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CHARACTERIZATION OF THE DEPARTURE PROCESS
FROM AN ME/ME/1 QUEUE ∗

Jayesh Kumaran1, Kenneth Mitchell1 and
Appie van de Liefvoort1

Abstract. In this paper we propose a family of finite approximations
for the departure process of an ME/ME/1 queue indexed by a pa-
rameter k defined as the system size of the finite approximation. The
approximations capture the interdeparture times from an ME/ME/1
queue exactly and preserve the lag correlations of inter-event times of
the departures from an ME/ME/1 queue up to lag (k − 1).

1. Introduction

Modern high-speed networks, combined with new and different high-speed trans-
mission and switching technologies have attracted heterogeneous mixtures of ser-
vices and applications. A number of high-quality, high-resolution measurements
of different traffic in various networks such as multimedia traffic in high-speed
networks, packet streams in local area networks (LAN), cell streams from vari-
able bit rate (VBR) video streams in ATM networks, etc., have been carried out
and analyzed. These reveal the presence of correlations, either strong and short
term, or small, long term, and very persistent [4,31,33]. Furthermore, theoretical
evidence and empirical studies have established that these correlations can have
significant effect on the queueing behavior [26, 32].

Queueing networks have frequently been used for the performance analysis of
computer and communication systems, and there are many methods available for
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either the exact or approximate solution of such queueing networks, see e.g. [6].
There are no exact analytic results available for open queueing networks with
general arrival processes that may be correlated and with general service demands
at FCFS service centers.

Approximations for (open) queueing networks have appeared in the literature
where service centers are treated as GI/G/1 queues with renewal input. Gelenbe
(with his coworkers) extended the diffusion approximation technique to study the
behavior of a single node in a queueing network, and uses the first and second
moments of both the arrival time and the service time distribution to find an
approximation of the queue length distribution at a service center. These indi-
vidual approximations are then combined together into an approximation for the
queueing network as a whole. Gelenbe then incorporates this approximation in
performance models for computer and communication networks, with results now
available for multiple classes at each service center [10, 13, 14] (see also [12]), and
uses the results to successfully study ATM Call Admission Control [11].

Kühn developed a decomposition method for open queueing networks, where
again the service centers are treated as GI/G/1 queues with renewal input, and
again only the first two moments of both the arrival time and the service time
distributions are used to find an approximation to the performance measures of a
service center, this time often by iteration [21]. Whitt incorporated and extended
(merging, e.g.) these ideas in the Queueing Network Analyzer (QNA) [36], which
in turn stimulated a variety of special situation extensions. See [6, 17, 34] for
an overview of the various methods. There are only a few papers reporting on
incorporating the correlation structure in approximations, see e.g. [29].

These techniques are based on decomposing the network into subnetworks, and
approximating the solution for the original network by the aggregation of the
solutions of these subnetworks. Such approximation methods have been referred
to as “flow-equivalence” methods or Norton’s Theorem methods, and include the
Nearly Completely Decomposable (NCD) methods, where the subnetworks in the
decomposition are only weakly coupled to the remainder of the network. After
solving such a subnetwork, this subnetwork is then replaced by a single service
center that has similar performance qualities as the subnetwork it replaces, like
flow equivalency. These approximation models are not sufficient when network
behavior shows that a small, but persistent correlation over several time scales is
present.

In this paper, we present a finite approximation for an infinite GI/G/1 queue
such that the (marginal) interdeparture distributions of both models are equal,
and such that the correlations in the departures match each other closely. These
finite models can then be incorporated into larger non-product queueing networks,
which are often NCD when persistent correlation is observed, and can be used in
iterative methods for the solution of the model.

It is well known that the departure process of an M/M/s system forms a Poisson
process (Burke [7]). Daley [8] considers the M/G/1 and G/M/1 systems and finds
the stationary distribution for the departure process of those queues. Extensive
analysis of departure processes from an M/G/1//N queue (finite system space) can
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be found in [9,19,20]. Whitt [35,37] uses renewal approximations for the departure
process and uses these in the analysis of general queueing networks. Berstimas and
Nakazato [5] establish a close connection between the departure process and the
idle time. Hu [18] uses a recursive procedure to calculate the MacLaurin series
from which he derives the moments and covariances of the departure process of a
GI/G/1 queue.

