
RAIRO Operations Research
RAIRO Oper. Res. 39 (2005) 123–139

DOI: 10.1051/ro:2005007

INEQUALITY-SUM: A GLOBAL CONSTRAINT
CAPTURING THE OBJECTIVE FUNCTION ∗

Jean-Charles Régin
1

and Michel Rueher
2

Abstract. This paper introduces a new method to prune the do-
mains of the variables in constrained optimization problems where the
objective function is defined by a sum y = Σxi, and where the integer
variables xi are subject to difference constraints of the form xj−xi ≤ c.
An important application area where such problems occur is determin-
istic scheduling with the mean flow time as optimality criteria. This
new constraint is also more general than a sum constraint defined on
a set of ordered variables. Classical approaches perform a local consis-
tency filtering after each reduction of the bound of y. The drawback of
these approaches comes from the fact that the constraints are handled
independently. We introduce here a global constraint that enables to
tackle simultaneously the whole constraint system, and thus, yields a
more effective pruning of the domains of the xi when the bounds of y
are reduced. An efficient algorithm, derived from Dijkstra’s shortest
path algorithm, is introduced to achieve interval consistency on this
global constraint.

Mathematics Subject Classification. 65K05, 90C35.

1. Introduction

A great part of the success of constraint programming techniques in solving
combinatorial problems is due to the capabilities of filtering algorithms to prune

Received March 16, 2004.

∗ A preliminary version of this paper has been published at CP’2000[9].

1 ILOG Les Taissounieres HB2 1681, route des Dolines Sophia-Antipolis, 06560 Valbonne,
France; regin@ilog.fr
2 Université de Nice–Sophia-Antipolis, Projet COPRIN I3S/CNRS-INRIA-CERMICS, ESSI,
930, route des Colles, B.P. 145, 06903 Sophia-Antipolis, France; rueher@essi.fr

c© EDP Sciences 2005

Article published by EDP Sciences and available at http://www.edpsciences.org/ro or http://dx.doi.org/10.1051/ro:2005007

http://www.edpsciences.org/ro
http://dx.doi.org/10.1051/ro:2005007

124 J.-C. RÉGIN AND M. RUEHER

the search space. Roughly speaking, a filtering algorithm attempts to remove
values from the domains of all variables occurring in a constraint whenever the
domain of one of these variables is modified.

Arc consistency filtering algorithms on binary constraints are very popular but
significant gains in performance have also been obtained during recent years with
filtering algorithms associated with more complex constraints [13]. These new
filtering algorithms work on so-called “global constraints”, e.g., cumulative con-
straint [2], edge-finder algorithm [4], all-diff constraint [11], cardinality constraint
[7, 12]. They take into account the relations between the different occurrences of
the same variable in a given set of constraints.

In this paper, we introduce a new global constraint that can achieve significant
domain pruning in constrained optimization problems where the objective function
is defined by a sum y = Σxi, and where the integer variables xi are subject to
difference constraints of the form xj − xi ≤ c. Two important applications where
such constraint systems occur are minimizing mean flow time and minimizing
tardiness in deterministic scheduling problems. The following presentation of these
applications is adapted from [3].

The mean flow time is defined by F = 1
n

∑n
j=1(Cj − rj) where Cj and rj are

respectively the completion time and the ready time of task Jj . Difference con-
straints are due to the precedence constraints and the distances between the tasks
(and therefore between their completion times). The mean flow time criterion is
important from the user’s point of view since its minimization yields a minimiza-
tion of the mean response time and the mean in-process time of the scheduled
tasks set.

The mean tardiness is defined by D = 1
n

∑n
j=1(Dj) where Dj = max(Cj−dj, 0),

and where dj is the due date of task Jj . Minimizing this criteria is useful when
penalty functions are defined in accordance with due dates.

Both problems are NP -hard in most interesting cases [3, 6].
Another useful application of this constraint is a sum constraint defined on an

ordered set of variables.
Currently, in the constraint programming framework, such optimization prob-

lems are tackled by solving a sequence of decision problems: the solution of each
decision problem must not only satisfy the initial constraint system but it must
also provide a better bound than the best-known solution. In other words, each
new decision problem must satisfy an additional constraint specifying that the
value of y is better than the current bound. To take advantage of this additional
constraint to cut the search space, and thus to avoid redoing almost always the
same work for each decision problem, we introduce here a new global constraint.

In the remainder of this section we first detail the motivation of our approach
before showing how it works on a short example.

INEQUALITY-SUM: A NEW GLOBAL CONSTRAINT 125

1.1. Motivation

We consider the constrained optimization problem:
Minimize f(x)
subject to pi(x) ≤ 0 (i = 1, . . . , m)

qi(x) = 0 (i = 1, . . . , r)
where f is a scalar function of a vector x of n components, pi(x) and qi(x) are
functions which may be non-linear. We assume that an initial box D is given (i.e.,
the domains of x are bounded) and we seek the global minimum of f(x) in D. For
the sake of simplicity, we also assume in the rest of the paper that f is a sum of the
form y = Σi=n

i=1xi (in Sect. 6, we discuss a sum of the form y = Σi=n
i=1 aixi). Unless

otherwise mentioned, we assume in the rest of this paper that all the variables take
integer values. Efficient filtering algorithms are available for sum constraints but
in our case these algorithms are weakened by the fact that variables xi involved
in the objective function also occur in many other constraints. Among all these
constraints, there is a subset of binary inequalities that only involve variables
occurring in the objective function. Such inequalities may correspond to distance
constraints as well as to constraints which have been introduced to break down
symmetries of the problem to solve.

