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COMBINATORIAL OPTIMIZATION IN DNA MAPPING
— A COMPUTATIONAL THREAD OF THE SIMPLIFIED

PARTIAL DIGEST PROBLEM ∗
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and Marta Kasprzak
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Abstract. In the paper, the problem of the genome mapping of DNA
molecules, is presented. In particular, the new approach — the Sim-
plified Partial Digest Problem (SPDP), is analyzed. This approach,
although easy in laboratory implementation and robust with respect
to measurement errors, when formulated in terms of a combinatorial
search problem, is proved to be strongly NP-hard for the general error-
free case. For a subproblem of the SPDP, a simple O(n log n)-time
algorithm is given, where n is a number of restriction sites.
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1. Introduction

A construction of a DNA physical map is an important step in the genome
sequencing process (cf . [7] and [15,18,22] as excellent sources of algorithmic ideas
used in computational biology). This map of a DNA molecule contains the infor-
mation about locations of short, specific subsequences called markers and in turn
places longer DNA subchains on the chromosome. One approach to create the
map is based upon splitting the molecule into many shorter ones and hybridizing
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them with the markers (known very short DNA sequences). This approach results
in the interval graph model used successfully in the past [1].

A more recent approach to the genome map construction relies on a digestion of
a DNA molecule with restriction enzymes [22]. These enzymes cut DNA molecules
within specific, short patterns of nucleotides called restriction sites. After the
digestion, the lengths of obtained fragments are measured and the original ordering
of these fragments must be reconstructed, and this is the place where combinatorial
optimization (operations research) methods come to the effect. In practice, several
variants of this approach are used. Two of the best known are the double digest
and the partial digest (with many its variants).

In the double digest approach two restriction enzymes are used. A target DNA
is amplified, e.g. using a PCR reaction, and the copies are divided into three sets.
Molecules from the first set are digested by one enzyme, molecules from the second
set are digested by the other enzyme and molecules from the third set are cut by
both enzymes. All digestions are complete for the time span of each reaction is
long enough to allow the enzyme to cut the target strand at each occurrence of the
restriction site. As the result one obtains three collections of short DNA fragments
that correspond to three digestion processes. The lengths of these fragments are
measured during a gel electrophoresis process and recorded as three multisets.
On the basis of this data locations of restriction sites in the target DNA are
reconstructed. Unfortunately, from the combinatorial point of view the Double
Digest Problem (DDP) is NP-hard even in an ideal case involving no errors [9],
thus unlikely to admit a polynomial time algorithm. Another difficulty which must
be taken into account when dealing with this approach is an exponential number
of possible solutions (as measured with respect to a number of restriction sites —
n) [16]. As an alternative the partial digest approach has been proposed [20, 21].
Here, one enzyme only is applied to cut the DNA molecule into fragments of
different lengths by using the enzyme for different time periods. In the error-free
case one gets here all

(
n
2

)
fragment lengths between all pairs of cuts (including two

ends of the DNA molecule). The resulting Partial Digest Problem (PDP) consists
in reconstructing the original positions of the cuts. This problem is known also in
discrete geometry [19, 20], where having all interpoint distances, one reconstructs
the positions of a set of points on a line. For PDP two backtracking algorithms
with an exponential worst case complexity have been proposed in [20] and [21],
respectively. In general, the complexity of the PDP remains an open question,
although measurement errors and noisy data result in the strong NP-hardness
of the problem ([5] and [6], respectively). It is worth stressing that a number
of possible solutions in the PDP is bounded from above by a polynomial in a
number of restriction sites [20]. Other known approaches in that area include
optical mapping [11, 17], probed partial digest mapping [13], and labeled partial
digest [14]. Let us especially comment on the latter approach, which although
more complicated from the implementation point of view (labeling the ends of a
DNA molecule by using radioactive labeling), results in a polynomial algorithm
for the related variant of the PDP and produces a unique solution [14].



