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ABOUT THE CUMULATIVE IDLE TIME IN
MULTIPHASE QUEUES

Saulius Minkevičius1 and Stasys Steǐsūnas1

Abstract. The paper is designated to the analysis of queueing sys-
tems, arising in the network theory and communications theory (called
multiphase queueing systems, tandem queues or series of queueing sys-
tems). Also we note that multiphase queueing systems can be useful
for modelling practical multi-stage service systems in a variety of dis-
ciplines, especially on manufacturing (assembly lines), computer net-
working (packet switch structures), and in telecommunications (e.g.
cellular mobile networks), etc. This research presents heavy traffic
limit theorems for the cumulative idle time in multiphase queues. In
this work, functional limit theorems are proved for the values of impor-
tant probability characteristics of the queueing system (a cumulative
idle time of a customer).

Keywords. Queueing systems, multiphase queues, functional limit
theorems, heavy traffic, a cumulative idle time of a customer.

1. Introduction

The modern queueing theory is one of the powerful tools for a quantitative and
qualitative analysis of communication systems, computer networks, transporta-
tion systems, and many other technical systems. The paper is designated to the
analysis of queueing systems, arising in the network theory and communications
theory (called multiphase queueing systems, tandem queues or series of queueing
systems). Also we note that multiphase queueing systems can be useful for mod-
elling practical multi-stage service systems in a variety of disciplines, especially in
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manufacturing (assembly lines), computer networking (packet switch structures),
and in telecommunications (e.g. cellular mobile networks), etc.

First, the references given below for applications of such queueing models to
computer systems and communication networks can be cited. Particularly we
note that a survey of applications of diffussion approximations to computer sys-
tems is presented in [8] (especially Chap. 4) and [9]. In [10], several diffussion
approximations for the analysis of a packet-switching network and for the model
of an interactive computer system are given. The behaviour of the paging drum
or a computer hard disc has a significant impact on multiprogrammed and pag-
ing systems. A study on applying the diffussion approximations approach to the
performance evaluation of such devices is presented in [1]. In [5], a survey of ex-
act results on the networks of queues which are applicable to the evaluation of
the performance of complex computer systems is given. In [6, 7], two important
charakteristics of user of Quality of Service (QoS) in ATM (Asynchronous Trans-
fer Mode) technology (call admission control procedure and cell loss estimate) are
investigated. We can also mention several papers in this research trend (see, for
example, [16–18]).

Finally, we try to present a survey of theoretical works for a cumulative idle time
of a customer. In one of the first papers of this kind [22], numerical methods are
used to study values of the mean of the cumulative idle time in single-server queues.
In [27], limit theorems for the cumulative idle time in the systems GI/G/1 and
M/G/1 were obtained. In [19], expressions for the cumulative idle time of a server
are presented. In [26], the Laplace transform of the distribution of the cumulative
idle time in a finite time interval for the GI/G/1 system is found. In [14], the
author considers the Laplace transform of the expected cumulative idle time in
an M/G/1 queue. In [24], the moderate-deviation behaviour of the cumulative
idle time with single-server queues is investigated. These results complement the
existing results on the heavy traffic behaviour of this process. In [28], the author
established functional central limit theorems for a cumulative idle time process
in a fluid queue. These limit processes have discontinuous sample paths (e.g., a
non-Brownian stable process, or a more general Levy process).

Thus, in this work, we investigate a cumulative idle time of a customer under
heavy traffic in multiphase queueing systems. The functional limit theorems for
a cumulative idle time of a customer under various heavy traffic conditions in
multiphase queueing systems have been proved.

The natural setting for limit theorems in this paper is the weak convergence
of probability measures on the function space D[0, 1](≡ D). Since an excellent
treatment of this subject has been recently published on [3], we shall only make
a few remarks here about our terminology and notation. The stochastic processes
characterizing the queueing system give rise to sequences of random functions in D,
the space of all right-continuous functions on [0, 1] having left limits and endowed
with a Skorohod metric, d. In [3], this metric is denoted by d0. Together with d,
D is a complete, separable metric space. Let D be the class of Borel sets of D.
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Then, if Pn and P are probability measures on D which satisfy

lim
n→∞

∫

D

fdPn =
∫

D

fdP

for every bounded, continuous, real-valued function f on D, we shall say that Pn

weakly converges to P, as n → ∞, and write Pn ⇒ P. A random function X is
a measurable mapping from some probability space (Ω,B,P) into D having the
distribution P = PX−1 on (D,D). We say a sequence of random functions {Xn}
weakly converges to the random function X , and write Xn ⇒ X if the distribution
Pn of Xn converges to the distribution P of X . A sequence of random functions
{Xn} converges to X in probability if Xn and X are defined on a common domain
and, for all ε > 0, lim

n→∞P{d(Xn, X) ≥ ε} = 0. When X is a constant function (not

random), the convergence in probability is equivalent to the weak convergence. In
such cases, we write d(Xn, X) ⇒ 0 or Xn ⇒ X . If Xn and Yn have a common
domain, we write d(Xn, Yn) ⇒ 0, when for all ε > 0, lim

n→∞P{d(Xn, Yn) ≥ ε} = 0.

