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NUMERICAL SOLUTIONS OF THE MASS TRANSFER
PROBLEM ∗

Serge Dubuc
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2

Abstract. Let µ and ν be two probability measures on the real line
and let c be a lower semicontinuous function on the plane. The mass
transfer problem consists in determining a measure ξ whose marginals
coincide with µ and ν, and whose total cost

∫∫
c(x, y) dξ(x, y) is min-

imum. In this paper we present three algorithms to solve numerically
this Monge-Kantorovitch problem when the commodity being shipped
is one-dimensional and not necessarily confined to a bounded interval.
We illustrate these numerical methods and determine the convergence
rate.

Keywords. Continuous programming, transportation, mass transfer,
optimization.

1. Introduction

The mass transfer problem, also known as the Monge-Kantorovitch problem,
involves leveling a piece of land. It is natural to remove soil from areas whose level
is above the average, and put it in the hollows whose level is below it. To minimize
the work done, we have to find a model that minimizes the total displacement of
earth.

The Monge-Kantorovitch problem was first studied by the French mathemati-
cian Monge [14] in 1781. His work has been extended by several mathematicians,
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among them Appell [4, 5] and Hitchcock [9], who formulated its discrete version,
and Kantorovitch [11], who formulated it as a mathematical program in a function
space. This latter approach has been adopted in the modern literature.

Let µ and ν be regular measures defined on the topological spaces X and Y
respectively with µ(X) = ν(Y ). Let c denote a lower semicontinuous function on
the product space X × Y . The mass transfer problem consists in determining a
measure ξ on X×Y with marginals µ and ν and such that the total transportation
cost (primal objective) ∫∫

X×Y

c(x, y) dξ(x, y)

be minimal.
In this paper we present three algorithms to solve the Monge-Kantorovitch

problem numerically when the commodity to be shipped is one-dimensional. We
obtain solutions in the extended case where the material is not necessarily located
on a bounded interval. We then provide the theoretical solution of four particular
problems. Later we illustrate these numerical methods in three examples. In each
example, we know the exact solution for the Monge-Kantorovich problem and the
numerical approximation, which allows us to obtain the convergence rate.

2. Preliminary results

The mass transfer problem, or primal problem, is defined as

γ = inf
ξ≥0

∫∫
X×Y

c(x, y) dξ(x, y) subject to PXξ = µ
PY ξ = ν.

(1)

PXξ and PY ξ are the projections of ξ onto X and Y . We say that a measure ξ on
the product space X × Y is feasible if, for any choice of compact subsets K ⊆ X
and L ⊆ Y we have that

ξ(K × Y ) = µ(K) and ξ(X × L) = ν(L).

This condition is satisfied if and only if, for each pair of continuous functions φ
and ψ defined on X and Y respectively, we have:

∫∫
X×Y

φ(x) dξ(x, y) =
∫

X

φ(x) dµ(x)

and ∫∫
X×Y

ψ(y) dξ(x, y) =
∫

Y

ψ(y) dν(y).

One says that ξ is a measure on the product space X × Y whose marginals are µ
and ν respectively. Throughout the paper we denote Γ(µ, ν) the space of measures
on the product space X × Y with marginals µ and ν.
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Kantorovitch [11] has shown that the set of optimal measures is nonempty.
However he didn’t construct a solution. Under some conditions on the cost func-
tion, some authors have determined an optimal measure explicitly. For instance if
the cost function c is superadditive, the lower Fréchet bound is an optimal solu-
tion. Before stating this result, proved by Tchen [16], let us recall the definition
of a superadditive function and introduce Fréchet bounds.

We say that a two-variable function c is superadditive if

c(x, y) + c(x′, y′) − c(x′, y) − c(x, y′) ≥ 0 (2)

whenever x ≤ x′ and y ≤ y′. The functions xy, (x + y)2, min{x, y}, −max{x, y},
−|x− y|p (p ≥ 1), f(x− y) (f concave) are examples of superadditive functions.