Note that the binary inequalities and the sum only model a sub-problem of a real
application. Additional constraints are required to capture all the restrictions and
features. So, what is needed is an efficient filtering algorithm for the conjunction
of binary inequalities and the sum constraint.

Dechter et al. [5] have shown that shortest path algorithms can efficiently
tackle such systems of inequalities in temporal constraint networks problems. The
purpose of this paper is to introduce a new global constraint, named IS, which
handles as a single global constraint the sum constraint and a system of binary
inequalities. An efficient algorithm – using a shortest path algorithm on a graph
of reduced costs – is introduced to achieve interval consistency (see Def. 1) on this
global constraint. Before going into the details, let us outline the advantages of
this approach on a short example.

1.2. An illustrative example

Consider the constraint network C = {C1 : x1 + x2 = y, C2 : (x1 ≤ x2 − 1)}
where D(x1) = [0, 6], D(x2) = [1, 7] and D(y) = [1, 13]. Interval [a, b] denotes the
set of integer S = {k : a ≤ k ∧ k ≤ b}.

Constraint network C is arc consistent. Now, suppose that min(y) is set to 6.
Arc consistency is unable to achieve any domain pruning. This is due to the
fact that arc consistent filtering handles the constraints one by one. Now, let
us examine what happens when constraints C1 and C2 are handled as a single
constraint. To satisfy constraint C2, the value of x1 must be strictly less than the
value of x2, and thus, constraint C1 cannot be satisfied when x2 takes its values
in [1, 3]. So, values [1, 3] in D(x2) can be deleted. On this example, a global
handling of C1 and C2 drastically reduces the search space.

126 J.-C. RÉGIN AND M. RUEHER

1.3. A brief summary of our framework

The filtering process on C1 and C2 is exactly what will be performed on global
constraint IS. More precisely, let:

• a sum constraint Sum defined by y = Σi=n
i=1xi;

• a set of binary inequalities Ineq = {xi − xj ≤ cji, (i, j ∈ [1, n])};
• a set of domain constraints Dom = {li ≤ xi ≤ ui, (i ∈ [1, n])}.

The global constraint IS is defined by Ineq ∪ Dom ∪ {Sum}. Each time a bound
of y is modified, the filtering on IS starts by performing the following operations:

(1) filtering {Ineq ∪ Dom} by interval consistency;
(2) filtering Sum by interval consistency;
(3) updating the bounds of every xi with respect to constraint set Ineq∪Dom∪
{Sum}.

Step 1 can be achieved with a shortest path algorithm on the graph associated
with {Ineq ∪Dom}. (See Sect. 3.2.) Since the graph is likely to contain a negative
cycle, this step can be achieved in O(mn) running time.

It is also easy to show that step 2 can be performed with a simple algorithm
that runs in O(n) where n is the number of variables. (See Sect. 3.1.)

The contribution of this paper is an efficient filtering algorithm for enforcing
interval consistency on the global constraint IS.

Outline of the paper. Section 2 introduces the notation and recalls the basics
of CSP and of shortest paths that are needed in the rest of the paper. Section 3
successively shows how interval consistency can be achieved on a sum constraint
and on binary inequalities. Section 4 defines interval consistency on the global
constraint IS while Section 5 details the algorithm for finding a minimum value
of xi with respect to constraints Ineq ∪ Dom ∪ {Sum}.

2. Background

In order to make this paper self-contained, we now introduce the required back-
ground of CSP and of shortest paths.

2.1. Basics of CSP

A finite constraint network P = (X ,D, C) is defined by:
• a set of variables X = {x1, ..., xn};
• a set D = {D(x1), ..., D(xn)} of current domains where D(xi) is a finite

set of possible values for variable xi;
• a set C of constraints between the variables.

A total ordering ≺ can be defined on the domains without loss of generality. We
will denote by min(xi) and max(xi) the minimal and the maximal value of D(xi)
w.r.t. to ≺.

INEQUALITY-SUM: A NEW GLOBAL CONSTRAINT 127

|C| denotes the number of constraints while |X | denotes the number of variables.
A constraint C on the ordered set of variables X(C) = (x1, ..., xr) is a subset T (C)
of the Cartesian product D(x1)×...×D(xr) that specifies the allowed combinations
of values for the variables (x1, ..., xr). An element of D(x1)× ...×D(xr) is called a
tuple on X(C) and is noted τ . τ [k] is the kth value of τ . |X(C)| is the arity of C.

A value a for x is often denoted by (x, a) while index(C, x) is the position of x
in X(C).

Let P = (X ,D, C) be a constraint network. The tuple τ = (v1, . . . , vn) is a
solution of P if the assignment ((x1, v1), . . . , (xn, vn)) satisfies all the constraints
of C. A value v is a feasible value for x if there exists a solution in which x = v.

Let C be a constraint of C. A tuple τ of X(C) is valid if ∀(x, a) ∈ τ, a ∈ D(x).
A value a ∈ D(x) is consistent with C, either if x �∈ X(C), or if there exists a
valid tuple τ ⊂ T (C) such that a = τ [index(C, x)]. A constraint is arc consistent
iff ∀xi ∈ X(C), D(xi) �= ∅ and ∀a ∈ D(xi), a is consistent with C.

