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ON SEMIDEFINITE BOUNDS FOR MAXIMIZATION
OF A NON-CONVEX QUADRATIC OBJECTIVE OVER

THE �1 UNIT BALL

Mustafa Ç. Pinar
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and Marc Teboulle
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Abstract. We consider the non-convex quadratic maximization prob-
lem subject to the �1 unit ball constraint. The nature of the l1 norm
structure makes this problem extremely hard to analyze, and as a con-
sequence, the same difficulties are encountered when trying to build
suitable approximations for this problem by some tractable convex
counterpart formulations. We explore some properties of this prob-
lem, derive SDP-like relaxations and raise open questions.

Keywords. Non-convex quadratic optimization, L1-norm constraint,
semidefinite programming relaxation, duality.

1. Introduction

The technique of semidefinite programming relaxation applied to combinatorial
and related non-convex quadratic optimization problems became popular after the
seminal papers of Goemans and Williamson [1] on the max-cut problem. Later
on, Nesterov [12] generalized this result, and a vast literature in that direction
for various types of non-convex quadratic problems can be found in the recent
handbook [16], and references therein.

In this note we study a non-convex quadratic optimization problem that re-
mained largely unexplored in the literature, and that appears quite challenging.
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More precisely, we study the problem which consists of maximizing a quadratic
form over the �1 unit ball

[QPL1] max{xT Qx : ‖x‖1 ≤ 1, x ∈ IRn}.

When the quadratic form is positive semidefinite the problem is trivial, and admits
a closed form solution, unlike its �∞ counterpart which is as hard as an optimiza-
tion problem can be! When the matrix is indefinite, this problem is particularly
difficult as pointed out in the recent work of Nesterov [13]. As we shall see, the
l1-ball structure leads to challenging difficulties, and the main purpose of this note
is to further clarify the difficulties involved, to report on our current findings, in-
cluding the deceptive ones (for didactical purposes!), and to promote the study of
this problem by the mathematical programming researchers. We derive several re-
formulations of the problem, including upper bounds formulated as SDP-like but
nonconvex problems. We then show that a convex SDP-like relaxation proposed
by Nesterov [13] without any justification on its source, can be derived by using
a simple but quite unusual variational representation of the l1 norm. It is also
proved that the non-convex upper bound formulations are at least as good as the
convex SDP relaxation. Finally, we establish by elementary arguments, that one
of our bounds is exact, thus extending a recent result of [18] to a class of [QPL1]
problems. The paper also includes an appendix on duality and lifting to make the
exposition self-contained.

Since the SDP relaxation method is not the only approach to tackle optimiza-
tion problems with quadratic objective and constraint functions, we mention here
the work on global optimality conditions for non-convex optimization problems de-
veloped in a series of papers by Hiriart-Urruty, see e.g., [2–4] and Jeyakumar et al.
[6,7]. Hiriart-Urruty develops a general global optimality condition based on a gen-
eralized subdifferential concept, and specializes the condition to several problems
of non-convex optimization, including maximization of a convex quadratic func-
tion subject to strictly convex quadratic inequalities, minimization of a quadratic
function subject to a single quadratic inequality (trust-region problem), and sub-
ject to two quadratic inequalities (two-trust-region problem). Hiriart-Urruty also
obtains conditions that are both necessary and sufficient in [2–4] for non-convex
quadratic programs. Jeyakumar et al. use a generalized global subdifferential to
give necessary and sufficient optimality conditions for minimization of a quadratic
function subject to quadratic constraints. While global optimality conditions are
not the subject of the present paper, a future application of the aforementioned
results to problem [QPL1] may lead to further progress in the study of [QPL1].