The lower and upper Fréchet bounds are the joint distributions respectively
defined as

ξ∗(x, y) = max{µ(x) + ν(y) − 1, 0}, ξ∗(x, y) = min{µ(x), ν(y)}. (3)

Both ξ∗ and ξ∗ have marginals µ and ν.
Based on Fréchet bounds, Rachev and Rüschendorf [15] state the following

result that characterizes the set of feasible measures of the primal problem (1).

Theorem 2.1. The measure ξ is in Γ(µ, ν) if and only if

ξ∗(x, y) ≤ ξ(x, y) ≤ ξ∗(x, y) for all (x, y) ∈ X × Y.

In an instance of problem (1) with c(x, y) = ±xy, Hoeffding [10] and Fréchet [7]
have proved that ∫

R2
xy dξ∗ ≤

∫
R2
xy dξ ≤

∫
R2
xy dξ∗.

Tchen [16] extended this result to superadditive functions costs. He proved the
following key result.

Theorem 2.2. If c : R
2 → R is continuous and superadditive then every proba-

bility measure ξ in Γ(µ, ν) satisfies:
∫

X×Y

c dξ∗ ≤
∫

X×Y

c dξ ≤
∫

X×Y

c dξ∗. (4)

Throughout the paper we say that a function c fulfills the condition (5) if two
functions p(x) and q(y) can be found such that

|c(x, y)| ≤ p(x) + q(y) (5)

for every (x, y) in X × Y , with p ∈ L1(µ), q ∈ L1(ν) and for every x ∈ X ,
p(x) < ∞, for every y ∈ Y , q(y) < ∞. Kellerer [12] was the first to state this
condition. When this condition is fulfilled the primal problem (1) has a finite
optimal solution.
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We illustrate how to verify this condition in a given example. We consider the
mass transfer problem (1) where X = Y = R, µ = ν is the probability measure
whose distribution function is a normal probability distribution and c(x, y) =
exp(|x| + |y|). For this mass transfer problem, condition (5) is satisfied, we may
choose p(x) = exp(2|x|), q(y) = exp(|2|y|).

3. Algorithms for the continuous

transportation problem

We suppose that µ and ν are two probability measures on the real line. Before
stating our algorithms, let us recall that the mass transfer problem constitutes a
continuous extension of the Hitchcock transportation problem also known as the
classical transportation problem. The latter is one of the most studied problems
in the field of network flows.

Let a1, a2, ..., am denote the supply at origins 1, 2, ..., m and b1, b2, ..., bn
the demand at destinations 1, 2, ..., n. Let cij represents the unit transportation
cost from an origin i to a destination j. The classical transportation problem
consists in determining the amount of the commodity xij to be shipped between
an origin i and a destination j at a minimum transportation cost, while satisfying
the demand at each destination.

Mathematically, it takes the form of the linear program:

min ρ =
m∑

i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

xij = ai 1 ≤ i ≤ m (6)

m∑
i=1

xij = bj 1 ≤ j ≤ n

xij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where ai denotes the supply at origin i, bj the demand at destination j, cij the unit
transportation cost from origin i to destination j and xij the amount of commodity
being shipped from origin i to destination j.

The analogy between the mass transfer problem and the classical transportation
problem is obvious. In the continuous transportation problem, origins are the
points where the earth soil has to be removed and destinations are the points
where the earth has to be deposited.

We suggest algorithms to compute numerically

γ = inf
∫∫

R2
c(x, y) dξ(x, y) (7)

where ξ is a measure on R
2 with respective marginals µ and ν.
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For the following algorithms we suppose that the cost function c(x, y) fulfills
the condition (5).

Algorithm 1. Let us consider ε > 0 sufficiently small. One can find M > 0
sufficiently large that ∫

|x|>M

p(x) dµ(x) < ε/4.

We subdivide the interval A = [−M,M ] in m sub-intervals A1, A2, ..., Am.
If we denote A0 = (−∞,−M), Am+1 = (M,+∞),

A0, A1, ..., Am, Am+1

constitute a partition of R. Similarly for the measure ν, one can find N > 0
sufficiently large that ∫

|y|>N

q(y) dν(y) < ε/4.

