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AN EX-POST BOUND ON THE GREEDY HEURISTIC
FOR THE UNCAPACITATED FACILITY LOCATION

PROBLEM ∗

Jean-Michel Thizy
1

Abstract. A bound for the greedy heuristic applied to the K-facility
location problem can be calculated, using values gathered during the
calculation of the heuristic. The bound strengthens a well-known bound
for the heuristic. Computational experiments show that this bound can
be beneficial when the number of facilities is small or close to the total
number of potential sites. In addition, it is consistent with previous
results about the influence of the data characteristics upon the optimal
value.

1. Introduction

The uncapacitated facility location problem, also known as the simple plant
location problem, is a centerpiece of logistic planning as well as combinatorial
optimization:

“The simple plant location problem is one of the simplest mixed integer prob-
lems which exhibits all the typical combinatorial difficulties of mixed (0,1) pro-
gramming and at the same time has a structure that invites the application of
various specialized techniques” [15].
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[9] offers a comprehensive study of its properties and applications. It is an
NP-hard problem for which many approximation algorithms have been designed.
This article focuses on a very well-known variety of the problem, the K-facility
location problem [4], with alternative names such as p-plant location problem or
p-facility location problem. The best-known approximation algorithm for this prob-
lem, the Greedy Heuristic [19] was proved never to deviate from the optimal solu-
tion by more than 1

e (in relative error), where e is the base of natural logarithms [4].
A new bound was proposed in [6, 23] for the K-facility location problem with 0-1
revenues, no fixed cost and extended by the author in an oral presentation [7]. The
derivation of the new bound is given here, along with an extension to the general
formulation and comparison with the previous bound; a computational assessment
of its performance shows that the bound adapts to the particularities of the data
of each problem instance. Thus, it presents an advantage over the classical bound
of 1

e , especially when the number of facilities is either small or close to the total
number of potential sites. In addition, it is consistent with results about the in-
fluence of the data characteristics upon the gap between the optimal value of the
problem and that of its linear relaxation [1, 22].

The next section contains a formulation of the problem. Section 3 describes the
Greedy Heuristic. Section 4 analyzes a Lagrangian relaxation of the problem. Sec-
tion 5 offers a new bound on the performance of the Greedy Heuristic. Section 6
provides a computational assessment of this bound and Section 7 presents lines of
extension.

2. Problem formulation

The K-facility location problem P consists of selecting at most K facilities to
keep open among n potential sites in order to minimize the revenue of serving m
demands. The problem can be formulated as:

P : max
m∑

i=1

n∑
j=1

cijxij −
n∑

j=1

fjyj (1)

subject to:
n∑

j=1

xij = 1 for i = 1, ..., m (2)

0 ≤ xij ≤ yj ≤ 1 for i = 1, ..., m and j = 1, ..., n (3)
n∑

j=1

yj ≤ K (4)

yj integer for j = 1, ..., n (5)
where:

yj is 1 if a facility is opened at Location j and 0 otherwise;
xij is 1 if Location j satisfies Demand i and 0 otherwise;
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cij is the revenue of satisfying Demand i from Location j;
fj is the fixed cost of a facility at Location j (revenues or costs can be
negative).

3. The greedy heuristic [19]

The greedy heuristic yields a feasible solution of the problem by choosing fa-
cilities one at a time; at each of its (K) iterations, the chosen facility is one that
produces the largest improvement in the objective value. To formalize this method,
the following algorithm is essentially reproduced from [4]; H = k counts the num-
ber of iterations: the facilities chosen are recorded in J∗, uk

i = maxj∈J∗ cij denotes
the opportunity revenues facing the decision makers, i.e., the highest distribution
revenues that can be generated from the incumbent set of facilities already selected.
For each candidate location j, ρj(u) aggregates over all demands the incremental
revenue (above the opportunity revenues) that the facility would bring by operat-
ing there, less fj plus F = maxj=1,...,nfj . The Greedy Heuristic can be defined by
the algorithm:

Step 1 Let k = 1, J∗ = Ø and u 1
i = minj=1,...,n cij for i = 1, ..., m

Step 2

a. Let ρj(uk) = F − fj +
∑m

i=1 max
(
0, cij − uk

i

)
, j /∈ J∗.

b. Find jk /∈ J∗ such that ρk = ρjk
(uk) = maxj /∈J∗ ρj(uk).

c. If ρk < F and |J∗| ≥ 1 , set ρk = F and go to step 4; otherwise set
J∗ = J∗⋃ {jk}.
d. If |J∗| = K , go to step 4, else go to step 3.

Step 3 Set k = k + 1. For i = 1, ..., m, set uk
i = maxj∈J∗ cij = uk−1

i +
max(0, cijk−1

− uk−1
i ). Go to step 2.

Step 4 Stop; the greedy solution is given by yj = 1, j ∈ J∗ and yj = 0
otherwise, and its objective value is zG =

∑m
i=1 u1

i +
∑k

h=1 ρh − kF .

4. A Lagrangian relaxation of the problem

It is well-known that the optimum value of the linear relaxation (1)–(4) z =
minu z(u), where u = (u1, ..., um) are multipliers for Constraints (2), and

P (u) : z(u) = maxx,y z(x, y, u), with

z(x, y, u) =
m∑

i=1

n∑
j=1

cij xij −
m∑

i=1

ui

(
m∑

i=1

xij − 1

)
−

n∑
j=1

fj yj =

n∑
j=1

m∑
i=1

(cij − ui)xij +
m∑

i=1

ui −
n∑

j=1

fj yj

subject to (3)–(4).
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P (u) is a continuous 0–1 knapsack problem, for which an analytic upper bound
is available. Define a permutation {�(u, j)}j=1,..,n that orders the values ρj(u)
nonincreasingly: ρ�(u,k) ≥ ρ�(u,h) if k < h; then for any vector u of multipliers:

z ≤ z(u) ≤
m∑

i=1

ui +
r(u)−1∑

h=1

ρ�(u,h) + ρr(u) [K + 1 − r(u)] − KF (6)

where r(u) satisfies: r(u) − 1 ≤ K ≤ r(u), i.e. the optimum z can be bounded and
one value of u will be shown to be yielded by the Greedy algorithm. The proof
is incremental: first, Lemma 1 considers the important case where Constraint (4)
must hold as an equality. Note then that step 2c of the Greedy algorithm can be
simplified as:

c. Set J∗ = J∗⋃ {jk}.
The original specification will be reinstated in Proposition 1.

