the feasible
region D, is empty (using (11)). Otherwise, determine the extremities of

DI wvia (10).
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\ (%)
1

FIGURE 3. The feasible set of Problem (PC) after the first itera-
tion is [af ", by?].

The lower bounding procedure is not changed, namely solving the convex quadratic
problem of the form

min {gn(s) : aj, < s <bj}.

The upper bound can be improved when a feasible point of (PC) is detected by
checking the condition g(s) < 0, with s € {s,”;f, 8Tgr 515 sg} . Since limy, o g (s) =
9(s), this condition must be satisfied at some iteration k of a branch and bound
algorithm provided that the set D,. is nonempty.

Our algorithm for solving Problem (PC), denoted Algorithm BB2, is the former
Algorithm BB with the following modifications:

Add in step la): let K; be a constant verifying K> |g”(s)| for all

s in [a,b].

Modify the part concerning 7° in step 1b): set T9 := {s € [a, b] : g(s) < 0}.

Check the emptiness of T° by using (11). If 7% = ), then STOP, the prob-

lem is infeasible, else determine the extremities ag, by of T° wia (10).

Step 1c): If g(s§) < O,then set UBy := min{f(ao), f(bo), f(s5)}, else

set UBy = min {f(ao), f(bo)} - ) ,

Step 4: subdivide the interval T* := [ay, ,bs] into DZ}; and DZ}; via s,”;f

following (12). Check the emptiness of Dgél“ (resp. Dgéz“) by using (11).
1 2

If DZ}; # (), (resp. DZ&“ # (), then determine its extremities a}, b} (resp.

a?,b?) according to (10).

Step 5.4.  Update UBj, = min {UBk,f(a;;),f(b;;),f(s;;,i)} . For

s € {szf, Stgr 51 sg} ,if g(s) <0, then update UBj, = min {UBy, f(s)} .
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4. JLLUSTRATIVE EXAMPLES AND COMPUTATIONAL RESULTS

To illustrate the behavior of the algorithm, we perform the following numerical
examples with £ = 0.002.
Example 1.

min {Fl(s) := sin(s) + sin (%) +1In(s) —0.845:2.7< s < 7.5} .

Initialization (iteration k = 0): Set K = 12.5. Compute

1
sg==(a+0b)—

. m(f(b) — f(a)) = 5.150737.

Since s, € [2.7,7.5], we process the branching and bounding procedures with T° =
[2.7,7.5], LBy = qo(sfy) = —37.973438 and UBy := min{ f2(a), f2(b), f2(s§)} =
fa(s§) = —4.586929. The algorithm terminates after 7 iterations.

Example 2.

1
min{FQ(s) = zsinerZcoss:Ogsg 1}.

Initialization. Set K = 1. Set

« 1 1 1 .
5o =5 (a+b) - m(f(b) — fa)) = 5 = (f(1) = £(0)) = —0.016179.

2
Since s§ ¢ [0,1], LBy = UBy = min {f(0), f(1)} = f(0) = 0.25. Hence the exact
optimal solution is s° = 0 and the optimal value is 0.25.
Example 3.

min{F3(s) =35+ 252 — 1: sin(s) +s—-1<0,-1<s< 1}.
Initialization (iteration k = 0): Set K = 8, K, = 1. Since sj, := —1, the
feasible set is not empty. The two solutions of the equation LBy(s) := 1.8415s —
1.5 4 0.55% = 0 are —4.3696 and 0.6865, the feasible set is then updated 70 «
[—1,0.6865]. On this interval we compute sg;, LBy, UBy and get s;, = —0.0906,
LBy = —2.3078, UBj = 0.098. Set s = —0.0906.

By Table 1 we show how Algorithm BB2 works on this example. The algorithm
terminates after 5 iterations at which UB5; — LBs = 0.0019 < e. From this
table we see that in the step 4 of Algorithm BB2 the intervals T (i = 1,2) are
often reduced: for example, T3 := [—0.0906, 0.6865] is reduced to [—0.0906, 0.544]
according to (10). This accelerates the convergence of the algorithm. We note
also that the optimal solution is detected at iteration £ = 2 when computing s 9,0
i=1,2(s*=s3,,).