We conclude this section by defining our notation which is fairly standard. We
denote by Sn the space of n × n symmetric matrices equipped with the inner
product 〈X, Y 〉 := tr(XY ), ∀X, Y ∈ Sn, where tr denotes the trace operator.
For X ∈ Sn, X � 0 means X is positive definite; d(X) ∈ IRn is the diagonal of
X ; λmax(X) ≡ λ1(X) ≥ . . . ≥ λn(X) ≡ λmin(X) are the eigenvalues of X . For
v ∈ IRn, we denote by Diag(v) the diagonal matrix with entries vi. Finally, for
any scalar function f(t), and x ∈ IRn, f(x) denotes the vector with entries f(xi).
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2. The trivial case and trivial bounds

Consider the problem of maximizing a quadratic form with Q ∈ Sn on the
l1-unit ball B1 defined by

[QPL1] v∗ := max{xT Qx : ‖x‖1 ≤ 1} ≡ max{xT Qx : x ∈ B1}.

Trivial case. Q � 0 Interestingly with Q ∈ Sn positive semidefinite the problem is
trivial, unlike its �∞ ball constraint counterpart which is as hard as an optimization
problem can be! The problem consists of maximizing a convex function over the
l1-unit ball, a compact convex set. It is well-known then, that the maximum must
occur at some extreme point of B1 = {x : ‖x‖1 ≤ 1}. Since the set of extreme
points of B1 is simply given by {e1,−e1, . . . , en,−en}, where ei are the base vectors
of IRn, it follows immediately that v∗ := max{xT Qx : ‖x‖1 ≤ 1} = max1≤i≤n Qii,
with the max attained at x∗ = ej for the index j corresponding to the maximum
diagonal element Qjj .

The trivial bounds. For any x ∈ IRn, we have: ‖x‖2 ≤ ‖x‖1 ≤ √
n‖x‖2.

Therefore one has,

max{xT Qx : ‖x‖2 ≤ n−1/2} ≤ v∗ ≤ max{xT Qx : ‖x‖2 ≤ 1},

namely n−1λmax(Q) ≤ v∗ ≤ λmax(Q).

As usual, for any given nonconvex optimization problem, the main questions
are then:

(a) Can we find better bounds that are computationally tractable?
(b) Can we determine the quality/tightness of such bounds?

As we shall see, trying to answer positively both questions for the [QPL1] problem
leads to some conflicting situations.

3. Generating bounds: direct approach

Consider the following prototype problem:

(P ) max{xT Qx : x2 ∈ F},

where F is a closed and bounded, but non-convex, subset of IRn.

When F is a convex set, problem (P) encompasses several interesting quadratic
models, see e.g., [17,18]. A standard way to build a relaxation of (P), i.e. to derive
a bound, is via duality, (more precisely via bi-duality), see [15]), or via the lifting
procedure of Lovasz-Schrijver, [11]. For completeness and the interested reader,
we have included in an appendix a concise summary of the relevant results of both
approaches.
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The trouble with the [QLP1] problem, is that as formulated, it is not a qua-
dratic representable problem, (see appendix). Indeed, the [QPL1] problem, can be
written in the form of problem (P) as:

v∗ := max{xT Qx : x2 ∈ F}

where F = {y :
∑n

j=1

√
yj ≤ 1, y ≥ 0}. Then, the lifting procedure results in the

non-convex bound obtained from problem (R):

vR = max
X∈Sn


〈Q, X〉 :

n∑
j=1

√
Xjj ≤ 1 X � 0


 .

On the other hand, for F =
{

y :
∑n

j=1

√
yj ≤ 1, y ≥ 0

}
, its convex hull is simply,

convF =


y :

n∑
j=1

yj ≤ 1, y ≥ 0


 .

Then, since F ⊂ convF , an additional relaxation yields the convex bound:

vconvex := vc = max{〈Q, X〉 : tr(X) ≤ 1, X � 0}.

Clearly we have v∗ ≤ vR ≤ vc, with the unfortunate situation that (R) is a non-
convex problem. Moreover, it turns out that vc is nothing else but the trivial
bound! Indeed, a dual of vc is:

inf
t≥0

{t+max
X�0

{〈Q− tI, X〉} = inf
t≥0

{t : Q− tI � 0} = inf
t∈IR

{t : Q− tI � 0} ≡ λmax(Q),

where we dropped the non-negativity restriction on t, since Q is indefinite.