In recent years, studies of departure processes relaxed the assumption that the
arrival process is renewal. Girish and Hu [15] propose an approximation for the
departure process of a G/G/1 queue with Markov modulated arrivals by using
the MacLaurin series to derive the interdeparture moments and the lag-1 auto-
correlations. Green [16] provides a family of approximations indexed by parame-
ter k for the departure process from a MAP/PH/1 queue by approximating the
busy period with a phase-type random variable to get a MAP description for
the approximation of the departure process. He proves that this family of approx-
imations capture the interdeparture distribution of the departure process from a
MAP/PH/1 queue and capture the lag-i correlations of the interdeparture times
for i < k. Sadre and Haverkort [34] provide a MAP approximation for the depar-
ture process from a MAP/MAP/1 queue.

In this paper, we present an approximation to the departure process of a
GI/G/1 queue that preserves the marginal interdeparture time distribution and
also matches the lag-i correlations for i < k. Our approximation uses the waiting
time distribution that can be obtained by solving for the sum space rather than the
product space that has been used in the approximation defined by Green [16]. We
compare our results with that of Green and with a truncated system GI/G/1//N.

The rest of the paper is organized as follows. In Section 2 we present the basic
description of the model. In Section 3 we derive the analytic description of the
departure process and in Section 4 we provide numerical results and comparisons
to other approximations. Section 5 concludes the paper.

2. Model description

2.1. Matrix exponential process

We use Linear Algebraic Queueing Theory (LAQT) to study the second order
statistics of the departing stream [28, 30]. Here, we briefly review the needed
material. A matrix exponential (ME) distribution [27] is defined as a probability
distribution whose density can be written as

f(t) = p exp (−Bt)Be′, t ≥ 0, (1)

where p is the starting operator for the process, B is the process rate operator, and
e′ is a summing operator a vector usually consisting of all 1’s. The nth moment
of the matrix exponential distribution is given by E[Xn] = n!pV ne′, where V is
the inverse of B. The class of matrix exponential distributions is identical to the
class of distributions that possess a rational Laplace-Stieltjes transform. As such,
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it is more general than continuous phase type distributions which have a similar
appearance.

The joint density function of the first k-successive intervals between events
describes a matrix exponential process (MEP):

fk(x1, . . . , xk) = p exp(−x1B)L . . . exp(−xkB)Le′. (2)

The matrix L is the event generator matrix. Examples for such processes are
a Poisson process (B = [λ], L = [λ]), a renewal process (L = Be′p), and a
Markov Arrival Processes (MAP) (B = −D0, L = D1). Note that B and L
are not limited to being Markovian rate matrices, so every MAP is an MEP, but
not vice versa (see also [24]). We assume the process to be covariance stationary,
so that p is the stationary vector for the process at embedded event points (i.e.
pV L = p). The expression for the lag-k covariance, the covariance between the
first interval and the kth is

cov[X0, Xk] = pV (V L)kV e′ − (pV e′)2, k ≥ 1. (3)

The auto-correlation at lag-k, r[k], can be found by dividing cov[X0, Xk] by the
variance

var[X] = 2pV 2e′ − (pV e′)2. (4)

Finally, the marginal process is matrix exponential with density given in equa-
tion (1).

2.2. Basic introduction to the model

Let the arrival and the service process be renewal processes with matrix expo-
nential representations 〈pa, Ba, e′

a〉 and 〈ps, Bs, e
′
s〉 with dimensions ma and ms

respectively, so that La = Bae′
apa and Ls = Bse

′
sps. For the analytic develop-

ment of the model we introduce the following notations:

B̂a = Ba ⊗ Is, (5)

L̂a = La ⊗ Is, (6)
p̂s = Ia ⊗ ps, (7)

B̂s = Ia ⊗ Bs, (8)

L̂s = Ia ⊗ Ls, (9)

where ⊗ denotes the Kronecker product, and Ix is the identity matrix with di-
mension mx. The ME/ME/1 queue is a quasi-birth death process, whose state
diagram is shown in Figure 1. The associated infinitesimal generator matrix Q is
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Figure 1. Markov state diagram for a G/G/1 queue.

as follows:

Q =


Ba Lap̂s 0 0 · · ·

L̂sê′
s (B̂a + B̂s) L̂a 0 · · ·

0 L̂s (B̂a + B̂s) L̂a · · ·
...

. . . . . . . . . · · ·

 .