We subdivide the interval B = [−N,N ] in n sub-intervals B1, B2, ..., Bn

If we denote B0 = (−∞,−N), Bn+1 = (N,+∞),

B0, B1, ..., Bn, Bn+1

constitute a partition of R.
Let cij be an approximated value of c(x, y) on the rectangle Ai ×Bj . We solve

the following Hitchcock problem

min γ1,mn =
m∑

i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

xij = µ(Ai) 1 ≤ i ≤ m

m∑
i=1

xij = ν(Bj) 1 ≤ j ≤ n

xij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n

and we wish that for m and n sufficiently large, γ1,mn be a good approximation
of the optimal value of the continuous transportation problem (7).

It is natural that on a sub-rectangle Ai × Bj , we approximate c(x, y) by
cij = c(xi, yj) where (xi, yj) ∈ Ai ×Bj .

Throughout this paper we denote:

Mij = sup{c(x, y) : (x, y) ∈ Ai ×Bj},

mij = inf{c(x, y) : (x, y) ∈ Ai ×Bj}.
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Algorithm 2. We choose M and N such that µ(A) = ν(B). On the sub-rectangle
Ai ×Bj 1 ≤ i ≤ m , 1 ≤ j ≤ n, we use the following approximation of c(x, y):

cij = inf{c(x, y) : (x, y) ∈ Ai ×Bj} = mij .

As the integral of the cost function on (A×B)c is negligible, we replace c(x, y) by
zero when (x, y) doesn’t belong to A×B. We do the same for the sub-rectangles
Ai ×Bj where i ∈ {0,m+ 1}, j ∈ {0, n+ 1}.

Then we solve the following classical transportation problem:

min γ1 =
m∑

i=1

n∑
j=1

mijxij

s.t.
n∑

j=1

xij = µ(Ai) 1 ≤ i ≤ m (8)

m∑
i=1

xij = ν(Bj) 1 ≤ j ≤ n

xij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Before bounding γ − γ1, let us establish some results that we will need after
considering the two following problems:

γ2 = inf
∫∫

A×B

c(x, y) dξ(x, y) (9)

where ξ is a measure on A×B with respective marginals µ|A and ν|B , and

min γ3 =
m∑

i=1

n∑
j=1

Mijxij

s.t.
n∑

j=1

xij = µ(Ai) 1 ≤ i ≤ m (10)

m∑
i=1

xij = ν(Bj) 1 ≤ j ≤ n

xij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Lemma 3.1. If c(x, y) ≥ 0, then γ1 ≤ γ2 ≤ γ3.
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Proof. We first show the inequality γ1 ≤ γ2. Let ξ2 be an optimal solution of the
problem (9). We have

γ2 =
∫∫

A×B

c(x, y) dξ2(x, y)

=
m∑

i=1

n∑
j=1

∫∫
Ai×Bj

c(x, y)dξ2(x, y)

≥
m∑

i=1

n∑
j=1

mij

∫∫
Ai×Bj

dξ2(x, y)

=
m∑

i=1

n∑
j=1

mijξ2(Ai ×Bj).

Let us set yij = ξ2(Ai ×Bj). We have:

n∑
j=1

yij =
n∑

j=1

ξ2(Ai ×Bj) = ξ2(Ai ×B) = µ(Ai),

m∑
i=1

yij =
m∑

i=1

ξ2(Ai ×Bj) = ξ2(A×Bj) = ν(Bj).

Hence yij is a feasible solution of the problem (8). Thus

γ2 ≥
m∑

i=1

n∑
j=1

mijξ2(Ai × Bj) =
m∑

i=1

n∑
j=1

mijyij ≥ γ1.

Let us now show that γ2 ≤ γ3 Consider (x1
ij) an optimal solution for the problem

(10). We associate with (x1
ij) a feasible measure ξ for the problem (9) for which

ξ(Ai ×Bj) = x1
ij for all i, j.

We have:

γ3 =
m∑

i=1

n∑
j=1

Mijx
1
ij

=
m∑

i=1

n∑
j=1

∫∫
Ai×Bj

Mijdξ(x, y)

≥
m∑

i=1

n∑
j=1

∫∫
Ai×Bj

c(x, y)dξ(x, y)

= γ2. �
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For the remainder of this section, h represents the maximum length of all Ai,
k represents the maximum length of all Bj , H = max{|x| : x ∈ A} and
K = max{|y| : y ∈ B}.
Lemma 3.2. If c(x, y) = (y − x)2, then Mij −mij ≤ 2(h+ k)(H +K).

