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DETERMINISTIC GLOBAL OPTIMIZATION USING
INTERVAL CONSTRAINT PROPAGATION TECHNIQUES*

FREDERIC MESSINE!

Abstract. The purpose of this article is to show the great interest of
the use of propagation (or pruning) techniques, inside classical inter-
val Branch-and-Bound algorithms. Therefore, a propagation technique
based on the construction of the calculus tree is entirely explained
and some properties are presented without the need of any formalism
(excepted interval analysis). This approach is then validated on a real
example: the optimal design of an electrical rotating machine.

Keywords. Interval analysis, Branch-and-Bound, global optimiza-
tion, pruning/propagation techniques.

INTRODUCTION

Deterministic global optimization algorithms based on interval analysis gain
actually a new interest, due to their intrinsic quality: the reliable enclosures of the
global optimum and also of all the solutions, and due to the performance of the new
computers generation. Consequently, the improvements of these methods to solve
larger and larger optimization problems, become a real scientific and economic
stake.

Constraint propagation techniques were firstly introduced in order to solve the
discrete constraint satisfaction problems (discrete CSP): to find the domain in
which a given set of constraints is satisfied. These techniques have been more
recently extended to the continuous-constraint-satisfaction-problem (continuous
CSP) by the use of interval arithmetic [4-6]; then a new adapted formalism was
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introduced: the box-consistency [8]. A natural extension of these algorithms was
to deal with the search of the global optimum of a constrained problem:

o8, ()
gi(z) <0 Vie{l,---,p} (1)
h](z) :OVj € {17 aQ}

where X is an hypercube, also named a box, which is the interest domain where
the global solution is sought, and f, g;, h; are real functions.

The main idea of these global optimization procedures is to consider the follow-
ing supplementary constraint f(z) < fmin (or f(2) < fmin for determining all the
solutions) where fiiy is a current solution which is improved during the iterations
of the algorithm [8,19].

In this work, the reverse way is privileged; starting from the standard interval
Branch-and-Bound algorithms [7,18] and inserting inside some propagation steps.
Thus, all the formalism needed by the previous approach becomes unnecessary
and the propagation techniques will be presented without any formalism (only
interval analysis). By this way, one focuses solely on the interest of the propagation
techniques inside interval Branch-and-Bound algorithms.

In the first section, interval analysis and the classical propagation methods are
recalled in the linear case and the extension due to E. Hansen to the non-linear
case [2]. Then the following section is dedicated to the study of properties deriving
from a propagation technique which is based on a principle of construction and de-
duction of the calculus tree of the considered constraint. Some works have already
been developed in interval-CSP [4,5], and new formalisms have been introduced in
[8]. Some modelling language have been implemented in Prolog IV, Numerica [19]
in connection with ILOG-solver. In this article, an implementation by overloading
operators is completely explained and detailed in the third section. The fourth
following section concerns the presentation of the interval Branch-and-Bound al-
gorithm using propagation techniques. The complexity of this new algorithm is
discussed there. Then, in the fifth and last section, numerical tests definitely show
the great efficiency of such algorithms; a practical example is then considered: the
optimal design of a rotating machine with magnetic effects.

1. INTERVAL ANALYSIS AND CLASSICAL PROPAGATION TECHNIQUES

1.1. INTERVAL ANALYSIS

Interval analysis was introduced by Moore in 1966 [17], to discard numerical
errors made by floating point representations and computations. The main idea is
to represent a real number by two floating point numbers enclosing it, and then, to
perform the computations by replacing this real number by the interval made by
the two floating point numbers. Thus, Moore defines operations between intervals.

Let us denote I the interval compact real set, and for A € I, A = [a®, Y], o
the lower bound of A, and reciprocally aV the upper bound. Interval operations
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are defined as follows:

[a,b] + [¢,d] = [a+ ¢, b+ d],

[a,b] — [¢,d] = [a—d,b— (],

[a,b] X [¢,d] = [min{a X ¢,a x d,b x ¢,b X d}, max{a X ¢,a x d,b x ¢,b x d}],
oot] + feudl = [a,8]x | 3.] 30 ¢ fecd)

(2)

Remark 1.1. Interval arithmetic does not keep all the properties of the classical
arithmetic; for example, it is sub-distributive: A x (B 4+ C) C Ax B+ A X
C,V(A, B,C) € I3. Furthermore, the subtraction (resp. the division) is not the
reverse operation of the addition (resp. the multiplication).