The transitions that define departures from the queue are those that occur at a
completion of service. Thus the departure process itself is an MEP. The queue
departure transitions are included in what we will later define as the Ld matrix
and all other queue transitions are included in what we will later define as the
Bd matrix. Since the buffer size is infinite, there is no exact finite description for
the departure process. The departure process can be approximated by truncat-
ing the queue to some finite size and thus truncating the infinite matrices defined
above. The characteristics of the arrival process and the utilization of the system
determine how well the truncated approximation characterizes the departure pro-
cess. The family of approximations presented in this paper limits the buffer to
size k where the service distribution in the global state k is replaced by a matrix
exponential distribution with representation 〈pb, Bb, eb〉, where Bb is defined as

the rate matrix of the waiting time distribution. The vector pb = π(k−1)L̂aê′
a

π(k−1)L̂aê′
,

where π(k − 1) is the vector describing the steady state of the internal phases of
the arrival and service processes in the state (k − 1).

The waiting time distribution itself is a zero modified matrix exponential dis-
tribution with dimension equal to the dimension of the service time distribution,
see [3, 25]. Van de Liefvoort constructs Bb from the spectral decomposition of a
coupling matrix C which is defined as a matrix in the sum space as [25]

C =

[
Ba −Bae′

aps

Bse
′
spa −Bs

]
, (10)

while Asmussen constructs Bb by first solving for T the fixed point problem of
the form

T = D +
∫ ∞

0

exp(Tu)A(du) (11)
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Figure 2. Markov state diagram for adjusted M/M/1//k queue.

for a suitable matrix kernel A(du) and a matrix D that determine the distribution
of the process away from the boundary, and then letting T = −Bb. Asmussen and
Moller obtain the rate matrix of the waiting time distribution in a multi-server
queue by transforming the solution T , see [2].

The departure transitions from the state k are adjusted in our approximation
such that with the rate equal to Bbe

′
b a departure transition is made to state

(k− 1) where a normal service process is started. With rate equal to (Bs −Bb)e′
b

a departure transition is made to state k. An arrival event when in state (k − 1)
has the effect of keeping intact the internal phase at which the service process
was active at the instance of the arrival, but the rates of the service departure
transitions in state k are adjusted.

2.3. Exponential example

This approximation can best be explained by looking at an example using an
M/M/1 queue as depicted in Figure 2. Let the arrival and the service process be
exponentially distributed with mean rates λ and µ respectively. The waiting time
distribution in the system is exponentially distributed with the mean (µ−λ). Let
the utilization of the system be defined by ρ = λ/µ. Thus the matrix exponential
representations are given as follows.

pa = [1], Ba = [λ], e′
a = [1] (12)

ps = [1], Bb = [µ], e′
s = [1] (13)

pb = [1], Bb = [µ − λ], e′
b = [1]. (14)
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The steady-state solutions are given by

π(i) = (1 − ρ)ρi , 0 ≤ i < (k − 1)

π(k) = ρk. (15)

Observe that the adjustment at level k has the impact that the steady state prob-
abilities are matched exactly to the steady state probabilities of the infinite queue
up to level (k−1) and the probability at level k sums up the probabilities of the in-
finite tail from level k and above. The 〈Bd, Ld〉 for the finite MEP approximation
for the departure process of the M/M/1 queue are given by

Bd =



λ −λ 0 · · · 0

0 (λ + µ) −λ 0 0

0 0 (λ + µ) −λ
...

...
. . .

. . .
. . .

...

0 · · · 0 (λ + µ) −λ

0 · · · 0 0 µ


, Ld =



0 0 0 · · · 0

µ 0 0 · · · 0

0 µ 0 · · · 0
...

. . .
... · · · 0

0 · · · µ 0 0

0 0 · · · (µ − λ) λ


.

In this case, the stationary vector p at embedded event points is given by

p =
[
(1 − ρ), (1 − ρ)ρ, · · · , (1 − ρ)ρ(k−1), ρk

]
. (16)

Define V d as the inverse of the matrix Bd. Observe that the vector pV d is the
eigenvector for the matrix V dLd resulting in the cov[X0, Xi] = 0 for all i ≥ 1.