COMBINATORIAL OPTIMIZATION IN DNA MAPPING 229

In the present paper, we study yet another variant of the PDP, called the
Simplified Partial Digest Problem (SPDP), which is very simple for the laboratory
implementation [2]. In this approach only two digestions are performed. We will
call them, respectively, a short digestion and a complete (long) digestion. After
amplification, the copies of a target strand are splitted into two sets. The goal
of a short digestion is to have all molecules from one of the sets cut in at most
one occurrence of the restriction site. This is assured by properly chosen time
span of the reaction. Molecules from the other set are cut in all occurrences of
the restriction site due to the long reaction time span (a complete digestion).
Then, as in other methods, the lengths of restriction fragments obtained, are
measured during a gel electrophoresis process. Although, the algorihtms proposed
for the SPDP [2, 3] are very efficient on the average and robust with respect to
measurement errors, the complexity of the problem in the error-free case was open
for several years.

In this paper, we present the proof that the general error-free variant of the
SPDP is strongly NP-hard (of course in its search version). On the other hand, if
the complete digestion yields a multiset composed of 1s and 2s only, the problem
is solvable in O(n logn) time, where n is a number of digestion sites. An orga-
nization of the paper is as follows. Section 2 contains a formal definition of the
SPDP and the proof of its strong NP-hardness. Section 3 presents a polynomial
time algorithm for the restricted case of the problem. Conclusions in Section 4
summarize the work and indicate further research problems.

2. Computational complexity of the SPDP

In this section we prove, that the combinatorial search version of the Simpli-
fied Partial Digest Problem without errors is strongly NP-hard (this proof was
presented at the conference in Dagstuhl [12]). What is interesting, we do not
do it in a standard way by a transformation from the decision version of a known
intractable problem to the decision version of our problem, since the decision coun-
terpart of the SPDP is polynomially solvable. This is because — on the assumption
that the instance of our problem has no errors — the restriction fragments from
both digestion reactions exactly match those existing in the real restriction map,
therefore the solution always exists. However, the process of finding this solution
(i.e. the map) is not easy from the computational complexity point of view.

A similar situation — where the decision version of a problem is easy but its
search version is hard — is encountered in the DNA sequencing problem [4]. In this
problem, as well as in SPDP, the additional information about instances — the lack
of errors or some type of errors — results in the answer “yes” for every instance of
the decision version. Therefore, the process of proving strong NP-hardness of the
search problem gone through an artificial decision problem, allowing also instances
with the answer “no”.

In our reasoning we based on a deduction formed in [10] for the Hamiltonian
Circuit Problem (being NP-complete in its decision version). As it has been stated
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Figure 1. An example for the Simplified Partial Digest Problem
without errors.

there, even if we knew a graph contains a Hamiltonian circuit (in this case the
decision version is, of course, trivially easy), we could not find it in polynomial
time unless P = NP. For “if we had such an algorithm A, we could use it to tell
in polynomial time whether an arbitrary graph G has a Hamiltonian circuit. Let
p be the polynomial that bounds A’s running time on graphs with Hamiltonian
circuits. Apply A to G. If G has a Hamiltonian circuit, A will find one in time
p(|G|). If G does not have such a circuit, then after p(|G|) steps A could not have
found one, and we will know that none exists”.

2.1. Formulations of related problems

The innovation of the well-known Partial Digest Problem, studied here, was
based on a simplified biochemical experiment and proposed first time in [2]. Its
search version without any error in instances can be formulated as below.

Problem 1. Simplified Partial Digest Problem (ΠSMs) — search version [2].
Instance: Multiset A = {a1, a2, ..., a2n} of lengths of restriction fragments coming
from short digestion and multiset B = {b1, b2, ..., bn+1} of lengths of restriction
fragments coming from long digestion, A and B containing no errors.
Answer: A map of n restriction sites of a DNA chain consistent with multisets
A and B, i.e. such an order of elements of B which allows to cover the indicated
cuts by some order of elements of A.

We see that DΠSMs = YΠSMs , where DΠSMs is the set of all instances of ΠSMs

and YΠSMs is the set of all instances of ΠSMs for which such a solution exists. (This
follows from the fact, that both multisets come from a real error-free digestion
experiment.) Example 1 shows an instance of this problem together with a possible
solution.

Example 1. Let the output of the digestion reactions performed without errors
be: A = {3, 6, 8, 9, 10, 11, 13, 16} from the short reaction and B = {2, 3, 3, 5, 6}
from the long one. The feasible solution for the problem is presented in Figure 1
and can be written as the following ordered list of B: [3, 5, 2, 3, 6].