Definition 1.2 (inclusion function). An inclusion function denoted by F, is an
interval function from I to I which encloses the range (also named the direct image)
of a considered function f over a box. Therefore, one obtains:

min f(z), max f(z)| S F(X),vX €.

Theorem 1.3. The extension into interval of an expression of the considered
function f, which consists in — replacing each variable by its corresponding inter-
val, replacing each classical operation by its corresponding interval operation and
replacing each univariate classical function, such as sin,In by its corresponding
interval inclusion function — is an inclusion function.

This theorem is the fundamental result of the interval analysis [17].

Furthermore, efficient inclusion functions could be constructed, see [9-11,18]
(they could improved the performances of the global optimization algorithm).
However, in order to simplify this article, they are not considered here.

1.2. CLASSICAL INTERVAL PROPAGATION TECHNIQUES

Constraint propagation techniques based on interval analysis permit to reduce
the bounds of an initial hypercube (interval vector) by using the implicit depen-
dences between the variables formulated through the constraints.

In this paper, one considers the constraints written as follows:

c(z) € |a,b], with z € X C R", (3)

where ¢ is a real function which represents the studied constraint, [a,b] is a real
fixed interval and X is a real interval compact vector. In order to consider equality
constraint, one fixes @ = b and, a is fixed to —oo (numerically one uses the lower
representable floating point value) for an inequality constraint.
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Linear case:

If the considered constraint is linear: c¢(z) = > I, a;z;. The propagation
becomes:
n
[a, b] — Z aiXi
i=1,i#k .
Xy = N Xg, if ax # 0, (4)
a
where k is in {1, -+ ,n} and X, is the ith interval component of X.

Non-linear case, E. Hansen Method [2]:

If the constraint ¢ is non-linear, E. Hansen proposes to use a Taylor expansion
at the first order to produce a linear equation with interval coefficients. A Taylor
expansion at the first order can be written as follows:

c(z) = c(y) + (x — y). (€),Y(z,y) € X?, 3 € X,

where (z,y) € X% and € € X (X represents the open set of the compact hypercube
X: a component of X has the following form JzZ, 2U]).

An enclosure of ¢/(£) can be computed with an automatic differentiable code
extended to interval, [3,7,9]; the computation of an enclosure of ¢’ over X can
then be obtained; one notices it by C’(X). Hence, one has: ¢/(§) € C'(X), with

C'(X) e I"". Consequently:
c(x) € c(y) + (X —y).C"(X),¥(z,y) € X*.
The propagation produces:
[a,b] = c(y) — Z Ci(X).(Xi — vi)
i=1,i£k

X = X, if (X
k (X +yr | N Xy, if 0 CL(X), (5)

where C} (X) represents the kth interval component of the vector C’(X) which is
an enclosure of the gradient over the box X. When 0 € C}(X) no propagation is
done. This equation is satisfied for all y € X; generally, one fixes y to the middle

L U
of the box X: y = z’“;rz’“ ke {1,---,n}.

Remark 1.4. Hansen proposes in [2] other propagation techniques by solving
the so-obtained linear system with interval coefficients by an interval Gauss-Seidel
algorithm and also by using the order two of the Taylor expansions.

These two procedures may improve the efficiency of propagation techniques,
nevertheless it is not clear what their effects are in classical interval Branch-and-
Bound algorithm, and consequently, it is not discussed in this article.
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2. CONSTRAINT PROPAGATION TECHNIQUE BASED ON CALCULUS
TREES

This propagation technique is based on the construction of the calculus tree of
the considered constraint. All the partial computations are stored in each node of
the tree and then, one propagates the constraint through the tree, from the root
to the leaves.