We summarize this double deceptive situation in:

Proposition 1. Let v∗, vc, vR denote respectively optimal value of [QPL1], its
convex bound and its non-convex one. Then, v∗ ≤ vR ≤ vc = λmax(Q).

This naturally gives rise to the following open problem:

Problem 1. Given the very special structure of vR, can we find a suitable/efficient
method to compute an approximate solution to this non-convex problem, and to
evaluate the quality of the resulting approximation?

We provide a partial answer to this problem in Section 4.3.



SEMIDEFINITE BOUNDS FOR L1 QUADRATIC OPTIMIZATION 257

4. Deriving bounds using other representations

of the l1 norm

4.1. A simple representation

The starting point is the following. Observe that for any x ∈ IRn:

‖x‖1 ≤ 1 ⇐⇒ ∃ v1, . . . , vn ≥ 0 |xi| ≤ vi, ∀i ∈ [1, n],
n∑

i=1

vi ≤ 1. (1)

Indeed, if ‖x‖1 ≤ 1, then with vi = |xi|, the RHS of (1) is satisfied. Conversely,
summing the inequalities over i = 1, . . . , n yields ‖x‖1 ≤∑i vi ≤ 1.

Note that if vi = 0 for some i then the corresponding xi = 0. Thus in the sequel
w.l.o.g., we will write v ≥ 0, although it should be understood that v > 0.

Now,
|xi| ≤ vi, vi ≥ 0 ⇐⇒ x2

i ≤ v2
i , ∀i ∈ [1, n].

Define
V = {(x, v) : x2

i ≤ v2
i , i = 1, . . . , n, eT v ≤ 1, v ≥ 0}. (2)

Thus,
x ∈ B1 ⇐⇒ (x, v) ∈ V.

In view of this, the original problem [QPL1] can thus be written as

v∗ = max{xT Qx : (x, v) ∈ V }.

Now, define

F =


(y, z) ∈ IRn

+ × IRn : y ≥ z,

n∑
j=1

√
yj ≤ 1


 ,

then using (2), [QPL1] can be written as

max{wT Q′w : w2 ∈ F}

where Q′ is the block diagonal matrix in S2n, with 0, Q in diagonal and 0 in
off-diagonal, and w = (v, x). In that case the lifting procedure yields the bound

max


〈Q, X〉 : v ≥ d(X), X � 0,

n∑
j=1

√
vj ≤ 1


 ≡ max{〈Q, X〉 : (X, v) ∈ S}

where

S =


v ≥ d(X), X � 0,

n∑
j=1

√
vj ≤ 1


 .
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Thus, as in (1), since

∀X ∈ Sn, ∃v ≥ 0, v ≥ d(X), X � 0,

n∑
j=1

√
vj ≤ 1 ⇐⇒

n∑
i=1

√
Xii ≤ 1, X � 0

it follows that the above bound is nothing else but the non-convex bound vR:

max{〈Q, X〉 :
n∑

j=1

√
Xjj ≤ 1, X � 0}.

Applying one more relaxation by taking either the convex hull of F or the convex
hull of S yields in both cases two convex bounds that look different, but which
deceptively are equal to the trivial bound, i.e.,

max{〈Q, X〉 : v ≥ d(X), X � 0, eT v ≤ 1} ≡
max{〈Q, X〉 : tr(X) ≤ 1, X � 0} ≡ λmax(Q), (3)

where the first equality follows by using the same argument of (1).
In addition to the lifting strategy by Lovasz and Schrijver [11] that we used in

the present paper, a recent paper by Lasserre [8] introduces a new lifting procedure
which would be applicable to the formulation of QPL1 in terms of the set V as
given above. This is important because, for the special case of 0-1 optimization, the
Lasserre procedure is known to be tighter than Lovasz-Schrijver lifting procedure;
see [10]. Therefore, it is possible that the more recent lifting procedure provides
a means to make progress on this problem in the future. Since the procedure of
Lasserre has been implemented [9] its application to the QPL1 problem of this
paper can be an interesting line of further research.