We also use the uniform metric ρ which is defined by ρ(x, y) = sup
0≤t≤1

|x(t) − y(t)|
for x, y ∈ D. Also, note that d(x, y) ≤ ρ(x, y) for x, y ∈ D.

Next we state two theorems extremely useful for obtaining the weak convergence
results in applications. The first one has come to be known as the “converging
together theorem”. For it we assume that Xn and Yn are defined on a common
domain and take values in a separable metric space (S, m). This result can be
found in [3], Theorem 4.1.

Theorem 1.1.

If Xn ⇒ X and d(Xn, Yn) ⇒ 0, then Yn ⇒ X. (1)

Now, suppose h is a measurable mapping of S into S′, a second metric space with
Borel sets B. Each probability measure P on (S,B) induces a unique probability
measure Ph−1(A) = P (h−1A) for A ∈ B′ on (S′,B′). Let Dh be the set of
discontinuities of h. The next result, known as the continuous mapping theorem,
is an analog of the Mann-Wald theorem for Euclidean spaces (see [3], Th. 5.1).
Define h ◦ X = h(X), X ∈ D.

Theorem 1.2.

If Xn ⇒ X and P{X ∈ Dh} = 0, then h ◦ Xn ⇒ h ◦ X. (2)

In practice we use this result as follows. First we show Xn ⇒ X, often by just
quoting the known results. Then we find an appropriate mapping h which gives
us the random elements we are really interested in, h ◦ Xn, and finally apply (2).

In this paper, functional limit theorems are proved for values of the important
probability characteristic of the multiphase queueing systems – a cumulative idle
time of a customer. The main tool for the analysis of a multiphase queue in heavy



78 S. MINKEVIČIUS AND S. STEIŠŪNAS

traffic is a functional limit theorem for sums of independent identically distributed
random variables (the proof can be found in [3]).

2. Statement of the problem

We investigate here a k-phase multiphase queue (i.e., when a customer has
been served in the j-th phase of the multiphase queue, he goes to the j + 1-th
phase of the multiphase queue, and after the customer has been served in the k-th
phase of the multiphase queue, he leaves the multiphase queue). Let us denote tn

as the time of arrival of the n-th customer, S
(j)
n as the service time of the n-th

customer at the j-th phase of the multiphase queue, zn = tn+1 − tn; τj,n as the
departure of the n-th customer after service in the j-th phase of the multiphase
queue, j = 1, 2, . . . , k.

Let interarrival times (zn) at the multiphase queue and service times (S(j)
n ) in

every phase of the multiphase queue for j = 1, 2, . . . , k be mutually independent
identically distributed random variables.

Next, denote by BIj,n the idle time of the n-th customer in the j-th phase of

the multiphase queue; Ij,n =
n∑

l=1

BIj,l stands for a cummulative idle time in the

n-th phase of the multiphase queue, j = 1, 2, . . . , k, n ≥ k (see, for example, [23]).
Suppose that the idle time of a customer in each phase of the multiphase queue

is unlimited, the service principle of customers is “first come, first served”. All
random variables are defined on the commmon probability space (Ω, F, P ).

We form such a modified multiphase queue in which BIj,n = 0, j = 1, 2, . . . , k,
n < k. Limit distributions for a modified multiphase queue and the usual multi-
phase queue which, working in heavy traffic conditions, are coincidental (see, for
example, [12]). Thus, later we can investigate only the modified multiphase queue
and admit that n ≥ k.

When j = 1, 2, . . . , k, let

δj,n =

{
S

(j)
n−(j−1) − zn, if n ≥ k

0, if n < k.

Denote Sj,n =
n−1∑
l=1

δj,l, S0,n ≡ 0, Ŝj,n = Sj−1,n − Sj,n, xj,n = τj,n − tn,

x0,n ≡ 0, x̂j,n+1 = xj,n−δj,n+1, x̂0,n ≡ 0, αj = M(zn−S
(j)
n ), yj,n = x̂j,n−Sj,n,

δ̂n = max
1≤j≤k

max
0≤l≤2n

|δj,l|, αj = Mδj,1, α0 ≡ 0, Dzn = σ̂2
0 > 0, DS

(j)
n = σ̂2

j > 0,

σ2
j = σ̂2

j + σ̂2
0 , j = 1, 2, . . . , k, [x] as the integer part of the number.