Filtering by arc consistency is often too costly for non-binary constraints and
global constraints. Interval consistency [8] can be achieved more efficiently. In-
terval consistency is derived from a relaxation of arc consistency for continuous
domains. It is based on an approximation of finite domains by finite sets of succes-
sive integers. More precisely, if D is a domain, interval consistency works on D∗,
the set of integers {k : min(D) ≤ k ≤ max(D)} where where min(D) and max(D)
denote respectively the minimum and maximum values in D. In the following D∗

is called an interval of integers and denoted by [min(D), max(D)].
A constraint C is interval-consistent if the following properties hold:
(1) For all xi in X(C), min(D(xi)) ≤ max(D(xi)).
(2) For all xi in X(C), C is arc-consistent when D∗(xi) is restricted to
{min(D(xi)} and D(xj) is extended to D∗(xj) for all i �= j.

(3) For all xi in X(C), C is arc-consistent when D∗(xi) is restricted to
{max(D(xi)} and D(xj) is extended to D∗(xj) for all i �= j.

For specific constraint systems, interval consistency and arc consistency are equiv-
alent. In particular, this is the case for constraints Ineq ∪ Dom ∪ Sum if the
domains are finite sets of successive of integers (i.e., if D∗0(xi) = D0(xi) for all
variables). However, for more complex constraints this property does not hold.
Consider for instance constraint x2 = 4 and D(x) = [−2, 2]. This constraint is
interval-consistent but not arc-consistent since (x, 0) is not consistent with this
constraint.

2.2. Basics of shortest paths

We briefly recall here a few ideas about shortest paths that are needed in the
rest of the paper. Most of the definitions are due to Tarjan [14].

Let G = (X, U) be a directed graph, where X is a set of nodes and U a set of
arcs; m denotes |U | whereas n denotes |X |. Each arc (i, j) is associated with an
integer called the cost of the arc and denoted cij . A path from node v1 to node vk

in G is a list of nodes [v1, ..., vk] such that (vi, vi+1) is an arc for i ∈ [1..k − 1]. A
path is simple if all its nodes are distinct. A path is a cycle if k > 1 and v1 = vk.

128 J.-C. RÉGIN AND M. RUEHER

The length of a path p, denoted by length(p), is the sum of the costs of the arcs
contained in p. A shortest path from a node s to a node t is a path from s to t
whose length is minimum. A cycle of negative length is called a negative cycle.
There is a shortest path from s to t iff no path from s to t contains a negative
cycle. d(u, v) denotes the shortest path distance from node u to node v in G
while s denotes the source node.

Grc is the graph derived from G by replacing, for each arc (u, v), cuv with its
reduced cost rcuv = cuv + d(s, u)− d(s, v). The shortest path distance from node
a to node b in Grc is denoted by d0(a, b). The following properties [1] hold in Grc:

(1) ∀(u, v) ∈ G: rcuv ≥ 0;
(2) d(a, b) = d0(a, b)− d(s, a) + d(s, b).

3. Interval consistency filtering

This section successively shows how interval consistency can be achieved on a
sum constraint and on binary inequalities.

3.1. Sum constraint

We will consider the following definition of a sum constraint:

Definition 1. Let X = {x1, ..., xr} be a set of variables. Sum = SUM(X, y) is a
sum constraint defined by the set of tuples T (Sum):

T (Sum) =

{

τ : τ is a tuple of X ∪ {y} ∧
r∑

i=1

τ [i]− τ [index(Sum, y)] = 0

}

.

Proposition 1. Let X = {x1, ..., xr} be a set of variables whose domain are
interval of integers. Then, for every value v such that

∑
xi∈X min(D(xi)) ≤ v ≤∑

xi∈X max(D(xi)) there exists an instantiation of the variables of X such that∑
xi∈X xi = v.

Proof. Let S min =
∑

xi∈X min(D(xi)). We have S min ≤ v ≤∑
xi∈X max(D(xi)).

Consider any ordering of the variables of X : {x1, ..., xr}. There exists an index i

such that v = S min +
∑i−1

j=1(max(D(xj)−min(D(xj))+p with p ≤ max(D(xi))−
min(D(xi)). Since D∗(xi) is the interval of integers [min(D(xi)), max(D(xi))]
then p ∈ D∗(xi) and the instantiation of X defined by xj = max(D(xj)) if j < i,
xi = p + min(D(xi)), and xj = min(D(xj)) if j > i satisfies

∑
xi∈X xi = v. �

From this proposition we have:

Corollary 1. Let X = {x1, ..., xr} be a set of variables whose domain are in-
terval of integers. Then establishing the interval consistency of the constraints∑

xi∈X xi ≤ v and
∑

xi∈X xi ≥ v is equivalent to establish the interval consistency
of the constraint

∑
xi∈X xi = v.

INEQUALITY-SUM: A NEW GLOBAL CONSTRAINT 129

From Corollary 1 we immediatly have:

Proposition 2. Let X ∪ {y} be a set of variables and let Sum = SUM(X, y)
be a sum constraint. Sum is interval-consistent if and only if the following four
conditions hold:

(1) min(y) ≥ ∑
xi∈X min(xi);

(2) max(y) ≤ ∑
xi∈X max(xi);

(3) ∀xi ∈ X : min(xi) ≥ min(y) − ∑
xj∈X−{xi}max(xj);

(4) ∀xi ∈ X : max(xi) ≤ max(y) − ∑
xj∈X−{xi}min(xj).