5. Worst-case analysis of a greedy algorithm

Lemma 1. The value zG of a greedy solution is related to the optimum z of the
K-facility location problem relaxation (1)–(4) for which Constraint (4) must hold
as an equality, 0 = minj=1,...,n cij for i = 1, ..., m and fj = 0 for j = 1, ..., n by:

z − zG

z
≤ ρjK

ρjκ

(
1 − ρjκ+1

ρjκ

+ ... + 1 − ρjK

ρjK−1

)
(7)

where κ is the smallest index such that 1 -
ρjκ+1

ρjκ
+ 1− ρjκ+2

ρjκ+1
+ ... + 1− ρjK

ρjK−1
≤ 1.

Proof. Let si be the number of iterations during which the increment is equal to
ρi, for i = 1, ..., s1, 1+ s1, ..., s1 + s2, ..., s1 + s2 + ...+ sh (assuming without loss of
generality that h ≥ 4). Note that si may be 0. Define �i = ρsi and η by �η = ρjκ .

s1 + s2 + ... + sh = K (8)

zG = �1s1 + �2s2 + ... + �hsh (9)

z ≤ K�1 (10.1)

z ≤ �1s1 + K�2 (10.2)
...

z ≤ �1s1 + �2s2 + ... + �i−1si−1 + K�i (10.i)

...

z ≤ �1s1 + �2s2 + ... + �h−1sh−1 + K�h. (10.h)



FACILITY LOCATION GREEDY EX-POST BOUND 147

Divide through by z. Set xi = si

z for i = 1, 2, ..., h and use Equation (8) to
eliminate K

z whenever it appears in the constraint set (10). Then (8)–(10) yields

zG

z
= �1x1 + �2x2 + ... + �hxh (11)

�1x1 + �1x2 + ... + �1xh ≥ 1 (12.1)

(�1 + �2) x1 + �2x2 + ... + �2xh ≥ 1 (12.2)

...

(�1 + �i)x1 + (�2 + �i)x2 + ... + (�i−1 + �i)xi−1 + �ixi ≥ 1 (12.i)

...

(�1 + �h)x1 + (�2 + �h) x2 + ... + (�h−1 + �h)xh−1 + �hxh ≥ 1 (12.h)

x1, x2, ..., xh ≥ 0. (13)

A feasible solution of the system (12)–(13) is:

xi = 0 for i = 1, ..., η − 1 (14.1)

xi =
1
�η

(
1 − �i+1

�i

)
for i = η, ..., h − 1 (14.2)

and

xh =
1
�η

[
1 −

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)]
. (14.3)

To prove that it is optimal for the minimizing objective function (11), a feasible
solution of its dual problem below is calculated afterward.

Max y1 + y2 + ... + yh

s.t. �1y1 + (�1 + �2) y2 + ... + (�1 + �h) yh ≤ �1

�1y1 + �2y2 + (�2 + �3) y3 + ... + (�2 + �h) yh ≤ �2

...

�1y1 + ... + �iyi + (�i + �i+1) yi+1 + ... + (�i + �h) yh ≤ �i

....

�1y1 + �2y2 + ... + �hyh ≤ �h

y1, y2, ..., yh ≥ 0.
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A dual feasible solution that satisfies complementary slackness with the primal
one, is:

yi = 0 for i = 1, ..., η − 1, (15.1)

yi = �h

(
1
�i

− 1
�i−1

)
for i = η + 1, ..., h (15.2)

and

yη =
�h

�η

[
1 −

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)]
. (15.3)

This solution yields an objective value: ζ = 1 − �h

�η

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ...

+1 − �h

�h−1

)
(see Appendix 1 for detailed calculations). The original notation ρj

provides Bound (7). �

To fully define Bound (7) in the trivial case where K = 1, set ρjo = 1 or any
arbitrary non-zero value. Also, adapting the bound from the proof to the simpler
expression (7) supposes that a ratio of two values ρi = 0 and ρi+1 = 0 is 1. Define
zR =

∑m
i=1 u1

i − K maxj=1,...,n fj; this value represents a lower estimate of the
worst possible choice of facilities, i.e. a selection with not even a simple calcula-
tion. It serves as a benchmark for the performance of the greedy heuristic which
performs myopic calculations.

Proposition 1. The value zG of a solution given by the Greedy Heuristic ter-
minating in H iterations is related to the optimum z of the K-facility location
problem relaxation (1)–(4) [for which Constraint (4) may be required to hold as
an equality] by:

z − zG

z − zR
≤ ρjH

ρj�

(
1 − ρj�+1

ρj�

+ ... + 1 − ρjH

ρjH−1

)
(16)

where � is the smallest index such that 1 − ρj�+1
ρj�

+ 1− ρj�+2
ρj�+1

+ ... + 1− ρjH

ρjH−1
≤ 1

and problem instances exist where (16) holds as an equality.

Proof.
1. First, consider the case of a problem P where Constraint (4) must hold

as an equality and fj = 0 for j = 1, ..., n. If 0 �= minj=1,...,n cij for some
demand i ∈ {1; ...; m}, Bound (7) holds for a problem P ′ derived from P
via the modified revenues: c′ij = cij − u1

i for i = 1, ..., m and j = 1, ...,
n. Note that z′ = z − zR and z′G = zG − zR, allowing us to assert that
Problem P satisfies Proposition 1.