To study the computational complexity of problem ΠSMs, we must introduce an
additional decision quasi-mapping problem ΠQMd. In the quasi-mapping problem
the multisets contain arbitrary positive integers instead of the ones coming from
an errorless experiment, thus the answer to the new problem is not always “yes”.
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Problem 2. Quasi-Mapping Problem (ΠQMd) — decision version.
Instance: Multisets A = {a1, a2, ..., a2n} and B = {b1, b2, ..., bn+1} of positive
integers.
Question: Does there exist a map of n “restriction sites” consistent with multisets
A and B, i.e. such an ordering of elements of B which allows to cover the indicated
“cuts” by some order of elements of A?

The two problems ΠSMs and ΠQMd have the same sets of instances with the pos-
itive answer: YΠSMs = YΠQMd , because any instance of ΠQMd resulting in the “yes”
answer belongs also to DΠSMs . However, problem ΠQMd contains also instances
with the negative answer (DΠSMs ⊂ DΠQMd).

In the next subsection we construct a pseudo-polynomial transformation from
the problem Numerical Matching With Target Sums, cited below, to the considered
SPDP.

Problem 3. Numerical Matching With Target Sums (ΠNMd) — decision version
[8].
Instance: Disjoint sets X and Y , each containing m elements, sizes s(xi) and
s(yi) for every xi ∈ X and yi ∈ Y , and a target vector [z1, z2, ..., zm]; s(xi), s(yi),
and zi being positive integers, i = 1...m.
Question: Can X ∪ Y be partitioned into m disjoint sets W1, W2, ..., Wm, each
containing exactly one element from X and one element from Y , such that

∑
w∈Wi

s(w) = zi, i = 1...m?

This problem is strongly NP-complete [8].

2.2. The transformation

The first stage of proving strong NP-hardness of the Simplified Partial Digest
Problem without errors consists in a simple modification of problem ΠNMd. We
are interested in a variant with the ranges of variables shifted by some added
values. The modified ranges will have several properties, in particular, they will
be disjoint. Initially, the ranges of values of variables s(xi), s(yi), and zi, i = 1...m,
can be written as follows:

s(xi) ∈ 〈xL, xR〉,
s(yi) ∈ 〈yL, yR〉,

zi ∈ 〈zL, zR〉,

where the variables with index L mean the smallest values and the ones with index
R mean the largest values in the respective collections. These ranges are arbitrary,
however, we assume here that they satisfy few obvious conditions:

zR ≤ xR + yR,
zL ≥ xL + yL,
zR > xR,
zR > yR.
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Figure 2. The ranges of values of variables s(xi), s(yi), and zi,
i = 1...m, after the modification.

The above assumptions do not change the computational complexity of problem
ΠNMd — if one of them is not satisfied, the problem becomes easy because the
answer is obviously “no”.

We modify the initial ranges of the variables in the following way (where “:=”
assigns the right-hand side value to the left-hand side variable):

s(xi) := s(xi) + zR, i = 1...m

s(yi) := s(yi) + 2xR + 2zR, i = 1...m

zi := zi + 2xR + 3zR, i = 1...m.

The new ranges have the following form (i = 1...m):

s(xi) ∈ 〈xL + zR, xR + zR〉,
s(yi) ∈ 〈yL + 2xR + 2zR, yR + 2xR + 2zR〉,

zi ∈ 〈zL + 2xR + 3zR, 4zR + 2xR〉.

They are visualized in Figure 2.

Lemma 1. Problem ΠNMd and its version with the ranges of variable values shifted
as above, are equivalent.

Proof. Both problems have the same sets of instances (at the beginning). The only
difference is in the equation from the question, where, instead of s(xi)+s(yj) = zk

in problem ΠNMd, we have s(xi) + zR + s(yj) + 2xR + 2zR = zk + 2xR + 3zR in
the new problem with the shifted ranges. We see, that the two problems are the
same. �

The variables from problem ΠNMd increased by the proposed values have several
useful properties.