Let Sj,0 = 0, j = 1, 2, . . . , k.

Let us consider, as in [20], a sequence of multiphase queues: S
(j)
m,n are inde-

pendent identically distributed random variables in the n-th multiphase queue,
j = 0, 1, 2, . . . , k, S

(0)
m,n = zm,n, m ≥ 1, n ≥ 1.
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Define Gj,n(x) = P(S(j)
1,n < x), j = 0, 1, 2, . . . , k.

Let
DS

(j)
1,n → σ̂2

j > 0, j = 0, 1, 2, . . . , k. (3)

Also let S
(j)
m,n satisfy the Lindeberg condition: for each ε > 0

lim
n→∞

∫

|x|> ε·√n

|x|2dGj,n(x) = 0, j = 0, 1, 2, . . . , k. (4)

For simplicity, we omit the index n in the sequel.
Denote families of random functions in D as

In
j (t) =

Ij,[nt]√
n

, yn
j (t) =

yj,[nt]√
n

, j = 1, 2, . . . , k, 0 ≤ t ≤ 1.

We see that if conditions (4) are fulfilled, then for each fixed ε > 0, (see [21])

lim
n→∞ P

(
ρ
(
In
j , yn

j

)
> ε
)

= 0, j = 1, 2, . . . , k. (5)

3. Main results

Let us investigate a heavy traffic case, where

(αj−1 − αj) ·
√

n → −∞, j = 1, 2, . . . , k. (6)

We prove such a functional limit theorem.

Theorem 3.1. If conditions (3), (4), and (6) are fulfilled, then

(
I1,[nt] − α1 · [nt]√

n
;
I2,[nt] − α2 · [nt]√

n
; . . . ;

Ik,[nt] − αk · [nt]√
n

)
⇒

(σ1 · z1 (t) ; σ2 · z2 (t) ; . . . ; σk · zk (t)) ,

where zj(t) are independent standard Wiener processes, j = 1, 2, . . . , k, 0 ≤ t ≤ 1.

Proof. Note that it suffices to prove that (see (1) and (5))

yj,[nt] − αj · [nt]√
n

⇒ σj · zj(t), (7)

where zj(t) are independent standard Wiener processes, j = 1, 2, . . . , k, 0 ≤ t ≤ 1.
First we prove that

yj,n −
{

j∑
i=1

Ŝi,n

}
√

n
=

yj,n − (−Sj,n)√
n

⇒ 0, j = 1, 2, . . . , k. (8)
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Let us investigate the case where j = 1. Thus,

y1,n − Ŝ1,n = max
0≤l≤n

(Ŝ1,l) − Ŝ1,n. (9)

But, for every ε > 0,

P


 max

0≤l≤n
(Ŝ1,l) − Ŝ1,n

√
n

> ε


 = P


 max

0≤l≤n
(−Ŝ1,l)
√

n
> ε


 . (10)

Similarly as in [11] and using conditions (6), we find that

max
0≤l≤n

(−Ŝj,l)
√

n
⇒ 0, j = 1, 2, . . . , k. (11)

From this, (9), and (10) we obtain that

y1,n − Ŝ1,n√
n

=
ŷ1,n − (−S1,n)√

n
⇒ 0. (12)

Let us investigate the case where j = 2.
Then,

y2,n −
(
Ŝ1,n + Ŝ2,n

)
= max

0≤l≤n

(
y1,l + Ŝ2,l

)
−
(
Ŝ1,n + Ŝ2,n

)

= max
0≤l≤n

(
y1,l − Ŝ1,l +

(
Ŝ1,l + Ŝ2,l

))
−
(
Ŝ1,n + Ŝ2,n

)

≥ max
0≤l≤n

(
min

0≤m≤n

(
y1,m − Ŝ1,m

)
+
(
Ŝ1,l + Ŝ2,l

))
−
(
Ŝ1,n + Ŝ2,n

)

= min
0≤l≤n

(
y1,l − Ŝ1,l

)
+
{

max
0≤l≤n

(
Ŝ1,l + Ŝ2,l

)
−
(
Ŝ1,n + Ŝ2,n

)}
. (13)

