RAIRO Operations Research
RAIRO Oper. Res. 37 (2003) 221-234
DOI: 10.1051/r0:2004002

MINIMUM CONVEX-COST TENSION PROBLEMS
ON SERIES-PARALLEL GRAPHS

BRUNO BACHELET! AND PHILIPPE MAHEY!

Abstract. We present briefly some results we obtained with known
methods to solve minimum cost tension problems, comparing their per-
formance on non-specific graphs and on series-parallel graphs. These
graphs are shown to be of interest to approximate many tension prob-
lems, like synchronization in hypermedia documents. We propose a
new aggregation method to solve the minimum convex piecewise linear
cost tension problem on series-parallel graphs in O(mg) operations.

Keywords. Minimum cost tension, convex piecewise linear costs,
series-parallel graphs.

INTRODUCTION

The exploding use of Internet and of hypermedia documents have turned crucial
the necessity to dispose of robust on-line algorithms to manage complexity and
interactivity. One of the resulting problems which has emerged recently is the
synchronization of hypermedia documents by considering that each object can be
compressed or delayed like an elastic spring. The heterogeneity of the objects
that compose a hypermedia document turns their presentation in time and space
a hard problem. On the other hand, interactivity means that real-time updates
of the schedule of the document should be possible, increasing the need for faster
decision-making algorithms.

As explained in [9] and [17], such documents are composed of media objects
(audio, video, text, image...), which duration of presentation must be adjusted to
satisfy a set of temporal constraints that express the progress of the animation as

L LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, BP 10125, 63173 Aubiere, France;
e-mail: bachelet@isima.fr, mahey@isima.fr
© EDP Sciences 2004

222 B. BACHELET AND P. MAHEY

defined by the author. But for these constraints to be satisfied, the author must
accept some flexibility on the duration (that we call ideal) of presentation of each
object, pauses being totally forbidden if not explicitly wanted. To estimate the
quality of an adjustment, a cost function, usually convex (¢f. Fig. 1), is introduced
for each object. To summarize, the problem we attempt to solve here is to find an
adjustment of best quality, 7.e. which minimizes the sum of the costs of the media
objects.

cost cost cost cost

duration

' ' '
! i ' . ' .

' duration ' duration ' duration
: : :

ideal

ideal
(a) () () (d)

ideal ideal

FIGURE 1. Examples of cost functions. (a) Piecewise linear with
a single ideal value. (b) Non-linear, but convex and derivable. (c)
Piecewise linear with several ideal values. (d) Discrete values.

The set of temporal constraints can be modeled as a directed graph G = (X;U)
(cf. [6]) where X is a set of nodes, U a set of arcs, m = |U| and n = |X|. The
nodes represent events (the start or the end of presentation of an object). The
arcs express duration constraints between nodes. With each arc u is associated
a duration interval [a,;b,], an ideal duration o, and a cost function ¢, defined
on the interval. An arc u = (x;y) between two nodes x and y means the event
x precedes y and they are separated by a duration 6, between a, and b,, the
ideal value being o,,. Figure 2 shows how to represent some of the main temporal
relations used in hypermedia synchronization (introduced by [3]).

Let 7 : X — R be a potential function which assigns a date to each event node
of the graph. Then the duration 6, of an object associated with an arc u = (x;y)
can be seen as the difference of potentials 6, = 7, —m, in other words, 8 = (6y,)uecv
is a tension vector on the graph (e.g. [7]). Denoting by A the incidence matrix of
the graph, i.e. matrix A of dimension (m x n) with the elements a,, equal to —1
(if u leaves), +1 (if u comes to x) or 0 (any other case), the problem is simply
formulated as following;:

minimize Z cu(Ou)
(P)
Wi‘ch@:ATﬂ'7 a<0<hb.