2.1. CONSTRAINT PROPAGATION ALGORITHM

Algorithm 2.1 (constraint propagation algorithm).

1. Construction of the calculus tree of the considered constraint c
over the box X:

e the leaves are the variables of the problem: x; and its corresponding
interval X;, or some constant real parameters;

e on each node, the performed operation is stored with the partial com-
putation; for example: X1+ X3;

e the root is the last computation.

2. Going down through the tree from the root to the leaves. At each
node, one tries by deduction to reduce the partial result computed
at the first step and then, the leaves (variables) could be pruned;
for example: X; + X3 = [a,b] implies X; := ([a,b] — X3) N X; and
X3 := ([a, b] — Xl) N Xs.

A detailed implementation of this algorithm is presented in the following section;
all the intermediate computations of step 2 are clearly explained. In order to fully
understand how the Algorithm 2.1 works, let’s consider the following example:

Example 2.2. 2z320 + 21 = 3, with z; € X; = [1,3],Vi € {1,2,3}. The propaga-
tion can be seen in Figure 1.

The first step of the Algorithm 2.1 is represented on the left of the scheme
Figure 1, and the second step (the propagation phase) on the right. On each
node of the construction phase, the partial results are computed and stored, as
represented in the left part of Figure 1. Then, the propagation phase (in the
right part of Fig. 1) goes down through the tree from the root to the leaves; this
procedure makes possible to improve the partial results until the variables (the
leaves of the tree). These computations are denoted on the right of each node and
each variable. Hence for the variables, an intersection with its initial interval is
performed; the results is denoted below the variables. On this Example 2.2, this
technique of propagation permits to prove in one step, that the unique solution
which satisfies the constraint is 21 = 9 = 23 = 1.

2.2. PROPERTIES

In this paragraph, some properties are explained in order to show some theoretic
interests of Algorithm 2.1.
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F1GURE 1. Scheme of the use of Algorithm 2.1.

For all these properties, let us denote by Z the box resulting from the propaga-
tion of the constraint c(z) € [a,b] over a considered hypercube X using
Algorithm 2.1 and by C the inclusion function of ¢, defined by using interval
analysis [17].

Proposition 2.3. If x belongs to Z then c(x) belongs to C(Z) and reciprocally,
if x € X and c(x) € C(Z) then x belongs to Z.

Proof.

e It is obvious that x € Z = ¢(x) € C(Z), by definition of interval inclusion

function, see Definition 1.2.
The reciprocity is not so evident and is not true in the general case for
inclusion functions. However, Z comes from a propagation of the con-
straint ¢(x) € [a,b], and that implies then the following property.
Algorithm 2.1 uses the calculus tree of an expression of the function c.
Therefore by using this tree, the propagation can be expressed for each
variable which occurs in the expression of ¢, as a function depending on
the other variables and on the interval [a, b]. Let us denote this function
by ¢; ! for the variable z;. It is possible that several functions c; 1
depending on the expression of ¢ and also of the calculus tree. There-
fore, each variable used in the computation of ¢ has the obvious property
that: x; = ¢; *(d,z) where d = ¢(x) and d € [a,b]. With the expressions
of the c{l functions, one can construct corresponding inclusion functions
by using interval analysis, [17]; they are denoted by C; ! for the corre-
sponding variable x;; if there exists many functions c; ! for one considered
variable x;, one can choose one of them or one can consider the intersec-
tion of all of them which is obviously more efficient. Hence, Algorithm 2.1

exist
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gives:

Zi — X;NC; Y ([a,b], X).
It comes that x € Z with the property of the inclusion functions con-
structed by interval analysis C;” 1 because d € [a,b], € X and therefore
ci_l(cl7 x) € Ci_l([a, b, X), this involves that x; € Z; for every propagated
variables x; and else Z; = X;, by definition (for a non-propagated vari-
able x;). O

Proposition 2.4. C(Z) C C(X) and C(X)N][a,b] C C(Z).

Proof.