2.4. Approximation for the departure process of an ME/ME/1 queue

Let the arrival and the service process be renewal processes with matrix ex-
ponential representations 〈pa, Ba, e′

a〉 and 〈ps, Bs, e
′
s〉 and let ma and ms be the

dimensions respectively. The waiting time distribution in this case is matrix ex-
ponential with the number of phases equal to the dimension of the service distri-
bution. The appendix describes how the matrix Bb is obtained from the coupling
matrix defined in equation (10). It should be observed that the solution to the
waiting time distribution from [25] is a sum space solution. It can also be computed
as the solution to (see [3])

Bb = −Bs +
∫ ∞

0

exp(−Bbu)Ls (paexp(−Bau)Lae′
a)du. (17)
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Figure 3. Markov state diagram for adjusted ME/ME/1//k queue.

Once this matrix Bb is derived, introduce

B̂b = Ia ⊗ Bb, (18)

p̂b = Ia ⊗ ps, and (19)

ê′
b = Ia ⊗ e′

s. (20)

The approximation is now constructed by truncating the infinite state space to
a system of size k + 1 where the activities while in the last state (i.e. k) are
adjusted. Figure 3 shows the Markov state diagram for an ME/ME/1//k with the
adjustment at level k. The steady state balance equation for this approximation
depicted in Figure 3 can be written as follows

π(0)Ba = π(1)L̂sê′
s, (21)

π(1)(B̂a + B̂s) = π(0)Lap̂s + π(2)L̂s, (22)

π(i)(B̂a + B̂s) = π(i − 1)L̂a + π(i + 1)L̂s, 1 < i < (k − 1), (23)

π(k − 1)(B̂a + B̂s) = π(k − 2)L̂a + π(k)B̂bê′
bp̂b, (24)

π(k)(B̂a + B̂s − L̂a) = π(k − 1)L̂a + π(k)(B̂s − B̂b)ê′
bp̂b. (25)

The solution to the steady state balance equations are given by

π(i) = π̃(i), 0 < i < (k − 1), (26)

π(k)e′ =
∞∑

n=k

π̃(n)e′, (27)
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where π̃(i) is defined as the steady state probability of the ME/ME/1 infinite
queue at state i. The steady state solution for being in states 0 . . . (k − 1) is
identical to the steady state solution of the infinite system. The arrival process is
active in level k even though an actual arriving customer does not cause a change
in the state. This keeps track of the state of the arrival process at the instant that
the chain moves from level k to (k− 1) and preserves the correlation of the arrival
process. The MEP descriptors 〈Bd, Ld〉 for the departure process from the finite
queue are given as

Bd =



Ba Lap̂s 0 · · · 0

0 (B̂a + B̂s) L̂a 0 0

0 0 (B̂a + B̂s) L̂a

...
...

. . . . . . . . .
...

0 · · · 0 (B̂a + B̂s) L̂a

0 · · · 0 0 (B̂a + B̂s − L̂a)


, (28)

Ld =



0 0 0 · · · 0

L̂sê′
s 0 0 · · · 0

0 L̂s 0 · · · 0
...

. . .
... · · · 0

0 · · · L̂s 0 0

0 · · · 0 B̂bê′
bp̂s (B̂s − B̂b)ê′

bp̂s


. (29)

In Appendix B we have provided a brief review of Green’s approximation, defined
in [16]. This approximation works by solving for the steady state queue distribution
of the infinite queue, which is in the product space.

3. Numerical analysis and discussion

The model developed in the previous section allows us to study the first- and
second-order characteristics of a departing stream from a single server queue with
matrix exponential arrival and service distributions. In this section, we present
numerical results for different arrival processes and study the impact of the server
distributions on these streams. We compare our results with those obtained by
using the flat truncation and Green’s approximation [16]. We will refer to these
methods as flat truncation and Green’s truncation respectively. We perform ex-
tensive numerical experiments to explore various combinations and present the
interesting and insightful results, while discussing trends and special cases.
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3.1. Experimental setup

We characterize distributions using their first-order characteristics. We specify
the mean rate, λ, and squared coefficient of variation, c2, for the construction of
the arrival processes. When c2 = 1, we use the Poisson process with B = [λ] and
L = [λ]. For non-exponential renewal processes, we use the hyper exponentials
with balanced means, H2, represented in LAQT as

p =
[
p, 1 − p

]
, B = λ

[
2p 0

0 2(1 − p)