And let T be the set of feasible tensions, i.e. T = {0 € R™ | 0 = ATn, a<6<
b}. In this article, we only consider convex two-piecewise linear cost functions as
shown in Figure la, the adaptation to more pieces of the method described here

MINIMUM COST TENSION ON SERIES-PARALLEL GRAPHS 223

(A [B] = 04s0bBso [A W5] = 040050
A meets B A before B

B] B B

; ;- n e e O

[A Jo—r Ayt Lo A
A starts B A finishes B

B + B (? i B | B
1 | — . PR
A A o A 2 2 A 5

A equals B A during B

A overlaps B

FIGURE 2. Graph representation of temporal constraints.

is straightforward (Sect. 3 shows that the core of the method manages piecewise
linear costs with more than two pieces, so only the initialization phase of the
method has to be adapted). Hence, from now on we consider the cost functions
¢, as following:

ct(oy —04) , if 0, < 0,

cu(bn) = { 4 .

Co(0y —0y) , if 0, > 0.
In Section 1, we present the results we obtained with known methods to solve
the minimum cost tension problem on graphs with non-specific structure. Then
in Section 2, we recall and introduce some properties of the series-parallel graphs
related to tension. Section 3 explains the aggregation method. Numerical results
of this method and comparisons with the previous methods are presented and
discussed in Section 4. The last section ends this article with our first thoughts
on how to exploit this method on non series-parallel graphs.

1. MINIMUM COST TENSION PROBLEM

With convex piecewise linear costs, it is possible to model the problem with
linear programs. It is a solution widely used in practice for the synchronization
problem (e.g. [10,17]). Another way to solve the problem is the out-of-kilter
algorithm first introduced for the minimum cost flow problem [14] and then for the
minimum cost tension problem in [18]. We present an adaptation of that method to
piecewise linear costs in [5]. That algorithm is pseudo-polynomial, O(m?(A + B))
operations where A = max,ey{ay;b,} and B = max,cy{cL;c2}. A polynomial
method is presented in [15] but is only really efficient in practice for a special class

224 B. BACHELET AND P. MAHEY

TABLE 1. Numerical results on non-specific graphs.

[Nodes [Arcs [CPLEX [Kilter | Cost-Scaling

50 200 0.44 0.12 0.1
50 400 0.83 0.3 0.19
100 400 0.93 0.47 0.28
100 800 2 1.3 0.54
500 2000 12.5 15.4 3.5
500 4000 37.7 49.1 6,8
1000 4000 57.2 76.5 11.6
1000 8000 193.7 239.9 20.4

of graphs (Penelope’s graphs). More recently, [1] presents an algorithm to solve
a more generic problem called the convex cost integer dual network flow problem,
the algorithm consists in transforming the minimum cost tension problem into
a minimum cost flow problem, solved with the well-known cost-scaling method
(e.g. [2]). This algorithm is polynomial, O(mn?lognA) operations, and proves to
be very efficient in practice.

Table 1 aims at a practical comparison of the methods, which is always tricky
because of all kinds of biases. But the goal here is to get an idea of how the
methods behave on graphs with non-specific structure. Later in this article, we
show the performance of these very same implementations on series-parallel graphs.
Results are expressed in seconds, obtained on a RISC 6000 / 160 MHz processor
with an AIX Unix operating system. We use GNU C++ 2.95 compiler and its
object-oriented features to implement the methods. For the linear programming,
we use the simplex method provided in CPLEX 6.0 software. These results are the
means of series of 10 tests on randomly generated graphs. Both A and B are fixed
to 1000. The implementation of the methods and the generation of the graphs are
available in [4].

2. SERIES-PARALLEL GRAPHS

A common definition of series-parallel graphs is based on a recursive construc-
tion of these graphs (e.g. [12,13,22]) that is very intuitive and close to the way
synchronization constraints are built in a hypermedia document.

A graph is series-parallel, also called SP-graph, if it is obtained from a graph
with only two nodes linked by an arc, applying recursively the two following op-
erations:

e the series composition, applied upon an arc u = (z;y), creates a new node
z and replaces u by two arcs u; = (r;2) and ug = (z;y) (¢f. Fig. 3a). We
call series the relation that binds u; and us and note it uq + us;

e the parallel composition, applied upon an arc u = (x;y), duplicates u by
creating a new one v = (x;y) (¢f. Fig. 3b). We call parallel the relation
that binds u and v and note it u//v.