2. Next, consider a problem P where Constraint (4) must hold as an equality,
fj = f1 for j = 2, ..., n and compare this problem with a problem P ′

satisfying Case 1 for which c′ij = cij for i = 1, ..., m and f ′
j = 0 for

j = 1, ..., n. Note that z′R = zR + Kf1, z
′ = z + Kf1 and z′G = zG + Kf1,

allowing us to assert that Problem P satisfies Proposition 1.
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3. Consider now a problem P where Constraint (4) must hold as an equality
and the data have arbitrary values, in particular not satisfying the two
cases analyzed before. Select an index k such that fk < maxj=1,...,n fj .
Compare Problem P with a problem P ′ for which c′ij = cij for i = 1, ..., m

and j = 1, ..., n, f ′
j = fj for j �= k and f ′

k = maxj=1,...,n fj . Include
also a new demand m + 1 such that c′m+1,j = 0 for j �= k and c′m+1,k =
−fk + maxj=1,...,n fj . To any given optimal value (xij , yj)i=1,...,m;j=1,...,n

of Problem P , one can associate a similar optimal value (x′
ij = xij , y

′
j =

yj)i=1,...,m;j=1,...,n and an assignment for Demand m + 1 satisfying Con-
straint (2) via x′

m+1,k = y′
k and x′

m+1,j ≤ yj for all other indices j �= k.
Note that z′R = zR, z = z′ and z′G = zG so that Problem P satisfies Propo-
sition 1 if Problem P ′ does. Now apply the procedure just described to
Problem P ′ at most n− 2 times, until one obtains a problem P (n−1) such
that f

(n−1)
j = f

(n−1)
1 for j = 2,..., n, which is Case 2, shown to satisfy

Proposition 1.
4. For the original Constraint (4), let p = max{1; card({j ∈ {1, ..., n} | fj <

0})}. If p ≥ K, then exactly K facilities are chosen both heuristically
and optimally and therefore Constraint (4) holds exactly, which is Case 3.
Else, associate the following problem P ′ satisfying Constraints (1)–(3) &
Constraint (4) as an equality, with m demands and n + K − p facilities:
c′ij = cij for i = 1, ..., m, f ′

j = fj for j = 1, ..., n, c′ij = minj=1,...,n cij for
i = 1, ..., m and f ′

j = 0 for j = n + 1, n + 2, ..., n + K − p. First note that
z′R = zR. If the greedy heuristic for Problem P yields

∑n
j=1 yj = k < K,

then the greedy heuristic for Problem P ′ selects the additional facilities
n + 1, n + 2, ..., n + K − k and z′G = zG. The value z of an optimum
solution of P is also an optimum for P’, since no assignment of value for
yj , j = n + 1, n + 2, ..., n + K − k can improve upon it. Therefore any
such solution with

∑n
j=1 yj = k < K can be completed as an optimum

solution of P ′ by setting y′
j = yj and x′

ij = xij for i = 1, ..., m, j = 1, ..., n
and selecting values of yj for j = n + 1, n + 2, ..., n + K − k such that
Constraint (4) is satisfied as an equality (with x′

ij = 0 for i = 1, ..., m).
Instances where (16) holds as an equality are given in Corollary 2.

�

When the Greedy Heuristic stops with ρH = 0, even when
∑n

j=1 yj = k < K,
then the value of the variables defined by the Greedy Heuristic as well as dual
multipliers u, ρ(u) and −F for Constraint (4) defines a complementary pair: the
greedy solution is optimal and Proposition 1 is naturally satisfied. Not only does
Proposition 1 extend Lemma 1, it actually subsumes it since, under the premises
of the latter, zR = 0. Proposition 1 enables us to compare Bound (16) with the
classical result about the K-facility location problem and more generally to link
the result with the abundant literature about the uncapacitated facility location
problem (1)–(5) alluded to in the introduction, as a special case of the K-facility
location problem, when K = n.
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Next, two relaxations of Proposition 1 are presented as corollaries. Each entails
fewer parameters than Proposition 1 and instances exist where for any value of the
parameter, their respective bound is reached exactly. In both cases, the parameters
can be found before applying the heuristic, so they can be called a-priori bound
in contrast with Bound (16). Each can be calculated easily. Next, Proposition 2
will help us establish Corollary 1.

Proposition 2. For any integer values of K and κ such that: K ≥ κ > 0:

(
K − 1

K

)K

≥
(

K − κ

K + 1 − κ

)K−κ+1

= max
ρjκ≥ρjκ+1≥...≥ρjK

ρjK

ρjκ

(
1 − ρjκ+1

ρjκ

+ ... + 1 − ρjK

ρjK−1

)

Proof. The first inequality comes from the monotonicity of the sequence
(

K−1
K

)K
,

K = 1, 2, ...(see [4], p.797). The equality is proved in Appendix 2. �

Proposition 2 offers an envelope for Bound (16), i.e. an overarching bound
that depends on the parameter K only. This simplified bound is precisely the one
proposed by [4] which can now be presented as a consequence of Proposition 1, as
formalized in the following:

Corollary 1 [4]. The value zG of a greedy solution is related to the optimum z
of the K-facility location problem relaxation (1)–(4) by:

z − zG

z − zR
≤
(

K − 1
K

)K (
<

1
e

)
(17)

and, for any value of K, there exist data sets for which this bound is reached
exactly.

The reader is directed to the original proof, corrected in [5] or to its variant [3].
However, the power of Proposition 1 is to yield other important consequences,
such as Corollary 2, unpublished and therefore detailed next, with special atten-
tion given to the restrictive setting in which it also holds directly as a consequence
of Lemma 1.