Interval consistency filtering of SUM(X, y) can be achieved efficiently in an in-
cremental way. The essential observation is that

∑
xj∈X−{xi}max(xj) is equal to

∑
xj∈X max(xj)−max(xi) and

∑
xj∈X−{xi}min(xj) is equal to

∑
xj∈X min(xj)−

min(xi). Since the sum over X can be computed only once, the above conditions
can be checked in O(n). Thus, the cost of updating the intervals after a modi-
fication of bounds of several variables is in O(n). What is instructive with this
complexity is the fact that it does not depend on the size of the domains of the
variables.

We would like to emphasize that if the domains of the variables are not consid-
ered as interval of integers it becomes difficult to establish the consistency of the
constraint as shown by the following proposition:

Proposition 3. Finding a tuple on the variables of X such that
∑

xi∈X xi = v is
an NP-Complete problem in general.

Proof. This problem is obviously in NP (easy polynomial certificate). We trans-
form SUMSET-SUM to this problem. SUMSET-SUM is: Instance: finite set A,
size s(ai) in Z+ for each ai ∈ A, positive integer k. Question: is there a subset A′

of A such that the sum of the sizes of the elements in A′ is exactly k?
For each ai ∈ A we define a variable xi whose domain is {0, s(ai)}. Then

sumxi∈X(xi) = k exactly solves SUBSET-SUM. �

3.2. Binary inequalities

Arc consistency can be achieved on binary inequalities like Ineq by using specific
filtering algorithms such as AC-5 [15]. However, the complexity of such algorithms
depends on the size of domains of the variables. Thus, they are rather ineffective
for detecting inconsistencies. Interval consistency can be achieved in O(mn) where
n is the number of variables and m = |Ineq |+2n. This is due to a result of Dechter
et al. [5] on the “Simple Temporal Constraint Satisfaction Problem” (STCSP).
Roughly speaking, interval consistency can be achieved by searching for shortest
paths in a particular graph G = (N, E), called the distance graph, where node
set N represents the variables and arc set E stands for the inequality constraints.

130 J.-C. RÉGIN AND M. RUEHER

x5

x4

x3

x1

s

x2

10

−8
−2

−2

−1

2
10

−3 8

−5

5

−3

3

−1

Figure 1. Distance graph associated to the CSP

P = {{x, y}{[1, 6], [2, 5]}, {x≤ y − 3}}.

More formally, let P = (X ,D∗c , Ineq) be a CSP where D∗c denotes a set of
continuous domains. The distance graph G = (N, E) associated with P is defined
in the following way (see Fig. 1):

• The node set N contains:
– A special node s, named source, with a domain D(s) that is reduced

to a single value {0}.
– One node for each variable xi in X .

• The arc set E contains:
– An arc (xj , xi) with cost cji for each inequality xi ≤ xj + cji.
– An arc (xi, s) with cost −min(xi) for each variable xi in X .
– An arc (s, xi) with cost max(xi) for each variable xi in X .

Arcs (xi, s) and arcs (s, xi) result from the definition of domain D∗c (xi) =
[min(xi), max(xi)] by the inequalities: 0 ≤ xi − min(xi) (so s ≤ xi −
min(xi)) and xi ≤ max(xi) (so xi ≤ s + max(xi)).

This problem statement results from the following optimality condition of shortest
paths: d(s, xj) ≤ d(s, xi) + cij for all (xi, xj) ∈ N . This inequality states that
for every arc (xi, xj) in the network the length of the shortest path to node xj is
not greater than the length of the shortest path to node xi plus the length of the
arc (xi, xj). Dechter et al. have shown [5] that :

Theorem 1. A STCSP is consistent iff its distance graph has no negative
directed cycles.

Theorem 2. Let G be the directed graph representation of a consistent
STCSP P = (X ,D, C) where C is a set of binary inequalities. The set of
feasible values for xi is [−d(xi, s), +d(s, xi)], where d(xi, xj) denotes the
shortest path from node xi to node xj .

INEQUALITY-SUM: A NEW GLOBAL CONSTRAINT 131

Dechter et al. have extended network based methods for solving mixed-integer
linear problems [10]. So, it it is trivial to show that their results hold when the
domains are restricted to intervals of integers.

Theorem 1 states that the problem has no solution if G contains a negative cycle.
Indeed, a negative cycle indicates that some of the inequalities are contradictory.
The following property results from Theorem 2:

Proposition 4. Let P = (X ,D, C) be a STCSP and let G = (N, E) be the distance
graph associated with P ∗ = (X ,D∗, C). If G contains no negative cycle, then
∀xi ∈ X : (D∗(xi) = [−d(xi, s), +d(s, xi)])⇒ P is interval-consistent.