We regroup the series and parallel relations under the term SP-relation. During
the construction process, a SP-relation that binds two arcs can become a relation

MINIMUM COST TENSION ON SERIES-PARALLEL GRAPHS 225

: u : - : u, : u, : C u () — a Q
@

(b)

FIGURE 3. Series and parallel compositions.

between two series-parallel subgraphs. Hence, we introduce the term single SP-
relation to identify a SP-relation between two arcs. From the recursive definition
of a SP-graph, it is easy to verify that a SP-graph has always a single SP-relation
(the SP-relation created from the last composition). Hence, it is easy to check if
a graph is series-parallel: find a single SP-relation in the graph, apply a reduction
reverse to the composition that produces the SP-relation and go on again until
only one arc remains in the graph. This linear-time method is explained in [22]
and [20]. Another efficient approach to recognize a SP-graph is proposed in [13],
based on the fact that paths in SP-graphs are organized a certain way.

The SP-relations are binary operations, so we can represent a SP-graph by
a binary tree called decomposition binary tree or SP-tree (cf. [11,22]). Figure 4
shows a SP-tree of an SP-graph. All the algorithms cited earlier to recognize a
SP-graph can be adapted, without any complexity loss, to build a SP-tree during
their process. Hence we will use this representation to present our aggregation
method.

FI1GURE 4. Example of SP-tree.

From the definition of a SP-graph, it is obvious that a SP-graph has only one
source node (i.e. without any predecessor) and only one target node (i.e. without
any successor). Hence we define the main tension 0 of a graph as the tension
between its source s and target ¢, i.e. 8 = m — .

3. AGGREGATION METHOD

We present here the aggregation method to solve the minimum cost tension
problem with convex piecewise linear cost functions (¢f. Fig. 1a) on an SP-graph
G. Note that the resolution of an optimization problem on this kind of graphs is
usually easier than on non-specific graphs (e.g. [8,11,21]).

226 B. BACHELET AND P. MAHEY

The aggregation method works on an SP-tree T of the SP-graph G. The method
is recursive: considering an SP-relation in T, it supposes that the optimal tensions
of the two subgraphs implied in the relation are known, and from them it is possible
to quickly build the optimal tension of the whole SP-relation. Hence, starting from
the leaves of T', the optimal tension of each SP-relation is built to finally reach the
root of the tree T

To get an efficient algorithm, we need what we call the minimum cost function
Cqg of a SP-graph G. This function represents the cost of the optimal tension
(as defined by linear program (P) in the introduction) where the main tension is
forced to a given value.

Ca(z) = min{z cu(fy) |0 €T, 0= :L'} .

uelU

As each function ¢, is convex, the minimum cost function is indeed convex (as-
suming that Cq(z) = +o0 if no feasible tension exists such that the main tension
is forced to x).

We consider two series-parallel subgraphs G; and G5, and suppose that their
minimum cost functions Cg, and Cg, are known. If we look at the SP-relation
G1 + G (¢f. Fig. 5a), G1 and G2 only share one node, hence there is no tension
constraints between them. But if we add the constraint that the main tension
of G1 + G must be equal to z, it imposes to z; and x5, the main tensions of
G and Gg, that © = 1 4+ x2. Hence, the minimum cost function Cg, +¢g, of the
SP-relation G + Go is:

CG1+G2 (l‘) = min CGI (1‘1) + CGz (1‘2)

r=x1+T2

It means Cg,+¢q, is the inf-convolution Cg,0Cqg,. It is well-known that this
operation maintains convexity (e.g. [19]).

If we look now at the SP-relation G1//G> (¢f. Fig. 5b), G and G5 share their
source and target nodes, hence the only tension constraint between them is that
their main tensions x; and x5 must be equal. If we add the constraint that the
main tension of G1//G2 must be z, then it imposes x = 21 = x2. Hence, the
minimum cost function Cg, /¢, of the SP-relation G1//G> is:

Ca,//6,(7) = Cg, (z) + Cg, (7).

It means Cg, //q, is simply the sum Cg, +Cg,, which is convex if Cg, and Cg, are
convex. From our analysis of the two SP-relations, it is easy to write an algorithm
that builds the minimum cost function Cg of a SP-graph G. But what interests
us is to find the minimum cost tension of G. We propose now a specific way to
represent the minimum cost functions so we know not only the cost of the optimal
tension of a SP-relation, but also how to build it.