4.2. Using a variational representation of l1

We will work with the equivalent formulation of [QPL1] written as:

max xT Qx
s.t. ‖x‖2

1 ≤ 1.

The next simple result gives a somewhat unusual variational representation of
the l1 norm in IRn, which as we shall see turns out to be quite useful.

Lemma 1. For any x ∈ IRn one has

‖x‖2
1 = min{xT Diag(v−1)x : eT v ≤ 1, v > 0},

where Diag(v−1) stands for the positive definite diagonal matrix with diagonal
elements {v−1

j : j = 1, . . . , n.}.
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Proof. This follows easily from the optimality conditions of the optimization prob-
lem defined in the right-hand side, which gives the unique minimizer v̄ := |x|‖x‖−1

1 ,
or directly just by using Cauchy-Schwarz inequality. �

Note that the constraint can include the boundary i.e., v ≥ 0; that does not
change anything in our case. In the sequel we use the notation ∆ := {v ∈ IRn :
eT v ≤ 1, v > 0}.

Using Lemma 1, problem [QPL1] is equivalent to

max
x

{xT Qx : min
v∈∆

xT Diag(v−1)x ≤ 1, v ∈ ∆} =

max
x,v

{xT Qx : xT Diag(v−1)x ≤ 1, v ∈ ∆}. (4)

Using the lifting procedure we obtain the non-convex bound:

mR := max
X�0

{〈Q, X〉 : min
v∈∆

〈X, Diag(v−1)〉 ≤ 1} =

max
X�0,v

{〈Q, X〉 : 〈X, Diag(v−1)〉 ≤ 1, v ∈ ∆}.

This non-convex bound is in fact equal to the non-convex bound vR. Indeed,
taking xi :=

√
Xii in Lemma 1 gives

(
n∑

i=1

√
Xii

)2

= min{〈X, Diag(v−1)〉 : v ∈ ∆},

and hence it follows that mR = vR.
The variational representation of the l1 norm given in Lemma 1 appears to

produce equally deceptive results! The so-called Schur complement recalled below,
is the cure to turn this situation around, and will allow us to explain how to derive
a convex bound proposed by Nesterov [13], who did not give the source of its
derivation, and indicated that its quality is unknown. We first recall two useful
results from matrix analysis.

Lemma 2. (a) (Schur Complement) Let A � 0, and let S =
(

A B
BT C

)
be a

symmetric matrix. Then,

S � 0 ⇐⇒ C − BA−1BT � 0.

(b) Let A, D ∈ Sn, and assume A � 0, D � 0. Then, A−D � 0 ⇐⇒ ρ(DA−1) ≤
1, where for any M ∈ Sn, ρ(M) := max1≤i≤n |λi(M)|.
Proof. (a) and (b), see e.g., [5] (p. 472, and p. 471). �
Proposition 2. A convex upper bound for [QPL1] is given by

vN := max{〈Q, X〉 : Diag(v) − X � 0, eT v ≤ 1, X � 0}.
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Moreover, one has
v∗ ≤ vR = mR ≤ vN ≤ λmax(Q).

Proof. Using (4), one has:

v∗ = max{xT Qx : xT Diag(v−1)x ≤ 1, v ∈ ∆}.
Applying Lemma 2 with A = Diag(v), B = x and C = 1 one has:

xT Diag(v−1)x ≤ 1 ⇐⇒ Diag(v) − xxT � 0.

Therefore, using the lifting procedure, the desired bound vN follows. Now, since
Diag(u)−X � 0 implies that u ≥ d(X) and also u ≥ 0 by positive semidefiniteness
of X , it follows via (3), that vN ≤ λmax(Q).

Now, recall that

mR := max
X,v

{〈Q, X〉 : 〈X, Diag(v−1)〉 ≤ 1, v ∈ ∆}.