Proof. We have,

(yi+1 − xi+1)2 − (yi − xi)2 = (yi+1 − xi+1 − yi + xi)(yi+1 − xi+1 + yi − xi)

≤ 2(h+ k)(H +K). �

Lemma 3.3. If |c(x, y)| ≤ p(x) + q(y), then

γ ≤ γ2 +
∫

Ac

p(x) dµ(x) +
∫

Bc

q(y) dν(y).

Proof. Consider ξ2, an optimal solution for the problem (9). If we set

ξ = ξ2 +
µ′ ⊗ ν′

µ′(Ac)
,

where µ′ = µ|Ac and ν′ = ν|Bc we have

γ ≤ γ2 +
∫∫

(A×B)c

c(x, y) d
(
µ′ ⊗ ν′

µ′(Ac)

)
≤ γ2 +

∫
Ac

p(x) dµ(x) +
∫

Bc

q(y) dν(y). �

Lemma 3.4. If the cost function c is superadditive then γ2 ≤ γ <∞.

Proof. Let ξ be the Fréchet bound which is an optimal solution for problem (7)
yielding γ =

∫∫
R2 c(x, y) dξ. We set ξ2 = ξ|A×B. ξ2 is a feasible solution for

problem (9). Thus

γ =
∫∫

R2
c(x, y) dξ ≥

∫∫
A×B

c(x, y) dξ2 ≥ γ2.

We notice that if the cost function c is represented by the distance (y − x)2, we
have (y−x)2 ≤ 2(x2 +y2). Hence 0 ≤ c(x, y) ≤ p(x)+q(y) with p(x) = 2x2 ≥ 0,
q(y) = 2y2 ≥ 0. If we know that

∫
x2 dµ(x) < ∞ and

∫
y2 dν(y) < ∞, then the

condition (5) is fulfilled. �

Theorem 3.1. If c(x, y) = (y−x)2,
∫
|x|>M x2 dµ(x) < ε/8 and

∫
|y|>N y2 dν(y) <

ε/8 then
|γ − γ1| ≤ ε/2 + 2(h+ k)(H +K)µ(X).

Proof. By Lemma 3.2 we get the inequality Mij − mij ≤ 2(h + k)(H + K).
Consequently

γ3 − γ1 ≤ 2(h+ k)(H +K)µ(X). (11)
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By Lemma 3.3, we have γ ≤ γ2 + 2
∫

Ac x
2 dµ(x) + 2

∫
Bc y

2 dν(y) ≤ γ2 + ε/2 and

γ ≤ γ2 + ε/2. (12)

By Lemma 3.4 and inequality (12), we have |γ − γ2| ≤ ε/2. From Lemma 3.1
and inequality (11), we get |γ2 − γ1| ≤ 2(h+ k)(H +K)µ(X). From the last two
inequalities, we get the conclusion. �

Algorithm 3. M and N are chosen such that µ(A) = ν(B). The cost function
c(x, y) is approximated on the sub-rectangles Ai ×Bj 1 ≤ i ≤ m , 1 ≤ j ≤ n by

cij = sup{c(x, y) : (x, y) ∈ Ai ×Bj}.

On other sub-rectangles of the subdivision that are outside of A×B, we approxi-
mate the cost function by zero as before. We set

ai = µ(Ai) 1 ≤ i ≤ m,

bj = ν(Bj) 1 ≤ j ≤ n.

We solve the associated Hitchcock problem. We denote by γ1 its optimal value.
Reasoning as before yields that, under same hypotheses on the cost function,

|γ − γ1| ≤ ε/2 + 2(h+ k)(H +K). (13)

Remark. For each algorithm, we have to choose two numbers M and N such
that

∫ M

−M p(x) dµ(x) < ε/4,
∫ N

−N q(y) dν(y) < ε/4 and
∫ M

−M p(x) dµ(x) =∫ N

−N q(y) dµ(y). If M and N are sufficiently large, the first two conditions are
satisfied. If the two measures µ and ν are continuous, it is not difficult to fulfill
the third condition: if

∫ M

−M
p(x) dµ(x) <

∫ N

−N
q(y) dµ(y) increase M until we get

the required equality and if
∫ M

−M
p(x) dµ(x) >

∫ N

−N
q(y) dµ(y) increase N until we

get the required equality. For measures µ and ν which have a discrete part, the
previous algorithms should be sligthly modify.