It is evident that C(Z) C C(X) because Z C X and by the definition of
the interval inclusion functions [17].
By doing propagation, one can express Z; by:

Zi — X;NC; Y ([a,b], X)

where C;” 1 corresponds to the interval inclusion function introduced in
the proof of the above Proposition 2.3 and is extended to the case where
the variable z; does not occur in the expression of ¢: C; '([a,b], X) «—
[—00,00] and to the case where some occurrences of x; appear in the
expression of ¢: C;*([a,b], X) will denote the intersection of all the dis-
tinct computations. Furthermore, one can generally denote Z = X N
C(a, b, X).
Hence, one obtains:

C(X)N[a,b] € C(CTHC(X) Nla,b], X)),

by inclusion of the functions C' and C~!
€ C(CTHC(X), X) N C7 ([a, b], X))

However, C~1(C(X), X) = X, because X C C~}(C(X), X) and when the
propagation is done an intersection is performed with the second term
(here X) and then C~!(C(X), X) C X. Hence, one has the result:

C(X) Na,b] € C(CTHO(X), X) N C™H([a, b], X))
cC(XnC Ya,b], X)) =C(2). O

Theorem 2.5 (validation of Algorithm 2.1). It does not exist a point x in X,
which satisfies a considered constraint ¢, such that x does not belong to the hyper-
cube Z resulting to the propagation of the constraint ¢ over the box X and using
Algorithm 2.1.

Proof. Let’s assume that © € X and x ¢ Z such that c¢(z) € [a, b].
Hence, from Proposition 2.3, one has: ¢(z) ¢ C(Z). Furthermore, from Propo-
sition 2.4, ¢(x) & C(X) N a,b] C C(Z), but c(x) is in C(X) by definition of the
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inclusion functions, and therefore, this implies that ¢(z) does not belong in [a, b]
which contradicts the hypothesis. O

Remark 2.6. This Theorem 2.5 proves that Algorithm 2.1 permits to find correct
bounds, in the inclusion sense.

Proposition 2.7. From the two above Propositions 2.3, 2.4 and from Theo-
rem 2.5, one obtains the four following properties:

==

Proof.

the propagation with C(X) N [a,b] is sufficient;
if C(X)NJa,b] =0 then Z = g;

if C(X) C [a,b] then Z = X;

if C(Z) C [a,b] then c(x) € [a,b],Vx € Z.

It is sufficient to propagate C(X) N [a, b] because from Theorem 2.5 Az €
Z C X such that ¢(z) € [a,b] and ¢(z) ¢ C(X). Therefore, Vz € Z C X,
one has ¢(z) € [a,b] N C(X).

. From the definition of the propagation and from the above property 1,

one has Z = X N C ([a,b], X) = X N C~HC(X) N [a,b],X) = XN
C~ Yo, X)=o0.

From Proposition 2.4, one has C(X) N [a,b] C C(Z), hence this implies
that C(X)(= C(X) N [a,b]) C C(Z). Furthermore, by definition of the
propagation and of the inclusion functions, Z C X and then, C(Z) C
C(X). Therefore, C(X) = C(Z). From Proposition 2.3, one has the result
Z =X.

It is obvious by the definition of inclusion functions because, for all z € Z,
¢(z) is in C(Z) and therefore ¢(z) is in [a, ]. O

Remark 2.8. The previous properties 2 and 3 eventually permit to improve the
convergence of Algorithm 2.1.

3. DETAILED IMPLEMENTATION OF ALGORITHM 2.1

This method is based on the definition of a new “object” and on the fact that
the operations and the classical univariate functions (such as sin or In for example)
can be overloaded. That implies the utilization of oriented object languages, such
as Ada, Fortran 90 and 95, and C++.
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3.1. DEFINITION OF THE NEW OBJECT

. Object:

[ TYPE Node
Value of the interval,
The number of the variable: 0 if it is an intermediate
computation,
Type of operation: +,—,x*, /, v(variable), c(constant),
i(integer variable),
left : Pointer on left node,
right : Pointer on right node; NULL for a univariate function (In).
| END TYPE

. operations: +, —, X, +,In, -+ (construction of the calculus tree);
. comparisons: <,=,<,>,> (propagation of the constraint through the
tree, this procedure can generate a reduction of the considered box).