On the another hand, similarly as in (13), we find that

y2,n −
(
Ŝ1,n + Ŝ2,n

)
≤ max

0≤l≤n

(
y1,l − Ŝ1,l

)

+
{

max
0≤l≤n

(
Ŝ1,l + Ŝ2,l

)
) −

(
Ŝ1,n + Ŝ2,n

)}
. (14)
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However, if conditions (6) are fulfilled and applying (10) and (11), we get that

0 ≤
max
0≤l≤n

(
Ŝ1,l + Ŝ2,l

)
−
(
Ŝ1,n + Ŝ2,n

)
√

n

≤

{
max
0≤l≤n

Ŝ1,l − Ŝ1,n

}
+
{

max
0≤l≤n

Ŝ2,l − Ŝ2,n

}
√

n
⇒ 0. (15)

Applying (2) to the minimum and maximum function in the case j = 1 (see (12)),
we have that

max
0≤l≤n

(
y1,l − Ŝ1,l

)
√

n
⇒ 0

and

min
0≤l≤n

(
y1,l − Ŝ1,l

)
√

n
⇒ 0.

From this and (13)–(15), we obtain that

y2,n −
(
Ŝ1,n + Ŝ2,n

)
√

n
⇒ 0. (16)

Let (8) be true for every 2 < j ≤ k−1. We prove that it is true for j, j = 3, . . . , k.
Analogously as in (13) and (14) we achieve that, for j = 3, . . . , k,

yj,n −
(

j∑
i=1

Ŝi,n

)
≥ min

0≤l≤n

(
yj−1,l −

{
j−1∑
i=1

Ŝi,l

})

+

(
max
0≤l≤n

(
j∑

i=1

Ŝi,l

)
−
(

j∑
i=1

Ŝi,n

))
(17)

and

yj,n −
(

j∑
i=1

Ŝi,n

)
≤ max

0≤l≤n

(
yj−1,l −

{
j−1∑
i=1

Ŝi,l

})

+

(
max
0≤l≤n

(
j∑

i=1

Ŝi,l

)
−
(

j∑
i=1

Ŝi,n

))
. (18)
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Analogously as in (15), we see that

0 ≤ max
0≤l≤n

(
j∑

i=1

Ŝi,l

)
−
(

j∑
i=1

Ŝi,n

)
≤

j∑
i=1

(
max
0≤l≤n

Ŝi,l − Ŝi,n

)

≤
k∑

i=1

(
max

0≤l≤n
Ŝi,l − Ŝi,n

)
. (19)

Using (17)–(19), the proof is similar as in (16). So, we prove (8). But

−Sj,[nt] − αj,[nt]√
n

⇒ σj · zj(t), (20)

where zj(t) are independent standard Wiener processes, j = 1, 2, . . . , k, 0 ≤ t ≤ 1.
From this and applying (1), we prove (7). The proof is complete. �

Next let us investigate the heavy traffic case, where

(αj−1 − αj) ·
√

n → +∞, j = 1, 2, . . . , k. (21)

We prove such a functional limit theorem.

Theorem 3.2. If conditions (3), (4), and (21) are fulfilled, then

(
I1,[nt]√

n
;
I2,[nt]√

n
; . . . ;

Ik,[nt]√
n

)
⇒ (0; 0; . . . ; 0), 0 ≤ t ≤ 1.

Proof. In this paper, we mostly use the equations which are presented in [20]:

x̂j,n = max
0≤l≤n

(x̂j−1,l − Sj,l) + Sj,n, x̂0,n ≡ 0,

xj,n = max(xj−1,n−1 + δj,n; xj,n−1 + δj,n), x0,n ≡ 0,

xj,n+1 = max
0≤l1<l2<...<lj≤n


 l2−1∑

m=l1

δ1,m +
l3−1∑
m=l2

δ2,m + · · · +
n∑

m=lj

δj,m


 ,

xj,n = max
0≤l≤n−1

(xj−1,l − Sj,l) + Sj,n−1, j = 1, 2, . . . , k.

From this we obtain that

yj,n = max
0≤l≤n

(
yj−1,l + Ŝj,l

)
≤ max

0≤l≤n
yj−1,l + max

0≤l≤n
Ŝj,l = yj−1,n + max

0≤l≤n
Ŝj,l ≤ · · ·

≤
j∑

i=1

{
max

0≤l≤n
Ŝi,l

}
≤

k∑
i=1

{
max
0≤l≤n

Ŝi,l

}
, j = 1, 2, . . . , k. (22)
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On the other hand, we get that

y0,n = x̂0,n − S0,n ≡ 0 and yj,n ≥ max
0≤l≤n

Ŝj,l ≥ 0, j = 1, 2, . . . , k.