4. Theoretical solution of 4 particular problems

For the problems treated in this section, the given measures µ, ν both have the
same distribution (normal), or different distributions (one normal and the other
uniform), the cost function is c(x, y) = (y − x)2.

We consider two probability measures defined on the real line whose distribu-
tion functions are F and G. The first represents a normal probability distribution
X = N(µ1, σ

2
1) with mean µ1 and variance σ1

2, the second represents a normal
probability distribution Y = N(µ2, σ

2
2) with mean µ2 and variance σ2

2. We con-
sider the cost function c(x, y) = (y − x)2.
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Problem 1. The first problem treated consists in determining the value

γ = inf
∫

(y − x)2dξ(x, y) (14)

where ξ is a measure defined on R
2 whose respective marginals are the two previous

measures.
The primal problem (14) is equivalent to the following problem:

γ = − sup
∫

−(y − x)2dξ(x, y) (15)

where ξ is feasible for the problem (14).
Since −(y−x)2 is a superadditive function, the upper Fréchet bound ξ∗(x, y) =

min{F (x), G(y)} is an optimal solution for the problem (15) and hence for (14).
We notice that the optimal value is theoretically equal to

∫ −(y−x)2dξ∗(x, y). As
direct evaluation of this value is not practically possible, we notice that solving
the problem (14) is equivalent to solving the following problem:
• If X = N(µ1, σ

2
1) and Y = N(µ2, σ

2
2) are two normal random variables, how

should we choose a random vector Z = (X,Y ) in order to minimize E((X−Y )2)?
The response, we suggest, is to set

Y = µ2 + σ2/σ1(X − µ1).

We have Y = a+ bX where b = σ2/σ1 and a = (µ2σ1 − µ1σ2)/σ1. In this case, it
is true that Y is a normal random variable N(µ2, σ

2
2) when X is a normal random

variable N(µ1, σ
2
1).

To prove that Z = (X,Y ) is an optimal solution, we show that ξ, the joint
distribution of Z, is equal to ξ∗. Let (x, y) ∈ R

2,

ξ(x, y) = Pr(X ≤ x,X ≤ (y − a)/b)
= min{F (x), F ((y − a)/b)}
= min{F (x), G(y)} = ξ∗(x, y).

Let us now determine the optimal value of (14). We have:

γ =
∫

R2
(y − x)2dξ∗(x, y)

=
∫

R

y2dG(y) +
∫

R

x2dF (x) − 2
∫

R2
xydξ(x, y)

=
∫

R

y2dG(y) + (1 − 2b)
∫

R

x2dF (x) − 2a
∫

R

xdF (x)

= (σ1 − σ2)2 + (µ1 − µ2)2.

Problem 2. Consider now the Kantorovitch primal problem in the case where
the two measures defined on the real line correspond to distinct distributions.
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In this problem we determine the minimum value

γ = inf
∫

(y − x)2dξ(x, y) (16)

where ξ is a measure defined on R
2 whose respective marginals are the measures

that correspond respectively to a normal random variable X = N(µ, σ2) and a
uniform random variable Y on [a, b]. Let’s F (x) represent the distribution function
of X and G(y) the distribution function of Y .

F (x) =
∫ x

−∞
exp((t− µ)2/σ2) dt /

√
2πσ2

and

G(y) =

⎧⎨
⎩

0 : y < a
(y − a)/(b− a) : a ≤ y ≤ b

1 : y > b.