Corollary 2 [6]. Consider the K-facility location problem relaxation (1)–(4) [for
which Constraint (4) may hold as an equality] with zero-one revenues cij and zero
fixed costs fj. Let d be the maximum number of non-zero entries in a column of
C = (cij)i=1,...,m, j=1,...,n and δ be the smallest number such that:

1
δ + 1

+ ... +
1

d − 1
+

1
d
≤ 1
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then the value zG of the greedy solution is related to the value z of the relax-
ation (1)–(4) by:

z − zG

z − zR
≤ δ

d

(
1

δ + 1
+ ... +

1
d

)
(18)

and, for any value of d, there exist data sets for which this bound is reached exactly
when K facilities have been selected greedily.

Proof. In Lemma 1, the (possibly vanishing) variables s and therefore x were
defined as functions of (pre-defined) ρj , for instance ρj = 1, 2, ...d. For any
index j such that ρj = k, the algebraic simplification 1 − ρj

ρj+1
= 1

k shows that
Bound (18) derives from Bound (7), as detailed formally in Appendix 3, which
pinpoints the role of H .
A case of tight bound, provided in [6], is excerpted below, with zero fixed costs: K
facilities are selected greedily. For any positive integer d, consider the K-facility
location problem relaxation (1)–(4):

m = d. d!
K = d!
n = 2K
(cij) as shown in Figure 1:

the first K columns are orthogonal to each other and can be subdivided into d
subsets of columns, namely:

first subset of d!
d columns, each containing d ones

second subset of d!
d−1 columns, each containing d − 1 ones

...
pth subset of d!

d−p+1 each containing (d − p + 1) ones
...

(d − δ + 1)th subset of d!
(
1 − 1

d − ... − 1
δ+1

)
columns, each containing δ ones.

The next K columns are formed by d superposed “identity” blocks. (This
revenue matrix is very similar to Figure 1 of [16], except that the first K columns
are sufficient to constitute a greedy solution, whereas K( 1

d + 1
d−1+ - - - + 1

2 + 1)
are needed for the greedy covering); Figure 2 provides an instance of the general
case of Figure 1 for d = 3. It gives us an intuition about a regular pattern of row
covering made up by the last 6 columns that offer an optimal solution, as opposed
to a greedy choice of the first six columns (perturbation of real-value coefficients
would provide tie-breaking).

The greedy solution consists of the first K columns; the following list tallies the
number of rows covered for each subset of columns chosen by the heuristic:

first subset of d!
d columns, each containing d ones: TOTAL d! rows

second subset of d!
d−1 columns, each containing d− 1 ones: TOTAL d! rows

...
pth subset of d!

d−p+1 each containing (d − p + 1) ones: TOTAL d! rows
...
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Figure 1
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(d − δ + 1)th subset of d!
(
1 − 1

d − ... − 1
δ+1

)
columns, each containing δ ones:

TOTAL δd!
(

1 − 1
d
− ... − 1

δ + 1

)
rows

zG = TOTAL NUMBER OF ROWS COVERED: (d − δ)d!

+ δd!
(

1 − 1
d
− ... − 1

δ + 1

)

= d!
[
d − δ + δ − δ

(
1
d

+ ... +
1

δ + 1

)]
zG

z
=

d!
d.d!

[
d − δ

(
1
d

+ ... +
1

δ + 1

)]

= 1 − δ

d

(
1
d

+ ... +
1

δ + 1

)
z − zG

z
= 1 − zG

z
=

δ

d

(
1
d

+ ... +
1

δ + 1

)
. �

Whereas Proposition 1 provides a bound tighter that those of Corollaries 1 and 2
(albeit one needing more information), neither bound introduced in Corollary 1
or 2 subsumes the other. This can be easily shown by considering Figure 2 where
Bound (17) is 0.335 and Bound (18) is 0.278 and the example denoted C22 of ([4],
Figure 2), fully depicted by Figure 3, plus the specification f = 0, K = 2 and
d = 3: Bound (17) is 0.25 and Bound (18) is 0.278.

6. Computational validation of the new bound

As a reference, Bound (17) is calculated in Table 1 for various values of K
(figures in the body of each subsequent table are percent values, except Tab. 13).
Note the convergence toward 1

e . Table 1 shows that Bound (17) is tighter for small
values of K (of course, for K = 1, it is 0 and indeed the greedy heuristic yields
an optimal solution). In this line, the subsequent analysis focuses on small values
of K.

Table 1. Percent values of Bound (17).

K 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1-1/K)K 25 30 32 33 33 34 34 35 35 35 35 35 35 36

Bound (17) is now compared numerically with Bound (16). The tests follow
a standard suite using data sets which all comprise as many potential sites as
demands. The first group, reported in Table 2, features major US cities from two
sources: 30 cities in [10], 33 and 57 cities in [17] and also 100 points randomly se-
lected in a rectangle in [18]. These problems, solved in [4,8,11,21,22], are deemed
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Figure 2. d = 3.
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1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

Figure 3. Example C22 of [4], Figure 2.

to be good representatives of K-facility location problems. Table 2 presents results
consistent with Table 1. The tightening of Bound (16) is significant for small values
of K and seems to be slightly enhanced by a larger problem size (which is sum-
marized by n, the equal number of locations and demands). Deviations between
actual optimal values and the greedy heuristic are much smaller than values for
Bound (16) and largely uncorrelated with them; they are presented and discussed
in Appendix 4. The general performance is confirmed by more extensive experi-
menting, using other randomly generated data tested in [1,22] (the first reference
contains original details about the random generation). Among these, the first set
involves 4 series indexed by p = 1, 2, 3 and 4, each series p featuring 50 squares
with a side of length 10p, where each square contains 100 points connected by
integer Euclidian distances. Table 3 is consistent with the experimental results
of [1, 22] that noted the small influence of the length of the sides of the squares,
i.e. the rounding of the data. Additional tests on this data set not reported here
indicate that the range of bounds does not vary widely with the number of nodes,
as will be shown on other data sets.