Lemma 2. None of the modified zi, i = 1...m, can be equal to some s(xj) or to a
sum of any s(xj) and s(xk).
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Proof. The first statement is obvious, see Figure 2. As to the second one, the sum
of two largest possible values of s(xj) and s(xk), i.e. 2xR + 2zR, is still smaller
than zL + 2xR + 3zR being the smallest zi. �
Lemma 3. None of the modified zi, i = 1...m, can be equal to some s(yj) or to a
sum of any s(yj) and s(yk).

Proof. Also here the first statement is obvious, see Figure 2. On the other hand,
the sum of two smallest possible values of s(yj) and s(yk), i.e. 2yL + 4xR + 4zR,
is larger than 2xR + 4zR being the largest possible zi. �
Lemma 4. None of the modified zi, i = 1...m, can be equal to a sum of any s(yj),
s(xk), and s(xl).

Proof. The sum of one smallest s(yj) and two smallest s(xk) and s(xl), i.e. yL +
2xL + 2xR + 4zR, is larger than the largest zi = 2xR + 4zR. �

Now, we can define a transformation from problem ΠNMd to problem ΠQMd,
which is given below.

The transformation
Given an instance of problem ΠNMd, the corresponding instance of ΠQMd

is constructed as follows.
(1) Shift the ranges of numbers in the problem ΠNMd as specified above, i.e.

s(xi) := s(xi) + zR, i = 1...m

s(yi) := s(yi) + 2xR + 2zR, i = 1...m

zi := zi + 2xR + 3zR, i = 1...m.

From now on all the variables have these modified values, if not stated
otherwise.

(2) Add values s(xi) and s(yi), i = 1...m, to (initially empty) multiset B. Also
add to B (

∑
i=1...m zi − 2m) times value 1.

(3) Set L to 2
∑

i=1...m zi − 2m and n to
∑

i=1...m zi − 1.

(4) For all i = 1...L
2 add values i and L−i to (initially empty) multiset A. Also

add to A values
∑

j=1...i zj − i and L−∑
j=1...i zj − i for all i = 1...m−1.

Lemma 5. The proposed transformation can be computed in time bounded by
a polynomial in the length of the instance of ΠNMd (LenNMd) and the maximal
number appearing in this instance (MaxNMd).

Proof. LenNMd is O(m�logMaxNMd	). In the first step of the transformation we
make O(LenNMd) operations. New values of the variables do not change LenNMd

and MaxNMd substantially: m is not changed, new MaxNMd is up to 6 times larger
than previously.

Filling multiset B requires O(LenNMdMaxNMd) operations. Step (3) is O(LenNMd)
and filling A takes O(LenNMd�logLenNMd	MaxNMd) operations. Taking the above
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functions together, we have O(LenNMd�logLenNMd	MaxNMd) as the complexity of
the proposed transformation. Thus, it is pseudo-polynomial in time. �

We can now prove the following main theorem.

Theorem 1. Quasi-mapping problem ΠQMd is strongly NP-complete.

Proof. The proof uses the proposed transformation, which is pseudo-polynomial
one (see Lem. 5). Here it is proven that the transformation is correct. For all I ∈
DΠNMd , I ∈ YΠNMd if and only if t(I) ∈ YΠQMd , where t means the transformation.

The first step of the transformation slightly modifies problem ΠNMd, but both
versions are equivalent (see Lem. 1). Thus, in the following the shifted ranges of
values of the variables are used.

Let us assume, that there exists a solution for problem ΠNMd. It means, that
there is a partition of X∪Y such that every disjoint subset Wi, i = 1...m, contains
one xj and one yk and s(xj)+s(yk) = zi, for some j, k ∈ 〈1, m〉. Then, the solution
of problem ΠQMd can be constructed by ordering elements of B in the following
way.

for i := 1 to m with step 1
begin

take s(xj) : xj ∈ Wi;
for j := 1 to zi − s(xj) − 1 with step 1

take 1;
end
for i := m to 1 with step -1
begin

take s(yk) : yk ∈ Wi;
for j := 1 to zi − s(yk) − 1 with step 1

take 1;
end

We take to the solution m times some s(xj), m times some s(yk), and
∑

i=1...m

(zi − s(xj) − 1 + zi − s(yk) − 1) times element 1, xj , yk ∈ Wi. All xj and yk,
j, k = 1...m, are in the partitioning and the sums of sizes of these pairs cover the
whole vector [z1, z2, ..., zm]. Thus, all the elements of B are used after finishing
the above procedure.