As before, since −(y − x)2 is a superadditive function, the upper Fréchet bound
ξ∗(x, y) = min{F (x), G(y)} is an optimal solution of problem (16). In order
to determine explicitly the optimal value of the primal problem (16), we notice
that solving (16) is equivalent to determining the random vector Z = (X,Y ) that
minimizes E((X−Y )2) withX a normal distribution whose distribution function is
F (x) and Y the uniform distribution on [a, b] whose distribution function is G(y).
If Y = (b − a)F (X) + a, then Y is a uniform random variable with distribution
function G(y) and Z = (X,Y ) minimizes E((X − Y )2). Let us first show that Y
has a uniform distribution with G(y) as its distribution function. In fact

Pr(Y ≤ y) = Pr(X ≤ F−1((y − a)/(b− a)))
= (y − a)/(b− a)
= G(y).

To prove that Z = (X,Y ) minimizes E((X − Y )2), we show that ξ the joint
distribution of Z is equal to ξ∗. Let (x, y) ∈ R

2. We have:

ξ(x, y) = Pr(X ≤ x,X ≤ F−1((y − a)/(b− a)))
= min{F (x), F [F−1((y − a)/(b− a))]}
= ξ∗(x, y).
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We determine the optimal value of the problem (16). We have:

γ =
∫

R2
(y − x)2dξ∗(x, y)

=
∫

R

y2dG(y) +
∫

R

x2dF (x) − 2
∫

R2
xydξ(x, y)

= (b2 + ab+ a2)/3 + µ2 + σ2 − 2
∫

R2
xydξ(x, y).

Let us evaluate
∫

R2 xydξ(x, y).

∫
R2
xydξ(x, y) =

∫
R

x[a+ (b− a)F (x)]dF (x)

= aµ+ (b − a)I/(2πσ2)

where I =
∫

R
[
∫ x

−∞ exp(−(t−µ)/σ)2/2)dt]x exp(−(x−µ)/σ)2/2)dx, integration by
parts gives I = πµσ2 +

√
πσ3. By using this value of I, we get

∫
R2
xydξ(x, y) = µ(a+ b)/2 + σ(b − a)/(2

√
π).

Thus
γ = (b2 + ab+ a2)/3 + µ2 + σ2 − µ(a+ b) − σ(b − a)/

√
π. (17)

Problem 3. As a third problem, we determine the optimal value

γ = sup
∫

(y − x)2dξ(x, y) (18)

where ξ is a feasible measure for problem (14). Since −(y− x)2 is a superadditive
function, the lower Fréchet bound ξ∗(x, y) = max(0, F (x)+G(y)−1) is an optimal
solution for the primal problem (18). Problem (18) is equivalent to finding a
random vector Z = (X,Y ) that maximizes E((X − Y )2) where X = N(µ1, σ

2
1)

and Y = N(µ2, σ
2
2) are two normal random variables.

Consider the random variable

Y = µ2 − σ2/σ1(X − µ1).

We have Y = a + bX where b = −σ2/σ1 and a = (µ2σ1 + µ1σ2)/σ1. Thus
Y = N(µ2, σ

2
2) when X = N(µ1, σ

2
1). In order to prove that Z = (X,Y ) is a

maximal random vector, we show that the joint distribution ξ of Z is equal to ξ∗.
Let (x, y) ∈ R

2,

ξ(x, y) = max{0, F (x) − F ((y − a)/b)}
= max{0, F (x) +G(y) − 1} = ξ∗(x, y).
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The optimal value of (18) is:

γ =
∫

R2
(y − x)2dξ∗(x, y),

=
∫

R

y2dG(y) +
∫

R

x2dF (x) − 2
∫

R2
x(a+ bx)dF (x),

= (σ1 + σ2)2 + (µ1 − µ2)2.

Problem 4. The last problem treated in this section consists of determining the
maximal value

γ = sup
∫

(y − x)2dξ(x, y) (19)

where ξ is a feasible measure for problem (16) This problem is equivalent to the
problem of finding a random vector Z = (X,Y ) that maximizes E((X−Y )2) with
X a normal random variable whose distribution function is F (x) and Y a uniform
random variable whose distribution function is G(y).

Set Y = (a− b)F (X) + b. We show that Y is a uniform random variable with
distribution function G(y).

Pr(Y ≤ y) = Pr(X ≥ F−1((y − b)/(a− b)))
= (y − a)/(b− a) = G(y).