Let (X, v) be a feasible solution of the latter. Then, eT v ≤ 1, v > 0, and since
X Diag(v−1) � 0, one has

ρ(X Diag(v−1)) ≤ tr(X Diag(v−1)) ≤ 1.

Invoking Lemma 2b, this implies that Diag(v)−X � 0, and hence that the feasible
set of the relaxation mR is contained in the set of feasible solutions of the relaxation
vN , so that mR ≤ vN . Since we already established that vR = mR, the proof is
complete. �

4.3. Exact bounds

We now ask if it is possible to identify problems where any of the bounds
derived in this note, can be exact, i.e., can provide an optimal solution of [QPL1].
Interestingly, the nonconvex bound vR allows for extending a result of Zhang (Th. 2
of [18]) to a class of problem [QPL1], and for which the bound vR coincides with
v∗. The proof is very simple and relies on elementary arguments, compare with
[18], Theorem 2.

Proposition 3. For any given Q ∈ Sn with Qij ≥ 0 for all (i, j) such that i �= j,
one has v∗ = vR. Moreover, from any optimal solution X of (R) one obtains an
optimal solution x of [QPL1] according to the formula

xj =
√

Xjj , ∀j = 1, . . . , n.

Proof. From the development above, we immediately have that if X is an optimal
solution of (R), then for the point xj =

√
Xjj , j = 1, . . . , n, one has:

‖x‖1 =
n∑

j=1

√
Xjj ≤ 1,
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i.e., a feasible point x for [QPL1] and v∗ ≤ vR. We seek conditions under which this
inequality is an equality. Assume we have an optimal solution X of problem (R).
Let us examine now the values of the respective objective functions in [QPL1] and
(R) corresponding to x and X . As x is a feasible point for [QPL1] we have

v∗ ≥
n∑

i=1

Qiix
2
i + 2

∑
i<j

Qijxixj =
n∑

i=1

QiiXii + 2
∑
i<j

Qij

√
XiiXjj .

On the other hand, we have in (R):vR =
∑n

i=1 QiiXii + 2
∑

i<j QijXij , and thus
to have the inequality v∗ ≥ vR it is sufficient to verify that the following holds:

n∑
i=1

QiiXii + 2
∑
i<j

Qij

√
XiiXjj ≥

n∑
i=1

QiiXii + 2
∑
i<j

QijXij ,

which is the same as ∑
i<j

Qij(
√

XiiXjj − Xij) ≥ 0.

But, since we assumed that Qij ≥ 0 ∀ i �= j, and since for X � 0, one has√
XiiXjj − Xij ≥ 0 for all i, j such that i �= j, the above inequality trivially

holds. �

Another open question was raised during our computational experimentation
with the Nesterov relaxation, i.e. the bound vN . We have observed that whenever
Q has non-negative off-diagonal elements, vN was exact, although we were not
able to prove a result to that effect, i.e., a result similar to Proposition 3 seems to
hold for the Nesterov relaxation. We pose this as another open problem raised by
our study.

Problem 2. Given Q with non-negative off-diagonal elements, is it true that
v∗ = vN?

5. Appendix: duality and lifting

5.1. The dual approach

When building a relaxed problem, for short a relaxation, the main objective
is to get a tractable relaxation and to have it as tight as possible. A well-known
way of generating relaxed problems is via duality, or more precisely via bi-duality,
which provides a built-in convexification process. Shor [15], was the first to realize
the power of such a duality framework for generating useful bounds to non-convex
quadratic optimization problems.

Let us first recall some useful well-known convex analysis results, for more
details and notations see [14]. For a non-convex function f : IRn → IR ∪ {+∞}
there is a natural procedure to convexify it via the use of the convex hull of the
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epigraph of f . Let conv f denotes the convex hull of f , which is the greatest convex
function majorized by f .

A key player in any duality framework is the conjugate of a given function.