MINIMUM COST TENSION ON SERIES-PARALLEL GRAPHS 227

G, G, G, G,
@ (b)

FIGURE 5. SP-relations between subgraphs.

For this purpose, we define the ¢-centered minimum cost function C§ of G as
following:

Ch(z) = Cg(x +1t) — Cq(t).

That means C§(0) = 0 and the function represents the minimum cost to increase
or decrease the main tension from the value t.

We choose to represent this piecewise function with two sets shf, and stk shi,,
called the shrinking set, represents C%, on the interval | —oo; 0[, and stf;, called the
stretching set, represents C%, on the interval |0; +o0o[. These sets simply contain
the definition of each piece of the function on the interval they represent. They
contain triplets of the form (c;e; L) where ¢ represents the slope of the curve, e
the length of the interval on which the piece is defined and L is a set of arcs (there
can be several sets because more than one tension may be optimal, i.e. more than
one way may exist to optimize the tension) that must be increased or decreased to
adapt the tension on this piece. For efficiency reasons, the triplets are sorted from
the smallest slope to the highest. Here are the sets stf, and shl, of the example
of Figure 6 (where a, b, ¢, d and e are arcs of G):

sh = {(=2/5;5; {a;b}); (3/5: 10; {c}); (3; 5; {d; e})}
ste = {(2/5;5;{a; b}); (2,7 {c; e}) }-

For instance, if we want to decrease the main tension ¢, we consider the first triplet
of the shrinking set shl, i.e. (—2/5;5;{a;b}), which means the tension ¢ can be
decreased by a value between 0 and 5, with a unit cost 2/5, by decreasing the
tension of the arcs a and b by the same value. If the tension ¢ must be decreased
by more than 5 units, then we consider the second triplet of shl,, and so on until
the whole decrease is performed.

228 B. BACHELET AND P. MAHEY

Ce(x)
A
2
: 2/5 :
2 : > x
‘ ‘ 220 1 1
5 10 5 15 ‘ 7 ‘

F1GURE 6. Example of t-centered minimum cost function.

Let us note 67, the minimum cost tension of a graph G and C}, = C’gc. We
explain here how to find 0f, and build the C¢, function. First the C; function of
an arc u is represented by shi = {(cL; 04 —ayu; {u})} and st? = {(cZ; by, —ou; {u})}
with the optimal tension 8 = o,.

3.1. SERIES AGGREGATION

Now consider the graph G = G + G2 and suppose that we know the optimal
tensions 07 and 03 and the minimum cost functions C} and C5 of the subgraphs G
and G'2. The tension 07, of G’ made of the two tensions 67 and ¢35 is optimal, because
there is no constraint between the two subgraphs after the series composition,
which means the minimum cost function C¢, is centered on % To increase %
we can choose to increase either f or % If we look at p1 = (c1;e1;L1) and
p2 = (ca;ea; La), the first pieces of the stretching sets st and st}, we decide to
increase % if ¢1 < ¢g or else @ The same reasoning can be made to decrease %
This way the whole C{, function is built.

We can conclude that to build the function C7, = C7OC5 of the graph G =
G1 + Ga, we need to create sh, = sh] U shj and stf, = st] U st3 sorted from the
smallest slope to the highest. Figure 7 shows an example. If we note p; and p» the
numbers of pieces of C; and C3, then Cf, has p = p; +p2 pieces, and the process of
finding the optimal tension of a series composition needs O(pm) operations (O(p)
operations to go through the p pieces and O(m) to copy a set of at most m arcs
for each piece).

MINIMUM COST TENSION ON SERIES-PARALLEL GRAPHS 229

fel C,

1 > 1 >
shy=1{ (1;10;{a;b})} shy=1{ (1/3;6;{e})% (5/4;4:{f;g}))
sty={ (1/2;4;{b;d));(4/3;6;{a})) sh=1{ (1;5:{e;g) ¥(2;5:(f}))

Co
‘ >
sh={ (1/3:6: (e})y (1;10:{asb) ¥ (5/4:4:{ f;g})
ste={ (112;4;{b;d});(1;5:{e; g})y (4/3;6:{a} }(2;5;{f})

FIGURE 7. Example of minimum cost function of a series composition.