Also the random vector Z = (X,Y ) maximizes E((X − Y )2). In fact,

ξ(x, y) = Pr(X ≤ x,X ≥ F−1((y − b)/(a− b)))
= max{0, F (x) − (y − b)/(a− b)}
= max{0, F (x) +G(y) − 1} = ξ∗(x, y).

The optimal value in problem (19) is:

γ =
∫

R2
(y − x)2dξ∗(x, y),

= (b2 + ab+ a2)/3 + µ2 + σ2 − 2
∫

R2
xydξ(x, y),

= (b2 + ab+ a2)/3 + µ2 + σ2 − µ(a+ b) + σ(b − a)/
√
π.

5. Examples of numerical solution

We consider four examples of numerical solutions, where the intervals A, B are
respectively [µ1 − 5σ1, µ1 + 5σ1] and [µ2 − 5σ2, µ2 + 5σ2]. We divide them to 2n
equal sub-intervals. The partitions A1, ..., A2n of A and B1, ..., B2n of B are chosen
such that none of the rectangles Ai × Bj i, j ∈ {1, ..., 2n} × {1, ..., 2n} are met in
their interior by the coordinate axes. This entails that Mij and mij are found in
the four corner points of the rectangle Ai ×Bj . The cost matrix, the supplies and
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Table 1. Values of the deviation γ − γ1 for examples 1–3 solved
by algorithm 2.

n Example 1 Example 2 Example 3
10 1.0000 0.9461 1.7647
20 0.7500 0.7343 1.2422
40 0.4375 0.4681 0.7386
50 0.3600 0.3934 0.6115
100 0.1900 0.2171 0.3273
200 0.0975 0.1140 0.1693
250 0.0784 0.0921 0.1363
400 0.0494 0.0584 0.0861

Table 2. Regressions lines for examples 1–3.

Example 1 Example 2 Example 3
a −2.1741 −1.9861 −2.6933
b 0.8472 0.7830 0.8420
r 0.9939 0.9910 0.9954

the demands which are the data of classical transportation problems are computed
by a simple program. This program determines first the value of the cumulative
function for any real. Those values allow us to determine the supplies and the
demands. Assuming that the intervals [µ1−5σ1, µ1 +5σ1], [µ2−5σ2, µ2 +5σ2] are
subdivided into sub-intervals such that c(x, y) attains its minimum on a corner of
the sub-rectangles, we have constructed a function that allows us to obtain the cost
matrix. We then solve the Hichcock problem with any efficient program. After
using different discretizations, we finish by determining linear regression lines by
the method of least squares for the order of the approximations.

The four examples studied are in the category of problem (14) which was
solved theoretically in the section of theoretical solution, the cost function being
c(x, y) = (y − x)2. In each example the measure µ corresponds to N(0, 1). The
measure ν corresponds respectively to N(1, 1), N(0, 2), N(1, 2) and N(0, 4) in the
first, second, third and fourth example. The respective theoretical optimal values
γ are 1, 1, 2 and 9.

The first three examples were numerically solved with algorithm 2. The first
table compares the precision γ − γ1 where γ1 is the minimal transportation cost
given by algorithm 2 for increasing values n of discretization for each example.

The second table gives the best linear line y = a + bx with its correlation
coefficient r according to the method of least squares for the points (ln(γ−γ1), lnn).

We remark that in the numerical solution of the first three examples by Algo-
rithm 2, the North-West method always provides the optimal solution.

The fourth example was numerically solved by Algorithm 3. We note that in
Algorithm 3 during the discretization the cost matrix in the Hitchcock problem
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Table 3. Error γ1 − γ for example 4 and computing time in
seconds (Algorithm 3).

n γ1 − γ computing time
10 10.7902 <0.01
20 4.4156 <0.01
40 1.9919 0.07
50 1.5608 0.09
100 0.7485 0.60
200 0.3664 4.54
250 0.2919 8.63
400 0.1812 37.21

doesn’t necessarily satisfy the Monge condition which is the equivalent of the
superadditivity property to the discrete case, modulo a sign reversal convention,
even though the cost function satisfies the inequality ∂2c

∂x∂y ≤ 0. In other words
the North-West method will not always give the optimal solution. As a matter of
fact, in example 4, the North-West method provides an initial solution, but not
the optimal solution.