Definition 1. For any function f : IRn → IR ∪ {+∞}, the function f∗ : IRn →
IR ∪ {+∞} defined by

f∗(y) := sup
x
{〈x, y〉 − f(x)}

is called the conjugate to f . The bi-conjugate of f is defined by

f∗∗(x) := sup
y
{〈x, y〉 − f∗(y)}.

Whenever conv f is proper, one always has that both f∗ and f∗∗ are proper, lower
semi-continuous (lsc), and convex, and the following relations hold:

f∗∗ = cl(conv f) and f∗∗ ≤ cl f,

where cl f(x) := lim infy→x f(x). In particular, if f : IRn → IR ∪ {+∞} is convex,
then the conjugate function f∗ is proper, lsc, and convex if and only if f is proper.
Moreover, (cl f)∗ = f∗ and f∗∗ = cl f .

For any set C ⊂ IRn, we denote by δC its indicator function, namely δC(x) = 0
if x ∈ C and +∞ otherwise. From the above results, it follows that when C ⊂ IRn

is a nonempty convex set, then:

(δC)∗∗ = cl δC = δclC . (5)

Consider now the prototype quadratic problem

(P ) max{xT Qx : x2 ∈ F},

where F is a closed and bounded, but non-convex, subset of IRn. This problem is
equivalent to

(P ) vP := max
x,y

{xT Qx : x2 = y, y ∈ F}.
Thus, a dual of (P) is:

(D) inf
u∈IRn

sup
x,y

{xT (Q − Diag(u))x + uT y − δF (y)},

and since maxx∈IRn xT Ax < ∞ if and only if A � 0, this reduces to

(D) vD := inf{δ∗F(u) : Q − Diag(u) � 0}.

By construction the dual problem (D) is convex and weak duality implies that for
any pair of primal-dual feasible points for problems (P)-(D), one has vP ≤ vD,
so that vD yields an upper bound for (P). Furthermore, since Slater’s condition
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is here trivially satisfied for (D), we can generate another bound equal to vD by
taking the dual of (D), namely the bi-dual of (P) is:

(DD) sup
X�0

inf
u∈IRn

{〈Q, X〉 + δ∗F(u) − 〈Q, Diag(u)〉},

which reduces using (5) to

sup{〈Q, X〉 − δ∗∗F (d(X)), X � 0} = sup{〈Q, X〉 : d(X) ∈ cl convF , X � 0}.

Since we assumed that F is bounded and closed, then

cl convF = conv clF = convF ,

so that the bi-dual reads (DD) sup{〈Q, X〉 : d(X) ∈ convF , X � 0}, and we
have vP ≤ vD = vDD.

5.2. The lifting approach

For quadratic problems, there is another systematic way for building relaxed
problems and corresponding bounds, often called lifting, which is due to Lovasz
and Schrijver [11]. The idea is based on enlarging the feasible set of the original
problem to get an upper bound. For quadratic problems, this process is essentially
automatic, via a rewriting of such problems with new variables. This is due to the
simple well-known fact that:

xT Qx = 〈Q, xxT 〉.

Indeed, using this in (P), the original problem in IRn can be equivalently rewritten
in (X, x) ∈ Sn × IRn as:

max
X,x

{〈Q, X〉 : X = xxT , d(X) ∈ F}.

Replacing the non-convex constraint X = xxT , by its convex counter part X −
xxT � 0, and noting that here x does not play any role in the max problem, we
end-up with the relaxed problem:

(R) max{〈Q, X〉 : d(X) ∈ F , X � 0},

and we have vP ≤ vR, where vR denotes the optimal value of (R).
The interesting point to notice here is that since F was assumed to be non-

convex, the resulting lifting procedure does not automatically produce a convex
relaxation, as opposed to the dual approach. Since one obviously has

{(X, x) : d(X) ∈ F , X � 0} ⊂ {(X, x) : d(X) ∈ convF , X � 0},



264 M.Ç. PINAR AND M. TEBOULLE

then we have vR ≤ vDD, namely we end up with the evil situation where the
non-convex relaxation provides a “better” bound than its convex counterpart.
Evidently, using one more relaxation for vR, namely using F ⊂ convF , we end-up
with the problem that we call vRR and the two procedures coincide, i.e., one has
v∗ ≤ vRR = vDD.