Proof. Assume that D∗(xi) = [−d(xi, s), +d(s, xi)]. Since G contains no negative
cycles, it results from Theorem 2 that −d(xi, s) and d(s, xi) are feasible values.
Thus, P is interval-consistent. �

According to Theorem 2, interval consistency can be achieved by computing the
shortest paths between s and the xi, when G does not contain any negative cycle.
Computing shortest paths when the problem graph is likely to contain a negative
cycle can be achieved in O(mn) running time [14]. When the graph contains no
negative arcs, Dijkstra’s algorithm computes shortest paths in O(m + n logn). Of
course, Dijkstra’s algorithm can always be used on the graph of reduced costs. A
nice property of the distance graph G = (N, E) associated with P ∗ = (X ,D∗, C)
is that the reduced costs can be derived from the minimal and maximal values of
the domains.

Proposition 5. Let P = (X ,D, C) be a CSP and let G = (N, E) be the distance
graph associated with P ∗ = (X ,D∗, C). If P is interval-consistent, then the follow-
ing relations hold:
∀xi, xj ∈ X : rcij = cij + max(xi)−max(xj)
∀xi, xj ∈ X : d(xi, xj) = d0(xi, xj)−max(xi) + max(xj).

These properties trivially result from the definition of the reduced costs and The-
orem 2.

4. Global IS constraint

Now, let us show how interval consistency of the global constraint IS can be
achieved. A global constraint IS represents the conjunction of a sum constraint
and a set of binary inequalities defined on variables involved in the sum constraint.
More formally, we have:

Definition 2. Let SUM(X, y) be a sum constraint, and Ineq be a set of binary in-
equalities defined on X = (x1, . . . , xr). Global constraint IS(X, y, Ineq) is defined
by the set of tuples T (IS):

T (IS) = {τ : τ is a tuple of X(IS) ∧
r∑

i=1

τ [i]− τ [index(IS, y)] = 0 ∧

∀(xi ≤ xj + cji) ∈ Ineq : τ [i] ≤ τ [j] + cji}.

132 J.-C. RÉGIN AND M. RUEHER

To define interval consistency for IS, we have to extend inequalities of Proposition 2
in order to take into account the binary inequalities between the variables involved
in the sum constraint.

Let us highlight this point by considering again the initial example. Now, the
constraint network is expressed with one global constraint IS:

IS({x1, x2}, y, {(x1 ≤ x2 − 1)})
where D(x1) = [0, 6], D(x2) = [1, 7] andD(y) = [1, 13].

Suppose that min(y) is set to 6. Inequality (3) of Proposition 2 states that:

∀xi ∈ X : min(xi) ≥ min(y)−
∑

xj∈X−{xi}
max(xj).

So, for x2, we have: min(x2) ≥ 6 −max(x1). Since max(x1) = 6. This inequality
holds when min(x2) is equal to 1 although the constraint (x1 ≤ x2− 1) is violated
for x2 = 1 and x1 = 6.

Thus, inequality (3) must be modified in order to take into account the con-
straint (x1 ≤ x2 − 1). More precisely, the value of xi and the upper bounds of xj

considered in inequality (3) should satisfy the constraints (xi ≤ xj − cji) of Ineq.
Let min(xi←a)(xj) and max(xi←a)(xj) respectively be the minimum and the

maximum values of D∗(xj) which satisfy the binary inequalities Ineq when xi

is instantiated to a. Using this notation, inequality (3) can be rewritten in the
following form:

∀xi ∈ X : (xi ← a)⇒ a ≥ min(y)−
∑

j �=i

max
(xi←a)

(xj).

This new inequality does not hold for x2 = 1 and x1 = 6. The smallest value
of D∗(x2) that satisfies this inequality is 4.

So, interval-consistency of IS can be defined in the following way:

Proposition 6. Let X ∪ {y} be a set variables and let IS(X, y, Ineq) be a global
sum constraint. IS is interval-consistent iff the following conditions hold:

(1b) min(y) ≥ ∑
xi∈X min(xi)

(2b) max(y) ≤ ∑
xi∈X max(xi)

(3b) ∀xi ∈ X : min(xi) ≥ min(y) −
∑

xj∈X−{xi}
max

(xi←min(xi))
(xj)

(4b) ∀xi ∈ X : max(xi) ≤ max(y) −
∑

xj∈X−{xi}
min

(xi←max(xi))
(xj).

Proof. From inequalities (1b) and (2b) it results that constraint SUM(X, y) holds
when y is set to min(y) and when y is set to max(y). Since y occurs only in
SUM(X, y), it follows that IS is interval-consistent for y. Inequality (3b) ensures
that both constraint SUM(X, y) and the inequalities of Ineq hold when xi is set
to min(xi). This reasoning remains valid for inequality (4b).

INEQUALITY-SUM: A NEW GLOBAL CONSTRAINT 133

Conversely, it is trivial to show that inequalities (1b), (2b), (3b), and (4b) hold
if IS is interval-consistent. �

The scheme of the interval consistency filtering algorithm of constraint IS is
given in Algorithm 1. This algorithm is started whenever one bound of a variable
in X ∪ {y} are modified. Note that steps 1 and 2 are systematically performed
when interval consistency on IS is achieved for the first time. Negative cycles are
detected in step 1 of Algorithm 1.

In the rest of this paper, we will only detail the search process of the minimum
value of a variable (step 3 in Algorithm 1) since the same kind of reasoning holds
for searching maximum values (step 4 in Algorithm 1).

Algorithm 1: Filtering IS by interval consistency

(1) Interval consitency is achieved on SUM(X, y) with an algorithm
derived from Proposition 2 whenever a bound of y is modified.