From this and (22), we achieve that

|yj,n| ≤
k∑

i=1

{ max
0≤l≤n

Ŝi,l}, j = 1, 2, . . . , k. (23)

Thus, we have (see (23)) that, for every fixed ε > 0,

P




sup
0≤t≤1

|yj,[nt]|
√

n
> ε


 ≤ P


 max

0≤l≤n
|yj,l|

√
n

> ε


 ≤

P




max
0≤l≤n

(
k∑

i=1

{
max

0≤m≤l
Ŝi,m

})
√

n
> ε


 ≤ P




k∑
i=1

{
max
0≤l≤n

max
0≤m≤l

Ŝi,m

}
√

n
> ε


 ≤

P




k∑
i=1

{
max
0≤l≤n

Ŝi,l

}
√

n
> ε


 ≤

k∑
i=1

P


 max

0≤l≤n
Ŝi,l

√
n

>
ε

k


 , j = 1, 2, . . . , k. (24)

But, if conditions (21) are fulfilled, then (see [11])

max
0≤l≤n

Ŝj,l

√
n

⇒ 0, j = 1, 2, . . . , k. (25)

From this and (24), we prove that, for every fixed ε > 0,

lim
n→∞ P




sup
0≤t≤1

|yj,[nt]|
√

n
> ε


 = 0, j = 1, 2, . . . , k. (26)

Thus, for every fixed ε > 0,

P




sup
0≤t≤1

|Ij,[nt]|
√

n
> ε


 ≤ P




sup
0≤t≤1

|Ij,[nt] − yj,[nt]|
√

n
>

ε

2




+ P




sup
0≤t≤1

|yj,[nt]|
√

n
>

ε

2


 , j = 1, 2, . . . , k. (27)
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From (27), (5), and (26) we find that, for every fixed ε > 0,

lim
n→∞ P




sup
0≤t≤1

|Ij,[nt]|
√

n
> ε


 = 0, j = 1, 2, . . . , k. (28)

The proof is complete (see (28) and (1)).
�

4. Concluding remarks

1. We note that x̂j,n, j = 1, 2, . . . , k is an analog of the classical Lindley equation
in the multiphase queue case and represents the waiting time in phases of the
multiphase queue (see [11]). But yj,n, j = 1, 2, . . . , k is a dual Lindley equation
with respect to x̂j,n, j = 1, 2, . . . , k and represents a cumulative idle time in the
multiphase queue (see [2]).

2. Diffusion approximations are continuous approximations to discontinuous
arrival and service processes in the queueing model. Previously two different ap-
proaches to diffusion approximations for queueing models have been proposed.
In both cases, the queueing length or the waiting time distribution is approxi-
mated by solving a partial differential eguation. However the two methods differ
according to the choice of boundary conditions. The simpler one uses reflecting
boundaries so that no probability mass accumulates at the boundaries (see, for ex-
ample, this paper, [11], [13], etc.). A more sophisticated approach is based on the
instantaneous return process (see [4, 10]), which combines the partial differential
equation formulation for the process strictly inside the boundaries, with a discrete
state-space model at the boundaries themselves. In some cases of queueing sys-
tems this approach is more accurate than the classical method (see [15, 16, 25]).
Of course, the instantaneous return process is an important idea. Extension of
the idle process investigated in this paper to the instantaneous return process is
an important future research problem.
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[21] S. Minkevičius, On the full idle time in multiphase queues. Lithuanian Math. J. (to appear).
[22] M. Pike, Some numerical results for the queueing system D/Ek/1. J. R. Statist. Soc. Ser.

B. 25 (1963) 477–488.
[23] N. Prabhu, Stochastic Storage Processes. New York-Heidelberg-Berlin, Springer-Verlag

(1968).
[24] A. Puhalskii, Moderate deviations for queues in critical loading. Queue. Syst. Theor. Appl.

31 (1999) 359–392.
[25] M. Reiser, H. Kobayashi, Accuracy of the diffusion approximation for some queueing sys-

tems. IBM J. Res. Dev. 18 (1974) 110–124.
[26] M. Ridel, Conditions for stationarity in a single server queueing system. Zastos. Mat. 15

(1976) 17–24.
[27] L. Takacs, Occupation time problems in the theory of queues, in Lecture Notes in Economics

and Mathematical Systems. Berlin-Heidelberg-New York, Springer-Verlag 98 (1974) 91–131.
[28] W. Whitt, Limits for cumulative input processes to queues. Probab. Engrg. Inform. Sci. 14

(2000) 123–150.