In order to simplify the following subsections, one uses these notations for a con-
sidered object O: O.Val for the interval value of the node, O.num for the number
of the corresponding variables: i for x;, O.op for the operations: +, —, X, +, and
the fact that a variable or a constant is considered, O.left to have an access to the
left following node in the tree and O.right for the right node; it is fixed to NULL
if a univariate function is considered.

3.2. INITIALIZATION OF THE LEAVES OF THE CALCULUS TREE

The initialization phase begins with the considered box X.

FOR ¢ from 1 to n DO
Creation of a new pointer on node: Yj
Y;.Val .= X;
Y. num =1
Yiop:="v" or 7" ifi € K
Y;.left := NULL
Y;.right := NULL
END DO

where E represents the set of the indices of the integer variables. This involves a
different propagation. For example, if at the end of a propagation Z; = [1.2,3.4]
is obtained and if ¢ € E then Z, = [2, 3].

Remark 3.1. Consequently, mixed-constrained optimization problems could then
be considered: real and integer variables, but also logical and categorical vari-
ables [13,14].
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3.3. DEFINITION OF THE OVERLOADED OPERATIONS

This phase will be automatically performed by overloading the classical oper-
ations: +, —, X, +, and also classical real functions; as for example Inx, \/z, €%,
sin x.

3.3.1. Binary operations

Let us denote by ¢ one of the classical binary operations: +, —, X, +.
XiQXj :
Creation of the result pointer: RESULT
RESULT Val := X;.Val0X;.Val
RESULT.num :=0
RESULT.op := “¢”
RESULT.left := &X;
RESULT .right := &X
where & X denotes the memory address of the interval variable X.
The operations between an object Node and a constant value must also be
overloaded just by creating the following new object Node, and by performing the
appropriated operation:

Creation of the pointer over a constant k: K

K.Val := [k, k]
Knum:=0
K.op = “c”

K.eft := NULL
K.right := NULL

3.3.2. Classical real functions

Let us denote by u(x), one of the classical most commonly used functions, as
for example: Inz, sinz, /z, and U(z) the corresponding extension into interval
of an expression of u(x), [17].

u(X;): Creation of the result pointer RESULT
RESULT.Val :=U(X;.Val)
RESULT.num :=0
RESULT.op := “u’
RESULT left:=&X;
RESULT.right := NULL

3.3.3. Ezxponent function

A particular attention must be paid to this function.

X: Creation of the resulting pointer RESULT
RESULT.Val .= X;.Val®
RESULT.num :=0
RESULT.op := “pn”
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RESULT.left .= &X;
RESULT.right := &K

where the pointer on the constant n must be, a priori, declared using the above
definition.

3.4. PROPAGATION OF THE CONSIDERED CONSTRAINT

In this paper, only the general case, defined at the previous section, is consid-
ered: ¢(x) € [a, b]; the equality constraint ¢(z) = b amounts obviously to this case:
c(z) € [b,b] and for inequality constraints c¢(x) < b, one considers: c(z) €] — oo, ).

Remark 3.2. In order to perform propagations using this implementation, it is
simpler to only consider a constraint defined by: c(x) € [a, b].

“

By overloading the operator “=” between one node and one interval, the cal-
culus tree will be propagated from the root to the leaves.

Algorithm 3.3 (propagation algorithm). Let us denote by u a univariate real
function, by u' its inverse function and by U and U~ their classical extension
into interval functions [2,17,18].

CASE on the type of operation: (RECURSIVE CALL to :=)

“+7: right node value := [a,b]— left node value,
left node value := [a,b]— right node value.
“—7:right node value := left node value —[a,b],
left node value := [a,b]+ right node value.
“x”:right node value := [a,b]+ left node value,
left node value := [a,b]+ right node value.
“+7:right node value := left node value -[a,b],
left node value := [a,b]X right node value.
“pn”: Let us denote by n the constant value of the

right node,
IF n is odd THEN
left node value := [a,b]7 .