(2) Interval consitency is achieved on the conjunction of binary in-
equalities Ineq ∪ Dom with a shortest path algorithm whenever a
bound of some variable of X is modified.

(3) For every variable x ∈ X , the minimum value of x satisfying
inequality (3b) will be computed.

(4) For every variable x ∈ X , the maximum value of x satisfying
inequality (4b) will be computed.

5. Computing a new minimum

The goal is to find the smallest value xi ∈ [min(xi), max(xi)] such that inequal-
ity (3b) of Proposition 6 holds. It follows from inequality (3b) that

xi = min(y)−
∑

xj∈X−{xi}
max

(xi←xi)
(xj). (1)

So, we have to determine the largest value of xj which is consistent with xi.
The algorithm is based on the following properties:

Proposition 7. Let dGxi←xi
(s, xj) denote the shortest path from s to xj in the

graph derived from G by instantiating xi with xi. Then,

max
(xi←xi)

(xj) = dGxi←xi
(s, xj).

Proof. This property results from Theorem 2 when Gxi←xi does not contain any
negative cycle. Negative cycles are detected in step 1 of Algorithm 1. So, if there
exists a negative cycle, it has been introduced by the instantiation of xi with xi

in Gxi←xi .

134 J.-C. RÉGIN AND M. RUEHER

Suppose that the instantiation of xi with xi introduces a negative cycle in
Gxi←xi . This cycle would contain xi, so we would have d(s, xi) + d(xi, s) < 0 and
thus xi−min(xi) < 0 which would be in contradiction with xi ∈ [min(xi), max(xi)].

�

To compute dGxi←xi
(s, xj) efficiently, we have to establish a link between the

shortest paths in G and the ones in Gxi←xi ; otherwise we would have to compute
the shortest paths at each step on a new graph. The following propositions help
us to establish such a connection.

Proposition 8. Let G = (X, U).

∀s, xi, xj ∈ X : dG(s, xj) = min (dG(s, xi) + dG−{s}(xi, xj), dG−{xi}(s, xj)).

Proof. First, let us recall that in a graph without negative cycles, it exists a simple
shortest path whenever a shortest path exists. So, we have to examine two cases:

(1) No simple shortest path from s to xj contains xi. Then, we have dG(s, xj) =
dG−{xi}(s, xj) and the proposition holds.

(2) Some simple shortest path P from s to xj contains xi. That’s to say
P = dG(s, xi) + dG(xi, s). Since dG(s, xi) contains xi, s cannot belong to
dG(xi, s) and we have dG(s, xj) = dG(s, xi) + dG−{s}(xi, xj). �

Next property states that if the shortest path from s to xj goes through xi

when xi is instantiated to xi, then max(xi←xi)(xj) = xi + dG−{s}(xi, xj), oth-
erwise max(xi←xi)(xj) = max(xj).

Proposition 9. After the achievement of steps 1 and 2 of Algorithm 1 we have:

max
(xi←xi)

(xj) = min (xi + dG−{s}(xi, xj), max(xj)).

Proof. Proposition 8 states for the graph Gxi←xi :

dGxi←xi
(s, xj) = min (dGxi←xi

(s, xi) + dGxi←xi
−{s}(xi, xj), dGxi←xi

−{xi}(s, xj)).

Since the instantiation of xi to xi only modifies the values of csxi and of cxis, the
shortest paths in G−{s} are equal to the shortest paths in Gxi←xi − {s}. So, we
have:

dGxi←xi
(s, xj) = min (dGxi←xi

(s, xi) + dG−{s}(xi, xj), dG−{xi}(s, xj)).

On the other hand, after the achievement of step 2 of Algorithm 1, Theorem 2 en-
sures that the set of feasible values for xi is [−d(xi, s), +d(s, xi)]. The graph Gx1←xi

is the graph G where the values of csxi and of cxis have respectively been set to
xi and to −xi. Since xi ∈ [−d(xi, s), +d(s, xi)], xi is a valid value, and thus, The-
orem 2 on Gx1←xi states that the set of feasible values of xi is [−dGx1←xi

(xi, s),
+dGx1←xi

(s, xi)] = [xi, xi]. So, dGx1←xi
(s, xi) = xi.

INEQUALITY-SUM: A NEW GLOBAL CONSTRAINT 135

Moreover, from Theorem 2 we have d(s, xj) = max(xj). Therefore the proposi-
tion holds. �

Let S be the set of variables xj for which xi + dG−{s}(xi, xj) > max(xj), that’s
to say dG−{s}(xi, xj) > max(xj)−xi = cxi,s +d(s, xj) = d(xi, xj). In other words,
S is the set of variables for which the shortest path dG−{s}(xi, xj) in G − {s} is
greater than the shortest path d(xi, xj) in G.

Then, by Proposition 9, equation (1) is equivalent to:

xi = min(y)−
∑

xk∈S

max(xk)−
∑

xj∈X−(S∪{xi})
xi + dG−{s}(xi, xj) (2)

which is equivalent to

xi =







1
|X | − |S|



min(y)−
∑

xk∈S

max(xk)−
∑

xj∈X−(S∪{xi})
dG−{s}(xi, xj)











.