Table 2. Percent values of Bound (16) for standard data sets.

�����n
K 2 3 4 5 6 7 8 9 10 11 12

30 16 25 20 21 28 28 28 28 29 30 30

33 20 22 25 28 28 31 32 32 32 32 32

57 11 23 24 24 31 31 31 31 31 31 31

100 14 18 22 22 22 26 32 32 33 32 33

A similar behavior can again be found in subsequent tables. The second set
of data is based on averages of 50 random trees generated with n = 50, 100 or
150 nodes, using the method described in [12]. The distance between each pair of
nodes is calculated as the length of the path joining them. Each row of Table 4
contains results for tree edge lengths equal to 1; for K = 2, the value of Bound (16)
appears to improve with the number of nodes, but not to an extent that would
permit to say that K scales proportionally with n. For higher values of K, no trend
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Table 3. Percent values of Bound (16) for complete Euclidian graphs.

�����p
K

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 11 17 24 29 29 28 28 29 30 30 31 31 32 32

2 11 17 25 30 28 28 28 29 29 30 31 32 32 32

3 11 17 25 30 29 28 28 29 30 31 31 32 33 33

4 11 17 25 30 28 28 28 29 30 31 31 32 33 33

5 11 17 25 30 28 28 28 29 30 31 31 32 33 33

is noticeable. It is worth noting that the experimental results of [1,22] found larger
problems to display better linear relaxations. Our limited experiment reported in
Table 14 does not show that the ratio z−zG

z−zR
decreases with the size of the graph.

Table 4. Percent values of Bound (16) for trees with unit revenues.

�����n
K

2 3 4 5 6 7 8 9 10 11 12 13 14 15

50 10 18 25 27 28 29 30 30 30 30 31 30 30 30

100 8 19 25 27 28 29 30 31 31 31 32 32 32 32

150 8 19 25 27 28 30 30 31 31 32 32 32 32 33

Table 5 presents results for random nodes in the unit square, using the genera-
tion explained before. The length of an edge in the tree is the Euclidean distance
between its endpoints rounded to an integer. A comparison between Tables 4
and 5 confirms that the value of Bound (16) does not appear to be influenced by
the type of distance function, as found by the experimental results of [1, 22].

Table 5. Percent values of Bound (16) for Euclidian trees.

�����n
K 2 3 4 5 6 7 8 9 10 11 12 13 14 15

50 10 21 25 27 27 29 30 31 31 32 32 32 33 33

100 9 19 24 26 28 29 30 31 31 32 32 32 32 33

150 8 20 25 27 28 29 30 31 31 31 31 32 33 33

The third set of results relies on averages of 50 sequences of sparse graphs,
starting from a random tree with 50 nodes, then adding at each q-th iteration
50 random edges to the graph of the previous iteration. Each row of the table
corresponds to one value of q. For edge lengths equal to 1, Table 6 confirms
remarks about earlier tables. For small values of K and low densities, Bound (16)
increases with the density of the graph. This trend appears to be reversed as
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the density grows, i.e. in lower rows of the table. However, this could also be
a consequence of the fact that the distance between each pair of nodes decreases
toward zero as the graph becomes fully dense.

Table 6. Percent values of Bound (16) for sparse graphs with
unit revenues.

�����q
K

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 10 18 25 27 28 29 30 30 30 30 31 30 30 30

2 13 23 27 28 29 30 30 31 31 31 31 31 30 29

3 15 23 28 29 30 30 31 30 30 28 27 27 27 27

4 17 21 28 30 30 30 28 27 26 26 26 26 26 26

5 16 21 28 30 29 26 24 24 24 24 24 24 24 24

6 18 23 29 29 26 24 24 24 24 24 24 24 24 24

7 22 24 28 27 24 23 23 23 23 23 23 23 23 23

8 24 25 26 23 22 22 22 22 22 22 22 22 22 22

9 25 26 25 21 21 21 21 21 21 21 21 21 21 21

10 25 25 23 23 23 23 23 23 23 23 23 23 23 23

11 24 24 19 21 21 21 21 21 21 21 21 21 21 21

12 23 22 18 19 19 19 19 19 19 19 19 19 19 19

13 22 20 19 19 19 19 19 19 19 19 19 19 19 19

14 21 18 21 21 21 21 21 21 21 21 21 21 21 21

15 20 14 20 20 20 20 20 20 20 20 20 20 20 20

16 18 12 15 15 15 15 15 15 15 15 15 15 15 15

17 15 11 12 12 12 12 12 12 12 12 12 12 12 12

The remarks made about Tables 2–5 also apply to sparse Euclidian graphs. In
Table 7, the nodes are in the unit square as in Table 5 and adjacent nodes are also
paired by a Euclidian distance. The value of Bound (16) has decreased with respect
to the trees of Table 6. On the other hand, even though the distances between
nodes do not vanish as the graph density grows, Bound (16) does decrease, perhaps
because the values of ρj decrease more regularly when the objective coefficients are
less varied, as is the case of a dense graph endowed with the Euclidian property.

However, this last remark appears to be at odds with the results of Table 3,
where revenue graininess did not affect the results. Therefore, a last set of data
is generated with random integer revenues. For each value of r = 1, 2 and 3, a
set Sr of 10 graphs with 100 nodes features revenues uniformly distributed in the
range [0, 10r − 1]. The results are in contrast with those of the preceding tables, as
the values of Bound (16) are markedly below those of preceding tables, especially
for small values of K. On the other hand, as shown in Table 3, Bound (16) shows
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Table 7. Percent values of Bound (16) for sparse Euclidian graphs.