Moreover, we can cover n indicated “cuts” by an order of pairs of all elements
of A. The pairs can be easily determined by summing the elements up to L (which
is the length of the solution of ΠQMd). The procedure of ordering them (placing
an element on the left or on the right side of the solution, i.e. calculating the
distance from the left or from the right end of the restriction map, respectively),
is shown below.

for i := 1 to m with step 1
for j := 1 to zi − 1 with step 1
begin

if j < s(xk) : xk ∈ Wi then
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begin
place

∑
l=1...i−1(zl − 1) + j on the right side;

place L − ∑
l=1...i−1(zl − 1) + j on the left side;

end
else
begin

place
∑

l=1...i−1(zl − 1) + j on the left side;
place L − ∑

l=1...i−1(zl − 1) + j on the right side;
end

end
for i := 1 to m − 1 with step 1
begin

place
∑

j=1...i(zj − 1) on the right side;
place L − ∑

j=1...i(zj − 1) on the left side;
end

We use in the procedure all elements of A: values increasing from 1 to
∑

i=1...m

(zi − 1) with step 1, as well as the elements
∑

j=1...i(zj − 1), i = 1...m-1, together
with their complements. Also their ordering agrees with the ordering within B in
the sense of “cuts”, what follows the procedures. Therefore, a feasible solution for
problem ΠQMd exists.

Now, let us assume, that there exists a solution for problem ΠQMd. Thus, there
is an order of n + 1 elements of B which allows to cover the indicated “cuts” by
some order of n pairs of elements of A. The solution for the corresponding instance
of problem ΠNMd can be then constructed as follows.

Having the solution for problem ΠQMd, we know that several “cuts” appear for
sure. Those are the ones corresponding to duplicated pairs of complements: if we
have in A value d twice (together with L−d twice, of course), then in any solution
to problem ΠQMd one d will be placed on the left and the second d will be placed
on the right. (Two “cuts” cannot appear on the same side, because we assume
the lack of any errors in the data of the problem. Duplication of a “cut” would
be such an error.) The guaranteed “cuts” are determined by pairs

∑
j=1...i zj − i

and L − ∑
j=1...i zj − i for all i = 1...m − 1, together with their mirrors. Also

the “cut” in the middle of L is guaranteed by the pair of two L
2 . These “cuts”

become ends of fragments, which correspond to disjoint subsets from a solution of
problem ΠNMd. Every pair of mirroring fragments FiL and FiR of length zi − 1
corresponds to set Wi of size zi.

How are elements of B arranged in the solution? Except for many 1s, B contains
also all s(xi) and s(yi), i = 1...m. These sizes are significant, especially for Y .
Summing up Lemmae 2, 3, and 4, which are still true if values zi will be decreased
by 1, we deduce that every pair FiL, FiR can contain at most one s(yj) of any
value. Because B includes m sizes of elements of Y and there are m pairs of
fragments, all s(yi), i = 1...m, must be placed in separate pairs. In addition, none
two (or more) sizes of elements of X can be added to a pair of fragments (already
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Figure 3. Two mirroring fragments FiL and FiR with some components.

containing some s(yj)), so all s(xi), i = 1...m, must be also placed in separate
pairs.

At first glance, it is not obvious why two mirroring fragments FiL and FiR

cannot include two sizes of elements of Y . It is displayed in Figure 3. If some size
is assigned to one fragment, the corresponding place in the second fragment must
be filled by “cuts”. Because sizes of elements of Y are greater than halfs of lengths
of fragments plus 1, none two such sizes can be inserted into a mirroring pair.

If we have exactly one s(xj) and exactly one s(yk) assigned to a pair FiL,
FiR, for some i, j, k ∈ 〈1, m〉, plus in addition only 1s, there is only one possible
placement. One of the longer sizes is shifted to the left (or right) end of FiL and
the second one is shifted to the left (or right, respectively) end of FiR. The sum
of both sizes is equal to zi. The remaining places are filled by 1s (see Fig. 3).
Another placement would result in the occurrence of an additional element of a
value greater than 1, what is in contradiction to previous proofs.