(3)
We are now in position to define an algorithm for the computation of xi in an
iterative way. The key idea of the algorithm is that we can find the value of xi

by seeking for the minimal set S consistent with equation (3). Let T be a set of
variables and

α(T) =







1
|X | − |T |



min(y)−
∑

xk∈T

max(xk)−
∑

xj∈X−(T∪{xi})
dG−{s}(xi, xj)











.

If T is minimal and if T is the set of variables xj for which α(T)+dG−{s}(xi, xj) >
max(xj) then xi = max(min(xi), α(T)). A initial set T can be defined by the
variables xj for which min(xi) + dG−{s}(xi, xj) > max(xj). Then, the following
procedure is repeated: compute α(T) and compute the new set T according to
the value of α(T). This procedure is repeated until a fix point is reached, that
is T is no longer modified by the new procedure. Algorithm 2 implements this
mechanism. The point is that new variables may be added to T when the value of
α(T) is shifted up. Indeed, xi = α(T) belongs to less and less shortest paths, as
the value of xi increases. Note that the value of α(T) computed by the function
Lower-bound may be smaller than min(xi) when min(y) does not introduce any
constraint. That’s why this function returns max(α(T), min(xi)).

Algorithm 2 computes xi in an at most n iterations since at least one variable is
put in T at each step. The two sums can be updated in O(1) when a new element
is added to T .

Before starting this algorithm we have to compute the shortest paths
dG−{s}(xi, xj). The point is that the dG−{s}(xi, xj) can be computed on the
graph of reduced costs. (See Property 5.) Moreover, these shortest path distances
have only to be computed once since they do not depend on the values of the
domains. So, the greatest value of xj which is consistent with xi can be deter-
mined by computing dG−{s}(xi, xj) on the graph of reduced costs. No propagation

136 J.-C. RÉGIN AND M. RUEHER

Algorithm 2: Computing xi

Function(Lower-bound(IN: ∆, xi, OUT :xi))
% ∆ : sorted list of ∆j = max(xj)− dG−{s}(xi, xj)
T ← ∅
α(T)← min(xi)
repeat

T ← T ∪ {xj : ∆j < α(T)}

α(xi)←






1
|X | − |T |



min(y)−
∑

xk∈T

max(xk)−
∑

xj∈X−(T∪{xi})
dG−{s}(xi, xj)











until T does no more change
return max(α(T), min(xi))

x5

x4

x3

x1

s

x2

10

−8
−2

−2

−1

2
10

−3 8

−5

5

−3

3

−1

Figure 2. Distance graph associated to the CSP P1.

step is required: when min(xi) is increased it is useless to reconsider min(xj) if
xj has been updated before xi during step 3 of the interval consistency filtering
algorithm. (See Algorithm 1.) This results from Proposition 4 which states that
−d(xi, s) is the lower bound of D∗(xi).

Here is a short example that illustrates the process performed by algorithm 2.
Consider the CSP P1 defined by the following distance constraints:

D∗(x1)
= [3, 10] D∗(x2)

= [1, 3] D∗(x3)
= [3, 5] D∗(x4)

= [5, 8] D∗(x5)
= [8, 10]

x2 ≤ x3 − 1 x3 ≤ x4 − 2 x4 ≤ x5 − 2 x1 ≤ x4 + 2.

The distance graph associated to the CSP P1 is given by Figure 2.
Assume that we want to compute x4 after a modification of min(y). The data

compute before the algorithm starts are reported in Table 1.

INEQUALITY-SUM: A NEW GLOBAL CONSTRAINT 137

Table 1. Data computed for CSP P1.

i max(i) dG−{s}(x4, i) ∆i = max(i)− dG−{s}(x4, i)
1 10 2 8
2 3 -3 6
3 5 -2 7
5 10 ∞ −∞

Suppose that min(y) is set to 26. Since min(x4) = 5, variables x5 is added to T .
Thus, α(T)← � 14 (26− (10)− (2− 3− 2))� = 5. No variable is added to T and the
algorithm returns min(x4).

Now suppose that min(y) is shiffted up to 35. The set T still contains x5 at the
beginning but now α(T) is equal to � 14 (35− (10)− (2 − 3− 2))� = 7. Thus, x2 is
added to T and α(T) is set to � 13 (35− (10 + 3)− (2− 2))� = 8. Then, x3 is added
to T and α(T) is set to � 13 (35− (10+3+5)− (2))�= 8. The fixed point is reached
and the algorithm returns 8 that actually corresponds to the smallest value of x4

which is interval consistent in the constraint system P1 ∪ {min(y) = 35}.

5.1. Complexity issues

The shortest distance between every xi and all other nodes can be computed
with Dijkstra’s shortest path algorithm on the graph of reduced costs in n×O(m+
n log n) Of course, since we have to check whether the graph contains negative
cycles the cost of the shortest paths between the first considered xi and all other
nodes will be in O(nm). The shortest paths have only to be recomputed when the
constraints changes1.

∆j can be computed in O(n) time. Sorting ∆ costs O(n log n) whereas α(xi)
can be computed in constant time at each iteration step. Then, the computation
of xi can be achieved in O(n) time.

So, the cost enforcing interval consistency on the IS constraint is n × O(m +
n log n) time.

Maintaining interval consistency on IS after the modification of some bound
can be done in n log(n) time.