Example 4.

2
min {F4(s) := sin(s) + sin (g) :3cos(1+8)+ (1+8)2—400<0,15< z < 20} .
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TABLE 1. Illustrate Example 3.

k TF sty | she TF ¥ LBy | UBy sF
LB(Tf) LB(T¥)
1 0 | [~1, —0.0906] | [—0.0906, 0.6865]
[—1,0.6865] |-0.0906 -1 ~0.3394 -0.4025 ~0.4025|-0.1756|0.2361 (s} ;.,)
2 TS | [—.0906, 0.2631] | [0.2631, 0.5138]
[—0.0906, 0.544] | 0.2631 |-0.0906 -0.2013 -0.2115 -0.3394|-0.1839|0.3577 (s3, )
3 Tf [~1, -0.4213] |[-0.4213, —0.0906]
-0.4213| -1 0.3848 -0.0979 -0.2115|-0.1839|  0.3577
4 T3 | [0.2631,0.3213] | [0.3213, 0.3577]
[0.2631, 0.3577] | 0.3213 | 0.2631 -0.1852 -0.1858 -0.2013|-0.1839|  0.3577
5 TZ | [—0.0906, 0.1564]| [0.1564, 0.1829]
[—0.0906, 0.1829]| 0.1564 |-0.0906 -0.1284 ~0.1570 -0.1858|-0.1839|  0.3577

Initialization (iteration k = 0): Set K = 1.5, K, = 5. Since sj, := 15, the feasible
set T is not empty. By computing two solutions of the equation LBy(x) =0 we
update the feasible set T° « [15,19.175]. On this interval we compute Sofs LBo,
UBy and get sg, = 17.019, LBy = —2.9511, UBy = —1.9057. Set 5" =17.019.
The algorithm terminates after 4 iterations at which UBy — LBy = 0, i.e. we
get an exact optimal solution s* = 17.039. We see that a very good approximation
solution (almost exactly global minimizer) is obtained at the initialization step.
We report below the numerical results of our algorithms on four data sets of
test problems:
e The first part contains 7 polynomial test functions from [15] (see also [9],
chapter 4).
e the second part is composed of 6 twice differentiable functions chosen
among Holder test function studied in [12].
e The third part contains four multi-extremal functions considered in [36,37].
e The last part consists of 3 problems with polynomial objective function
and one constraint studied in [7].

The algorithms has been implemented in C and run on a PC Inter Pentium M
1.40 GHz, 512 Mb of RAM. The following notations are used in the tables below:

e Numeva: the number of function evaluations;
e iter: the number of iterations;
e CPU: computing times in seconds.

4.1. POLYNOMIAL FUNCTIONS

In Table 2 we describe the expression of the objective function, the interval
[a,b] and the number of local minima (n;) as well as that of global minima (ng)
given in [9,15] for the first set of test problems.

The vector a in Problem 2 is defined by

a = (2.5,1.666666666,1.25,1.0,0.8333333, 0.714285714, 0.625, 0.555555555, 1.0,
—43.6363636,0.41666666, 0.384615384, 0.357142857,0.3333333, 0.31250, 0.294117647,
0.277777777,0.263157894, 0.25, 0.238095238, 0.227272727,0.217391304, 0.208333333,
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TABLE 2. Polynomial test problems used in [9,15] .

Problem Objective function f(s) [a,b] | n1 | na
1 1—10—5—;—352—&—%33—#8—%54—%35—}—%56 [2,11) | 3 | 1
2 S0 agst 2 |1
3 0.0000089248s — 0.0218343s> [0,10] | 2 | 1

+0.9982665% — 1.6995s* + 0.25°

4 48% — 48 + §* [55] | 2| 2
5 1.75s% — 1.055" + 1s° [55] | 3|1
6 s5 — 15s* 4+ 275% + 250 [55] | 3| 2
7 s* —3s% — 1.5 + 10s [55] | 2|1

TABLE 3. Comparative computational results with GOP [8] and
Interval Arithmetic methods [15], e = 10712