The above discussion is to emphasize that when we are not dealing with truly
quadratically representable optimization problems, the lifting procedure does not
provide automatically a tractable convex bound. This is precisely the situation
we have encountered with the [QLP1], which is not, a quadratic representable
problem in the sense described above, but which has been shown to be quadratic
transformable, thanks to the particular variational representation of the l1-norm
given in Lemma 1, and the Schur complement.

Acknowledgements. This research was partially supported through a joint grant by Israel
Academy of Sciences and Turkish Academy of Sciences. The comments and suggestions
of two anonymous referees are also gratefully acknowledged.

References

[1] M.X. Goemans and D.P. Williamson, Improved Approximation Algorithms for Maximum
Cut and Satisfiability Problems using Semidefinite Programming. J. ACM 42 (1995)
1115–1145.

[2] J.-B. Hiriart-Urruty, Conditions for Global Optimality, in Handbook for Global Optimiza-
tion. Kluwer Academic Publishers, Dordrecht, Holland (1999) 1–26.

[3] J.-B. Hiriart-Urruty, Conditions for Global Optimality 2. J. Global Optim. 13 (1998) 349–
367.

[4] J.-B. Hiriart-Urruty, Global Optimality Conditions in Maximizing a Convex Quadratic Func-
tion under Convex Quadratic Constraints. J. Global Optim. 21 (2001) 445–455.

[5] R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, Cambridge
(1985).

[6] V. Jeyakumar, A.M. Rubinov and Z.Y. Wu, Non-convex Quadratic Minimization Problems
with Quadratic Constraints: Global Optimality Conditions. Technical Report AMR05/19,
University of South Wales, School of Mathematics (2005).

[7] V. Jeyakumar, A.M. Rubinov and Z.Y. Wu, Sufficient Global Optimality Conditions for
Non-convex Quadratic Minimization Problems with Box Constraints. Technical Report
AMR05/20, University of South Wales, School of Mathematics (2005).

[8] J.-B. Lasserre, Global Optimization with Polynomials and the problem of moments. SIAM
J. Optim. 11 (2001) 796–817.

[9] J.-B. Lasserre, GloptiPoly: Global Optimization over Polynomials with Matlab and SeDuMi.
ACM Trans. Math. Software 29 (2003) 165–194.

[10] M. Laurent, A comparison of the Sherali-Adams, Lovasz-Schrijver and Lasserre relaxations
for 0-1 programming. Math. Oper. Res. 28 (2003) 470–496.

[11] L. Lovasz and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization. SIAM
J. Optim. 1 (1991) 166–190.

[12] Y. Nesterov, Semidefinite Relaxation and Non-convex Quadratic Optimization. Optim.
Methods Softw. 12 (1997) 1–20.



SEMIDEFINITE BOUNDS FOR L1 QUADRATIC OPTIMIZATION 265

[13] Y. Nesterov, Global Quadratic Optimization via Conic Relaxation, in Handbook of Semi-
definite Programming, edited by H. Wolkowicz, R. Saigal and L. Vandenberghe. Kluwer
Academic Publishers, Boston (2000) 363–384.

[14] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, NJ (1970).
[15] N.Z. Shor, On a bounding method for quadratic extremal problems with 0-1 variables.

Kibernetika 2 (1985) 48–50.
[16] H. Wolkowicz, R. Saigal and L. Vandenberghe (Editors), Handbook of semidefinite program-

ming: Theory, Algorithms, and Applications. Kluwer Academic Publishers, Boston, MA
(2000).

[17] Y. Ye, Approximating Quadratic Programming with Bound and Quadratic Constraints.
Math. Program. 84 (1999) 219–226.

[18] S. Zhang, Quadratic Maximization and Semidefinite Relaxation. Math. Program. 87 (2000)
453–465.

To access this journal online:
www.edpsciences.org