Having the solution of problem ΠQMd we can immediately read the solution of
problem ΠNMd: those elements xj and yk, which sizes appear in pair FiL, FiR,
will compose set Wi. All the requirements for a solution of problem ΠNMd are
satisfied. This ends the proof. �

The proposed transformation of an instance of problem ΠNMd to an instance of
problem ΠQMd is illustrated by the following example.

Example 2. Let the example instance of problem ΠNMd be:

m = 3,

X = {x1, x2, x3},
Y = {y1, y2, y3},

s(x1) = 2, s(x2) = 3, s(x3) = 5,

s(y1) = 4, s(y2) = 5, s(y3) = 6,

z1 = 7, z2 = 9, z3 = 9.

After shifting the ranges of the variables we get the values:

s(x1) = 11, s(x2) = 12, s(x3) = 14,

s(y1) = 32, s(y2) = 33, s(y3) = 34,

z1 = 44, z2 = 46, z3 = 46.
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Figure 4. An example solution of problem ΠQMd.

The construction of the instance of problem ΠQMd ends with the following result:

n = 135, L = 266,
A =

⋃
i=1...133{i, 266− i} ∪ {43, 223, 88, 178},

B =
⋃

i=1...130{1} ∪ {11, 12, 14, 32, 33, 34}.

The feasible solution for the instance after the transformation (i.e. of problem
ΠQMd) is shown in Figure 4.

This solution can be easily translated to a feasible solution of problem ΠNMd:

W1 = {x1 + y2} (11 + 33 = 44 → 2 + 5 = 7),
W2 = {x2 + y3} (12 + 34 = 46 → 3 + 6 = 9),
W3 = {x3 + y1} (14 + 32 = 46 → 5 + 4 = 9).

Finally, we prove the computational hardness of Simplified Partial Digest Problem
without errors in the search version ΠSMs.

Theorem 2. The Simplified Partial Digest Problem without errors ΠSMs (search
version) is strongly NP-hard.

Proof. Proving strong NP-completeness of quasi-mapping problem ΠQMd (Th. 1)
directly leads to proving strong NP-hardness of the corresponding problem ΠSMs.
For, if we had an algorithm solving ΠSMs in polynomial time, we could use it to
solve problem ΠQMd in polynomial time in the following way. We could apply the
algorithm to the instance of ΠQMd, and after a number of steps bounded by the
polynomial function known for the algorithm we could have the answer for ΠQMd.
Either the algorithm would find the solution and the answer would be “yes”, or
the algorithm would not find one and the answer would be “no”. As pointed out
earlier, a similar reasoning has been used in [10], where the problem of looking for
a Hamiltonian circuit in a graph has been considered. �

3. A polynomially solvable subproblem of SPDP

On the other hand, a special version of the Simplified Partial Digest Problem
without errors (a combinatorial search problem), in which multiset B is composed
of only the elements of values 1 and 2, is polynomially solvable. In this section we
present the algorithm solving the subproblem, defined below.

Problem 4. Simplified Partial Digest Problem with long-digestion fragments of
lengths only 1 or 2 (ΠSM12s) — search version.
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Instance: Multiset A = {a1, a2, ..., a2n} of lengths of restriction fragments coming
from short digestion and multiset B = {b1, b2, ..., bn+1} of lengths of restriction
fragments coming from long digestion, A and B containing no errors and bi ∈
〈1, 2〉, i = 1...n + 1.
Answer: A map of n restriction sites of a DNA chain consistent with multisets
A and B, i.e. such an order of elements of B which allows to cover the indicated
cuts by some order of the elements of A.

The algorithm solving ΠSM12s

(1) Calculate L =
∑

i=1...n+1 bi. Initially the solution is one fragment of
length L without cuts.

(2) Match complementary pairs of lengths in A, i.e. the ones summing up to L.
Let the pairs be denoted by Ai, i = 1...n, and satisfying

⋃
i=1...n Ai = A

and
⋂

i=1...n Ai = ∅.
(3) Select all identical pairs Ai and Aj , i, j = 1...n, and mark the cuts corre-

sponding to them in the solution symmetrically (from both sides). Remove
all selected Ai and Aj from A.

(4) If A is empty, go to step (7). Otherwise, select such Ai in A, that contains
the shortest length l in current A. Mark the cut placed l units from the
left end of the solution and remove Ai from A.