6. Discussion

It is also instructive to remark that our algorithm still works when the function
to be optimized is of the form y = Σi=n

i=1 αixi where the αi are non-negative real

1 Constraints may change at the branching step in optimization problems; for instance, a
constraint |x − y| ≥ 5 yields two constraint systems: one with the constraint x − y ≥ 5, and one
with the constraint y − x ≥ 5.

138 J.-C. RÉGIN AND M. RUEHER

numbers. However, interval consistency of IS can no longer be established in
polynomial time since in this case the sum constraint becomes NP-Complete:

Proposition 10. Finding a tuple on the variables of X such that
∑

xi∈X aixi = v
is an NP-Complete problem even if the domain of the variables of X are interval
of integers.

Proof. This problem is obviously in NP (easy polynomial certificate). We trans-
form SUMSET-SUM to this problem. SUMSET-SUM is: Instance: finite set A,
size s(ai) in Z+ for each ai ∈ A, positive integer k. Question: is there a subset A′

of A such that the sum of the sizes of the elements in A′ is exactly k?
For each ai ∈ A we define a variable xi whose domain is the interval of integers

[0, 1]. Then sumxi∈X(s(ai)xi) = k exactly solves SUBSET-SUM. �

Thus Corollary 1 cannot be extended for the case where the function to be
optimized is of the form y = Σi=n

i=1αixi. Nevertheless, we can modify the previous
algorithm in order to obtain a weaker filtering algorithm.

To capture the exact contribution of each xi in the sum when the αi are different
from the value 1, we need only introduce the coefficient of xi in Equation 1:

xi =
1
αi



min(y)−
∑

xj∈X−{xi}
αj max

(xi←xi)
(xj)



 . (4)

In Section 1, we defined Ineq as the subset of binary inequalities that involve
only variables occurring in the objective function f(x). However, Ineq could be
extended to the subset of binary inequalities that involve either variables occurring
in f(x) or variables connected to variables occurring in f(x). For instance, assume
that x1 and x2 occur in the objective and let {x1 ≤ y1+c; y1 ≤ y2+c′; z1 ≤ z2+c′′}
be the set of binary inequalities. Then, this extended set of inequalities would
contain {x1 ≤ y1 + c; y1 ≤ y2 + c′}.

Let Sx be the set of variables occurring in f(x). To capture this extension, we
need only to replace X by Sx in

∑
xj∈X−{xi} of equations (1) and (5). Considering

this extended set of inequalities may entail a better pruning of the domains.

7. Conclusion

This paper has introduced a new global constraint which handles as a single
constraint a sum constraint and a system of binary linear inequalities. An efficient
algorithm has been proposed to achieve an interval-consistent filtering of this new
global constraint. The cost of this algorithm is not higher than the cost of a
filtering algorithm which handles only the inequalities. A direct application of this
constraint concerns optimization problems where it introduces a kind of “back”
propagation process.

INEQUALITY-SUM: A NEW GLOBAL CONSTRAINT 139

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows. Prentice Hall (1993).
[2] N. Beldiceanu and E. Contejean, Introducing global constraints in chip. J. Math. Comput.

Model. 20 (1994) 97–123.
[3] J. Blazewicz, K. Ecker, G. Schmidt and J. Weglarz, Scheduling in Computer and Manufac-

turing Systems. Springer-Verlag (1993).
[4] J. Carlier and E. Pinson, A practical use of jackson’s preemptive schedule for solving the

job-shop problem. Ann. Oper. Res. 26 (1990) 269–287.
[5] R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks. Artif. Intell. 49 (1991)

61–95.
[6] M. Dror, W. Kubiak and P. Dell’Olmo, Scheduling chains to minimize mean flow time.

Inform. Process. Lett. 61 (1997) 297–301.
[7] P. Van Hentenryck and Y. Deville, The cardinality operator: A new logical connective for

constraint logic programming, in Proc. of ICLP’91 (1991) 745–759.
[8] P. Van Hentenryck, V. Saraswat and Y. Deville, Design, implementation, and evaluation of

the constraint language cc(FD). J. Logic Program. 37 (1998) 139–164.
[9] M. Rueher and J.-C. Régin, A global constraint combining a sum constraint and difference

constraints, in Proc. of CP’2000, Sixth International Conference on Principles and Practice
of Constraint Programming. Singapore, Springer-Verlag. Lect. Notes Comput. Sci. 1894
(2000) 384–395.

[10] C.E. Leiserson and J.B. Saxe, A mixed-integer linear programming problem which is effi-
ciently solvable. J. Algorithms 9 (1988) 114–128.

[11] J.-C. Régin, A filtering algorithm for constraints of difference in CSPs, in Proc. of AAAI-94.
Seattle, Washington (1994) 362–367.

[12] J.-C. Régin, Generalized arc consistency for global cardinality constraint, in Proc. of
AAAI-96, Portland, Oregon (1996) 209–215.

[13] H. Simonis, Problem classification scheme for finite domain constraint solving, in CP96,
Workshop on Constraint Programming Applications: An Inventory and Taxonomy, Cam-
bridge, MA, USA (1996) 1–26.

[14] R.E. Tarjan, Data Structures and Network Algorithms. CBMS 44 SIAM (1983).
[15] P. Van Hentenryck, Y. Deville and C.-M. Teng, A generic arc-consistency algorithm and its

specializations. Artif. Intell. 57 (October 1992) 291–321.