�����q
K

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 10 21 25 27 27 29 30 31 31 32 32 32 33 33

2 11 22 27 28 30 30 31 31 32 32 33 33 33 33

3 12 23 27 28 30 31 31 32 32 32 33 33 33 33

4 13 22 27 28 29 30 31 31 32 32 32 33 33 33

5 13 22 27 28 29 30 31 31 32 32 32 32 32 32

6 13 21 27 28 29 30 31 31 32 32 32 32 33 33

7 14 21 27 28 29 30 31 31 31 32 32 32 32 32

8 13 21 26 28 29 30 30 31 31 31 32 32 32 32

9 13 20 27 28 29 29 30 30 31 31 32 32 32 32

10 13 19 26 28 29 30 30 31 31 31 31 32 32 32

11 13 19 27 29 29 30 30 30 31 31 31 31 32 32

12 13 20 26 28 29 29 29 30 30 30 31 31 31 31

13 13 20 26 29 29 29 29 30 30 30 31 31 31 31

14 13 19 26 28 29 29 29 30 30 31 31 31 31 31

15 13 18 26 29 29 29 29 30 30 30 31 31 31 31

Table 8. Percent values of Bound (16) for random revenues.

�����r
K 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 22 25 25 28 29 30 31 30 30 30 31 29 29 19

2 21 25 26 28 29 30 30 31 31 32 32 32 32 33

3 21 25 26 28 29 30 30 31 31 32 32 32 32 33

little sensitivity to the range of the revenues cij , i.e. the effect of data rounding
(which again evokes the experimental results of [1, 22]). Unreported results show,
as Tables 4 and 5 did, that the values of Bound (16) do not vary significantly with
the number of nodes.

Overall, the results show that the improvement brought by Bound (16) is par-
ticularly important for small values of K.

7. Conclusion and future directions

In practice, Proposition 1 provides decision-makers with a better guarantee that
the Greedy Heuristic solution is close to the optimum than was known before. It
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also holds potential to improve our understanding of the relationship between
performance guarantees for a more general class of heuristics.

– The relationship between (set) covering and (uncapacitated facility) loca-
tion problems is well-known and its implication about the greedy heuristics
for both classes of problems established in [14]. However, the latter treats
a relaxation of Bound (17), which it proves to imply a relaxation of the
bound for set-covering [2]. Following a special case [6] of 0–1 objective co-
efficients, [24] shows that Bound (18) implies the bound for set-covering [2].
Further work is likely to expand the class of covering and location problems
that are related via Bound (16) and in particular, Bound (18). To this end,
Formulation (8)–(10) can be expanded to one for submodular functions,
much in the vein of Formulation (QI) for the submodular set covering
problem [25] which yields a diversified bound for covering, reminiscent of
Bound (16).

– The title of the article: ex-post bound and much of its focus highlight an
algorithmic viewpoint, i.e. the stepwise construction of the Greedy Heuris-
tic solution. A starting point for further research, consistent with [13,20],
is to view the locations chosen as a set, where the parameters ρj represent
a simple data arrangement.

Appendix 1 - Solution of Program (12.1)–(12.h)–(13)

We show that the values of x defined in (14.1)–(14.3) yield a solution of Program
(12.1)–(12.h)–(13).

For a row i ≤ η:

�i

�η

[
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1
+ 1 −

(
1 − �η+1

�η
+ 1

−�η+2

�η+1
+ ... + 1 − �h

�h−1

)]
=

�i

�η
≥ 1.

Note that the inequality holds as an equality for i = η.
For a row i > η:

1
�η

{
�η

(
1 − �η+1

�η

)
+ �η+1

(
1 − �η+2

�η+1

)
+ ... + �i−1

(
1 − �i

�i−1

)

+ �i

[
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1
+ 1 −

(
1 − �η+1

�η
+ 1

−�η+2

�η+1
+ ... + 1 − �h

�h−1

)]}
=

1
�η

(�η − �i + �i) = 1

Similarly, the values of y defined in (15.1)–(15.3) yield a solution of the system
(12.1)–(12.h)–(13).
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For a row i ≥ η:

�η
�h

�η

[
1 −

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)]

+ �η+1�h

(
1

�η+1
− 1

�η

)
+ �η+2�h

(
1

�η+2
− 1

�η+1

)
+ ... + �i�h

(
1
�i

− 1
�i−1

)

+(�i+�i+1)�h

(
1

�i+1
− 1

�i

)
+(�i+�i+2)�h

(
1

�i+2
− 1

�i+1

)
+...+(�i+�h)�h

(
1
�h

− 1
�h−1

)
=

�h

[
1 + �i

(
1
�h

− 1
�i

)]
= �i.

For a row i < η:

(�i + �η)
�h

�η

[
1 −

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)]

+(�i+�η+1)�h

(
1

�η+1
− 1

�η

)
+(�i+�η+2)�h

(
1

�η+2
− 1

�η+1

)
+...+(�i+�h)�h

(
1
�h

− 1
�h−1

)
=

�h

〈
�i

{
1

�η+1
− 1

�η
+

1
�η+2

− 1
�η+1

+ ... +
1
�h

− 1
�h−1

+
1
�η

[
1 −

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)]}

+1−�η+1

�η
+1−�η+2

�η+1
+...+1− �h

�h−1
+1 −

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)〉
=

�h

{
1 + �i

[
1
�h

− 1
�η

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)]}

= �h + �i

[
1 − �h

�η

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)]
.

We need to show that (12.i) holds, i.e.:

�h + �i

[
−�h

�η

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)]
≤ 0.