ELSE let us denoting V the left node value
IF v* >0 THEN
left node value := [a,b]7 .
ELSE IF vl <0 THEN
left node value := —[a,b]™ .
ELSE (0 € V)
left node value := [—bw, bu].
END IF
END IF
“4”: left node value := U !([a,b]).
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@, . .
v”": Xresult number result number([a;b]; the recursive

procedure is stopped (for "¢, a particular rounded
intersection is defined).
“c”: the recursive procedure is stopped.

END CASE

Remark 3.4. All the intermediate results can be improved only by performing
an intersection of the computed value with its previous value, which is calculated
at the first step of Algorithm 2.1. If it considered, the recurrence can be stopped
whether an intermediate result gives an empty interval.

Remark 3.4 permits to improve Algorithm 3.3. Nevertheless, it is not imple-
mented by now in our version of Algorithm 3.3.

Remark 3.5. This technique could also work with control structure as loops, for
example. However, if a part of the computations are performed by a subroutine,
attention must be paid in order to construct the correct corresponding calculus
tree.

4. INTERVAL BRANCH-AND-BOUND ALGORITHM

The main idea is to insert some interval propagation techniques inside classical
interval Branch-and-Bound algorithms [9,18].

Algorithm 4.1 (interval Branch-and-Bound algorithm).

1. X := initial hypercube in which the global minimum is sought,
X C R"” ,

2. fmin := +00, denote the current minimum,

3. L:=(4+00,X),

4. Extract from £ the element which has the smallest lower bound,

5. Bisect the considered box normal to a direction: Vi, V5, — choice

of the edge which has the maximal length -,
FOR j from 1 to 2 DO
(a) Compute v; := lower bound of f over Vj,
(b) Pruning of V; by CONSTRAINTS PROPAGATION,
(¢) IF V; is not empty THEN
e Compute all the lower and upper bounds of all the
constraints over V},
e IF fumin > v; and no constraint is unsatisfied THEN
— Imsert (v;,Vj) in L,
— fmin = min{ fmi, f(m)}, where m is the middle of
V; if and only if m satisfies all the
constraints,
— IF fimin is modified THEN discard in £ all the
couples (z,Z) such that z > fuin.
e END IF,

&
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7. IF fmin < ming z)er 2+€¢y and the largest box remaining in L is
smaller than e€ THEN STOP. ELSE return to step 4.

Because Algorithm 4.1 stops when the global optimum is enclosed with a given
accuracy ¢y, and because all the sub-boxes remaining in the list are small enough,
at least, one global solution is found: fu;, and all the solutions are in the union
of all the elements of the list L.

For more detailed descriptions about this Algorithm 4.1, refer to [2,7,9,18].
Attention must be paid at step 5, because the variables can be non-homogeneous,
as in physic problems; in order to take into account this difficulty, see [1,9,15], to
have interesting ways to bisect the box.

Remark 4.2. This program is actually used by the Electroactive Machines and
Mechanisms Group of the Laboratoire d’Electrotechnique et d’Electronique In-
dustrielle, for the optimal design of new types of actuators and electrical motors
[1,13-15].

Theorem 4.3. An overestimation in the worst case of the number of iterations

L
of Algorithm 4.1 (from step 4 to step 7) is given by: (i€l "}l Ly, If
the considered problem owns q linear equality constraints which are linearly inde-
pendent, and if Algorithm 2.1 is used at step 6(b), then an overestimation of the

U L
number of loops from step 4 to step 7 becomes (maxle{1 """ nt % % yn=d_ Therefore,
even if some computations are added (Algorithm 2.1), the exponential complezity
of Algorithm 4.1 can strongly be reduced.

Proof. Consider one equality constraint: ¢(z) = > I, a;z; = b. At each step of
the main loop, the box X is bisected in two parts V and W following a direction
k. Thus, if ax # 0, the propagation of ¢ must reduce V' and W let’s assume that
be C(V) (else V is discarded).