]
, L = Be′p, (30)

where

p =
1
2

+
1
2

√
c2 − 1
c2 + 1

· (31)

We use arrival and service distributions constructed using equation (30) and study
the impact of various server distributions on these streams by looking at the
squared coefficient of variation (c2

d) and the correlation structure of the depart-
ing streams. We consider the case where the arrivals are Poisson and the service
is assumed to follow an Erlang-10 or H2 distribution. The mean arrival rate of
the arrival process was fixed at λ = 1 and the utilization at the queue was fixed
at ρ = 0.8. Figure 4a shows the lag correlations and Figure 4b shows the moments
of the departing stream for the three approximations for buffer size of k = 10.
Observe that the first (k−1) lag correlations of the approximations defined in this
paper and in [16] match exactly. There is a jump in the autocorrelation coefficient
at lag k. It should be noted that Green proves that these lag-i, i < k, correla-
tions are equal to the lag-i, i < k, correlations of the infinite GI/G/1 queue. A
proof that our approximations are equal can be found in [22]. Figure 5 shows the
marginal distribution of the departure process.

We next consider the case where the service distribution is a hyper exponential
distribution constructed using equation (30). The mean arrival rate was fixed at
λ = 1.0, the squared coefficient of variation of the arrival process was fixed at
c2 = 4.0, and the buffer size was fixed at k = 10. The utilization of the queue was
set at ρ = 0.8. We observe the lag correlations and the moments of the departing
stream when the squared coefficient of variation of the service process was set at
c2
s = 1.0 and 4.0, Figures 6a and 6b. An important observation is the effect of

the c2
s on the lag correlations and its effectiveness in reducing the correlations of

the departing stream. From Figures 4b, 7a, and 7b, we observe that the moments
match exactly with Green’s truncation, and both methods capture the marginals
exactly (in particular they are independent of the buffer size k). Note that the flat
truncated model fails to capture the lag correlations of the departing stream.

In the next case, we study the impact of the c2
a of the arrival process on the

correlations of the departing stream by varying c2
a. The mean arrival rate was

fixed at λ = 1.0 and the utilization of the queue was fixed at ρ = 0.8. The service
distribution was assumed to be an Erlang-10 distribution. Figures 8a and 8b show
the lag-1 correlations and lag-2 correlations of the departing streams for varying c2
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Figure 4. M/E10/1 queue.

of the arrival process in which the buffer size was fixed at k = 10. It is interesting
to observe the decrease in correlation with an increase in the burstiness of the
arrival stream.

In the following case we look at the c2 and lag-1 correlation of the departing
stream for various utilizations ranging from 0.05 to 0.95. The service process was
assumed to follow an Erlang-10 distribution. The mean arrival rate was fixed at
λ = 1.0 and the squared coefficient of variation was fixed at c2 = 4.0. Figure 9a
corresponds to the lag-1 autocorrelation and Figure 9b the squared coefficient of
variation of the departing stream for various utilizations. Note the lag-1 correlation
increasing and the squared coefficient of variation decreasing with an increase in
the utilization of the queue. We can also observe from the above experiments that
the flat truncation does not adequately approximate the departure process.
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Figure 6. H2/H2/1 queue: lag correlations of the departure process.
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Figure 7. H2/H2/1 queue: moments of the departure process.

4. Conclusions and future work

In this paper we proposed a finite QBD approximation for an infinite GI/G/1
queue, that captures the marginal distribution exactly of a departure process that
is independent of the buffer size of the approximation. Our approximation also
captures the first (k−1) lag correlations of the departure process for an approxima-
tion of buffer size k. The computational effort is limited to finding ms eigenvalues
in the negative half-plane of a coupling matrix C which is defined in the sum-space
only. We have also compared our results with the approximation defined in [16]
and have established the accuracy of our results. Further research is being con-
ducted on using the approximation for the departure process for time dependent
arrivals. Time dependent arrivals can be modeled using the matrix exponential
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Figure 8. H2/E10/1 queue: varying the squared coefficient of
variation of the arrival stream.

process. In this case it is no longer true that the dimension of the service and the
waiting time distributions match. Current work also involves using our approx-
imation in studying the departure process of a tagged stream from a multi-class
queue. Research along these lines is ongoing, where we hope to use this or similar
approximations to solve large queueing networks with correlated streams between
service centers.
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Figure 9. H2/E10/1 queue: varying the utilization.