Rearranging:
�η

�i
≤ 1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

The above inequality holds for i = η − 1 since, by definition of η:

1 < 1 − �η

�η−1
+ 1 − �η+1

�η
+ ... + 1 − �h

�h−1
·
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For i < η − 1, there suffices to note that:

�η

�i
≤ �η

�η−1
·

To complete the proof, the objective function can be calculated, using x:

1
�η

{
�h

[
1 −

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)]

+�η

(
1 − �η+1

�η

)
+ �η+1

(
1 − �η+2

�η+1

)
+ ... + �h−1

(
1 − �h

�h−1

)}
=

1
�η

[
�h − �h

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)
+ �η − �h

]
=

1 − �h

�η

(
1 − �η+1

�η
+ 1 − �η+2

�η+1
+ ... + 1 − �h

�h−1

)
.

Appendix 2 - End of proof of Proposition 2

Let σi =
ρji+1
ρji

for i = κ, ..., K − 1. With this expression, consider the relation-
ship between the right-hand side of (7) and its parameters, i.e. the function E
defined by [0, 1]K−κ : (σκ, ..., σK−1) ↪→ σκ × ...×σK−1× (1−σκ + ...+1−σK−1) .
Note that the function E does not depend on κ or K per se, but on the difference
Ḱ = K −κ; thus, the notation E(σ1, ..., σḰ) will be sufficiently unambiguous. The
proof is by induction.
When Ḱ = 1, the apex of the parabolic function maxσ1∈[0,1] E(σ1) =

(
1
2

)2 for
σ1 = 1

2 . Assume now that Proposition 2 holds for Ḱ = k − 1 (for any given

value k ≥ 2) i.e.
(

k−1
k

)k
= max(σ1,...,σk−1)∈[0,1]k−1 E(σ1, ..., σk−1); by proving that(

k
k+1

)k+1

= max(σ1,...,σk)∈ [0,1]k E(σ1, ..., σk), the latter property will in fact have

been shown to hold for any value Ḱ ∈ N.
First, note that E(σ1, ..., 0, ..., σk) = 0 and E(σ1, ..., σi−1, 1, σi+1, ..., σk) =

E(σ1, ..., σi−1, σi+1, ..., σk) ≤ (
k−1

k

)k
<
(

k
k+1

)k+1

(again, the last inequality is
mentioned in [4]; the previous one comes from the recurrence hypothesis). Thus
maxσ1,...,σk∈[0,1]k E(σ1,...,σk

) = maxσ1,...,σk∈]0,1[k E(σ1, ..., σk): on the latter open
set, the apex of E is characterized by the conditions ∂ E

∂ σi
= σ1 × ... × σk ×

σ−1
i ( 1 − σ1 + ... + 1 − σk − σi ) = 0 for i = 1, ..., k. This system has a

unique solution σi = k
k+1 for i = 1, ..., k, yielding

(
k

k+1

)k+1

= max(σ1,...,σk)∈[0,1]k

E(σ1, ..., σk) as sought.
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Appendix 3 - Extensive Proof of Corollary 2

First note that for consecutive integer coefficients, Bound (16) can be written:

z − zG

z − zR
≤ ρjH

ρj�

(
1

ρj�

+ . . . +
1

ρjH−1

)
(19)

This proof consists of showing that the right hand side of Bound (18) is the largest
among a family of bounds (16). Without any relation to the indices η or h used
in Section 5 or Appendix 1, let η = ρj

�
, h = ρjH

, therefore ρjH−1
= h + 1 and the

right hand-side of Bound (19) can be re-written: h
η

(
1
η + . . . + 1

h+1

)
. Lemma 2

shows that η is a (strictly) increasing function of h < δ.

Lemma 2. If 1
η + . . . + 1

h+1 ≤ 1 then 1
η+1 + . . . + 1

h+2 < 1.

Proof. 1
η+1 − 1

h+1< 0 and thus 1
η+1 + . . . + 1

h+2 = 1
η+1 − 1

h+1 + 1
η + . . . + 1

h+1 <
1
η + . . . + 1

h+1 ≤ 1.

�

However, η can be such that:

1
η + 1 + p

+ . . . +
1

h + 2
≤ 1 for p = 1 or p = 2 or ... or p = d − η − 1.

(20)
Lemmata 3 and 4 show that, when h < δ (i.e, when η increases strictly with h),
the right-hand side of (19) is a non-decreasing function of h.
Lemma 3. If 1 < 1

η+1+. . .+ 1
h+1 , then h

η

(
1
η + . . . + 1

h+1

)
< h+1

η+1

(
1

η+1 + . . . + 1
h+2

)
.

Proof. First note that η > h, i.e. η − h > 0.

h + 1
η + 1

(
1

η + 1
+ . . . +

1
h + 2

)
− h

η

(
1
η

+ . . . +
1

h + 1

)
=

h

η (η + 1)
− 1

η + 1
+
(

h + 1
η + 1

− h

η

)(
1

η + 1
+ . . . +

1
h + 1

)
=

h − η

η (η + 1)
+

η − h

η (η + 1)

(
1

η + 1
+ . . . +

1
h + 1

)
=

h − η

η(η + 1)

[
1 −

(
1

η + 1
+ . . . +

1
h + 1

)]
> 0. �

However, η considered in Lemma 3 may satisfy Relationship (20), a case addressed
by the following
Lemma 4. If 1

η+q + . . . + 1
h+2 ≤ 1

then h+1
η+q

(
1

η+q + . . . + 1
h+2

)
≤ h+1

η+q+1

(
1

η+q+1 + . . . + 1
h+2

)
.
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Proof. h+1
η+q+1

(
1

η+q+1 + . . . + 1
h+2

)
− h+1

η+q

(
1

η+q + . . . + 1
h+2

)
= h+1

(η+q)(η+q+1) +
(

h+1
η+q+1 − h+1

η+q

)(
1

η+q + . . . + 1
h+2

)
= h+1

(η+q)(η+q+1) − h+1
(η+q+1)(η+q)

(
1

η+q + . . . + 1
h+2

)
= (h + 1)

1−( 1
η+q +...+ 1

h+2 )
(η+q)(η+q+1) ≥ 0. �

Chaining Lemma 3 with the preceding result of Relationship (20) for q = 1, ..., p,
get:

h

η

(
1
η

+ . . . +
1

h + 1

)
<

h + 1
η + p

(
1

η + p
+ . . . +

1
h + 2

)
.