3.2. PARALLEL AGGREGATION

We consider now the graph G = G1//G2 and suppose that we know the optimal
tensions 07 and 65 and the minimum cost functions C§ and C3 of the subgraphs
G, and Gy. The parallel composition is possible only if 7 = @ (if we want to
get a valid tension). As we need to find the optimal tension 67, of the graph G,
we need a method to equalize % and @ optimally, i.e. such that the tension 0,
made of #% and 6 is optimal. Suppose that 65 < 63, to equalize 0% and 65 we can
increase 0} and/or decrease 03, so we look at p; = (c1;e1; L1) and pa = (ca; e; La),
the first pieces of st} and shj. We decide then to increase % if ¢; < co or else to
decrease 5. This process is repeated until 6 = 05 (cf. Algorithm 8 (Fig. 8) and
Fig. 11).

The tension 6, made of 67 and 65 obtained with Algorithm 8 (Fig. 8) is compat-
ible, i.e. belongs to T, because modifications on G or G satisfy the constraints
on the tension. ¢ is also optimal for G = G1//G2 so the function Cf will be
centered on its main tension %

Then to build the function C}, = Cf+C5 we use the procedure 10 (only detailed
for the stf, part of the function) that is illustrated by Figure 9. If we note p; and
p2 the numbers of pieces of C7 and C3, then Cf has at most p = p1 + py pieces,
and the whole process of finding the optimal tension of a parallel composition
needs O(pm) operations (the equalization process go through at most p pieces and
copies at most m arcs for each piece, the same for Algorithm 10 (Fig. 10) that
creates at most p pieces and copies for each at most m arcs).

230 B. BACHELET AND P. MAHEY

while 0] < 05 do

if st} =0 and sh3 =0 then /* no feasible tension */;

let p1 = (c1;e1; L1) be the first piece of st] if st] # 0;
let p2 = (c2;e2; L2) be the first piece of shj if shi # 0;

if shy =0 or c¢1 < c2 then /* tension increase */
A — min{el;ﬁ—ﬁ};
for each w € Ly do Ofu — Hfu—i-)\;
st; — st — {m}s
if A < ep then st} « st] U{(cise1 —A;L1)};
shi «— shi U{(—ci;\;L1)};
else /* tension decrease */
A — min{eg;@—ﬁ};
for each u € Lo do Osu — Osu —\;
sh — shi — {pa}s
if A < ez then shj « sh3i U {(cz2;e2 — \;L2)};
sty — sty U{(—c2; A5 L2)}s
end if;

end while;

FIGURE 8. Algorithm to
equalize parallel tensions.

¢
A
.rh": {122 {b:d}):(1:10;{a b})}
st={ (1/2;4;{b;d});(3/4;8;{a})}
c,
A
L sh= LA fig))
T b= {148 ey (15 {eigd K (25 f))
Cs
A
sho={ (112:2;:{b;d; frg}) (2:2:{a;b; [ig})}
vr:;: { (1/4;4:{b:d;e});(1/2;4: {ase} k(744 {ase; g})}

FIGURE 9. Example of minimum cost function of a parallel composition.

MINIMUM COST TENSION ON SERIES-PARALLEL GRAPHS

while st] # 0 and sty # 0 do
let p1 = (c1;e1;L1) be the first piece of sti;
let pa = (c2;e2; La) be the first piece of st3;
A «— min{er;ea};
stg — st U{(c1 +c2;A;L1 U La)}s
st] — st} —{p1};
sty — sty —{p2};
if e; > X then st] «— st] U{(ci;e1 — A;L1)};
if ez > X then stj « sti U {(ca;e2 — A; L2)};

end while;

F1cUure 10. Algorithm to build the optimal
tension of a parallel composition.

e 0,-0,=8 G,
i > i >
shi={ (1,10, {a b})} shy={ (1/3;6;{e});(5/4;4,{ f:g})}
sti=1{ (1/2;4;{b;d})% (4/3,6;{a)})} st={ (1;5:{e;g}) (2;5:(f})
e 0, —0,=2 [eN
1 > 1 >
shi={ (1,10, {a;b})} shy={ (5/4;4:{ f;g})
sty=1{ (1/2,4;(b;d}) (4/3,6;{a})} sty={ 1/3:6;{e}) (1;5:(e; g} % (2,50})