(5) If A is empty, go to step (7). Otherwise, increase l by 1. If some cut
already exists in the solution l units from the right end, go to step (4).
Otherwise, mark the cut placed l units from the right end of the solution
and remove Ai which contais l from A.

(6) If A is empty, go to step (7). Otherwise, increase l by 1. If some cut
already exists in the solution l units from the left end, go to step (4).
Otherwise, mark the cut placed l units from the left end of the solution,
remove Ai which contais l from A, and go to step (5).

(7) The current solution contains all cuts, i.e. it corresponds to an order of
elements of multiset B.

Let us note, that the algorithm uses only information coming from multiset A and
does not check it with multiset B. This is because the applied moves are the only
possible ones, and in the case where we have no errors they have to be correct.
This is demonstrated in the following proof.

Theorem 3. Problem ΠSM12s is solvable in time O(n log n).

Proof. Let us analyze the consecutive steps of the algorithm.
The first two steps are obvious. The third one consists in placing the symmetric

cuts indicated by pairs from A. Of course, if we have in A two identical subsets
{x, L−x}, then in the problem without errors both cuts must appear. Thus, they
must be placed in opposite parts of the solution, i.e. one cut x units from the left
and the second one x units from the right end.

All remaining cuts are assymetric. Because the current solution is symmetric,
no matter what side we place the next cut. So, the left side can be chosen, as well
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Figure 5. A symmetric part of an example solution of problem ΠSM12s.

Figure 6. An example solution of problem ΠSM12s with the first
slot filled by cuts.

as the strategy of taking the cut nearest the left end first. Therefore, the fourth
step is correct. It also concerns further calling of step (4), when we fill a part
between symmetric cuts and go to the next slot (i.e. a fragment between two pairs
of symmetric cuts from step (3)) — then there is no difference from what side we
start to place next cuts.

After placing the previous cut in step (4) we must look at the opposite side of
the solution. In the symmetric place we cannot have a cut, since all cuts added
after step (3) are assymetric. And because in multiset B there are only lengths
equal to 1 or 2, we must place a cut to get a fragment of length at most 2 after one
unit on the right side without a cut. So, step (5) is correct as well as step (6) with
a similar reasoning. The only exception, when we reach an existing cut, concerns
the situation when we fill the whole current slot and jump to the next one (the
slot closer to the middle of the solution).

Summing up the above reasoning, we may conclude that the algorithm is correct.
As to its complexity, if the elements of A are sorted in step (2), the steps can be
done in time, respectively, O(n log n), O(n logn), O(n log n), O(log n), O(log n),
and O(log n). Steps (4)–(6) are performed up to n times, so the whole algorithm
is of the complexity O(n log n). �

Example 3 presents in detail the proposed algorithm.

Example 3. Let our instance of problem ΠSM12s be: A = {1, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8,
9, 10, 10, 11, 12, 13, 14} and B = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2}. Thus, we have 9 restric-
tion places within the solution of length 15. The complementary pairs of lengths
in A are: {1, 14}, {2, 13}, {3, 12}, {4, 11}, {5, 10}, {5, 10}, {6, 9}, {7, 8}, and
{7, 8}. To the initially empty solution we add all symmetric cuts determined by
the instance and we get the sequence of fragments as in Figure 5.

After that A = {{1, 14}, {2, 13}, {3, 12}, {4, 11}, {6, 9}}. We add the remaining
cuts starting from the one nearest the left end of the solution, the result is shown
in Figure 6.

Finally, we jump to the next slot and place the only remaining cut {6, 9}. The
whole solution is in Figure 7.
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Figure 7. A complete solution for the example problem ΠSM12s.

4. Conclusions

In the paper, the DNA Simplified Partial Digest Problem was analyzed from the
viewpoint of combinatorial optimization (OR) approaches. The general error-free
case was proved to be strongly NP-hard. On the other hand, a special form of the
multiset resulting from the long digestion and composed of only 1s and 2s results
in a simple, polynomial-time algorithm. The question remains open, whether or
not, a similar approach can be used for the multisets composed of other restricted
values (e.g. 1 and 3). An interesting problem is a question of approximability,
i.e. an existence of polynomial-time algorithm constructing solutions being not
far from the optimum one with respect to a certain optimality criterion.
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