It is easy to understand that Algorithm 2.1 works like the general case (4)

presented in the section 1: V; := (m;—”ﬁja) NV;, if a; # 0, where j is in
J
{1,---,n}. However, for all j # k, V; is equal to X, which has already been

propagated (except for the first iteration). Hence, because Vi = [zL, IJL;FJIU—], all
the interval variables V; will be reduced (for all j =1,--- ,n, j # k and a; # 0).
Then, this process works as if a variable was computed from the others; it is
in fact the most efficient. Hence, an overestimation of the number of iterations of
the main loop is reduced: the exponent decreases about 1.
This proof can easily be extended when ¢ linear equality constraints are con-
sidered, if and only if these constraints are linearly independent. Furthermore,

this theorem can also be extended to the case where c¢ is non linear, but with at

least one variable which can be deduced from the others: xj := clzl(acl, ey Th—1,
Zk+41,---,Tn). That is the reason why formal modeling languages are introduced:
Prolog IV and also Numerica [19]. O

Remark 4.4. Theorem 4.3 shows that constraint propagation techniques make
possible the reduction of the exponent of the exponential complexity of the con-
sidered problems using the constraints.
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Remark 4.5. In this work, Algorithm 4.1 use a bisection phase at step 5. (It is
the most classical way to divide a box.) Therefore, the two sub-boxes V1, V5 and
the father box X differ from only one variable. But, a propagation technique has
already been applied on the box X and then, it is easy to understand that only
one iteration of propagation is enough in step 6(b) of Algorithm 4.1. That was
tested and confirmed on the real example presented in the following section.

Of course, if other multi-section techniques are used in step 5 of Algorithm 4.1,
that can involves some interests in the way to perform the propagation.

Remark 4.5 shows that on this kind of Branch-and-Bound Algorithms 4.1 when
a bisection is used at step 5, it is not necessary to iterate the propagation techniques
over the same box. Therefore, considering global optimization problems, the devel-
opment of more efficient propagation algorithms does not seem to have any interest
except in constraint satisfaction problems [4-6]. Other similar global optimization
algorithms are directly based on the extension of the CSP-techniques [8,19]. They
also have a great interest; however, they need the understood of a formalism based
on box consistency.

5. APPLICATION TO THE DESIGN OF AN ELECTRICAL MACHINE

This electrical machine has already been designed by deterministic global algo-
rithm [15]; nevertheless the propagation has been performed by hand-computations
for only a few variables: x; := ci_l(xl, s Tie1, Titl,---,Tyn). For the last few
years, a lot of electromechanical actuators have been designed using Algorithm 4.1.

This real example is taken into account in this paper because it allows to show
perfectly the great efficiency of (simple) propagation techniques inside classical
interval Branch-and-Bound Algorithm 4.1.

5.1. ANALYTICAL MODEL

The complete analytical model is detailed in [15,16]. In this paper, only the
associated optimization problem is presented.

. D
i Blax (D —2e — 1)

Pem = 55 (1= KV BEAED*(D + E)B,
Eep = Aoy = ke EJZ,

e+ FE
Kf = 1.5])5 D
B 21,P (6)
 Dh (M)
D—2(lg+e)
_ mBB.
B 4pBiron
D

p:Ap
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where the ten variables of the problem are: D(m) € [0.01,0.5] the bore diam-
eter, A € [1,2.5] which is the diameter over length ratio, l,(m) € [0.003,0.05]
the thickness of the permanent magnets, E(m) € [0.001,0.05] the winding thick-
ness, C(m) € [0.001,0.05] the thickness of yoke, 5 € [0.8,1] the polar arc factor,
B.(T) € [0.1,1] the magnetic field in the air gap, Je.(A/m?) € [10°,107] the cur-
rent areal density, K¢ € [0.01,0.3] a semi-empiric magnetic leakage coefficient
(established by numerical simulations) and e(m) € [0.001,0.005] the thickness of
the mechanical air gap.

The other parameters are fixed: p = 4 the number of pole pairs, k., = 0.7,
Biron = 1.5 T the magnetic field in the iron, E., = 1011 A/M, T, = 10 N.m the
electromagnetical torque, P = 0.9 T the magnetic polarization and A, = 0.1 m the
polar step.