The third table provides the error γ1 −γ as given by Algorithm 3 for increasing
values n of discretization and the time of computation. The Hitchcock problem
was solved by an efficient implementation of the network simplex method [8].
(Characteristics of the computer: Sun Ultra 60, 2 CPU, speed 300 MHZ, 769 Mo
of memory.)

6. Analysis of the convergence rate

Consider µ a measure induced by a normal random variable X = N(µ1, σ
2
1) and

ν a measure induced by a normal random variable Y = N(µ2, σ
2
2). We show in

the following paragraphs that if we consider L =
√

2 lnn, A = [µ1−Lσ1, µ1 +Lσ1]
B = [µ2 − Lσ2, µ2 + Lσ2] and A1, A2, ..., A2n−1, A2n a partition of A where the
Ai have lengths Lσ1/n and B1, B2, ..., B2n−1, B2n a partition of B with the Bi

that have lengths Lσ2/n, then the solution of problem (8) gives a value γ1 which
approaches the optimal value γ of problem (7) as n approaches infinity.

We recall the definition f(x) ∼ g(x) (f and g are asymptotic) if and only if

lim
x→∞ f(x)/g(x) = 1.

Let us first determine the asymptotic behavior of

I(L) =
∫
|x−µ1|>Lσ1

x2 dµ(x) +
∫
|y−µ2|>Lσ2

y2 dν(y).
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After some simple computations, we get

√
2πI(L) = (µ1

2+µ2
2+σ1

2+σ2
2)

∫
|t|≥L

exp(−t2/2) dt+(σ1
2+σ2

2)2L exp(−L2/2).

But as given in [1],
∫
|t|≥L exp(−t2/2) dt ∼ 2 exp(−L2/2)/L; hence

I(L) ∼
√

2/π(σ1
2 + σ2

2)L exp(−L2/2).

If we set L =
√

2 lnn, we get

I(L) ∼ 2/
√
π(σ1

2 + σ2
2)
√

lnn/n.

We now show that γ1 approaches the optimal value γ when n approaches infinity.
By Theorem 3.1,

|γ − γ1| ≤ 1/n+ 2(h+ k)(H +K).

Since h = Lσ1/n 
 √
2 lnnσ1/n and k = Lσ2/n 
 √

2 lnnσ2/n, we get

|γ − γ1| ≤ [1 + 2
√

2 lnn(σ1 + σ2)(H(n) +K(n)]/n

where
H(n) = max{|µ1 −

√
2 lnnσ1|, |µ1 +

√
2 lnnσ1|},

K(n) = max{|µ2 −
√

2 lnnσ2|, |µ2 +
√

2 lnnσ2|}.
Thus

|γ − γ1| ≤ C(lnn)/n (20)
where C only depends on µ1, σ1, µ2, σ2 and N , but not on n.

The error γ − γ1 does not exceed C lnn/n if 2n is the number of sub-intervals
used in the discretization for the computation of numerical solution of prob-
lem (8). In order to compare this result with Table 2 of Section 5, we can find
the regression line y = α + βx corresponding to the points (lnn, ln(n lnn)), for
n = 10, 20, 40, 50, 100, 200, 250, 400. we get α = −0.3294, β = 0.7477 with a cor-
relation coefficient of 99.9%. The parameter β is not too much distant from the
values b of examples of Table 2.

7. Conclusion

Finding the numerical solution of a continuous program is not always an easy
task. This is the case with the Kantorovitch problem of mass transfer. To our
knowledge, very few authors have solved numerically the mass transfer problem.
Besides Levin and Milyutin [13], we can cite Anderson and Philpott [2] and also
Anderson and Nash [3]. Their solutions use the duality theory. As other authors,
Dubuc and Tanguay [6] only discuss cases where the intervals of R and the cost
function are bounded.
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We note that we are aware that the proposed algorithms admit a natural
generalization for multidimensional problems, but we do not know their rate of
convergence.
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