Pb BB NEF NF CF QRF CRF GOP
iter CPU iter | CPU | iter | CPU iter | CPU | iter | CPU | iter | CPU iter
59 [ <107 2| 44 1.00| 28 | 0.52 27] 1.58 | 28 0.76 | 35 | 1.00 26
31| <1072 | 59 |11.96| 49 | 7.32 43195.06 | 52 |[11.72| 52 |10.60 45
15| <1012 | 37 0.68| 27 | 0.42 27| 1.18 | 30 0.68| 39 | 1.10 38
24 | <1072 | 77 1.16 | 48 | 0.60 47| 1.42 | 73 1.58| 46 | 1.04 62
33| <1072| 35 0.72| 21 | 0.34 31| 1.76 | 49 1.28 | 17 | 0.56 43
21 | <1072 | 87 1.96 | 54 | 0.96 53| 2.92 | 75 2.04| 73 | 2.06
12| <1072 | 27 0.38| 21 | 0.26 26| 0.78 | 26 0.54| 24 | 0.52
Ave [ 26.43| <1072 [ 52.29 | 2.55|35.43 | 1.49 | 36.29 | 14.96 | 47.57 | 2.66 | 40.86 | 2.41 | 42.80

N O U W N

0.2,0.192307692, 0.185085085, 0.178571428, 0.344827586, 0.6666666, —15.48387097,
0.15625,0.1515151,0.14705882, 0.14285712, 0.138888888, 0.135135135, 0.131578947,
0.128205128,0.125,0.121951219,0.119047619, 0.116279069, 0.113636363,0.1111111,
0.108695652, 0.106382978, 0.208333333, 0.408163265, 0.8).

The number of iterations and computing times of Algorithm BB with the tol-
erance € = 1072 are presented in Table 3. We also listed there the computational
results of GOP [8] and Interval Arithmetic methods [15] (with the same tolerance)
for the reference. The Interval Arithmetic methods [15] have been tested on a
SUN 3/50-12 workstation with 1.5 mips central processor. It is worth noting that,
according to the description of the algorithms, the number of performed opera-
tions in one iteration of Algorithm BB is smaller than that of Interval Arithmetic
methods [15] and GOP [8]. Hence, from Table 3 we see that Algorithm BB is the
best.

4.2. HOLDER FUNCTIONS AND MULTI-EXTREMAL FUNCTIONS

The data (the objective function and the bounds on the variables) of the second
and the third sets of test problems is described in the Table 4. In Table 5 we
present the comparative computational results in terms of the number of function
evaluations of Algorithm BB and 9 algorithms reported in [36,37] for four test
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TABLE 4. Test problems with Holder functions (1.1 - 1.8) and
multi-extremal functions (f1 - fa).

Problem Objective function [a,b]
1.1 s® — 155 + 2757 + 250 [—4,4]
1.2 (s —5s+6)/(s> +1) [-5, 5]
1.5 (3s — 1.4) sin(18s) [0,1]
1.6 2(s — 3)% + exp(s*/2) [-3,3]
1.7 — >0 ksin[(k + 1)s + k)] [-10, 10]
1.8 S0 keos|(k +1)s + K] [~10, 10]
fi sin(s) + sin (132) + In(s) — 0.84s | [2.7,7.5]
fa sin(s) + sin(2) [3.1,20.4]
f3 (= =0 sin((i + 1) +14) [~10,10]
fa (x + sin(m))e_’”2 [—10, 10]

TABLE 5. Comparative computational results with the algo-
rithms in [36], [37] for multi-extremal functions with e = 1075.

Function | BB | S-LLB | N-LLB | O-LLB | Zill | Zil2 | Strong | Pijav Brent | Batish
f1 9 12 12 19 33 29 45 462 25 120
f2 18 18 18 24 37 38 442 448 45 158
f3 29 73 73 94 125 165 150 3817 161 816
fa 34 13 19 35 35 34 98 376 229 83
Ave 22.50 | 29.00 30.50 43.00 | 57.50 | 66.5 | 158.75 | 1275.75 | 112.50 | 294.25

functions considered in [36,37] (see [36] for more details). Likewise, in Table 6
(left) we report the number of function evaluations of Algorithm BB and the branch
and bound method developed in [12] for six problems with Holder functions. The
numerical results of our Algorithm BB (the number of function evaluations, the
number of iterations and computing times) with the precision ¢ = 1072 are listed
in the right-hand side of the same table.