C, 0, -0,=0 C,
i > ‘ >
shy={ C1/2,2:{b;d}) (1;10;{a; b})} shy=((5/4:4:(f:g))
sty=((1/2,2;{b; d} % (4/3,6;{a})} sto={ C1/3:6;{e))y (1;5:(e; g} k(2,54 1))

FIGURE 11. Example of equalization of parallel tensions.

231

232 B. BACHELET AND P. MAHEY

algorithm aggregate(Tree T = (0,7}, T}),Tension 0} ,Function C7J.)
if T} # 0 then aggregate(T},0;,C;);
if T, # () then aggregate(T},0),C);

if 0 = + then build C7 and 0] of the series composition T} + Tr;
else if o = // then build C} and 67 of the parallel composition T}//Tr;
else shy — {(chi0u — au; {ub)}s sty — {(c3; by — 0w {ul)}s

end algorithm;

FIGURE 12. Algorithm to build the optimal tension of a SP-graph.

3.3. COMPLEXITY

Finally Algorithm 12 (Fig. 12) resumes the whole aggregation method, which,
from the leaves of the SP-tree of the graph, applies the series and parallel composi-
tions with the construction of the optimal tension and the minimum cost function
as we just explained in the previous paragraphs.

In this algorithm T = (0;T;; T;) is the SP-tree with the root o, the left subtree
T, and the right subtree 7T,.. We show now that this recursive method has a
polynomial complexity.

Theorem 3.1. The aggregation algorithm performs O(m?) operations.

We established that each composition needs O(pm) operations. It is known that
a SP-graph contains m — 1 SP-relations (n — 2 series relations because each one
creates a node and there are only two nodes at the beginning of the construction
process, and m — n + 1 parallel relations because any SP-relation creates an arc
and there is only one arc at the beginning). So the aggregation needs O(pm?)
operations. We explained earlier that for each composition, if p; and py are the
numbers of pieces for C] and C3, C¢ has at most p; + p2 pieces. That means
if each arc has a two-piecewise cost function, the minimum cost function of the
whole graph has at most 2m pieces, and the aggregation needs O(m?) operations.

4. NUMERICAL RESULTS

Table 2 shows numerical results of the methods presented in Section 1 and
the aggregation algorithm on series-parallel graphs. Details on how the tests were
performed can be found in the comments of Table 1 (Sect. 1). These tests still focus
on the size and density of the graphs, because the theoretical complexity of the
aggregation method shows that the scale of the data (i.e. the tension boundaries
and the unit costs) has no impact on this method, contrary to the out-of-kilter
and the dual cost-scaling approaches that are affected (cf. Sect. 1).

The linear programming and the out-of-kilter methods take advantage of the
particular structure of the SP-graphs and behave really better on this class of
graphs. However the cost-scaling approach on the dual of the problem does not
work that well on this kind of instances, even with an improvement technique like

MINIMUM COST TENSION ON SERIES-PARALLEL GRAPHS 233

TABLE 2. Numerical results on series-parallel graphs.

[Nodes | Arcs [CPLEX | Kilter | Cost-Scaling | Aggregation

50 200 0.4 0.07 0.09 0.05
50 400 0.71 0.15 0.2 0.09
100 400 0.73 0.2 0.31 0.09
100 800 1.4 0.38 0.63 0.18
500 2000 4.4 3 4.5 0.5
500 4000 10.7 5.3 11.3 0,99
1000 4000 11.6 9 17.2 1
1000 8000 30.8 21.5 34.5 2.1

the wave implementation (cf. [2]). The aggregation method reveals quite efficient,
and not very sensitive to the graph dimension.