This is a problem of optimal dimensioning of rotating slotless machines with per-
manent magnets, [15]. The considered criterion to be minimized for this example,
is the magnet volume (in fact, the most expensive component of the actuator).
The global solution must satisfy some technical constraints, as a fixed torque
(Tem, = 10 Num). This comes from an analytical model which takes some assump-
tions to analytically solve the Maxwell partial differential equations, see [1,15,16].

5.2. NUMERICAL RESULTS

These numerical tests have been performed on a 800 MHz HP bi-processors
server with 512 Mo of RAM; these tests have been done several times, in order
to obtain comparable CPU-times for each method. These algorithms have been
implemented with Fortran 90.

On this real example, one can note that all the propagation techniques permit
to strongly decrease the CPU-time and the number of iterations of these kind of
interval Branch-and-Bound Algorithms 4.1. The propagation technique based on
the calculus tree and entirely detailed in this paper is the most efficient (on this
example) and permits to obtain the solution in a record time: only 0.5 second
for such an optimization problem! Compared to the hour and half necessary for
the classical method, the gain is impressive. Consequently, these propagation
techniques become unavoidable to solve such constrained optimization problems.

However, one can notice a difference between the global solutions obtained.
In fact, the global solution given by the classical Algorithm 4.1 directly used
without propagation, seems more efficient than those produced by performing
some propagation steps. This is due to the fact that the constraints are satisfied
with more accuracy when propagation techniques are used.

If the designer wants to introduce a tolerance on these constraints, it is pos-
sible, by modifying the equality constraints h;(x) = 0 by h;(z) € [—¢;,€;] and
the inequality constraints g;(z) < 0 by g;j(z) €] — 00, €;] (where all the ¢; > 0
are given by the user of Algorithm 4.1). In that case, the same solutions are ob-
tained (denoted by “with an €”, e = (3 x 1072,10%°,1072,1072,1073,2 x 1073));
one can note that the CPU-time and the number of iterations become less effi-
cient but remain still interesting: only 17 seconds compared to one hour and half!
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TABLE 1. Dimensioning of a rotating slotless machine, minimiza-
tion of the magnet volume.

Algorithm 4.1 .. Number .

+ Propagation Minimum of iterations CPU-times
Without 6.20 x 10~ 407838 ~1h 35
Propagation

Hand-computed 6.76 x 10~* 1340 19s
Hansen technique 6.79 x 104 609 41.5 s
Algorithm 2.1 6.81 x 10~% 120 0.5s
Algorithm 2.1 _4

+Hansen technique 6-80 > 10 43 2.7s
Algorithm 2.1 6.21 x 1074 4641 16.8 5
with an ¢

The Hansen method does not give an efficient result (around 30 mns). Neverthe-
less, Hansen propagation technique must be associated with a interval Gauss-Seidel
algorithm to become really efficient, [2]; this is not implemented in this work.

Remark 5.1. Considering only one constraint, the CPU-time of one propagation
of the Hansen method is approximately eight times superior to the CPU-time of
one iteration of Algorithm 2.1.

Other comparisons of some propagation methods (without optimization) can
be found in [4,12], and one application of such techniques can be found in [5].

Remark 5.2. Considering this optimal design problem, the global solutions had
not been found using classical optimization tools: Lagrangian augmented or SQP
algorithms [16]. That revealed the great interest of this deterministic global op-
timization approach [15]. Furthermore, in order to solve more general design
problems, some extensions of Algorithm 4.1 has already been implemented to deal
with mixed-constrained optimization problems: such a method must deal with
real, integer, logical and categorical variables [13,14].

CONCLUSION

In this article, a propagation method based on the construction of the calculus
tree is entirely explained without the need of any formalism: including corre-
sponding properties and a detailed implementation. Its introduction inside classi-
cal Branch-and-Bound algorithms shows a great interest through a real example:
the optimal design of an electrical slotless rotating machine with permanent mag-
nets. Thus, propagation techniques integrated inside interval Branch-and-Bound
algorithm yield new perspectives for the generalization of the utilization of such
deterministic global optimization methods.
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