From the experimental results we see that our algorithm BB is efficient for all
data sets. It is very fast: in all test problems the total processing time of our
algorithm is smaller than 107!2 second. On the other hand, we observe that the
number of intervals to be considered (the cardinality of the set M) at each iteration
is small. Algorithm BB algorithm is much better than Algorithm HOL': Table 6
(left) indicates that the ratio of the number of function evaluations belongs to
the interval [2.4,22.8]. Note that the results of HOL! presented in Table 6 (left)
correspond to the case & = 1 which is the best case of this algorithm for different
values of « (see [12]). Moreover, Algorithm BB is better than the best possible
algorithm studied in [12].

For the four multi-extremal functions our algorithm is more efficient than the
best algorithm presented in [36,37], except for the last function.
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TABLE 6. Comparative computational results with Algorithm
HOL! in [12] for Hélder optimization (left) and Computational
results of Algorithm BB with ¢ = 10~!2 for Hélder functions and
multi-extremal functions (right).

Problem | Numeva | iter CPU

1.1 20 17 | <1072

Problem € BB | HOL? 1.2 123 120 | <1012
1.1 2x107° | 58 749 1.5 6 3 | <1072
1.2 7x1078 | 67 624 1.6 16 13 | <1072
1.5 1078 6 137 1.7 95 92 | <1012
1.6 3x1077 | 82 425 1.8 93 90 | <1012
1.7 7x107% | 81 193 f 14 11 | <1072
1.8 2x1077 | 75 181 fo 26 23 | <10712
f3 34 31 | <10712

fa 103 100 | <107*2

TABLE 7. Comparative computational results with Pijaavskii’s method.

Problem f(s) g(s) la, b] BB2 | Pijaavskii’s
method
1 —Br+sin(ERz+5) - 35 e);p(f 5111(329:)) [—2.5,1.5] 7 83
, —1l@—3)" -1
2 71”2(;2133;)”1 o —exp(—Z(z +5))x | [-5,5] 23 953
sin(%w(a; +5))
3 — > %_, cos(iz) 3 (cos( g5 (z + 10)) [-10,10] | 14 119
-sin(Z(z +10)) + 3)

4.3. LIPSCHITZ UNIVARIATE GLOBAL OPTIMIZATION WITH MULTI-EXTREMAL CON-
STRAINTS

The three test problems with one constraint studied in [7] are described in
Table 7. In the last two columns of this table we report the number of iterations of
Algorithm BB2 and the number of iterations (given in [7]) of the method proposed
by Pijavskii with a penalty technique (see [18,19,26]) for these problems. We see
that Algorithm BB2 is much better than Pijaavskii’s method: the ratio of the
number of iteration is 11.85, 41.43, and 8.5 for Problems 1, 2 and 3 respectively.
Note also that our algorithm found an exact solution (¢ = 0) while the accuracy
of Pijaavskii’s method is e = 1074(b — a).

Conclusion. We have developed, in the first part of the paper, an efficient branch
and bound method for globally minimizing a twice differentiable univariate func-
tion on a bounded interval. Our convex quadratic underestimator for twice contin-
uously differentiable functions is good: it is close to the function when the interval
is sufficiently small. Moreover it permits to use the w—subdivision, an interesting
technique: the algorithm eliminates a considerable number of rectangles during
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the bounding and branching procedures. Again, with these bounding and branch-
ing procedure our algorithm often find a very good approximation of the global
minimizer in a few iterations. Computational results show the superiority of our
algorithm compared with efficient existing algorithms.

Based on this scheme, we developed an algorithm which allows dropping infea-
sible subsets for nonconvex constrained Problem (PC). Both algorithms are very
fast as all computations are explicit.

Therefore, we would like to extend these methods to multivariable global opti-
mization problems. Work in this direction is currently in progress.
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