CONCLUSION

We show here how to solve the minimum cost tension problem on series-parallel
graphs with convex piecewise linear costs in O(m?) operations. But the real in-
stances that interest us for the hypermedia synchronization are a bit more com-
plex than the SP-graphs. They are indeed related to the generalized series-parallel
graphs (cf. [16]). Through this article, we explained that, in the context of the
minimum cost tension problem, a SP-graph can be reduced to a single arc with a
convex piecewise linear cost function. One idea can be to identify series-parallel
subgraphs of a non-specific graph, to aggregate these subgraphs and solve then
the minimum cost tension problem on the reduced graph with any known method.
To improve this simple idea, our future work will be to find algorithms to extract
series-parallel components from a graph and to develop an efficient process (using
the aggregation method) to find the minimum cost tension of the whole graph
when assembling back these components.

REFERENCES

[1] R.K. Ahuja, D.S. Hochbaum and J.B. Orlin, Solving the Convex Cost Integer Dual Network
Flow Problem. Lect. Notes Comput. Sci. 1610 (1999) 31-44.

[2] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows — Theory, Algorithms, and
Applications. Prentice Hall (1993).

[3] J.F. Allen, Maintaining Knowledge about Temporal Intervals. Commun. ACM 26 (1983)
832-843.

[4] B. Bachelet, B++ Library. http://frog.isima.fr/bruno/?doc=bpp_library

[5] B. Bachelet and P. Mahey, Optimisation de la présentation d’un document hypermédia.
Ann. Sci. Univ. Blaise Pascal 110 (2001) 81-90.

[6] B. Bachelet, P. Mahey, R. Rodrigues and L.F. Soares, Elastic Time Computation for Hy-
permedia Documents. SBMidia (2000) 47-62 .

[7] C. Berge and A. Ghoula-Houri, Programmes, jeux et réseauz de transport. Dunod (1962).

[8] M.W. Bern, E.L. Lawler and A.L. Wong, Linear-Time Computation of Optimal Subgraphs
of Decomposable Graphs. J. Algorithms 8 (1987) 216-235.

[9] M.C. Buchanan and P.T. Zellweger, Specifying Temporal Behavior in Hypermedia Docu-
ments. Eur. Conference on Hypertext ‘92 (1992) 262-271.

234 B. BACHELET AND P. MAHEY

[10] M.C. Buchanan and P.T. Zellweger, Automatically Generating Consistent Schedules for
Multimedia Documents. Multimedia Systems (1993) 55-67.

[11] A.K. Datta and R.K. Sen, An Efficient Scheme to Solve Two Problems for Two-Terminal
Series Parallel Graphs. Inform. Proc. Lett. 71 (1999) 9-15.

[12] R.J. Duffin, Topology of Series-Parallel Networks. J. Math. Anal. Appl. 10 (1965) 303-318.

[13] D. Eppstein, Parallel Recognition of Series-Parallel Graphs. Inform. Comput. 98 (1992)
41-55.

[14] D.R. Fulkerson, An Out-of-Kilter Method for Minimal Cost Flow Problems. SIAM J. Appl.
Math. 9 (1961) 18-27.

[15] M. Hadjiat, Penelope’s Graph: a Hard Minimum Cost Tension Instance. Theoret. Comput.
Sci. 194 (1998) 207-218.

[16] C.W. Ho, S.Y. Hsieh and G.H. Chen, Parallel Decomposition of Generalized Series-Parallel
Graphs. J. Inform. Sci. Engineer. 15 (1999) 407-417.

[17] M.Y. Kim and J. Song, Multimedia Documents with Elastic Time. Multimedia ’95 (1995)
143-154.

[18] J.M. Pla, An Out-of-Kilter Algorithm for Solving Minimum Cost Potential Problems. Math.
Programmang 1 (1971) 275-290.

[19] R.T. Rockefellar, Convex Analysis. Princeton University Press (1970).

[20] B. Schoenmakers, A New Algorithm for the Recognition of Series Parallel Graphs. Technical
report, No CS-59504, Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands
(1995).

[21] K. Takamizawa, T. Nishizeki and N. Saito, Linear-Time Computability of Combinatorial
Problems on Series-Parallel Graphs. J. ACM 29 (1982) 623-641.

[22] J. Valdes, R.E. Tarjan and E.L. Lawler, The Recognition of Series Parallel Digraphs. STAM
J. Comput. 11 (1982) 298-313.

To access this journal online:
www.edpsciences.org