Appendix A: computing the Bb matrix of the waiting
time distribution

Let the interarrival time distribution and the interservice time distributions be
matrix exponential distribution with representation 〈pa, Ba, e′

a〉 and 〈ps, Bs, e
′
s〉

of order ma and ms respectively. The coupling matrix C is defined in [25] by

C =

[
Ba −Bae′

aps

Bse
′
spa −Bs

]
. (A.1)



188 J. KUMARAN, K. MITCHELL AND A. VAN DE LIEFVOORT

In [25] van de Liefvoort shows that the waiting time distribution is given by a
matrix exponential distribution with representation

p = [ω1, ω2, . . . , ωms ] , (A.2)

Bdiag =


−z1 0 0 0 · · · 0

0 −z2 0 0 · · · 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . −zms

 , (A.3)

where zi are the ms eigenvalues of C in the negative half plane. The weights ωi

are given by

ωi = Πj

(
1 +

zi

sj

)
/Πj,j �=i

(
1 − zi

zj

)
, (A.4)

where si are the ms eigenvalues of Bs. The left eigenvector of the coupling matrix
C corresponding to the eigenvalue zi given by[

paV a(Ia − ziV a)−1 ⊕ A∗(−zi)psV s(Is + ziV s)−1
]
, (A.5)

where A∗(z) is the Laplace-Stieltjes transformation of the arrival time distribution.
Define xi as

xi = A∗(−zi)psV s(Is + ziV s)−1. (A.6)

The transformed response time matrix that is used in our approximation is given by

Bb = X−1 (−Bdiag)X , (A.7)

where X is defined by

XT =
[
xt

1 xt
2 · · · xt

ms

]
. (A.8)

The computational effort is either finding the ms eigenvalues of the coupling matrix
that are located in the negative half-plane, or by finding the ma − 1 eigenvalues
and eigenvectors in the positive half-plane, (followed by a deflation of the matrix).

Appendix B: Green’s approximation

In this section we discuss the MAP approximation from [16] that characterizes
the departure process from a MAP/PH/1 queue. Let the interarrival time distri-
bution and the interservice time distributions be matrix exponential distribution
with representation 〈pa, Ba, e′

a〉 and 〈ps, Bs, e
′
s〉 of order ma and ms respectively.

The MAP descriptors 〈Bg, Lg〉 for the finite approximation for a buffer size of k
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is given by

Bg =



B1 B0

0 A1 A0

. . . . . . . . .

0 A1 A0

0 A1 E0

0 E1


, Lg =



0

B2 0

A2 0

. . . . . .

A2 0

E2 E3


,

where the matrices B0, B1, B2, A0, A1, A2, A2, E0, E1, E2, E3 are defined as
follows

B0 = −La,

B1 = B̂a,

B2 = −L̂sê′
s,

A0 = −L̂a,

A1 = (B̂a + B̂s),

A2 = −L̂s,

E0 = −L̂aê′
a,

E1 = Bs,

E2 = Bse
′
syk−1,

E3 = Ls (1 − yk−1ê
′),

where yk−1 is defined in [16] as the unconditional distribution of the return phase
at level (k − 1) and is given by

yk−1 =
xk−1
∞∑

j=k−1

xj ê′
, (B.1)

where xk−1 is defined as distribution of the QBD process (shown in Fig. 1) at
level k−1 conditional on a departure having just occurred. The unique stationary
distribution of the QBD is given by

Ψ = π0

[
R0, R0R, R0R

2, · · · ] , (B.2)

xk−1 =

{
π0R0B2(υLae′

a)−1, k = 1,

π0R0R
k−1A2(υLae′

a)−1, k > 1,
(B.3)
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where υ is defined as the steady state distribution of the arrival process, and R
is defined as the minimal nonnegative solution to the matrix quadratic equation

R =
2∑

k=0

RkAk. (B.4)

A number of efficient iterative methods have been proposed in the literature for
solving the equation (B.4) for the matrix R [1, 23].
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