Lemma 5 shows that, when h > δ, i.e., η = d, Bound (19) is a decreasing function
of h.
Lemma 5. If 1

d +. . .+ 1
h+1 ≤ 1, then h

d

(
1
d + . . . + 1

h+1

)
≥ h+1

d

(
1
d + . . . + 1

h+2

)

Proof. h
d

(
1
d + . . . + 1

h+1

)
− h+1

d

(
1
d + . . . + 1

h+2

)
=

1−( 1
d +...+ 1

h+1 )
d ≥ 0.

Note that for h ≥ 0, the inequalities of Lemma 5 hold strictly. �

Appendix 4: Actual value of
z−zG

z−zR
for some real-world

data sets

The same experimental suite is adopted to determine actual values of z−zG

z−zR
to

be compared with Bound (16). The experimentation was limited by the relative
difficulty of finding optimal solutions for Problem (1)–(4). Therefore the sample
sizes (i.e., the number of instances calculated for each case) were often decreased,
as indicated at the top of each table when it is different from the corresponding
table of Section 6. The number n of nodes was often limited to 30 (as also indi-
cated in the tables) and therefore little sensitivity could be applied to finding out
its impact on the performance of the Greedy solution. Quite generally, the ratio
z−zG

z−zR
decreases with the size of K and experimentation is largely limited to K = 8.

The import of the experiment itself is also limited by the relative lack of relation-
ship between Ratio z−zG

z−zR
and Bound (16). One must further bear in mind that

most practitioners are interested in the performance of the Greedy Heuristic with
respect to the optimal value of Problem (1)–(5), not that of its linear relaxation,
however close that latter two may be [1]. Significantly, the ratio z−zG

z−zR
is very

small, compared with Bound (16), for the real-world data sets of [17,18] displayed
in Tables 9–11, in comparison with Table 2. Only a few values are presented, as
they stay systematically away from those of Bound (16).

Table 9. Percent value of z−zG

z−zR
for a data set in [17] with n = 33.

K 2 3 4 6 10 31

Percent 3 0 0 1 1 0
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Table 10. Percent value of z−zG

z−zR
for a data set in [17] with n = 57.

K 3 4 5 6 29 55

Percent 1 0 0 0 0 0

Table 11. Percent value of z−zG

z−zR
for a data set in [18] with n = 100.

K 4 7 16

Percent 1 1 1

Table 12. Percent values of z−zG

z−zR
for complete Euclidian graphs

with n = 30; sample size: 10.

�����p
K

2 3 4 5 6 7 8

2 2 3 2 2 1 1 1

5 2 3 2 2 1 1 1

The ratio z−zG

z−zR
is similarly quite smaller than that of Bound (16) for complete

Euclidian graphs. In Table 12 as in Table 3, it is not sensitive to the length of the
square in which the nodes lie. Also as in Table 3, it decreases as K increases, a
behavior displayed by all the following tables of the Appendix and largely explained
(following Prop. 1) by the optimality of the Greedy heuristic when the number of
locations selected does not reach K.

For trees with unit revenues shown in Table 13, the magnitude of the ratio z−zG

z−zR

becomes so small that it falls out the domain of magnitude of Bound (16). We
delay a (limited) analysis of the influence of size to Table 14 because increasing
size would not bring the ratio z−zG

z−zR
within distance of Bound (16).

Table 13. Permil value of z−zG

z−zR
for trees with unit revenues;

sample size: 3.

�����n
K 2 3 4 5 6 7 8

30 0 6 2 6 5 2 1

Furthermore, the ratio z−zG

z−zR
decreases markedly as the density of the graphs

increases (following the experiment carried out in Tab. 6) and therefore it is not
reported here. A possible explanation lies with the caution expressed at the end
of the presentation of Table 6. With increased size, the distance between nodes
becomes very small, with possibly little room for the Heuristic to err. The influ-
ence of the size of the graph is tested in Table 14, but because of experimental
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limitations, the small range of variation of n does not permit to assert that it has
little influence on the ratio z−zG

z−zR
.

Table 14. Percent value of z−zG

z−zR
for Euclidian trees; sample size: 3.

�����n
K 2 3 4 5 6 7 8

10 3 0 0 0 0 0 0

20 1 1 0 0 0 0 0

30 0 1 1 1 0 0 0

40 0 1 1 1 0 0 0

As the density of the tree increases in Table 15, following the protocol adopted
in Table 7, the ratio z−zG

z−zR
increases until it reaches values comparable with those

of Table 12 (the resemblance between the bottom of Tables 7 and 3 is less con-
spicuous).

Table 15. Percent value of z−zG

z−zR
for sparse Euclidian graphs

with n = 30; sample size: 3.

�����q
K 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1

2 2 2 1 1 1 1 1

3 1 1 0 0 0 0 0

4 1 1 1 1 1 1 1

5 0 0 0 0 0 0 0

6 2 1 1 1 0 0 0

7 0 1 1 0 0 0 1

8 1 1 1 1 1 1 1

9 1 0 1 0 0 0 0

10 3 2 2 1 1 1 1

11 2 2 2 1 1 1 1

12 2 2 2 2 2 1 1

13 2 2 2 2 2 1 1

Finally, the variation of the ratio z−zG

z−zR
in Table 16 is not in contrast with that

of preceding tables, contrarily to Table 8. It is not affected by the magnitude of
the random revenues and therefore only one range of magnitude is displayed.
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Table 16. Percent values of z−zG

z−zR
for random revenues with n =

30; sample size: 10.

�����r
K

2 3 4 5 6 7 8

2 2 2 1 1 1 1 0
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